EP2168211B1 - Supply network for a group antenna - Google Patents

Supply network for a group antenna Download PDF

Info

Publication number
EP2168211B1
EP2168211B1 EP08802623A EP08802623A EP2168211B1 EP 2168211 B1 EP2168211 B1 EP 2168211B1 EP 08802623 A EP08802623 A EP 08802623A EP 08802623 A EP08802623 A EP 08802623A EP 2168211 B1 EP2168211 B1 EP 2168211B1
Authority
EP
European Patent Office
Prior art keywords
radiator
point
group antenna
antenna according
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08802623A
Other languages
German (de)
French (fr)
Other versions
EP2168211A1 (en
Inventor
Maximilian GÖTTL
Michael Boss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP2168211A1 publication Critical patent/EP2168211A1/en
Application granted granted Critical
Publication of EP2168211B1 publication Critical patent/EP2168211B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems

Definitions

  • the invention relates to a feed network for a group antenna according to the preamble of claim 1.
  • a group antenna is understood to mean an antenna in which a plurality of radiators or radiator modules are arranged at an offset from one another in at least one column (or a row).
  • a group antenna also generally called antenna array
  • the individual emitters used may be, for example, dipoles and patch antennas. Simply polarized radiators or dual polarized radiators can be used, which can radiate and / or receive only in one frequency band or generally in several frequency bands.
  • the present group antenna is preferably an antenna for the base station of a stationary mobile radio antenna.
  • radiators in a group antenna must be fed with a defined relative phase angle.
  • a linear array of radiator elements radiates perpendicular to the array, i. usually perpendicular to a reflector assembly to which the individual emitters are arranged with a corresponding offset.
  • a steadily increasing phase difference of two adjacent radiators causes a beam swing.
  • adjustable phase shifters the individual, for example, in the vertical direction superposed radiators corresponding signals with offset phase difference can be supplied, with the result that depending on the different predefinable phase difference, a different strong beam reduction (downtilt or downtilt angle) is adjustable. This principle is used above all in mobile radio antennas with a vertical arrangement of the radiators.
  • the object of the present invention is to feed the emitters and / or groups of emitters with a definite phase in a group antenna (an antenna array), and this with an improved construction compared to the prior art.
  • the invention proposes that the feed network for the at least two emitters comprehensive group antenna comprises at least two different types of coaxial cable, which propagates the signals allow different phase velocities.
  • the desired phase positions can nevertheless be maintained accordingly in the case of the radiators fed thereon.
  • the different length cable loops can thereby be shortened or avoided that correspondingly different coaxial cables are used with different phase velocities.
  • a dielectric array antenna with an associated waveguide branching network is basically of the DE 40 35 793 A1 known. According to this prior publication, an antenna with particularly small antenna groups can be created with a minimized number of individual elements in the array. In this solution, which is completely unusual for conventional antenna technology, it is provided that a feed signal from a waveguide feed point is to be led via branched waveguide sections to individual waveguide outlet openings, to which the radiator elements can then be connected.
  • a waveguide material is a metal such as brass, brass / gold alloy or a plastic, in which the waveguide walls are metallized.
  • a waveguide block is assembled from two symmetrical metal blocks, which are provided with the integrated trained differently long waveguide channels.
  • a coaxial cable with low phase velocity is used where the actual distance between a branch point and a feed point (at a respective radiator or a radiator group fed above it) is shorter than the distance between the branch point and a radiator group adjacent thereto or an adjacent radiator.
  • a coaxial cable with low phase velocity is used in particular for the intended in the central region of the radiator arrangement emitter or radiator groups.
  • feed point may be any suitable connection of a radiator to a coaxial cable, ie any connection point and / or connection point between the radiator and the coaxial feed cable.
  • connection or connection point that is to say also a so-called feed input or a feed point
  • connection, connection and / or feed point can be provided directly on dipole arms.
  • adaptation elements such as capacitances, inductances, line sections with different characteristic impedances and lengths as well as a stub line are still used.
  • the connection, connection and / or feed point can be provided in front of the aforementioned adaptation elements, ie at a distance in front of the actual radiator elements.
  • Coax lines can also be used for resistance transformation and spur lines in distribution circuits.
  • even in the further course of the feed coaxial cable may still be present, for example, are connected to a filter. In dual-band antennas, the signals of the other band are attenuated.
  • this is at least one or more coaxial cable according to the invention (along which the phase of a wave propagates to the network further coaxial cables of different speeds) provided on the whole or on only a part of a connection or feed line, about which a radiator is fed from a distribution and / or sum circuit starting, that is, emitting signals emitted or received signals are received.
  • At least three different coaxial cables with three different phase velocities are used, in particular if at least three radiators or radiator groups arranged offset to one another and jointly supplied are arranged with offset from one another.
  • radiators or radiator groups which are fed with a predefinable or preselectable phase difference or subgroups to be fed with preselectable or predetermined phase difference, for example, by using several different coaxial cables with different phase velocities (ie different speeds, with the the phase of a wave propagates) a corresponding shortening of cable loops or even the avoidance of cable loops can be effected.
  • many antennas are constructed symmetrically to a central radiator or a central radiator group, so that when using three radiators (or three radiator groups), only a second type of coaxial cable is necessary.
  • a solution which is preferred in the sense of the invention can then be realized with three different coaxial cables (with different phase velocities).
  • devices for phase adjustment and / or power distribution can also be provided in such inventively designed group antennas.
  • group antennas according to the invention not only phase shifters in the network for an adjustable radiator pivoting, but also means for adjustable power distribution be provided.
  • an inversion of a signal means a frequency-independent phase rotation of 180 °.
  • the radiation of an inverted signal can be effected in a dipole, for example, by interchanging the feed points or by total rotation of the dipole by 180 °.
  • the coaxial cables with a different phase velocity can be realized by any suitable means. It is possible, for example, the use of coaxial cable, which have a special structure of the inner conductor, whereby the phase velocity is changed. It is possible to use a helically arranged inner conductor, a corrugated inner conductor, etc.
  • the different phase velocity in the coaxial cables can in principle also be changed by a special structure of the outer conductor, which can be, for example, corrugated, spirally corrugated, etc.
  • FIG. 1 is a schematic side view of a group antenna (antenna array) shown in the prior art.
  • a group antenna can be used, for example, for the base station of a mobile radio antenna.
  • the array antenna comprises three radiators 3 or radiator arrangements arranged offset from one another (it may also be radiator modules, etc.).
  • these emitters 3 are arranged in a mobile antenna at the same distance in the vertical direction offset from each other lying, usually in front of a reflector.
  • the emitters 3 may be dipole emitters, patch emitters or other emitters. Simply polarized emitters or dual polarized emitters can be used.
  • the antenna may, in principle, be constructed to radiate or receive in one or more frequency bands.
  • a connection or feeding point 5 is provided for the network 7, wherein the network 7 has a connected via a line 6 to the connection or feed point 5 distribution and / or sum circuit 9, of the three lines 11 ', in particular three coaxial lines 11 are arranged between the distribution and / or sum circuit 9 and the respective feed input 13 on the radiator 3 .
  • the three lines 11 ' ie in the embodiment shown, the three coaxial lines 11 are formed from the same coaxial cables 11.1, 11.2 and 11.3, which have an equal length.
  • FIG. 2 for an otherwise comparable group antenna 1 while the leading to the upper and lower radiator 3.1 and 3.3 leading coaxial cable 11.1 and 11.3 is the same length and consists of a coaxial cable 11 same phase velocity, whereas now between the distribution and / or summing point 9 and the feed inlet 13 of the middle Spotlight 3 a different coaxial cable 11.2 is used, which has a lower phase velocity (ie a slower rate at which the phase of an electromagnetic wave propagates in the coaxial cable). Therefore, the in FIG. 1 According to the prior art provided cable loop 111 for the central coaxial cable 11.2 significantly shortened, for example by 10% to 90%, by 20% to 80%, by 30% to 70% or for example by 40% to 60%. In the illustrated embodiment, a shortening of about 50% is possible. In today often a high cabling density having antenna arrangements, in particular mobile radio antenna arrays, this is a significant advantage realized, in particular a space and cost reduction.
  • the radiator may also comprise "internal coaxial cable lengths", in particular when provided adaptation elements (such as capacitance and inductance) and thus line sections with different characteristic impedances and lengths are also provided with regard to any stub line that may still be provided.
  • the connection and / or connection and / or feeding point can also be offset relative to the actual radiator elements.
  • feeder, connection and / or connection point is therefore meant in no way limited or limited connection point for a radiator.
  • connection and / or feeding point 13 and the distribution and / or sum circuit 9 the coaxial cable in question with reduced phase velocity is not provided on the entire route be. It is sufficient if such a cable is possibly realized only on a partial length and cooperates with other Koaxialraitabitesen that allow the propagation of a phase with deviating phase velocity.
  • the inventive principle is such that on a branch line starting from a distribution and / or sum circuit 9 (ie, a distribution and / or summing point 9) and the at least two connection, connection and / or supply points 13 (the may also be designed again in the manner of a branching, distribution and / or sum circuit to subsequent emitters) in one and / or at least other coaxial branch line different types and / or lengths of coaxial cables are used, optionally in different lengths, by a different phase velocity are characterized.
  • a distribution and / or sum circuit 9 ie, a distribution and / or summing point 9
  • the at least two connection, connection and / or supply points 13 the may also be designed again in the manner of a branching, distribution and / or sum circuit to subsequent emitters
  • different types and / or lengths of coaxial cables are used, optionally in different lengths, by a different phase velocity are characterized.
  • a coaxial cable type with a certain phase velocity is preferably used in a coaxial cable branch line at least on a partial section, and in the at least one further coaxial branch line at least on a partial section a coaxial cable type with a different phase velocity.
  • connection and / or feed point 13 of a radiator or a radiator group is shorter than to the connection, connection and / or feed point 13 of a radiator or a Emitter group fed via the other coaxial branch line can be ensured by selecting a slow-phase coaxial cable type, so that the total cable length can be made shorter to avoid the cable loops necessary in the prior art.
  • the middle coaxial cable 11.2 compared to the other two coaxial cables 11.1 and 11.3 is significantly shortened, all three emitters 3.1 to 3.3 are fed with the same phase.
  • a power divider 109 is provided in the embodiment according to FIG. 3 .
  • the power components for the individual emitters 3 can optionally also be set differently, if this appears necessary or expedient.
  • a power divider 109 may also be provided at a different location.
  • several power dividers may be provided at different locations. There are no restrictions in this respect.
  • the embodiment according to FIG. 4 differs from that FIG. 1 only in that the lower third radiator 3.3 has been omitted.
  • a coaxial cable 11.2 is also necessary here for the supply of the second radiator 3.2, which is laid with a cable loop 111, so that this coaxial cable 11.2 is the same length as the coaxial cable 11.1 (since both transmit cables with the same phase velocity).
  • the antenna arrays 33.1 and 33.2 may also comprise more than just two radiators.
  • From the aforementioned distribution and / or summation circuit 9 again go the three mentioned coaxial cables 11.1, 11.2 and 11.3 to the two subgroups 33.1 and 33.2, which at a group point 99.1 and 99.2 again corresponding to the number of belonging to a subgroup Radiating branch.
  • the phase position between the distributor and / or sum circuit 9 and the feed inputs 13.1 to the two radiators 3.1 of the first group 33.1 as the inputs 13.2 and 13.3 in the sole radiator 33.3 of the third group 33.3 results from the corresponding cable length.
  • the same cables are used with the same phase speeds.
  • modified antenna array according to FIG. 7 proposed to use between the distribution and / or sum circuit 9 and the individual antenna groups associated subsequent distribution and / or sum circuits 99.1 and 99.2 coaxial cable with different phase velocity, wherein the coaxial cable 11.2 is one which is characterized by a lower phase velocity.
  • the coaxial cable 11.2 has been selected such that the phase of an electromagnetic wave (signal) propagates in the coaxial cable 11.2 at such a speed that a cable loop 111 (FIG. FIG. 6 ) can be completely dispensed with.
  • embodiments are also possible and sometimes useful in which at least a reduction and thus a reduction of the necessary according to the prior art cable loop is possible.
  • the coaxial cable 11.3 is used over the entire length of the distribution and / or sum circuit 9 to the feed inlet 13.3 running continuously, and in this case has a preferred even lower phase velocity than the coaxial cable 11.2. It will also noted that between the branch point 9 and the feed points 13.2 of the radiator 3.2 of the second group thus two coaxial cables of different types are connected in series, namely the coaxial cable 11.2 with a lower phase velocity, which then at the branch point 99.2 in a downstream coaxial cable 11.2 'with the opposite larger Phase velocity passes, for example, corresponds to that type of coaxial cable 11.1, which leads to the radiators 3.1.
  • the coaxial cables can also be provided with, for example, a lower phase velocity, only in a partial path between the distribution and / or summation circuit 9 and any connecting, connecting and / or feeding point 13, so that therefore coaxial cables which control the propagation of a phase allow with different phase velocity, in each case suitable lengths in series (in a row) are connected, that are electrically connected.
  • connection, connection and / or supply points 13 can also be offset from the individual radiators 13.
  • the further branching point or branching circuit 99.9 can also be understood as connecting, connecting and / or feeding point 13 for the following radiators 13.2.
  • the coaxial cables with different phase velocities are drawn in stronger lines relative to the other coaxial cables with generally higher phase velocities. Also in this embodiment according to FIG.
  • the coaxial cables with different phase velocities can also only be used on one leg, for example between the distributor and / or summation point 9 and a connection, connection and / or feed point 13 or a subsequent distribution and / or sum circuit 99.2 be provided, especially since this further branch point 99.2 ultimately turn a connection, connection and / or feed point 13 for represents the one or more subsequent radiator 13.
  • Coaxial cables or different types of coaxial cable for example, can also be connected to each other alternately in a common transmission path on the mentioned sections or partial sections 11.2 and 11.3.
  • a group antenna according to the prior art is shown, in this embodiment, in all subgroups (but this does not have to be so in all subgroups), the at least one further radiator is serially fed.
  • the interconnections within the subgroups can be of any type, independent of the rest of the feed network. Possible, for example, stretched lines in which 360 'phase differences correspond to a distance of 0.7 wavelength in air.
  • a phase shifter assembly 201 is further provided (namely, a differential phase shifter assembly), wherein the outermost lying (ie remote) emitter groups 33.1 and 33.5 are fed with the largest relative phase shift and the next adjacent groups 33.2 and 33.4 over the two further outputs in the double phase shifter assembly are fed with a lower relative phase offset (for construction and use of the operation of such a double phase shifter assembly reference is made to the pre-publication EP 1 208 614 B1 referred to and incorporated in the content of the present application).
  • the middle radiator group 33.3 is usually fed without phase offset via the feed point 6 and the subsequent feed line 5.
  • the double-phase shifter assembly 201 ultimately also represents the distributor and / or sum circuit 9 according to the other embodiments.
  • the deviating antenna according to the invention according to FIG. 9 comprises the same radiator, radiator groups and basically a comparable structure for generating a comparable radiator diagram, but now in this embodiment, the central radiator group 33.3 for shortening the according to the prior art FIG. 8 having a mean loop 111 a coaxial cable 11.3 with lower phase velocity.
  • the above and below adjacent thereto and fed to the two outputs of the double phase shifter module via coaxial cable 11.2 and 11.4 emitters of the second and fourth group are also fed via another coaxial cable with another deviating phase velocity, so that provided for these assemblies cable loops 111th ' according to FIG. 8 eliminated.
  • Coaxial cable types are then selected for the individual coaxial cables 11.2 and 11.4 in such a way that the coaxial cables can be routed as much as possible while avoiding cable loops or cable loops of as small dimensions as possible.
  • the coaxial cable type in question must be selected to be based on the predetermined optimum length has a correspondingly adapted phase velocity, in order to ensure the feeding of the following radiators with the corresponding defined phase position.
  • the coaxial cables may have different dielectric constants to allow different phase velocities depending thereon.
  • the coaxial cables can alternatively or additionally be provided with different inner conductor structures, for example, have an inner conductor in the manner of a helix and / or comprise inner conductors which are corrugated.
  • the coaxial cables can still be provided with a different outer conductor structure, it also being possible for the outer conductor preferably to be corrugated and / or corrugated in a spiral manner.
  • the coaxial cables can emit an inverted signal, a phase shift of 180 ° is possible.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

