EP2162215A2 - Particles or coating for splitting water - Google Patents

Particles or coating for splitting water

Info

Publication number
EP2162215A2
EP2162215A2 EP08773261A EP08773261A EP2162215A2 EP 2162215 A2 EP2162215 A2 EP 2162215A2 EP 08773261 A EP08773261 A EP 08773261A EP 08773261 A EP08773261 A EP 08773261A EP 2162215 A2 EP2162215 A2 EP 2162215A2
Authority
EP
European Patent Office
Prior art keywords
electrons
particles
unit
coating
coating according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08773261A
Other languages
German (de)
French (fr)
Inventor
Stefan Sepeur
Gerald Frenzer
Peter W. Oliveira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano X GmbH
Original Assignee
Nano X GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano X GmbH filed Critical Nano X GmbH
Publication of EP2162215A2 publication Critical patent/EP2162215A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • B01J35/23
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to particles or a coating for splitting water.
  • Examples of these are CdS, TiO 2 , which are doped with metals.
  • the problem here is that the particles are corroded or decompose by their own highly active cleavage products. This significantly reduces the high initial yields within a very short time.
  • the core forms a reactive unit and consists of a material that releases electrons when energy input by sunlight electrons, which are able to split water into hydrogen and oxygen, and
  • the shell forms a protective unit, which is able, the fission products of the. Keep surface of the reactive unit and at the same time has conductive components.
  • the object is achieved in the context of the invention in a coating according to the O-term term, characterized in that the coating consists of a lower layer and a top layer, wherein
  • the lower layer forms a reactive unit and consists of a material that releases electrons when exposed to sunlight by sunlight, which are able to split water into hydrogen and oxygen, and
  • the particles or the coating are in this case preferably nanoscale, but may have dimensions down to the submicrometer range.
  • a development of the invention is that in the reactive unit by excitation of electrons from the electronic ground state in an excited state of sufficient duration photons are absorbable, a charge separation of the excited electrons of positively charged holes in an electric field is feasible, the excitation energy of the electrons Reduction and the defect electron can be used by oxidation of suitable molecules in an electrolyte and the thermal, electrical and chemical conversion of solar radiation in charge separation of the excited electrons is feasible.
  • a further development of the invention is that the particles in pure water or acids, alkalis or salts of alkali and alkaline earth metals, in particular NaOH, Na 3 PO 4 , Na 2 CO 3 , NaBO 2 , Na 2 HPO 4 , NaHCO 3 , Na 2 SO 4 , NaCl, HCl, H 2 PO 4 or H 2 SO 4 are suspended.
  • the particle or suspension contains dyes, especially thionin, Toluidinblau, methylene blue, Azure A, Azure B, Azure C, phenosafranine, safranine-O, safranine-T, neutral red, fluorescein, erythrosin, erythrosin B, rhodamine B 5 Rose Bengal, Pyronine Y, Eosin, Rhodamine 6G, Acridine, Proflavine, Acridine Yellow, Fusion, Crystal Violet, Marlitite Green and Methyl Violet.
  • dyes especially thionin, Toluidinblau, methylene blue, Azure A, Azure B, Azure C, phenosafranine, safranine-O, safranine-T, neutral red, fluorescein, erythrosin, erythrosin B, rhodamine B 5 Rose Bengal, Pyronine Y, Eosin, Rhodamine 6G, Acridine, Proflavine, Acridine Yellow
  • An embodiment of the invention consists in that the particles or the suspension contains semiconductor materials, in particular SnO 2 , WO 3 , V 2 O 5 , ZnO, Fe 2 O 3 , SiC or mixtures thereof.
  • This measure also serves to sensitize.
  • the protection unit should always be smaller than the maximum range of the separated electrons.
  • the protection unit has a layer thickness which is smaller than the maximum kinetic range of an ejected electron, preferably smaller than the mean kinetic range of a knocked out electron.
  • the protective unit for the incoming radiation in particular solar radiation, is at least partially permeable.
  • the protective unit is dense to hydrogen atoms or protons.
  • An embodiment of the invention is that the proportion of noble metals in the protective unit of 1 to 100 wt. 7 %.
  • the invention also relates to a method for producing a coating according to the invention, in which a top layer is applied as a protective unit to a dense reactive layer forming a lower layer.
  • An embodiment of the invention consists in that the lower layer and the upper layer are applied by the vacuum vapor method (CVD, PVD) or electrochemically (galvanically) or by wet-chemical application methods, in particular in the sol-gel method.
  • CVD vacuum vapor method
  • PVD electrochemically (galvanically)
  • wet-chemical application methods in particular in the sol-gel method.
  • a particle suspension is coated as a reactive unit, by means of electrochemical, galvanic or wet chemical application method, in particular in the sol-gel process with a protective layer.