A group antenna has at least two transducers disposed offset from one another. A network is provided to supply the transducers. The network comprises coaxial cables running between a distributor and/or summation circuit and the access, connection, and/or supply points of the associated transducer. The network comprises at least two different types of coaxial cable characterized by different phase velocities.

Description

Die Erfindung betrifft ein Speisenetzwerk für eine Gruppenantenne nach dem Oberbegriff des Anspruches 1.The invention relates to a feed network for a group antenna according to the preamble of claim 1.

Unter einer Gruppenantenne versteht man bekanntermaßen eine Antenne, in der zumindest in einer Spalte (oder auch einer Reihe) mehrere Strahler oder Strahlermodule mit Versatz zueinander angeordnet sind. Eine derartige Gruppenantenne (auch allgemein Antennenarray genannt) kann zudem aber auch mehrere in Horizontal- und Vertikalrichtung versetzt liegende Strahler, d.h. Strahlerelemente oder Strahlereinrichtungen oder Strahlermodule umfassen. Im Mobilfunkbereich werden häufig beispielsweise einspaltige, zweispaltige oder mehrspaltige Antennenarrays angesetzt. Bei den einzelnen verwendeten Strahlern kann es sich dabei z.B. um Dipole und Patchantennen handeln. Es können einfach polarisierte Strahler oder dual polarisierte Strahler zum Einsatz gelangen, die nur in einem Frequenzband oder allgemein in mehreren Frequenzbändern strahlen und/oder empfangen können.As is known, a group antenna is understood to mean an antenna in which a plurality of radiators or radiator modules are arranged at an offset from one another in at least one column (or a row). However, such a group antenna (also generally called antenna array) may also comprise a plurality of horizontally and vertically displaced radiators, ie radiator elements or radiator devices or radiator modules. In the mobile sector, for example, single-column, two-column or multi-column antenna arrays are often used. The individual emitters used may be, for example, dipoles and patch antennas. Simply polarized radiators or dual polarized radiators can be used, which can radiate and / or receive only in one frequency band or generally in several frequency bands.

Bei der vorliegenden Gruppenantenne (Antennenarray) handelt es sich bevorzugt um eine Antenne für die Basisstation einer stationären Mobilfunkantenne.The present group antenna (antenna array) is preferably an antenna for the base station of a stationary mobile radio antenna.

In einer Gruppenantenne müssen bekanntermaßen alle Strahler mit einer definierten relativen Phasenlage gespeist werden. Bei einer gleichphasigen Speisung aller Strahler strahlt eine lineare Gruppe von Strahlerelementen senkrecht zur Anordnung, d.h. in der Regel senkrecht zu einer Reflektoranordnung, an welcher mit entsprechendem Versatz die einzelnen Strahler angeordnet sind. Eine stetig steigende Phasendifferenz zweier benachbarter Strahler bewirkt demgegenüber eine Strahlschwenkung. Unter Verwendung von einstellbaren Phasenschiebern können den einzelnen, beispielsweise in Vertikalrichtung übereinander angeordneten Strahlern entsprechende Signale mit versetzt zueinander liegender Phasendifferenz zugeführt werden, mit der Folge, dass in Abhängigkeit der unterschiedlich vorgebbaren Phasendifferenz eine unterschiedlich starke Strahlabsenkung (Downtilt oder Downtilt-Winkel) einstellbar ist. Dieses Prinzip wird vor allem bei Mobilfunkantennen mit einer vertikalen Anordnung der Strahler verwendet.As is known, all radiators in a group antenna must be fed with a defined relative phase angle. With in-phase feeding of all radiators, a linear array of radiator elements radiates perpendicular to the array, i. usually perpendicular to a reflector assembly to which the individual emitters are arranged with a corresponding offset. In contrast, a steadily increasing phase difference of two adjacent radiators causes a beam swing. Using adjustable phase shifters, the individual, for example, in the vertical direction superposed radiators corresponding signals with offset phase difference can be supplied, with the result that depending on the different predefinable phase difference, a different strong beam reduction (downtilt or downtilt angle) is adjustable. This principle is used above all in mobile radio antennas with a vertical arrangement of the radiators.

Um Strahler mit einer gleichen Phase zu speisen gibt es verschiedene Ansätze.

  • Grundsätzlich werden seit jeher zur phasengleichen Speisung von mehreren Strahlern Leitungen und insbesondere Koaxialkabel verwendet, die eine gleiche Leitungslänge (Koaxialkabellänge) von der zentralen Speisestelle (Verzweigungsstelle) zu allen Strahler aufweisen. Mit anderen Worten werden also die gleichlangen Speiseleitungen (Koaxialleitungen) von dem Verzweigungspunkt teilweise in Schlaufen verlegt, damit trotz des unterschiedlichen Abstandes zwischen dem Verzweigungspunkt und dem betreffenden Strahler stets die Signale mit gleicher Phasenlage oder gleicher relativer Phasenlage entsprechend dem eingestellten Downtilt-Winkel an den Strahlern anliegen.
  • Sofern Umwegleitungen erforderlich sind, sind auch Leitungslängen verwendbar, die ein Vielfaches einer 360'-Phase aufweisen. Dadurch kann ebenfalls wieder absolute Phasengleichheit oder eine relative Phasendifferenz in Abhängigkeit einer beispielsweise über einen Phasenschieber eingestellten Phasendifferenz zur Einstellung eines bestimmten Downtilt-Winkels an der betreffenden Einspeisstelle der jeweiligen Strahler gewährleistet werden. Dies ist jedoch nur bei einer einzigen Frequenz möglich, so dass sich bei abweichenden Frequenzen Phasenfehler ergeben, die dann zu unerwünschten Diagrammverformungen führen. Dabei ist dieses Prinzip bei breitbandigen Antennen nicht oder nur sehr begrenzt einsetzbar.
  • Falls Umwegleitungen erforderlich sind und der Strahler beispielsweise durch Umkehrung der Richtung der Speisung ein invertiertes Signal aussenden kann, kann man dies ausnutzen, um die Leitungslängen um 180° + n x 360° zu verkürzen, wobei n = 0, 1, 2 ....Bei einer Verkürzung von lediglich 180° ergeben sich die geringsten frequenzabhängigen Diagrammverformungen.
  • Daneben gibt es auch Antennen, insbesondere auch für den Mobilfunkbereich, die aus sogenannten kolinearen Antennen bestehen (beispielsweise die Kathrein-Antenne Typ K 751 637). Mehrere Strahler werden von einem Ende einer starren, gestreckten Speiseleitung bei derartigen kolinearen Antennen seriell gespeist. Die Strahler befinden sich dabei an Positionen, wo die Phase entlang der Speiseleitung sich um jeweils 360° unterscheidet. Auch dadurch können alle versetzt zueinander liegenden Strahler mit gleicher Phasenlage gespeist werden. Wird eine Speiseleitung mit einem Dielektrikum bestehend aus Luft verwendet, befindet sich diese Position im Abstand von einer Wellenlänge (des zu übertragenden Frequenzbandes, vorzugsweise in der Mittenfrequenz des zu übertragenden Frequenzbandes). Ein solcher Strahlerabstand kann aber gegebenenfalls für die Anforderung an das Strahlungsdiagramm zu groß sein. Von daher wird die gestreckte, feste Speiseleitung teilweise oder ganz mit einem Dielektrikum gefüllt. Dies hat zur Folge, dass die beabstandeten Orte gleicher Phasenlage (die sich um jeweils 360° oder ein Vielfaches von 360° unterscheiden) damit näher zusammenrücken, weshalb auch der Abstand benachbarter Strahler-Positionen entsprechend verringert wird. Zudem lässt sich durch Hinzufügen bzw. Herausnehmen eines Dielektrikums eine Strahlschwenkung realisieren.
There are various approaches to feeding spotlights with the same phase.
  • In principle, power supply lines and in particular coaxial cables have always been used for the in-phase supply of a plurality of radiators and have the same cable length (coaxial cable length) from the central feed point (branch point) to all the radiators. In other words, the same length of feed lines (coaxial lines) from the branch point partially laid in loops, so that despite the different distance between the branch point and the respective radiator always the signals with the same phase or the same relative phase position according to the set downtilt angle to the radiators.
  • If detour lines are required, line lengths that are multiples of a 360 'phase can also be used. As a result, absolute phase equality or a relative phase difference as a function of a phase difference, for example set via a phase shifter, can again be ensured in order to set a specific downtilt angle at the relevant infeed point of the respective radiator. However, this is only possible with a single frequency, so that at different frequencies phase errors result, which then lead to undesirable diagram deformations. This principle is not or only very limited use in broadband antennas.
  • If detour lines are required and the emitter can emit an inverted signal, for example, by reversing the direction of the feed, this can be exploited to shorten the line lengths by 180 ° + nx 360 °, where n = 0, 1, 2 .... With a shortening of only 180 ° results in the lowest frequency-dependent diagram deformations.
  • In addition, there are also antennas, in particular for the mobile sector, which consist of so-called colinear antennas (for example, the Kathrein antenna Type K 751 637). Multiple radiators are serially fed from one end of a rigid, elongated feed line in such colinear antennas. The radiators are located at positions where the phase along the feed line differs by 360 °. This also allows all offset emitters can be fed with the same phase. If a feed line with a dielectric consisting of air is used, this position is at a distance of one wavelength (of the frequency band to be transmitted, preferably in the center frequency of the frequency band to be transmitted). However, such a radiator distance may possibly be too large for the requirement of the radiation pattern. Therefore, the stretched, solid feed line is partially or completely filled with a dielectric. This has the consequence that the spaced locations of the same phase position (which differ by 360 ° or a multiple of 360 °) closer together, so that the distance between adjacent radiator positions is reduced accordingly. In addition, beam blending can be achieved by adding or removing a dielectric.