  • the invention is based on the following considerations.
  • the first step can take place in any electronically excitable material, as well as photochemical reactions in a single molecule.
  • thermodynamic decomposition voltage for water 1.23 V
  • diffusion overvoltage necessary for achieving a certain current density-a kinetic overvoltage characteristic for the interface of the particular semiconductor material-and the voltages occurring at the resistances occurring in the electrical circuit (Especially in the electrolyte, in the semiconductor and at the contacts) fall off.
  • the band edges In order to allow charge transfer to the electrolyte, the band edges must have suitable energies at the interface to the electrolyte.
  • the conduction band For the water reduction, the conduction band must be as far above (cathodic) from the reduction potential of the water (hydrogen potential, in neutral solution with reference NHE -0.42V) and the valence band far below the oxidation potential of the water (oxygen potential, in neutral solution with respect NHE + 0,81V) are that conditions 1 and 2 can still be met. If these conditions are met, the semiconductor material is in principle suitable for direct photoelectrochemical water splitting.
  • One way to increase the efficiency and to avoid the oxidation or corrosion of the particles is to generate a corresponding protective layer, as described in this document.
  • Solution 1 is added to solution 2 with vigorous stirring. A brown-black solid forms, which is filtered and washed with water. The free OH groups at the top surfaces of the TiO 2 nanoparticles are completely saturated with Pt / SiO 2 particles as a monomolecular layer.
  • Cadmium sulfide nanoparticles are prepared by precipitating a 0.1 molar solution of cadmium chloride with stirring in 0.1 molar sodium hydroxide solution and reacting the cadmium hydroxide formed with sodium sulfide. After filtration, washing with deionized water and drying at 70 ° C., 5.76 g (40.0 mmol) of cadmium sulfide nanoparticles are dispersed in 100 g of demiwater with the aid of an Ultra-Turrax for 5 min at about 11000 rpm.
  • the dried catalysts are added to 50 ml of water, irradiated while stirring with UV light (400 W, Hg) and the hydrogen evolution is measured over a period of 10 hours with GC / MS.
  • the modified nanoparticles show a constant hydrogen evolution of about 1.55 mmol / h per g of catalyst (mod. Titanium dioxide, Example 1) or 2.30 mmol / h per g of catalyst over the entire measurement period (mod. Cadmium sulfide, example 2).
  • the hydrogen conversions of the unmodified nanoparticles show significantly lower hydrogen formation rates (titanium oxide 30 ⁇ mol / h per g of catalyst, cadmium sulfide approx.

Abstract

The invention relates to particles or a coating for splitting water. The aim of the invention is to provide particles or coatings for splitting water in which corrosive damage is prevented to a great extent. To achieve this, the particles or the coating consist(s) of a nucleus or a sub-layer and a shell or top layer, the nucleus or the sub-layer forming a reactive unit and consisting of a material that releases electrons with the input of energy from sunlight, said electrons being capable of splitting water into hydrogen and oxygen, and the shell or top layer forming a protective unit capable of holding the split products away from the surface of the reactive unit and having at the same time conductive fractions. Surprisingly, corrosive damage to the reactive particles is prevented to a great extent by the targeted separation of reaction particles and split products over the range of the released electrons.

Description

BESCHREIBUNG DESCRIPTION
Partikel bzw. Beschichtung zur Spaltung von WasserParticles or coating for splitting water
Die Erfindung betrifft Partikel bzw. eine Beschichtung zur Spaltung von Wasser.The invention relates to particles or a coating for splitting water.
Aus dem Stand der Technik sind Solarzellen mit relativ geringer Effektivität bekannt. Ebenfalls sind Partikel bekannt, die bei direkter Sonnenbestrahlung Wasser spalten (F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chem. Mater. 20 (2008), 35; Ni, Meng et al., A review and recent developments in photocatalitic water- splitting using TiO2 for Hydrogen production, renewable and sustainable Energy .Reviews (2007) 401-425; Galinska Anna, Photocatalytic Water Splitting over Pt-TiO2 in the Presence of Sacrificial Reagents Energy & Fuels, Vol. 19, No. 3, 2005, 1143-1147; H. von Känel et al., Photoelectrochemical Production of Hydrogen from p-Type Transition Metal Phosphides; J. Matthiesen, E. Wahlström, Charge transfer induced water Splitting on the rutile TiO2 (HO) surface; A. Fujishima and K. Honda, Nature 37, 238 (1972); J. Nowotny TiO2 Surface Active Sites for Water Splitting J. Phys. Chem. B 2006, 110, 18492-18495).From the prior art, solar cells with relatively low efficiency are known. Also known are particles that split water under direct sunlight (FE Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chem. Mater. 20 (2008), 35; Ni, Meng et al., A review and recent developments in photocatalitic water-splitting using TiO 2 for Hydrogen Production, Renewable and Sustainable Energy .Reviews (2007) 401-425; Galinska Anna, Photocatalytic Water Splitting over Pt-TiO 2 in the Presence of Sacrificial Reagents Energy & Fuels, Vol. 3, 2005, 1143-1147; H. von Känel et al., Photoelectrochemical Production of Hydrogen from p-Type Transition Metal phosphides; J. Matthiesen, E. Wahlström, Charge transfer induced water Splitting on the rutile TiO 2 (HO) surface A. Fujishima and K. Honda, Nature 37, 238 (1972); J. Nowotny TiO 2 Surface Active Sites for Water Splitting J. Phys. Chem. B 2006, 110, 18492-18495).
Beispiele hierfür sind CdS, TiO2, die mit Metallen dotiert werden. Problematisch ist hierbei, daß die Partikel korrodiert werden bzw. sich durch die eigenen hochaktiven Spaltprodukte zersetzen. Dadurch vermindern sich die hohen anfänglichen Ausbeuten innerhalb kürzester Zeit beträchtlich.Examples of these are CdS, TiO 2 , which are doped with metals. The problem here is that the particles are corroded or decompose by their own highly active cleavage products. This significantly reduces the high initial yields within a very short time.
Aufgabe der Erfindung ist es somit, Partikel bzw. eine Beschichtung zur Spaltung von Wasser zu schaffen, bei denen die korrosive Zerstörung weitestgehend verhindert wird.The object of the invention is thus to provide particles or a coating for the splitting of water, in which the corrosive destruction is largely prevented.
Diese Aufgabe wird im Rahmen der Erfindung bei einem Partikel gemäß dem Oberbegriff dadurch gelöst, daß die Partikel aus einem Kern und einer Hülle bestehen, wobeiThis object is achieved in the context of the invention in a particle according to the preamble in that the particles consist of a core and a shell, wherein
- der Kern eine Reaktiveinheit bildet und aus einem Material besteht, das bei Energieeintrag durch Sonnenlicht Elektronen freisetzt, die in der Lage sind, Wasser in Wasserstoff und Sauerstoff zu spalten, und- The core forms a reactive unit and consists of a material that releases electrons when energy input by sunlight electrons, which are able to split water into hydrogen and oxygen, and
- die Hülle eine Schutzeinheit bildet, die in der Lage ist, die Spaltprodukte von der. Oberfläche der Reaktiveinheit abzuhalten und gleichzeitig leitfähige Anteile aufweist. Ebenso wird die Aufgabe im Rahmen der Erfindung bei einer Beschichtung gemäß dem O- berbegriff dadurch gelöst, daß die Beschichtung aus einer Unterschicht und einer Oberschicht besteht, wobei- The shell forms a protective unit, which is able, the fission products of the. Keep surface of the reactive unit and at the same time has conductive components. Likewise, the object is achieved in the context of the invention in a coating according to the O-term term, characterized in that the coating consists of a lower layer and a top layer, wherein
- die Unterschicht eine Reaktiveinheit bildet und aus einem Material besteht, das bei Ener- gieeintrag durch Sonnenlicht Elektronen freisetzt, die in der Lage sind, Wasser in Wasserstoff und Sauerstoff zu spalten, und- The lower layer forms a reactive unit and consists of a material that releases electrons when exposed to sunlight by sunlight, which are able to split water into hydrogen and oxygen, and
- die Oberschicht eine Schutzeinheit bildet, die in der Lage ist, die Spaltprodukte von der Oberfläche der Reaktiveinheit abzuhalten und die gleichzeitig leitfahige Anteile aufweist.- The upper layer forms a protective unit, which is able to keep the cleavage products from the surface of the reactive unit and at the same time having conductive portions.
Überraschenderweise hat sich gezeigt, daß durch eine gezielte Trennung von Reaktiveinheit und Spaltprodukten über die Länge der kinetischen Flugweite der freigesetzten Elektronen eine korrosive Zerstörung der Reaktiveinheit (weitestgehend) verhindert wird. Die Partikel bzw. die Beschichtung sind hierbei vorzugsweise nanoskalig, kann jedoch Dimensionen bis in,' den Submikrometerbereich hinein aufweisen.Surprisingly, it has been shown that a corrosive destruction of the reactive unit is (largely) prevented by a targeted separation of the reactive unit and fission products over the length of the kinetic flight distance of the released electrons. The particles or the coating are in this case preferably nanoscale, but may have dimensions down to the submicrometer range.