Aufgabe der vorliegenden Erfindung ist es, bei einer Gruppenantenne (ein Antennenarray) die Strahler und/oder Gruppen von Strahlern mit einer definitiven Phase zu speisen, und dies mit einem gegenüber dem Stand der Technik verbesserten Aufbau.The object of the present invention is to feed the emitters and / or groups of emitters with a definite phase in a group antenna (an antenna array), and this with an improved construction compared to the prior art.

Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved according to the features specified in claim 1. Advantageous embodiments of the invention are specified in the subclaims.

Ausgehend von dem Stand der Technik, bei dem die einzelnen Leitungen, insbesondere in Form von Koaxialkabeln, von einer Verteilstelle bis zu einer Einspeise- oder Verzweigungsstelle für die betreffenden Strahler oder Strahlerelemente oder Gruppen von Strahlern unabhängig von dem tatsächlichen Abstand von der Verteilstelle und Strahlerelement aus gleich langen Koaxialkabeln bestehen (mit der Folge, dass Umweg-Schlaufen auf einer entsprechenden Antenne verlegt werden müssen), wird erfindungsgemäß vorgeschlagen, dass das Speisenetzwerk für die zumindest zwei Strahler umfassende Gruppenantenne zumindest zwei verschiedene Typen von Koaxialkabeln umfasst, die eine Ausbreitung der Signale mit unterschiedlichen Phasengeschwindigkeiten zulassen.Starting from the prior art, in which the individual lines, in particular in the form of coaxial cables, from a distribution point to a feed or branch point for the respective radiator or radiator elements or groups of radiators regardless of the actual distance from the distribution point and radiator element Coaxial cables of the same length (with the result that detour loops must be laid on a corresponding antenna), the invention proposes that the feed network for the at least two emitters comprehensive group antenna comprises at least two different types of coaxial cable, which propagates the signals allow different phase velocities.

Dies bietet den wesentlichen Vorteil, dass zur Verkürzung von Umwegschleifen und gegebenenfalls sogar zur Vermeidung von Umwegschleifen in der Zuleitung eines entsprechenden Strahlers oder einer Untergruppe von Strahlern mindestens ein Abschnitt mit einem Koaxialkabel vorgesehen ist, welches eine Signalausbreitung mit einer niedrigeren Phasengeschwindigkeit bewirkt.This offers the significant advantage that at least one section with a coaxial cable is provided to shorten detour loops and possibly even to avoid detour loops in the supply line of a corresponding radiator or a subset of radiators, which causes a signal propagation at a lower phase velocity.

Somit können durch Verwendung unterschiedlich langer Koaxialkabel gleichwohl die gewünschten Phasenlagen bei den hierüber gespeisten Strahlern entsprechend beibehalten werden. Dies gilt gleichermaßen für eine phasengleiche Speisung einer Gruppe oder von Untergruppen oder aber auch in jenem Fall, bei welchem einzelne Strahler oder Strahlergruppen mit einer definierten Phasenlage oder mit einer definierten Phasenlagendifferenz gespeist werden sollen und hier üblicherweise im Stand der Technik unterschiedlich lange Kabelschlaufen eingesetzt werden müssen. Auch hier können die unterschiedlich langen Kabelschlaufen dadurch verkürzt oder vermieden werden, dass entsprechend unterschiedliche Koaxialkabel mit unterschiedlichen Phasengeschwindigkeiten eingesetzt werden.Thus, by using coaxial cables of different lengths, the desired phase positions can nevertheless be maintained accordingly in the case of the radiators fed thereon. This applies equally to an in-phase supply of a group or subgroups or else in that case in which individual radiators or radiator groups are to be fed with a defined phase position or with a defined phase position difference and usually in the prior art differently long cable loops must be used. Again, the different length cable loops can thereby be shortened or avoided that correspondingly different coaxial cables are used with different phase velocities.

Eine dielektrische Array-Antenne mit einem zugehörigen Verzweigungsnetz in Hohlleitertechnik ist grundsätzlich aus der DE 40 35 793 A1 bekannt geworden. Gemäß dieser Vorveröffentlichung kann eine Antenne mit besonders kleinen Antennengruppen bei minimierter Einzelelementanzahl im Array geschaffen werden. Bei dieser für die übliche Antennentechnik völlig ungewöhnlichen Lösung ist vorgesehen, dass ein Speisesignal von einer Hohlleiterspeisestelle über verzweigte Hohlleiterabschnitte zu einzelnen Hohlleiter-Austrittsöffnungen geführt werden soll, an denen dann die Strahlerelemente angeschlossen werden können.A dielectric array antenna with an associated waveguide branching network is basically of the DE 40 35 793 A1 known. According to this prior publication, an antenna with particularly small antenna groups can be created with a minimized number of individual elements in the array. In this solution, which is completely unusual for conventional antenna technology, it is provided that a feed signal from a waveguide feed point is to be led via branched waveguide sections to individual waveguide outlet openings, to which the radiator elements can then be connected.

Als Hohlleitermaterial dient dabei ein Metall wie beispielsweise Messing, Messing/Goldlegierung oder ein Kunststoff, bei dem die Hohlleiterwandungen metallisiert sind. In der Praxis wird ein derartiger Hohlleiterblock aus zwei symmetrischen Metallblöcken zusammengefügt, die mit den integriert ausgebildeten unterschiedlich langen Hohlleiterkanälen versehen sind.As a waveguide material is a metal such as brass, brass / gold alloy or a plastic, in which the waveguide walls are metallized. In practice, such a waveguide block is assembled from two symmetrical metal blocks, which are provided with the integrated trained differently long waveguide channels.

Eine gleichphasige Ansteuerung der in dieser Vorveröffentlichung beschriebenen fünf Einzelstrahler erfolgt durch Aufteilung des Speisehohlleiters in der E-Ebene. Durch Variation der Hohlleiterbreite werden die Phasengeschwindigkeiten im Hohlleiter und damit die elektrisch wirksamen Längen der verwendeten Hohlleiter variiert.An in-phase control of the five individual radiators described in this prior publication is carried out by dividing the Speisehohlleiters in the E-plane. By varying the waveguide width, the phase velocities in the waveguide and thus the electrically effective lengths of the waveguides used are varied.

Dies betrifft aber eine völlig unterschiedliche Speziallösung. Denn Hohlleiter-Speisenetzwerke werden üblicherweise für Antennenanlagen oder Mobilfunkanlagen nicht benutzt, zumal die Hohlleiter bei den in Rede stehenden Frequenzbereichen viel zu groß wären, um eine noch vertretbare technische Umsetzung zu ermöglichen. Darüber hinaus erfordert die Realisierung einer Hohlleitertechnik mit einem Speisenetzwerk im Gegensatz zu Koaxialleitungen ein ausgesprochenes Spezialwissen, weshalb ein Fachmann auf dem Antennengebiet unter Verwendung von Koaxialkabeln keine Anregungen auf dem Gebiet der Hohlleitertechnik erwarten würde.But this concerns a completely different special solution. For waveguide feed networks are usually not used for antenna systems or mobile stations, especially since the waveguide would be much too large at the frequency ranges in question to allow a still acceptable technical implementation. In addition, the realization of a waveguide technique with a feed network as opposed to coaxial lines requires a special knowledge, which is why a person skilled in the antenna field using coaxial cables would expect no suggestions in the field of waveguide technology.

Im Übrigen handelt es sich bei der Verwendung eines Metallblockes und der darin spezifisch ausgebildeten Hohlleiterkanäle um eine individuelle Lösung, die mit der Verlegung von Koaxialkabeln nicht ansatzweise vergleichbar ist. Ein Koaxialkabel kann problemlos in einer Antennenanlage über Kurven und Schleifen in der Regel in beliebiger Länge und über verschiedenste Ebenen geführt werden, ohne dass dies die Antennencharakteristik an sich verändern oder gar verschlechtern würde.Incidentally, the use of a metal block and the waveguide channels specifically formed therein is an individual solution that is not comparable with the laying of coaxial cables. A coaxial cable can easily be routed in an antenna system over curves and loops usually in any length and over various levels, without this would change the antenna characteristic in itself or even worsen.