Eine Weiterbildung der Erfindung besteht darin, daß in der Reaktiveinheit durch Anregung von Elektronen aus dem elektronischen Grundzustand in einen angeregten Zustand ausreichender Dauer Photonen absorbierbar sind, eine Ladungstrennung der angeregten Elektronen von positiv geladenen Defektelektronen in einem elektrischen Feld durchführbar ist, die Anregungsenergie der Elektronen durch Reduktion und der des Defektelektrons durch Oxidation geeigneter Moleküle in einem Elektrolyten nutzbar ist und die thermische, elektrische und chemische Umwandlung der Sonnenstrahlung in Ladungstrennung der angeregten Elektronen durchführbar ist.A development of the invention is that in the reactive unit by excitation of electrons from the electronic ground state in an excited state of sufficient duration photons are absorbable, a charge separation of the excited electrons of positively charged holes in an electric field is feasible, the excitation energy of the electrons Reduction and the defect electron can be used by oxidation of suitable molecules in an electrolyte and the thermal, electrical and chemical conversion of solar radiation in charge separation of the excited electrons is feasible.
Es liegt im Rahmen der Erfindung, daß die Reaktiveinheit Verbindungen enthält, die in der Lage sind, durch Bestrahlung mit UV-Licht und Freisetzen von Elektronen Wasser zu spalten, insbesondere Salze von Nebengruppenmetallen, Halbmetallen, mit Edelmetallen dotierte Salze, insbesondere mit Pt, Au, Pd, Rh, Ni, Cu oder Ag dotiertes TiO2, mit Seltenerdenmetallen, insbesondere mit Fe, Mo, Ru, Os, Re, V, As, Cu, Mn oder Rh dotiertes TiO2, mit Fe, Co, Ni, Cu oder Zn dotiertes WO3, mit Anionen dotiertes TiO2, insbesondere Anionen von C, N, F, P, S, sowie Verbindungen aus der Gruppe bestehend aus CdS, GaAs, Ta2O5, dotiertes ZrO2, SrTiO3, Phosphiden, insbesondere ZnP2, SiC5 Cersalzeή, Ag/AgCl, aber auch reinem Si oder Ge.It is within the scope of the invention that the reactive unit contains compounds which are capable of splitting water by irradiation with UV light and releasing electrons, in particular salts of subgroup metals, semimetals, salts doped with noble metals, in particular with Pt, Au , Pd, Rh, Ni, Cu or Ag doped TiO 2 , with rare earth metals, in particular with Fe, Mo, Ru, Os, Re, V, As, Cu, Mn or Rh doped TiO 2 , with Fe, Co, Ni, Cu or Zn doped WO 3 , TiO 2 doped with anions, in particular anions of C, N, F, P, S, as well as compounds from the group consisting of CdS, GaAs, Ta 2 O 5 , doped ZrO 2 , SrTiO3, phosphides, in particular ZnP 2 , SiC 5 cerium salts, Ag / AgCl, but also pure Si or Ge.
Eine Weiterbildung der Erfindung besteht darin, daß die Partikel in reinem Wasser oder Säuren, Laugen oder Salzen von Alkali- und Erdalkalimetallen, insbesondere NaOH, Na3PO4, Na2CO3, NaBO2, Na2HPO4, NaHCO3, Na2SO4, NaCl, HCl, H2PO4 oder H2SO4 suspendiert sind.A further development of the invention is that the particles in pure water or acids, alkalis or salts of alkali and alkaline earth metals, in particular NaOH, Na 3 PO 4 , Na 2 CO 3 , NaBO 2 , Na 2 HPO 4 , NaHCO 3 , Na 2 SO 4 , NaCl, HCl, H 2 PO 4 or H 2 SO 4 are suspended.
Hierdurch kann die Effizienz deutlich gesteigert werden.As a result, the efficiency can be significantly increased.
Es ist weiterhin sinnvoll, daß die Partikel oder die Suspension Farbstoffe enthält, insbesondere Thionin, Toluidinblau, Methylenblau, Azur A, Azur B, Azur C, Phenosafranin, Safranin-O, Safranin-T, Neutralrot, Fluorescein, Erythrosin, Erythrosin B, Rhodamin B5 Bengalrosa, Py- ronine Y, Eosin, Rhodamin 6G, Acridine, Proflavin, Acridingelb, Fusion, Kristallviolett, Mar lachitgrün und Methylviolett.It is also useful that the particle or suspension contains dyes, especially thionin, Toluidinblau, methylene blue, Azure A, Azure B, Azure C, phenosafranine, safranine-O, safranine-T, neutral red, fluorescein, erythrosin, erythrosin B, rhodamine B 5 Rose Bengal, Pyronine Y, Eosin, Rhodamine 6G, Acridine, Proflavine, Acridine Yellow, Fusion, Crystal Violet, Marlitite Green and Methyl Violet.
Diese Farbstoffe dienen der Sensibilisierung.These dyes are used for sensitization.
Eine Ausführungsform der Erfindung besteht darin, daß die Partikel oder die Suspension Halbleitermaterialien, insbesondere SnO2, WO3, V2O5, ZnO, Fe2O3, SiC oder Gemische hiervon enthält.An embodiment of the invention consists in that the particles or the suspension contains semiconductor materials, in particular SnO 2 , WO 3 , V 2 O 5 , ZnO, Fe 2 O 3 , SiC or mixtures thereof.
Auch diese Maßnahme dient der Sensibilisierung.This measure also serves to sensitize.
Bei einer Ausbildung der Erfindung ist vorgesehen, daß die Reaktiveinheit durch Bestrahlung, insbesondere mit Sonnenlicht, Elektronen abspaltet.In one embodiment of the invention, it is provided that the reactive unit splits off electrons by irradiation, in particular with sunlight.
Die Schutzeinheit sollte immer kleiner als die maximale Reichweite der abgespaltenen Elektronen sein.The protection unit should always be smaller than the maximum range of the separated electrons.
Weiterhin ist es zur Erfindung gehörig, daß die Schutzeinheit aus Materialien besteht, die gegen die gebildeten Radikale aus Sauerstoff und Wasserstoff inert sind. Erfindungsgemäß ist vorgesehen, daß die Schutzeinheit aus inerten Oxiden oder Salzen, insbesondere SiO2, Al2O3, ZrO2, BaSO4, die mit inerten Metallen, Metallegierungen oder Edelmetallen dotiert sind, oder aus reinen inerten Metallen, Metallegierungen oder Edelmetallen, wie Pt, Au, Pd, Rh, Ni, Cr, Cu oder Ag besteht.Furthermore, it is part of the invention that the protective unit consists of materials which are inert to the radicals formed from oxygen and hydrogen. According to the invention it is provided that the protective unit of inert oxides or salts, in particular SiO 2 , Al 2 O 3 , ZrO 2 , BaSO 4 , which are doped with inert metals, metal alloys or precious metals, or pure inert metals, metal alloys or precious metals, such as Pt, Au, Pd, Rh, Ni, Cr, Cu or Ag.
Es ist vorteilhaft, daß die Schutzeinheit eine Schichtdicke hat, die kleiner als die maximale kinetische Reichweite eines herausgeschlagenen Elektrons ist, bevorzugt kleiner als die mittlere kinetische Reichweite eines ausgeschlagenen Elektrons ist.It is advantageous that the protection unit has a layer thickness which is smaller than the maximum kinetic range of an ejected electron, preferably smaller than the mean kinetic range of a knocked out electron.
Bei einer Ausbildung der Erfindung ist vorgesehen, daß die Schutzeinheit für die eingehende Strahlung, insbesondere Sonnenstrahlung, zumindest teilweise durchlässig ist.In one embodiment of the invention, it is provided that the protective unit for the incoming radiation, in particular solar radiation, is at least partially permeable.
Ebenso liegt es im Rahmen der Erfindung, daß die Schutzeinheit gegenüber Elektronen durchlässig ist.It is also within the scope of the invention that the protective unit is permeable to electrons.
Es ist zweckmäßig, daß die Schutzeinheit gegenüber Wasserstoffatomen oder Protonen dicht ist.It is expedient that the protective unit is dense to hydrogen atoms or protons.
Eine Ausbildung der Erfindung besteht darin, daß der Anteil der Edelmetalle in der Schutzeinheit von 1 bis 100 Gew.7% beträgt.An embodiment of the invention is that the proportion of noble metals in the protective unit of 1 to 100 wt. 7 %.
Schließlich betrifft die Erfindung auch ein Verfahren zum Herstellen einer erfindungsgemäßen Beschichtung, bei dem auf eine dichte eine Reaktiveinheit bildende Unterschicht eine Oberschicht als Schutzeinheit aufgebracht wird.Finally, the invention also relates to a method for producing a coating according to the invention, in which a top layer is applied as a protective unit to a dense reactive layer forming a lower layer.
Eine Ausbildung der Erfindung besteht darin, daß die Unterschicht und die Oberschicht im Vakuumdampfverfahren (CVD, PVD) oder elektrochemisch (galvanisch) oder durch naßchemische Applikationsverfahren, insbesondere im Sol-Gel- Verfahren aufgetragen werden.An embodiment of the invention consists in that the lower layer and the upper layer are applied by the vacuum vapor method (CVD, PVD) or electrochemically (galvanically) or by wet-chemical application methods, in particular in the sol-gel method.