In einer bevorzugten Ausführungsform der Erfindung ist ein Koaxialkabel mit niedriger Phasengeschwindigkeit dort eingesetzt, wo der tatsächliche Abstand zwischen einer Verzweigungsstelle und einer Einspeisstelle (an einem betreffenden Strahler oder einer darüber gespeisten Strahlergruppe) kürzer ist als der Abstand zwischen der Verzweigungsstelle und einer dazu benachbart liegenden Strahlergruppe oder einem benachbart liegenden Strahler. Insbesondere bei Verwendung von zumindest drei, längs einer Anbaurichtung versetzt zueinander liegenden Strahlern oder Strahlergruppen wird ein Koaxialkabel mit niedriger Phasengeschwindigkeit insbesondere für die im mittleren Bereich der Strahleranordnung vorgesehenen Strahler oder Strahlergruppen verwendet. Unter dem Begriff "Speisepunkt" kann jeder geeignete Anschluss eines Strahlers an einem Koaxialkabel gemeint sein, also eine beliebige Anschlussstelle und/oder Verbindungsstelle zwischen dem Strahler und koaxialem Speisekabel. Mit anderen Worten kann eine derartige Anschluss- oder Verbindungsstelle, also auch ein sogenannter Speiseeingang oder eine Speisestelle direkt an Dipolarmen vorgesehen sein. Üblicherweise werden aber noch Anpassungselemente wie Kapazitäten, Induktivitäten, Leitungsabschnitte mit verschiedenen Wellenwiderständen und -längen sowie auch eine Stichleitung verwendet. In diesem Falle kann die Anschluss-, Verbindungs- und/oder Speisestelle vor den vorstehend genannten Anpassungselementen, also im Abstand vor den eigentlichen Strahlerelementen vorgesehen sein. Auch bei Verteiler-Schaltungen können Koax-Leitungen zur Widerstandstransformation und Stichleitungen eingesetzt werden. Weiterhin können auch im weiteren Verlauf der Zuführung noch Koaxialkabel vorhanden sein, die z.B. zu einem Filter verschaltet sind. In Dual-Bandantennen werden damit die Signale des jeweils anderen Bandes gedämpft. Mit anderen Worten ist das zumindest eine oder sind die mehreren erfindungsgemäß vorgesehenen Koaxialkabel (längs denen sich die Phase einer Welle mit zum Netz vorgesehenen weiteren Koaxialkabeln unterschiedlicher Geschwindigkeit ausbreitet) auf der gesamten oder auf nur einem Teil einer Anschluss- oder Speisestrecke vorgesehen, worüber ein Strahler von einer Verteiler- und/oder Summenschaltung ausgehend gespeist wird, also Sendesignale abgestrahlt oder Empfangssignale empfangen werden.In a preferred embodiment of the invention, a coaxial cable with low phase velocity is used where the actual distance between a branch point and a feed point (at a respective radiator or a radiator group fed above it) is shorter than the distance between the branch point and a radiator group adjacent thereto or an adjacent radiator. In particular, when using at least three, along a cultivation direction offset from each other emitters or Emitter groups, a coaxial cable with low phase velocity is used in particular for the intended in the central region of the radiator arrangement emitter or radiator groups. The term "feed point" may be any suitable connection of a radiator to a coaxial cable, ie any connection point and / or connection point between the radiator and the coaxial feed cable. In other words, such a connection or connection point, that is to say also a so-called feed input or a feed point, can be provided directly on dipole arms. Usually, however, adaptation elements such as capacitances, inductances, line sections with different characteristic impedances and lengths as well as a stub line are still used. In this case, the connection, connection and / or feed point can be provided in front of the aforementioned adaptation elements, ie at a distance in front of the actual radiator elements. Coax lines can also be used for resistance transformation and spur lines in distribution circuits. Furthermore, even in the further course of the feed coaxial cable may still be present, for example, are connected to a filter. In dual-band antennas, the signals of the other band are attenuated. In other words, this is at least one or more coaxial cable according to the invention (along which the phase of a wave propagates to the network further coaxial cables of different speeds) provided on the whole or on only a part of a connection or feed line, about which a radiator is fed from a distribution and / or sum circuit starting, that is, emitting signals emitted or received signals are received.

In einer besonders bevorzugten Ausführungsform werden zumindest drei unterschiedliche Koaxialkabel mit drei unterschiedlichen Phasengeschwindigkeiten eingesetzt, insbesondere dann, wenn zumindest drei versetzt zueinander angeordnete und gemeinsam gespeiste Strahler oder Strahlergruppen mit Versatz zueinander angeordnet sind.In a particularly preferred embodiment, at least three different coaxial cables with three different phase velocities are used, in particular if at least three radiators or radiator groups arranged offset to one another and jointly supplied are arranged with offset from one another.

Bei Verwendung von drei oder mehreren Strahlern oder Strahlergruppen, die mit vorgebbarer oder vorwählbarer Phasendifferenz gespeist werden oder Untergruppen umfassen, die mit vorwählbarer oder vorgebbarer Phasendifferenz gespeist werden sollen, kann beispielsweise durch Verwendung von mehreren unterschiedlichen Koaxialkabeln mit unterschiedlichen Phasengeschwindigkeiten (also unterschiedlichen Geschwindigkeiten, mit der sich die Phase einer Welle ausbreitet) eine entsprechende Verkürzung von Kabel-schlaufen oder sogar die Vermeidung von Kabelschlaufen bewirkt werden. In der Praxis sind viele Antennen symmetrisch zu einem mittleren Strahler oder einer mittleren Strahlergruppe aufgebaut, so dass bei Verwendung von drei Strahlern (oder drei Strahlergruppen) nur ein zweiter Typ eines Koaxialkabels notwendig ist. Bei einem Netzwerk mit fünf Strahlern oder fünf Strahlergruppen lässt sich dann mit drei verschiedenen Koaxialkabeln (mit unterschiedlichen Phasengeschwindigkeiten) eine im Sinne der Erfindung bevorzugte Lösung realisieren.When using three or more radiators or radiator groups, which are fed with a predefinable or preselectable phase difference or subgroups to be fed with preselectable or predetermined phase difference, for example, by using several different coaxial cables with different phase velocities (ie different speeds, with the the phase of a wave propagates) a corresponding shortening of cable loops or even the avoidance of cable loops can be effected. In practice, many antennas are constructed symmetrically to a central radiator or a central radiator group, so that when using three radiators (or three radiator groups), only a second type of coaxial cable is necessary. In the case of a network with five radiators or five radiator groups, a solution which is preferred in the sense of the invention can then be realized with three different coaxial cables (with different phase velocities).

Gleichwohl können auch bei derartigen erfindungsgemäß gestalteten Gruppenantennen Einrichtungen zur Phasenverstellung und/oder Leistungsaufteilung vorgesehen sein. Insbesondere können auch bei den erfindungsgemäßen Gruppenantennen nicht nur Phasenverschieber im Netzwerk für eine einstellbare Strahlerschwenkung, sondern auch Mittel zur einstellbaren Leistungsaufteilung vorgesehen sein.Nevertheless, devices for phase adjustment and / or power distribution can also be provided in such inventively designed group antennas. In particular, in the group antennas according to the invention not only phase shifters in the network for an adjustable radiator pivoting, but also means for adjustable power distribution be provided.

Möglich ist natürlich in allen Fällen auch, dass eine Kabellänge um ein Vielfaches einer 360°-Phase verkürzt werden kann, da hierdurch eine Phasenlagenänderung nicht bewirkt wird. Die Verwendung von Kabellängen mit n x 360° ist allerdings nur exakt für eine einzige Frequenz völlig richtig. Bei abweichenden Frequenzen ergeben sich Änderungen der Phasenlage. Die Phasenänderungen sind proportional zur Frequenzabweichung und zur fehlenden Leitungslänge. Berücksichtig man, dass für viele Antennen heutzutage eine immer höhere Bandbreite gefordert wird, hätte dies zur Folge, dass deutliche Frequenz-Abweichungen vorhanden sind, die auch Phasenfehler beinhalten. Je nach dem, ob alle Phasenfehler in die gleiche Richtung gehen oder nicht, führen sie auch zu einer Strahlschwenkung und/oder z.B. zu einem höheren Nebenkeulen-Pegel. Die Anforderungen an das Strahlungsdiagramm zusammen mit der erwähnten geforderten Bandbreite bestimmen damit, ob Speisekabel verwendet werden können, bei denen die Phase eine zusätzliche oder vielfache zusätzliche 360°-Phasenlagenänderung erlaubt.It is of course also possible in all cases that a cable length can be shortened by a multiple of a 360 ° phase, as this does not cause a change in the phase position. However, using n x 360 ° cable lengths is only accurate for a single frequency. Deviating frequencies result in changes in the phase position. The phase changes are proportional to the frequency deviation and the missing line length. Considering that for many antennas today an ever-increasing bandwidth is required, this would mean that significant frequency deviations are present, which also include phase errors. Depending on whether or not all phase errors go in the same direction, they also result in beam sweep and / or e.g. to a higher sidelobe level. The requirements of the radiation pattern along with the required bandwidth mentioned above thus determine whether feed cables can be used in which the phase allows an additional or multiple additional 360 ° phase change.

Schließlich ist auch eine Kombination aus einer Invertierung eines abgestrahlten Signals mit einer Verkürzung einer Kabellänge um 180° + n x 360°-Phase möglich, wobei n = 0, 1, 2, ... beträgt. Eine "Invertierung" eines Signals (also das Aussenden eines invertierten Signals) bedeutet eine frequenzunabhängige Phasendrehung von 180°. Die Abstrahlung eines invertierten Signals kann bei einem Dipol beispielsweise durch Vertauschen der Speisepunkte oder durch Gesamtdrehung des Dipols um 180° bewirkt werden.Finally, a combination of an inversion of a radiated signal with a shortening of a cable length by 180 ° + nx 360 ° phase is possible, where n = 0, 1, 2, .... An "inversion" of a signal (ie the emission of an inverted signal) means a frequency-independent phase rotation of 180 °. The radiation of an inverted signal can be effected in a dipole, for example, by interchanging the feed points or by total rotation of the dipole by 180 °.

Die Koaxialkabel mit einer unterschiedlichen Phasengeschwindigkeit können durch alle geeigneten Maßnahmen realisiert sein. Möglich ist beispielsweise die Verwendung von Koaxialkabel, die hierzu eine spezielle Struktur des Innenleiters aufweisen, wodurch die Phasengeschwindigkeit verändert wird. Möglich ist die Verwendung eines helixförmig angeordneten Innenleiters, eines gewellt verlaufenden Innenleiters, etc..The coaxial cables with a different phase velocity can be realized by any suitable means. It is possible, for example, the use of coaxial cable, which have a special structure of the inner conductor, whereby the phase velocity is changed. It is possible to use a helically arranged inner conductor, a corrugated inner conductor, etc.

Die unterschiedliche Phasengeschwindigkeit bei den Koaxialkabeln kann grundsätzlich auch durch eine spezielle Struktur des Außenleiters verändert werden, der beispielsweise gewellt, spiralförmig gewellt, etc. gestaltet sein kann.The different phase velocity in the coaxial cables can in principle also be changed by a special structure of the outer conductor, which can be, for example, corrugated, spirally corrugated, etc.

Die Erfindung wird nachfolgend anhand von Zeichnungen erläutert, teilweise auch unter Bezugnahme auf Lösungen, wie sie ansonsten bisher nach dem Stand der Technik notwendig waren. Dabei zeigen im Einzelnen:

Figur 1 :
eine schematische seitliche Darstellung einer Gruppenantenne mit drei beispielsweise bevorzugt im gleichen Abstand in Vertikalrichtung versetzt zueinander angeordneten Strahlern nach dem Stand der Technik;
Figur 2 :
eine Gruppenantenne vergleichbar nach Figur 1, bei der jedoch die erfindungsgemäße Speisung eines Strahlers über ein Koaxialkabel mit einer niedrigeren Phasengeschwindigkeit erfolgt, wodurch eine KabelSchlaufe gegenüber der nach dem Stand der
Figur 3 :
Technik bekannten Lösung nach Figur 1 gekürzt ist; eine weitere Abwandlung gegenüber Figur 2, bei der eine Kabel-Schlaufe bei dem Koaxialkabel zur Speisung des mittleren Strahlers völlig eliminiert ist;
Figur 4 :
eine schematische seitliche Darstellung einer Gruppenantenne mit zwei versetzt zueinander angeordneten Strahlern oder Strahlergruppen nach dem Stand der Technik, wobei alle Strahler mit gleicher Koaxialkabellänge gespeist werden;
Figur 5 :
eine entsprechende erfindungsgemäße Lösung in Abweichung zu Figur 4, bei der die nach dem Stand der Technik vorgesehene KabelSchlaufe des einen Strahlers völlig eliminiert ist;
Figur 6 :
eine Gruppenantenne mit einem Verteilnetzwerk mit Bildung von Untergruppen nach dem Stand der Technik, die mit unterschiedlicher Phasenlage durch Verwendung unterschiedlich langer Koaxialkabel zwischen Verteilpunkt und der Einspeisestelle der Strahler angespeist werden;
Figur 7 :
eine erfindungsgemäße Gruppenantenne vergleichbar jener nach Figur 6, jedoch unter Verwendung von verschiedenen Koaxialkabeln mit unterschiedlichen Phasengeschwindig- keiten;
Figur 8 :
eine Gruppenantenne mit einem Verteilnetzwerk unter Bildung von Untergruppen nach dem Stand der Technik, wobei innerhalb der Untergruppen die Strahler seriell gespeist sind, und zwar nach dem Stand der Technik; und
Figur 9 :
eine erfindungsgemäße Gruppenantenne vergleichbar jener nach Figur 8, bei der die in Figur 8 nach dem Stand der Technik vorgesehenen Kabel-Schlaufen nicht nur reduziert, sondern sogar entfallen sind.
The invention will be explained below with reference to drawings, in part also with reference to solutions, as they were otherwise necessary in the prior art. In detail:
FIG. 1:
a schematic side view of a group antenna with three, for example, preferably at the same distance in the vertical direction staggered radiators arranged according to the prior art;
FIG. 2:
a group antenna comparable to Figure 1, but in which the inventive supply of a radiator via a coaxial cable with a lower phase velocity, whereby a Kabelschlaufe over that of the prior
FIG. 3:
Technology known solution after FIG. 1 is shortened; another modification opposite FIG. 2 in which a cable loop in the coaxial cable for feeding the central radiator is completely eliminated;
FIG. 4:
a schematic side view of a group antenna with two staggered radiators or radiator groups according to the prior art, wherein all radiators are fed with the same coaxial cable length;
FIG. 5:
a corresponding inventive solution in deviation from FIG. 4 in which the cable loop of the one radiator provided according to the prior art is completely eliminated;
FIG. 6:
a group antenna with a distribution network with the formation of subgroups according to the prior art, which are fed with different phase by using different length coaxial cable between distribution point and the feed point of the radiator;
FIG. 7:
a group antenna according to the invention comparable to those according to FIG. 6 but using different coaxial cables with different phase velocities opportunities;
FIG. 8:
a group antenna with a distribution network to form subgroups according to the prior art, wherein within the subgroups, the radiators are serially fed, in the prior art; and
FIG. 9:
a group antenna according to the invention comparable to those according to FIG. 8 in which the in FIG. 8 According to the prior art provided cable loops not only reduced, but even eliminated.

In Figur 1 ist in schematischer Seitenansicht eine Gruppenantenne (Antennenarray) nach dem Stand der Technik gezeigt. Eine deartige Gruppenantenne kann beispielsweise für die Basisstation einer Mobilfunkantenne eingesetzt werden.In FIG. 1 is a schematic side view of a group antenna (antenna array) shown in the prior art. Such a group antenna can be used, for example, for the base station of a mobile radio antenna.

Im gezeigten Ausführungsbeispiel umfasst die Gruppenantenne drei versetzt zueinander liegende Strahler 3 oder Strahleranordnungen (es kann sich auch um Strahlermodule etc. handeln). Üblicherweise sind diese Strahler 3 bei einer Mobilfunkantenne im gleichen Abstand in Vertikalrichtung versetzt zueinander liegend angeordnet, üblicherweise vor einem Reflektor. Bei den Strahlern 3 kann es sich dabei um Dipolstrahler, Patchstrahler oder sonstige Strahler handeln. Es können einfach polarisierte Strahler oder dualpolarisierte Strahler verwendet werden. Die Antenne kann grundsätzlich so aufgebaut sein, dass sie in einem oder mehreren Frequenzbändern strahlt oder empfängt.In the exemplary embodiment shown, the array antenna comprises three radiators 3 or radiator arrangements arranged offset from one another (it may also be radiator modules, etc.). Typically, these emitters 3 are arranged in a mobile antenna at the same distance in the vertical direction offset from each other lying, usually in front of a reflector. The emitters 3 may be dipole emitters, patch emitters or other emitters. Simply polarized emitters or dual polarized emitters can be used. The antenna may, in principle, be constructed to radiate or receive in one or more frequency bands.

Im gezeigten Ausführungsbeispiel ist nur eine Grundvariante wiedergegeben, beispielsweise für eine Polarisation (für eine weitere Polarisation wird eine entsprechende Speisung über ein paralleles zweites Netzwerk erfolgen, wobei die beiden Polarisationen über einen Kombiner zusammengeführt sein können. Für Strahler in einem weiteren Frequenzband können ebenfalls separate Strahler mit einem in der Regel separaten Netzwerk vorgesehen sein).In the exemplary embodiment shown, only one basic variant is reproduced, for example for a polarization (for a further polarization, a corresponding supply is effected via a parallel second network, whereby the two polarizations can be combined via a combiner.) For emitters in a further frequency band, separate emitters can also be used be provided with a usually separate network).

Im gezeigten Ausführungsbeispiel ist eine Anschluss- oder Speisestelle 5 für das Netzwerk 7 vorgesehen, wobei das Netzwerk 7 eine über eine Leitung 6 mit der Anschluss- oder Speisestelle 5 verbundene Verteiler- und/oder Summenschaltung 9 aufweist, von der drei Leitungen 11', insbesondere drei Koaxialleitungen 11 zwischen der Verteiler- und/oder Summenschaltung 9 und dem jeweiligen Speiseeingang 13 am Strahler 3 angeordnet sind..In the embodiment shown, a connection or feeding point 5 is provided for the network 7, wherein the network 7 has a connected via a line 6 to the connection or feed point 5 distribution and / or sum circuit 9, of the three lines 11 ', in particular three coaxial lines 11 are arranged between the distribution and / or sum circuit 9 and the respective feed input 13 on the radiator 3 ..

Um eine phasengleiche Speisung aller Strahler 3 zu gewährleisten, sind die drei Leitungen 11', also im gezeigten Ausführungsbeispiel die drei Koaxialleitungen 11 aus gleichen Koaxialkabeln 11.1, 11.2 und 11.3 gebildet, die eine gleiche Länge aufweisen.In order to ensure an in-phase supply of all emitters 3, the three lines 11 ', ie in the embodiment shown, the three coaxial lines 11 are formed from the same coaxial cables 11.1, 11.2 and 11.3, which have an equal length.

Bei dem erfindungsgemäßen Ausführungsbeispiel nach Figur 2 für eine ansonsten vergleichbare Gruppenantenne 1 ist zwar das zum oberen und unteren Strahler 3.1 und 3.3 führende Koaxialkabel 11.1 und 11.3 gleich lang und besteht aus einem Koaxialkabel 11 gleicher Phasengeschwindigkeit, wohingegen nunmehr zwischen dem Verteiler- und/oder Summenpunkt 9 und dem Speiseeingang 13 des mittleren Strahlers 3 ein davon abweichendes Koaxialkabel 11.2 verwendet wird, welches eine niedrigere Phasengeschwindigkeit (also eine niedrigere Geschwindigkeit, mit der sich die Phase einer elektromagnetischen Welle im Koaxialkabel ausbreitet) zulässt. Von daher ist nunmehr die in Figur 1 nach dem Stand der Technik vorgesehene Kabelschlaufe 111 für das mittlere Koaxialkabel 11.2 deutlich verkürzt, beispielsweise um 10% bis 90%, um 20% bis 80%, um 30% bis 70% oder beispielsweise um 40% bis 60%. Im gezeigten Ausführungsbeispiel wird eine Verkürzung um etwa 50% ermöglicht. Bei den heute häufig eine hohe Verkabelungsdichte aufweisenden Antennenanordnungen, insbesondere Mobilfunkantennenanordnungen, wird dadurch ein deutlicher Vorteil realisiert, insbesondere eine Bauraum- und Kostenreduzierung.According to the embodiment of the invention FIG. 2 for an otherwise comparable group antenna 1 while the leading to the upper and lower radiator 3.1 and 3.3 leading coaxial cable 11.1 and 11.3 is the same length and consists of a coaxial cable 11 same phase velocity, whereas now between the distribution and / or summing point 9 and the feed inlet 13 of the middle Spotlight 3 a different coaxial cable 11.2 is used, which has a lower phase velocity (ie a slower rate at which the phase of an electromagnetic wave propagates in the coaxial cable). Therefore, the in FIG. 1 According to the prior art provided cable loop 111 for the central coaxial cable 11.2 significantly shortened, for example by 10% to 90%, by 20% to 80%, by 30% to 70% or for example by 40% to 60%. In the illustrated embodiment, a shortening of about 50% is possible. In today often a high cabling density having antenna arrangements, in particular mobile radio antenna arrays, this is a significant advantage realized, in particular a space and cost reduction.

Im gezeigten Ausführungsbeispiel gemäß Figur 2 wird von einem Speiseeingang oder einer Speisestelle 13 gesprochen, die theoretisch bei einem Dipolstrahler direkt an den innenliegenden Enden zweier Dipolarme liegen kann. Der Strahler kann aber auch noch "interne Koaxialkabellängen" umfassen, insbesondere dann, wenn vorgesehene Anpassungselemente (wie Kapazität und Induktivität) und somit Leitungsabschnitte mit verschiedenen Wellenwiderständen und -längen auch im Hinblick auf eine eventuell noch vorgesehene Stichleitung vorgesehen sind. Mit anderen Worten kann die Anschluss- und/oder Verbindungs- und/oder Speisestelle zu den eigentlichen Strahlerelementen auch versetzt liegen. Unter Speise-, Anschluss- und/oder Verbindungsstelle ist von daher eine in keiner Weise eingeschränkte oder beschränkte Anschlussstelle für einen Strahler gemeint. Zudem muss von dieser Anschluss-, Verbindungs- und/oder Speisestelle 13 und der Verteiler- und/oder Summenschaltung 9 das in Rede stehende Koaxialkabel mit verringerter Phasengeschwindigkeit nicht auf der gesamten Strecke vorgesehen sein. Ausreichend ist, wenn ein derartiges Kabel gegebenenfalls nur auf einer Teillänge realisiert ist und mit weiteren Koaxialkabelabschnitten zusammenwirkt, die die Ausbreitung einer Phase mit davon abweichender Phasengeschwindigkeit erlauben.In the illustrated embodiment according to FIG. 2 is spoken by a feed or a feed point 13, which can theoretically lie in a dipole radiator directly to the inner ends of two Dipolarme. However, the radiator may also comprise "internal coaxial cable lengths", in particular when provided adaptation elements (such as capacitance and inductance) and thus line sections with different characteristic impedances and lengths are also provided with regard to any stub line that may still be provided. In other words, the connection and / or connection and / or feeding point can also be offset relative to the actual radiator elements. By feeder, connection and / or connection point is therefore meant in no way limited or limited connection point for a radiator. In addition, from this connection, connection and / or feeding point 13 and the distribution and / or sum circuit 9, the coaxial cable in question with reduced phase velocity is not provided on the entire route be. It is sufficient if such a cable is possibly realized only on a partial length and cooperates with other Koaxialkabelabschnitten that allow the propagation of a phase with deviating phase velocity.