Es ist auch möglich, daß eine Partikelsuspension als Reaktiveinheit, mittels elektrochemischer, galvanischer oder naßchemischer Applikationsverfahren, insbesondere im Sol-Gel- Verfahren mit einer Schutzschicht überzogen wird. Der Erfindung liegen die folgenden Überlegungen zugrunde.It is also possible that a particle suspension is coated as a reactive unit, by means of electrochemical, galvanic or wet chemical application method, in particular in the sol-gel process with a protective layer. The invention is based on the following considerations.
Der erste Schritt kann im Prinzip in jedem elektronisch anregbaren Material erfolgen, auch wie bei photochemischen Reaktionen in einem einzelnen Molekül.In principle, the first step can take place in any electronically excitable material, as well as photochemical reactions in a single molecule.
Für die photoelektrolytische Brennstoffherstellung, in diesem Fall die direkte Wasserspaltung, ergeben sich eine Reihe von Bedingungen, die hier am Beispiel der Wasserstoffproduktion erläutert seien:For the photoelectrolytic fuel production, in this case the direct water splitting, there are a number of conditions, which are explained here using the example of hydrogen production:
1. Die mit dem Halbleiter erreichbare Photospannung (Aufspaltung der Quasi-Fermi- Niveaus) muß größer sein als die zur Elektrolyse notwendige Spannung. Diese setzt sich aus der thermodynamischen Zersetzungsspannung (für Wasser 1,23 V), der zur Erzielung einer bestimmten Stromdichte notwendigen Diffusionsüberspannung - einer für die Grenzfläche des speziellen Halbleitermaterials jeweils charakteristischen kinetischen Überspannung - und der Spannungen zusammen, die an den im elektrischen Kreis auftretenden Widerständen (bes. im Elektrolyten, im Halbleiter und an den Kontakten) abfallen.1. The achievable with the semiconductor photovoltaic voltage (splitting of the quasi-Fermi levels) must be greater than the voltage required for electrolysis. This is composed of the thermodynamic decomposition voltage (for water 1.23 V), the diffusion overvoltage necessary for achieving a certain current density-a kinetic overvoltage characteristic for the interface of the particular semiconductor material-and the voltages occurring at the resistances occurring in the electrical circuit (Especially in the electrolyte, in the semiconductor and at the contacts) fall off.
2. Nach Aufbau der Photospannung muß noch eine Bandverbiegung bestehen bleiben, damit das damit verbundene elektrische Feld die bei Belichtung gebildeten Elektron/Loch-Paare räumlich trennen und eine Rekombination verhindern kann. Ferner kann wegen der nicht vermeidbaren strahlenden Rekombination die Photospannung (also die Aufspaltung der Quasi-Fermi-Niveaus.) nur einen kleineren Wert erreichen als den, der der Bandlücke entspricht. Diesen Einschränkungen, die dazu führen, daß die Photospannung nur einen um etwa 0,5V kleineren Wert erreichen kann als der Bandlücke entspricht, unterliegen Festkörper-Solarzellen in gleicher Weise.2. After building up the photovoltage, there must still be a band bending so that the associated electric field can spatially separate the electron / hole pairs formed upon exposure and prevent recombination. Further, because of the unavoidable radiative recombination, the photovoltage (ie, the splitting of the quasi-Fermi levels) can only reach a smaller value than that corresponding to the bandgap. These restrictions, which mean that the photovoltage can only reach a value about 0.5V smaller than the band gap, are subject to solid-state solar cells in the same way.
Um eine Ladungsübertragung zum Elektrolyten zu ermöglichen, müssen die Bandkanten an der Grenzfläche zum Elektrolyten geeignete Energien besitzen. Für die Wasserreduktion muß das Leitungsband soweit oberhalb (kathodisch) vom Reduktionspotential des Wassers (Wasserstoff-Potential, in neutraler Lösung mit Bezug NHE -0,42V) und das Valenzband soweit unterhalb des Oxidationspotentiales des Wassers (Sauerstoff-Potential, in neutraler Lösung mit Bezug NHE +0,81V) liegen, daß die Bedingungen 1 und 2 noch erfüllt werden können. Sind diese Bedingungen erfüllt, so ist das Halbleitermaterial prinzipiell für direkte photoelekt- rochemische Wasserspaltung geeignet.In order to allow charge transfer to the electrolyte, the band edges must have suitable energies at the interface to the electrolyte. For the water reduction, the conduction band must be as far above (cathodic) from the reduction potential of the water (hydrogen potential, in neutral solution with reference NHE -0.42V) and the valence band far below the oxidation potential of the water (oxygen potential, in neutral solution with respect NHE + 0,81V) are that conditions 1 and 2 can still be met. If these conditions are met, the semiconductor material is in principle suitable for direct photoelectrochemical water splitting.
Aber selbst diese produzieren mit einigen Ausnahmen z.B. des Strontiumtitanats bei Bestrahlung nicht Wasserstoff und Sauerstoff. Dies ist bei den meisten n-leitenden Materialien darauf zurückzuführen, dass die an die Oberfläche des Halbleiters gelangenden Defektelektronen (also meist fehlende Bindungselektronen) eher zur Oxidation und damit zur Auflösung des Halbleiters führen als zur Wasseroxidation.But even these produce, with some exceptions, e.g. of strontium titanate on irradiation not hydrogen and oxygen. For most n-type materials, this is due to the fact that the defect electrons reaching the surface of the semiconductor (ie, mostly missing bonding electrons) tend to lead to oxidation and thus to dissolution of the semiconductor rather than to water oxidation.
In jedem Fall ergibt sich aber aus der unter 1 genannten Bedingung (ohne zusätzliche Verluste bei den elektrochemischen Reaktionen) ein maximal erreichbarer Wirkungsgrad von etwa 25%, jedoch bei realistisch angenommenen Überspannungen von etwa 0,3 V im Elektrolyten nur einer von etwa 17%, da dann die notwendige Bandlücke nur die Ausnutzung eines kleinen Teils des Sonnenspektrums erlaubt.In any case, however, results from the condition mentioned in 1 (without additional losses in the electrochemical reactions) a maximum achievable efficiency of about 25%, but at realistic assumed overvoltages of about 0.3 V in the electrolyte, only one of about 17%, since then the necessary band gap only allows the utilization of a small part of the solar spectrum.
Eine Möglichkeit den Wirkungsgrad zu steigern und die Oxidation bzw. Korrosion der Partikel zu vermeiden besteht darin eine entsprechende Schutzschicht zu generieren, wie sie in dieser Schrift beschrieben ist.One way to increase the efficiency and to avoid the oxidation or corrosion of the particles is to generate a corresponding protective layer, as described in this document.
Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsbeispielen näher erläutert. Es werden beispielhaft zwei Basisrezepturen für die Herstellung oberflächenmodifizierter nanoskaliger Photokatalysatoren zur Wasserspaltung und die entsprechenden Ergebnisse beschrieben:The present invention will be explained in more detail below with reference to exemplary embodiments. By way of example, two basic formulations for the preparation of surface-modified nanoscale photocatalysts for water splitting and the corresponding results are described:
Beispiel 1:Example 1:
2,17 g (10,4 mmol) Tetraethoxysilan TEOS in 50 ml Ethanol werden mit 0,30 g Ameisensäure versetzt und 10 min gerührt. Es werden 0,30 g (16,7 mmol) Wasser zugegeben und eine weitere Stunde gerührt (Lösung 1). Nach Zugabe von 21,5 mg (41,8 mmol) Platin(IV)bromid (Fa. ABCR) zu dem teilhydrolisierten Silan färbt sich die Lösung braunschwarz (Lösung 1). 3,99 g (0,05 mol) TiO2-Nanoρartikel (KRONOS vpl 7000) werden in 50 ml deionisiertem Wasser mit einem Ultra-Turrax für 10 min bei 15000 U/min dispergiert (Lösung 2). Lösung 1 wird nun unter starkem Rühren zu Lösung 2 gegeben. Es bildet sich ein braunschwarzer Feststoff, welcher filtriert und mit Wasser gewaschen wird. Die freien OH-Gruppen an der Ober- flächen der TiO2-Nanopartikel sind vollständig mit Pt/SiO2-Partikel als monomolekulare Schicht abgesättigt.2.17 g (10.4 mmol) of tetraethoxysilane TEOS in 50 ml of ethanol are mixed with 0.30 g of formic acid and stirred for 10 min. There are added 0.30 g (16.7 mmol) of water and stirred for an additional hour (solution 1). After addition of 21.5 mg (41.8 mmol) of platinum (IV) bromide (ABCR) to the partially hydrolyzed silane, the solution turns brown-black (solution 1). 3.99 g (0.05 mol) of TiO 2 nanoparticles (KRONOS vpl 7000) are dispersed in 50 ml of deionized water with an Ultra-Turrax for 10 min at 15,000 rpm (solution 2). Solution 1 is added to solution 2 with vigorous stirring. A brown-black solid forms, which is filtered and washed with water. The free OH groups at the top surfaces of the TiO 2 nanoparticles are completely saturated with Pt / SiO 2 particles as a monomolecular layer.