Mit anderen Worten ist das erfindungsgemäße Prinzip derart, dass auf einer Verzweigungsleitung ausgehend von einer Verteiler- und/oder Summenschaltung 9 (also einem Verteiler- und/oder Summenpunkt 9) und den zumindest beiden Anschluss-, Verbindungs- und/oder Speisestellen 13 (die auch wieder nach Art einer Verzweigungs-, Verteiler- und/oder Summenschaltung zu nachfolgenden Strahlern gestaltet sein können) in der einen und/oder der zumindest anderen koaxialen Verzweigungsleitung verschiedene Typen und/oder Längen von Koaxialkabeln verwendet werden, gegebenenfalls in unterschiedlicher Länge, die durch eine unterschiedliche Phasengeschwindigkeit gekennzeichnet sind. Die Verwendung des betreffenden Koaxialkabel-Typs mit einer betreffenden unterschiedlichen Phasengeschwindigkeit zu einem anderen Koaxialkabel-Typ und die entsprechende Länge wird stets so abgestimmt, dass an einer Anschluss-, Verbindungs- und/oder Speisestelle 13 für einen und mehrere nachfolgende Strahler eine gewünschte und bestimmte (definierte) Phasenlage erzeugt wird, und dies bevorzugt bei möglichst kurzen Kabellängen zur Vermeidung von Kabelschlaufen. Von daher wird bevorzugt in einer koaxialen Kabelverzweigungsleitung zumindest auf einer Teilstrecke ein Koaxialkabel-Typ mit einer bestimmten Phasengeschwindigkeit eingesetzt, und in der zumindest einen weiteren Koaxialverzweigungsleitung zumindest auf einer Teilstrecke ein Koaxialkabel-Typ mit demgegenüber unterschiedlicher Phasengeschwindigkeit. Insbesondere dort, wo der räumliche Abstand zwischen einer Verteiler- und/oder Summenschaltung 9 und einer Anschluss-, Verbindungs- und/oder Speisestelle 13 eines Strahlers oder einer Strahlergruppe kürzer ist als zur Anschluss-, Verbindungs- und/oder Speisestelle 13 eines Strahlers oder einer Strahlergruppe, die über die andere koaxiale Verzweigungsleitung gespeist wird, kann durch Auswahl eines Koaxialkabel-Typs mit langsamer Phasengeschwindigkeit sichergestellt werden, dass die gesamte Kabellänge kürzer gewählt werden kann, um die im Stand der Technik notwendigen Kabelschlaufen zu vermeiden.In other words, the inventive principle is such that on a branch line starting from a distribution and / or sum circuit 9 (ie, a distribution and / or summing point 9) and the at least two connection, connection and / or supply points 13 (the may also be designed again in the manner of a branching, distribution and / or sum circuit to subsequent emitters) in one and / or at least other coaxial branch line different types and / or lengths of coaxial cables are used, optionally in different lengths, by a different phase velocity are characterized. The use of the respective coaxial cable type with a respective different phase velocity to another coaxial cable type and the corresponding length is always tuned so that at a connection, connection and / or feed point 13 for one and several subsequent emitters a desired and certain (Defined) phase position is generated, and this preferably with the shortest possible cable lengths to avoid cable loops. Therefore, a coaxial cable type with a certain phase velocity is preferably used in a coaxial cable branch line at least on a partial section, and in the at least one further coaxial branch line at least on a partial section a coaxial cable type with a different phase velocity. Especially where the spatial distance between a distribution and / or sum circuit 9 and a connection, connection and / or feed point 13 of a radiator or a radiator group is shorter than to the connection, connection and / or feed point 13 of a radiator or a Emitter group fed via the other coaxial branch line can be ensured by selecting a slow-phase coaxial cable type, so that the total cable length can be made shorter to avoid the cable loops necessary in the prior art.

Bei dem Ausführungsbeispiel nach Figur 3 ist für das Koaxialkabel 11.2 eine Ausführungsform verwendet worden, bei welcher das Koaxialkabel 11.2 eine noch niedrigere Phasengeschwindigkeit zulässt, so dass hier eine Leitung und ein Speisekabel 11.2 verwendet werden kann, das ohne jede Kabelschlaufe 111 auskommt.According to the embodiment FIG. 3 For the coaxial cable 11.2, an embodiment has been used in which the coaxial cable 11.2 allows an even lower phase velocity, so that here a line and a feeder cable 11.2 can be used, which manages without any cable loop 111.

Obgleich auch bei diesem Ausführungsbeispiel das mittlere Koaxialkabel 11.2 gegenüber den beiden anderen Koaxialkabeln 11.1 und 11.3 deutlich verkürzt ist, werden alle drei Strahler 3.1 bis 3.3 mit gleicher Phasenlage gespeist.Although in this embodiment, the middle coaxial cable 11.2 compared to the other two coaxial cables 11.1 and 11.3 is significantly shortened, all three emitters 3.1 to 3.3 are fed with the same phase.

Bei dem Ausführungsbeispiel gemäß Figur 3 ist an der Verteiler- und/oder Summenschaltung 9 auch noch ein Leistungsteiler 109 vorgesehen. Dadurch soll nur angedeutet werden, dass hierüber beispielsweise die Leistungsanteile für die einzelnen Strahler 3 gegebenenfalls auch unterschiedlich eingestellt werden können, falls dies notwendig oder sinnvoll erscheint. Abweichend vom gezeigten Ausführungsbeispiel kann ein Leistungsteiler 109 aber auch an einer anderen Stelle vorgesehen sein. Zudem können auch im gesamten Netzwerk mehrere Leistungsteiler an verschiedenen Stellen vorgesehen sein. Einschränkungen bestehen insoweit nicht.In the embodiment according to FIG. 3 is at the distribution and / or sum circuit 9 also a power divider 109 is provided. As a result, it should only be indicated that, for example, the power components for the individual emitters 3 can optionally also be set differently, if this appears necessary or expedient. Notwithstanding the embodiment shown, a power divider 109 may also be provided at a different location. In addition, also in the entire network several power dividers may be provided at different locations. There are no restrictions in this respect.

Das Ausführungsbeispiel gemäß Figur 4 unterscheidet sich von jenem nach Figur 1 nur dadurch, dass der untere dritte Strahler 3.3 weggelassen wurde. Gleichwohl ist auch hier für die Speisung des zweiten Strahlers 3.2 ein Koaxialkabel 11.2 notwendig, das mit einer Kabelschlaufe 111 verlegt ist, damit dieses Koaxialkabel 11.2 gleich lang ist wie das Koaxialkabel 11.1 (da beide Kabel mit der gleichen Phasengeschwindigkeit übertragen).The embodiment according to FIG. 4 differs from that FIG. 1 only in that the lower third radiator 3.3 has been omitted. However, a coaxial cable 11.2 is also necessary here for the supply of the second radiator 3.2, which is laid with a cable loop 111, so that this coaxial cable 11.2 is the same length as the coaxial cable 11.1 (since both transmit cables with the same phase velocity).

Bei der demgegenüber erfindungsgemäßen Ausgestaltung gemäß Figur 5 wird ein gegenüber dem Koaxialkabel 11.1 abweichendes Koaxialkabel 11.2 eingesetzt, welches eine deutlich niedrigere Phasengeschwindigkeit aufweist. Dadurch kann eine Kabelschlaufe 111, wie bei der Lösung nach dem Stand der Technik gemäß Figur 4, vermieden werden.In contrast, the embodiment according to the invention according to FIG. 5 a coaxial cable 11.2 deviating from the coaxial cable 11.1 is used, which has a significantly lower phase velocity. Thereby, a cable loop 111, as in the solution according to the prior art according to FIG. 4 , be avoided.

Bei dem Ausführungsbeispiel gemäß Figur 6 handelt es sich um eine Ausführungsform mit einem Verteilnetzwerk 7 unter Bildung von Untergruppen 33.1, 33.2 und 33.3, wobei die Untergruppen 33.1 und 33.2 beispielsweise zwei Strahler 3.1 bzw. 3.2 und die dritte Untergruppe 33.3 nur einen Strahler 3.3 umfasst. Abweichend von der gezeigten Darstellung gemäß Figur 6 können die Antennengruppen 33.1 und 33.2 auch mehr als nur zwei Strahler umfassen. Von der erwähnten Verteiler- und/oder Summenschaltung 9 gehen wiederum die drei erwähnten Koaxialkabel 11.1, 11.2 und 11.3 zu den beiden Untergruppen 33.1 und 33.2 aus, die sich an einem Gruppenpunkt 99.1 und 99.2 nochmals entsprechend der Anzahl der zu einer Untergruppe gehörender Strahler verzweigen.In the embodiment according to FIG. 6 it is an embodiment with a distribution network 7 to form subgroups 33.1, 33.2 and 33.3, wherein the subgroups 33.1 and 33.2, for example, two emitters 3.1 and 3.2 and the third subgroup 33.3 comprises only one emitter 3.3. Deviating from the illustration shown in accordance with FIG. 6 For example, the antenna arrays 33.1 and 33.2 may also comprise more than just two radiators. From the aforementioned distribution and / or summation circuit 9 again go the three mentioned coaxial cables 11.1, 11.2 and 11.3 to the two subgroups 33.1 and 33.2, which at a group point 99.1 and 99.2 again corresponding to the number of belonging to a subgroup Radiating branch.

Die Phasenlage zwischen der Verteiler- und/oder Summenschaltung 9 und den Speiseeingängen 13.1 an den beiden Strahlern 3.1 der ersten Gruppe 33.1 wie den Eingängen 13.2 bzw. 13.3 bei dem alleinigen Strahler 33.3 der dritten Gruppe 33.3 ergibt sich durch die entsprechende Kabellänge. Verwendet werden dabei gleiche Kabel mit gleichen Phasengeschwindigkeiten.The phase position between the distributor and / or sum circuit 9 and the feed inputs 13.1 to the two radiators 3.1 of the first group 33.1 as the inputs 13.2 and 13.3 in the sole radiator 33.3 of the third group 33.3 results from the corresponding cable length. The same cables are used with the same phase speeds.

Demgegenüber wird bei der nach der Erfindung abgewandelten Antennengruppe gemäß Figur 7 vorgeschlagen, zwischen der Verteiler- und/oder Summenschaltung 9 und den den einzelnen Antennengruppen zugeordneten nachfolgenden Verteiler- und/oder Summenschaltungen 99.1 und 99.2 Koaxialkabel mit unterschiedlicher Phasengeschwindigkeit zu verwenden, wobei das Koaxialkabel 11.2 eines ist, welches durch eine niedrigere Phasengeschwindigkeit gekennzeichnet ist. Im gezeigten Ausführungsbeispiel ist das Koaxialkabel 11.2 so gewählt worden, dass sich die Phase einer elektromagnetischen Welle (Signal) in dem Koaxialkabel 11.2 mit einer solchen Geschwindigkeit ausbreitet, dass auf eine Kabel- schlaufe 111 (Figur 6) völlig verzichtet werden kann. Dafür sind auch Ausführungsformen möglich und manchmal sinnvoll, bei denen zumindest eine Verkürzung und damit eine Verkleinerung der gemäß Stand der Technik notwendigen Kabelschlaufe möglich ist.In contrast, in accordance with the invention modified antenna array according to FIG. 7 proposed to use between the distribution and / or sum circuit 9 and the individual antenna groups associated subsequent distribution and / or sum circuits 99.1 and 99.2 coaxial cable with different phase velocity, wherein the coaxial cable 11.2 is one which is characterized by a lower phase velocity. In the exemplary embodiment shown, the coaxial cable 11.2 has been selected such that the phase of an electromagnetic wave (signal) propagates in the coaxial cable 11.2 at such a speed that a cable loop 111 (FIG. FIG. 6 ) can be completely dispensed with. For this, embodiments are also possible and sometimes useful in which at least a reduction and thus a reduction of the necessary according to the prior art cable loop is possible.

Das Koaxialkabel 11.3 wird auf der gesamten Länge von der Verteiler- und/oder Summenschaltung 9 bis zum Speiseeingang 13.3 durchgängig verlaufend eingesetzt, und weist dabei eine bevorzugt nochmals niedrigere Phasengeschwindigkeit als das Koaxialkabel 11.2 auf. Dabei wird auch angemerkt, dass zwischen dem Verzweigungspunkt 9 und den Einspeisestellen 13.2 der Strahler 3.2 der zweiten Gruppe somit zwei Koaxialkabel unterschiedlichen Typs hintereinander geschalten sind, nämlich das Koaxialkabel 11.2 mit einer niedrigeren Phasengeschwindigkeit, welches dann an der Verzweigungsstelle 99.2 in ein nachgeschaltetes Koaxialkabel 11.2' mit demgegenüber größerer Phasengeschwindigkeit übergeht, das beispielsweise jenem Typ von Koaxialkabel 11.1 entspricht, das zu den Strahlern 3.1 führt. Wie bereits erwähnt können die Koaxialkabel mit beispielsweise geringerer Phasengeschwindigkeit auch lediglich in einer Teilstrecke zwischen der Verteiler- und/oder Summenschaltung 9 und einer beliebigen Anschluss-, Verbindungs- und/ oder Speisestelle 13 vorgesehen sein, so dass also Koaxialkabel, die die Ausbreitung einer Phase mit unterschiedlicher Phasengeschwindigkeit erlauben, in jeweils geeigneten Längen in Serie (hintereinander) geschaltet sind, also elektrisch verbunden sind.The coaxial cable 11.3 is used over the entire length of the distribution and / or sum circuit 9 to the feed inlet 13.3 running continuously, and in this case has a preferred even lower phase velocity than the coaxial cable 11.2. It will also noted that between the branch point 9 and the feed points 13.2 of the radiator 3.2 of the second group thus two coaxial cables of different types are connected in series, namely the coaxial cable 11.2 with a lower phase velocity, which then at the branch point 99.2 in a downstream coaxial cable 11.2 'with the opposite larger Phase velocity passes, for example, corresponds to that type of coaxial cable 11.1, which leads to the radiators 3.1. As already mentioned, the coaxial cables can also be provided with, for example, a lower phase velocity, only in a partial path between the distribution and / or summation circuit 9 and any connecting, connecting and / or feeding point 13, so that therefore coaxial cables which control the propagation of a phase allow with different phase velocity, in each case suitable lengths in series (in a row) are connected, that are electrically connected.

Wie bereits erwähnt wurde, können die Anschluss-, Verbindungs- und/oder Speisestellen 13 auch zu den einzelnen Strahlern 13 versetzt liegen. So kann beispielsweise auch die weitere Verzweigungsstelle oder Verzweigungsschaltung 99.9 als Anschluss-, Verbindungs- und/oder Speisestelle 13 für die nachfolgenden Strahler 13.2 verstanden werden. Auch in dem Ausführungsbeispiel gemäß Figur 7 sind die Koaxialkabel mit abweichenden Phasengeschwindigkeiten in stärkeren Linien im Verhältnis zu den anderen Koaxialkabeln mit in der Regel höheren Phasengeschwindigkeiten eingezeichnet. Auch in diesem Ausführungsbeispiel gemäß Figur 7 können die Koaxialkabel mit abweichenden Phasengeschwindigkeiten ebenfalls nur auf einer Teilstrecke beispielsweise zwischen dem Verteiler- und/oder Summenpunkt 9 und einer Anschluss-, Verbindungs- und/oder Speisestelle 13 bzw. einer nachfolgenden Verteiler- und/oder Summenschaltung 99.2 vorgesehen sein, zumal diese weitere Verzweigungsstelle 99.2 letztlich wiederum eine Anschluss-, Verbindungs- und/oder Speisestelle 13 für den einen oder die mehreren nachfolgenden Strahler 13 darstellt. Auf den erwähnten Strecken oder Teilstrecken 11.2 und 11.3 können beispielsweise auch Koaxialkabel oder unterschiedliche Koaxialkabel-Typen mehrfach ineinander abwechselnd zu einem gemeinsamen Übertragungsweg verschaltet sein.As already mentioned, the connection, connection and / or supply points 13 can also be offset from the individual radiators 13. For example, the further branching point or branching circuit 99.9 can also be understood as connecting, connecting and / or feeding point 13 for the following radiators 13.2. Also in the embodiment according to FIG. 7 For example, the coaxial cables with different phase velocities are drawn in stronger lines relative to the other coaxial cables with generally higher phase velocities. Also in this embodiment according to FIG. 7 the coaxial cables with different phase velocities can also only be used on one leg, for example between the distributor and / or summation point 9 and a connection, connection and / or feed point 13 or a subsequent distribution and / or sum circuit 99.2 be provided, especially since this further branch point 99.2 ultimately turn a connection, connection and / or feed point 13 for represents the one or more subsequent radiator 13. Coaxial cables or different types of coaxial cable, for example, can also be connected to each other alternately in a common transmission path on the mentioned sections or partial sections 11.2 and 11.3.

Bei dem Ausführungsbeispiel gemäß Figur 8 ist wiederum eine Gruppenantenne nach dem Stand der Technik gezeigt, wobei in diesem Ausführungsbeispiel bei allen Untergruppen (allerdings muss dies nicht bei allen Untergruppen so sein) der zumindest eine weitere Strahler seriell gespeist wird. Die Verbindungsleitungen innerhalb der Untergruppen können von einem beliebigen Typ sein, unabhängig vom restlichen Speisenetzwerk. Möglich sind z.B. gestreckte Leitungen, bei denen 360'-Phasenunterschiede einer Distanz von 0,7 Wellenlänge in Luft entsprechen. Dabei ist in diesem Ausführungsbeispiel ferner eine Phasenschieberbaugruppe 201 vorgesehen (nämlich eine Differenzphasenschieber-Baugruppe), wobei die zuäußerst liegenden (also entferntest liegenden) Strahlergruppen 33.1 und 33.5 mit der größten relativen Phasenverschiebung gespeist werden und die dabei benachbart näher zueinander liegenden Gruppen 33.2 und 33.4 über die beiden weiteren Ausgänge in der Doppelphasenschieberbaugruppe mit geringerem relativen Phasenversatz gespeist werden (bezüglich des Aufbaus und der Verwendung der Funktionsweise einer derartigen Doppelphasenschieberbaugruppe wird auf die Vorveröffentlichung EP 1 208 614 B1 verwiesen und zum Inhalt der vorliegenden Anmeldung gemacht).In the embodiment according to FIG. 8 In turn, a group antenna according to the prior art is shown, in this embodiment, in all subgroups (but this does not have to be so in all subgroups), the at least one further radiator is serially fed. The interconnections within the subgroups can be of any type, independent of the rest of the feed network. Possible, for example, stretched lines in which 360 'phase differences correspond to a distance of 0.7 wavelength in air. In this embodiment, a phase shifter assembly 201 is further provided (namely, a differential phase shifter assembly), wherein the outermost lying (ie remote) emitter groups 33.1 and 33.5 are fed with the largest relative phase shift and the next adjacent groups 33.2 and 33.4 over the two further outputs in the double phase shifter assembly are fed with a lower relative phase offset (for construction and use of the operation of such a double phase shifter assembly reference is made to the pre-publication EP 1 208 614 B1 referred to and incorporated in the content of the present application).

Die mittlere Strahlergruppe 33.3 wird üblicherweise ohne Phasenversatz über die Speisestelle 6 und die nachfolgende Speiseleitung 5 gespeist. Mit anderen Worten stellt letztlich die Doppelphasenschieber-Baugruppe 201 gleichzeitig auch die Verteiler- und/oder Summenschaltung 9 entsprechend den anderen Ausführungsbeispielen dar.The middle radiator group 33.3 is usually fed without phase offset via the feed point 6 and the subsequent feed line 5. In other words, the double-phase shifter assembly 201 ultimately also represents the distributor and / or sum circuit 9 according to the other embodiments.

Die dazu abweichende erfindungsgemäße Antennengruppe gemäß Figur 9 umfasst die gleichen Strahler, Strahlergruppen und grundsätzlich einen vergleichbaren Aufbau zur Erzeugung eines vergleichbaren Strahlerdiagrammes, wobei nunmehr allerdings bei dieser Ausführungsform die mittlere Strahlergruppe 33.3 zur Verkürzung der nach dem Stand der Technik gemäß Figur 8 vorgesehenen mittleren Schlaufe 111 ein Koaxialkabel 11.3 mit niedrigerer Phasengeschwindigkeit aufweist. Die oberhalb und unterhalb dazu angrenzenden und mit den beiden Ausgängen der Doppelphasenschieber-Baugruppe über Koaxialkabel 11.2 und 11.4 gespeisten Strahler der zweiten und vierten Gruppe sind ebenfalls über ein weiteres Koaxialkabel mit einer nochmals abweichen Phasengeschwindigkeit gespeist, so dass auch die für diese Baugruppen vorgesehenen Kabelschlaufen 111' gemäß Figur 8 wegfallen.The deviating antenna according to the invention according to FIG. 9 comprises the same radiator, radiator groups and basically a comparable structure for generating a comparable radiator diagram, but now in this embodiment, the central radiator group 33.3 for shortening the according to the prior art FIG. 8 having a mean loop 111 a coaxial cable 11.3 with lower phase velocity. The above and below adjacent thereto and fed to the two outputs of the double phase shifter module via coaxial cable 11.2 and 11.4 emitters of the second and fourth group are also fed via another coaxial cable with another deviating phase velocity, so that provided for these assemblies cable loops 111th ' according to FIG. 8 eliminated.

Für die einzelnen Koaxialkabel 11.2 und 11.4 werden dann Koaxialkabel-Typen so gewählt, dass die Koaxialkabel möglichst unter Vermeidung von Kabelschlaufen oder nur möglichst kleindimensionierten Kabelschlaufen verlegt werden können. Mit anderen Worten muss der betreffende Koaxialkabel-Typ so ausgewählt werden, dass er bezogen auf die vorgebbare optimale Länge eine entsprechend darauf abgestimmte Phasengeschwindigkeit aufweist, um die Speisung der nachfolgenden Strahler mit der entsprechenden definierten Phasenlage zu gewährleisten.Coaxial cable types are then selected for the individual coaxial cables 11.2 and 11.4 in such a way that the coaxial cables can be routed as much as possible while avoiding cable loops or cable loops of as small dimensions as possible. In other words, the coaxial cable type in question must be selected to be based on the predetermined optimum length has a correspondingly adapted phase velocity, in order to ensure the feeding of the following radiators with the corresponding defined phase position.

Um Koaxialkabel mit unterschiedlichen Phasengeschwindigkeiten bereit zu stellen, können alle hierfür geeigneten und grundsätzlich möglichen Maßnahmen Anwendung finden. So können beispielsweise die Koaxialkabel unterschiedliche Dielektrizitätskonstanten aufweisen, um in Abhängigkeit davon unterschiedliche Phasengeschwindigkeiten zuzulassen. Die Koaxialkabel können aber auch alternativ oder ergänzend mit unterschiedlichen Innenleiter-Strukturen versehen sein, beispielsweise einen Innenleiter nach Art einer Helix aufweisen und/oder Innenleiter umfassen, die gewellt sind. Schließlich können alternativ oder ergänzend die Koaxialkabel noch mit einer unterschiedlichen Außenleiter-Struktur versehen sein, wobei auch der Außenleiter bevorzugt gewellt und/oder spiralförmig gewellt sein kann.In order to provide coaxial cables with different phase speeds, all suitable and fundamentally possible measures can be used. For example, the coaxial cables may have different dielectric constants to allow different phase velocities depending thereon. However, the coaxial cables can alternatively or additionally be provided with different inner conductor structures, for example, have an inner conductor in the manner of a helix and / or comprise inner conductors which are corrugated. Finally, alternatively or additionally, the coaxial cables can still be provided with a different outer conductor structure, it also being possible for the outer conductor preferably to be corrugated and / or corrugated in a spiral manner.

Weitere technische Maßnahmen zur Veränderung der Phasengeschwindigkeit sind möglich.Further technical measures for changing the phase velocity are possible.

Schließlich wird angemerkt, dass die erwähnten Koaxialkabel 11 mit einem unterschiedlichen Phasenversatz verlängert oder verkürzt sein können, und zwar um n x 360°, wobei n = 1, 2, ... ist.Finally, it is noted that the mentioned coaxial cables 11 may be extended or shortened with a different phase offset by n x 360 °, where n = 1, 2,.

Sofern die Koaxialkabel ein invertiertes Signal aussenden können, ist eine Phasendrehung um 180° möglich. Derartige Kabel können um einen entsprechenden Phasenversatz verlängert oder verkürzt werden, und zwar um 180° + n x 360° , wobei auch hier n = 1, 2, ... ist.If the coaxial cables can emit an inverted signal, a phase shift of 180 ° is possible. Such cables can be extended or shortened by a corresponding phase offset, namely by 180 ° + n × 360 °, where also n = 1, 2, ....

Claims (14)

  1. Group antenna having at least two radiators (3) spaced apart from each other, and having a network (7) provided for feeding the radiators (3), this network comprising coaxial cables (11.1, 11.2, ...), which run between a splitter and/or combiner (9) and the supply points, connection points and/or feed points (13) of the radiators (3) concerned, characterised in that the network (7) comprises at least two different types of coaxial cables (11.1, 11.2, ...), which are characterised by a different phase velocity.
  2. Group antenna according to claim 1, characterised in that the at least one coaxial cable (11.2, 11.3, ...) having a low phase velocity compared with the at least one other coaxial cable (11.1) is provided over the entire length between a splitter and/or combiner (9) and the supply point, connection point and/or feed point (13) of an associated radiator (3) or of an associated radiator group (3.1, 3.2, 3.3 ...).
  3. Group antenna according to claim 1, characterised in that the at least one coaxial cable (11.2, 11.3, ...) having a low phase velocity compared with the at least one other coaxial cable (11.1) is provided only over a sub-length between a splitter and/or combiner (9) and the supply point, connection point and/or feed point (13) of an associated radiator (3) or of an associated radiator group (3.1, 3.2, 3.3 ...).
  4. Group antenna according to any of claims 1 to 3, characterised in that the supply point, connection point and/or feed point (13; 13.2, 13.3, 13.4, ...) at least of one radiator (3.2, 3.3, 3.4, ...) and/or a splitter and/or combiner (99.1, 99.2,) at least of one radiator group (33.2, 33.3, 33.4, ...) lies at a shorter distance from an associated splitter and/or combiner (9) located on the feed-line side than at least one other more distantly located supply point, connection point and/or feed point (13) at least of one other radiator (3.1, 3.5, ...) or of one other splitter and/or combiner (99.1, 99.2), and that this supply point, connection point and/or feed point (13; 13.2, 13.3, 13.4, ...) is connected to the feed line (5) at least over a sub-section by a coaxial cable (11) having a lower phase velocity.
  5. Group antenna according to any of claims 1 to 4, characterised in that the coaxial cable (11) has a lower phase velocity than other coaxial cables (11) such that the radiators (3) and/or radiator groups (33) fed via it are fed without the need for a cable loop (111, 111').
  6. Group antenna according to any of claims 1 to 5, characterised in that at least two and preferably at least three radiators (3) or radiator groups (33) are fed with a different phase, and that at least one or preferably two coaxial cables (11.2, 11.3) for feeding the at least one other radiator (3.2) or the at least one other radiator group (33.2) comprises a coaxial cable (11) having a low phase velocity at least over a sub-length in order to shorten the overall cable length between the splitter and/or combiner (9) and the supply point, connection point and/or feed point (13).
  7. Group antenna according to any of claims 1 to 6, characterised in that the coaxial cables (11) having a different phase velocity have different dielectric constants.
  8. Group antenna according to any of claims 1 to 7, characterised in that the coaxial cables (11) having a different phase velocity have different inner conductor constructions, in particular an inner conductor that is in the form of a helix and/or has an undulating design.
  9. Group antenna according to any of claims 1 to 8, characterised in that the coaxial cables (11) having a different phase velocity have different outer conductor constructions, where the outer conductor preferably has an undulating design and/or a design that undulates in a spiral.
  10. Group antenna according to any of claims 1 to 9, characterised in that the network also comprises phase shifters (302) for adjustable beam steering.
  11. Group antenna according to any of claims 1 to 10, characterised in that the network also comprises means for adjustable power splitting (109).
  12. Group antenna according to any of claims 1 to 11, characterised in that the coaxial cables (11) having a different phase velocity are extended or shortened, specifically by n x 360°, where n=1,2....
  13. Group antenna according to any of claims 1 to 11, characterised in that the coaxial cables (11) having a different phase velocity, in particular when receiving and/or emitting an inverted signal, with a phase shift of 180°, are extended or shortened, specifically by 180° + n x 360°, where n=1,2....
  14. Group antenna according to any of claims 1 to 13, characterised in that the network (7) comprises a plurality of branch points (9, 99) in the form of splitters and/or combiners (9, 99), where the other branching circuit (99) forms a supply point, connection point and/or feed point (13).
EP08802623A 2007-10-05 2008-09-25 Supply network for a group antenna Not-in-force EP2168211B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007047741A DE102007047741B4 (en) 2007-10-05 2007-10-05 Mobile-array antenna
PCT/EP2008/008159 WO2009046886A1 (en) 2007-10-05 2008-09-25 Supply network for a group antenna

Publications (2)

Publication Number Publication Date
EP2168211A1 EP2168211A1 (en) 2010-03-31
EP2168211B1 true EP2168211B1 (en) 2011-12-07

Family

ID=40339873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08802623A Not-in-force EP2168211B1 (en) 2007-10-05 2008-09-25 Supply network for a group antenna

Country Status (7)

Country Link
US (1) US9531083B2 (en)
EP (1) EP2168211B1 (en)
CN (1) CN101816101B (en)
AT (1) ATE536646T1 (en)
DE (1) DE102007047741B4 (en)
IN (1) IN2010KN00858A (en)
WO (1) WO2009046886A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337711B (en) * 2013-05-31 2015-08-19 中科院杭州射频识别技术研发中心 Based on the ultrahigh frequency near field RFID reader-writer antenna of photonic crystal
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10511346B2 (en) 2015-07-14 2019-12-17 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10439290B2 (en) 2015-07-14 2019-10-08 At&T Intellectual Property I, L.P. Apparatus and methods for wireless communications
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10790593B2 (en) 2015-07-14 2020-09-29 At&T Intellectual Property I, L.P. Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves
WO2017029898A1 (en) * 2015-08-20 2017-02-23 古野電気株式会社 Array antenna
US10381750B2 (en) * 2017-08-17 2019-08-13 Lg Electronics Inc. Electronic device
FR3089539B1 (en) * 2018-12-10 2021-04-09 Continental Automotive France Door handle with means for reducing radiation in ultra-high frequency communication
WO2024114879A1 (en) * 2022-11-28 2024-06-06 Telefonaktiebolaget Lm Ericsson (Publ) Multiband array antenna and multilayer phase shifter

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3277481A (en) * 1964-02-26 1966-10-04 Hazeltine Research Inc Antenna beam stabilizer
US3996592A (en) * 1965-02-04 1976-12-07 Orion Industries, Inc. Antenna with rotatable sensitivity pattern
US3701157A (en) * 1971-06-03 1972-10-24 Us Air Force Helicopter uhf antenna system for satellite communications
US4758685A (en) * 1986-11-24 1988-07-19 Flexco Microwave, Inc. Flexible coaxial cable and method of making same
DE4035793A1 (en) * 1990-11-10 1992-05-14 Telefunken Systemtechnik Dielectric array aerial for satellites, aircraft etc. - has dielectric radiators for reducing element number to min
US5187329A (en) * 1991-06-28 1993-02-16 At&T Bell Laboratories Twisted pairs of insulated metallic conductors for transmitting high frequency signals
EP0582013B1 (en) * 1991-07-09 1999-05-12 Flexco Microwave, Inc. Method for making a flexible coaxial cable and resultant cable
JP3316561B2 (en) * 1998-07-06 2002-08-19 株式会社村田製作所 Array antenna device and wireless device
DE19938862C1 (en) * 1999-08-17 2001-03-15 Kathrein Werke Kg High frequency phase shifter assembly
US6268828B1 (en) * 2000-01-11 2001-07-31 Metawave Communications Corporation Cylindrical antenna coherent feed system and method
AU2001280303B2 (en) * 2000-07-10 2007-02-15 Andrew Llc Cellular antenna
AUPR196300A0 (en) * 2000-12-08 2001-01-04 Alcatel Phase shifter
US6720934B1 (en) * 2001-01-25 2004-04-13 Skywire Broadband, Inc. Parallel fed collinear dipole array antenna
US6573875B2 (en) * 2001-02-19 2003-06-03 Andrew Corporation Antenna system
DE10150150B4 (en) * 2001-10-11 2006-10-05 Kathrein-Werke Kg Dual polarized antenna array
US6693241B2 (en) * 2002-04-24 2004-02-17 Andrew Corporation Low-cost, high performance, moisture-blocking, coaxial cable and manufacturing method
US7358922B2 (en) * 2002-12-13 2008-04-15 Commscope, Inc. Of North Carolina Directed dipole antenna
US6924776B2 (en) 2003-07-03 2005-08-02 Andrew Corporation Wideband dual polarized base station antenna offering optimized horizontal beam radiation patterns and variable vertical beam tilt
US6806845B2 (en) 2003-01-14 2004-10-19 Honeywell Federal Manufacturing & Technologies, Llc Time-delayed directional beam phased array antenna
US7034748B2 (en) * 2003-12-17 2006-04-25 Microsoft Corporation Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters
US6992632B1 (en) * 2004-03-09 2006-01-31 Itt Manufacturing Enterprises, Inc. Low profile polarization-diverse herringbone phased array

Also Published As

Publication number Publication date
US9531083B2 (en) 2016-12-27
IN2010KN00858A (en) 2015-08-28
ATE536646T1 (en) 2011-12-15
EP2168211A1 (en) 2010-03-31
DE102007047741A1 (en) 2009-04-09
US20120098726A1 (en) 2012-04-26
DE102007047741B4 (en) 2010-05-12
CN101816101A (en) 2010-08-25
WO2009046886A1 (en) 2009-04-16
CN101816101B (en) 2016-08-10

Similar Documents

Publication Publication Date Title
EP2168211B1 (en) Supply network for a group antenna
EP1327287B1 (en) Dual-polarization antenna array
EP1532716B1 (en) Calibration device for an antenna array and method for calibrating said array
DE102008023030B4 (en) Radar antenna array
EP1208614B1 (en) High-frequency phase shifter unit
DE60022630T2 (en) SECONDARY FREQUENCY ANTENNA, MULTI FREQUENCY ANTENNA, TWO OR MORE FREQUENCY ANTENNA GROUP
EP2929589B1 (en) Dual polarized, omnidirectional antenna
DE60315520T2 (en) Antenna control unit and phased array antenna
EP1530816B9 (en) Calibration device for a switchable antenna array and corresponding operating method
EP0829922B1 (en) Phase controlled antenna
WO2001069714A1 (en) Dual-polarized dipole array antenna
DE102013012305A1 (en) Wideband antenna array
EP3533110B1 (en) Dual-polarized horn radiator
DE102018120612A1 (en) Multiband antenna arrangement for mobile radio applications
DE3524503A1 (en) LEVEL MICROWAVE ANTENNA
DE60031838T2 (en) GROUP ANTENNA FOR SEVERAL FREQUENCIES
DE10336072B4 (en) antenna array
DE3915048C2 (en)
DE102010051094A1 (en) Array antenna for field emitter, has connection lines which are connected with radiator elements through resistors respectively where sides of radiator elements are attached with corresponding resistors in transverse direction
DE102017112441B4 (en) Beamforming structure, antenna arrangement with a beam-forming structure and transmitting and / or receiving device with a beam-forming structure
DE4201933C2 (en) Antenna array antenna
DE3545639C1 (en) Transmitter operating at at least two frequencies - uses single VHF antenna array with different polar diagrams
EP0227005B1 (en) Transmitting device comprising two microwave transmitters radiating different frequencies with different radiation patterns
DE102015013060B4 (en) The antenna feed network
DE10120533B4 (en) Array antenna with a number of resonant radiating elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008005804

Country of ref document: DE

Effective date: 20120209

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120308

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120409

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

26N No opposition filed

Effective date: 20120910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008005804

Country of ref document: DE

Effective date: 20120910

BERE Be: lapsed

Owner name: KATHREIN-WERKE K.G.

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120318

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080925

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 536646

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150922

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160925

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180703

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005804

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005804

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008005804

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008005804

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005804

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008005804

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008005804

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005804

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008005804

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005804

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008005804

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20200929

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200929

Year of fee payment: 13

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211126

Year of fee payment: 14

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210925

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008005804

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401