Beispiel 2:Example 2:
Cadmiumsulfid-Nanopartikel werden durch Fällung einer 0,1 molaren Lösung von Cadmium- chlorid unter Rühren in 0,1 molarer Natronlauge und Umsetzung des gebildeten Cadmium- hydroxides mit Natriumsulfid hergestellt. Nach Filtration, Waschen mit entionisiertem Wasser und Trocknung bei 70°C werden 5,76 g (40,0 mmol) Cadmiumsulfid-Nanopartikel in 100 g Demiwasser mit Hilfe eines Ultra-Turrax für 5 min bei ca. 11000 U/min dispergiert. Zu dieser Lösung werden 3,00 g Natriumthiosulfat, 1,25 g Natriumsulfit, 0,50 g Thioharnstoff und 0,40 g Ammoniumchlorid gegeben. Die Lösung wird mit 0,1 molarer Salzsäure auf pH 5,0 eingestellt und auf 800C erhitzt. Nach Zugabe von 0,50 g (1,26 mmol) Natriumgoldchlorid Na- AuCl4 (Fa. Sigma-Aldrich) unter Rühren wird das Reaktionsgemisch nach 10 Minuten Reaktionszeit im Eisbad gekühlt, sofort filtriert und mit Wasser gewaschen. Man erhält oberflächenmodifizierte Cadmiumsulfid-Nanopartikel mit einer Goldschicht von etwa 5-10 nm Schichtdicke.Cadmium sulfide nanoparticles are prepared by precipitating a 0.1 molar solution of cadmium chloride with stirring in 0.1 molar sodium hydroxide solution and reacting the cadmium hydroxide formed with sodium sulfide. After filtration, washing with deionized water and drying at 70 ° C., 5.76 g (40.0 mmol) of cadmium sulfide nanoparticles are dispersed in 100 g of demiwater with the aid of an Ultra-Turrax for 5 min at about 11000 rpm. To this solution are added 3.00 g of sodium thiosulfate, 1.25 g of sodium sulfite, 0.50 g of thiourea and 0.40 g of ammonium chloride. The solution is adjusted with 0.1 molar hydrochloric acid to pH 5.0 and heated to 80 0 C. After addition of 0.50 g (1.26 mmol) of sodium gold chloride Na AuCl 4 (Sigma-Aldrich) with stirring, the reaction mixture is cooled after 10 minutes of reaction time in an ice bath, filtered immediately and washed with water. This gives surface-modified cadmium sulfide nanoparticles with a gold layer of about 5-10 nm layer thickness.
Von den getrockneten Katalysatoren werden 1,00 g in 50 ml Wasser geben, unter Rühren mit UV-Licht (400 W, Hg) bestrahlt und die Wasserstoffentwicklung mit GC/MS über eine Messdauer von 10 Stunden gemessen. Die modifizierten Nanopartikel zeigen über die gesamte Messdauer eine gleichbleibende Wasserstoffentwicklung von ca. 1,55 mmol/h pro g Katalysator (mod. Titandioxid, Beispiel 1) bzw. 2,30 mmol/h pro g Katalysator (mod. Cadmium- sulfid, Beispiel 2). Zum Vergleich zeigen die Wasserstoffumsätze der unmodifϊzierten Nanopartikel deutlich geringere Wasserstoffbildungsraten (Titanoxid 30 μmol/h pro g Katalysator, Cadmiumsulfid ca. 1,3 mmol/h pro g Katalysator). Die' Wasserstoffbildung kommt beim unbeschichteten Titandioxid etwa nach Vz Stunde sowie bei Cadmiumsulfid nach etwa 2-3 Stunden durch Photokorrosion zum erliegen. Beim unmodifizierten Cadmiumsulfid zeigt der Nachweis von Sulfaten die vollständige Zersetzung des Materials nach 4 Stunden Bestrahlung an. 1.00 g of the dried catalysts are added to 50 ml of water, irradiated while stirring with UV light (400 W, Hg) and the hydrogen evolution is measured over a period of 10 hours with GC / MS. The modified nanoparticles show a constant hydrogen evolution of about 1.55 mmol / h per g of catalyst (mod. Titanium dioxide, Example 1) or 2.30 mmol / h per g of catalyst over the entire measurement period (mod. Cadmium sulfide, example 2). For comparison, the hydrogen conversions of the unmodified nanoparticles show significantly lower hydrogen formation rates (titanium oxide 30 μmol / h per g of catalyst, cadmium sulfide approx. 1.3 mmol / h per g of catalyst). The formation of hydrogen in uncoated titanium dioxide occurs approximately after Vz hour and in the case of cadmium sulfide after about 2-3 hours through photo-corrosion. For unmodified cadmium sulfide, the detection of sulfates indicates complete decomposition of the material after 4 hours of irradiation.

Claims

PATENTANSPRÜCHE
1. Partikel zur Spaltung von Wasser, dadurch gekennzeichnet, daß die Partikel aus einem Kern und einer Hülle bestehen, wobei1. particles for splitting water, characterized in that the particles consist of a core and a shell, wherein
- der Kern eine Reaktiveinheit bildet und aus einem Material besteht, das bei Energieeintrag durch Sonnenlicht Elektronen freisetzt, die in der Lage sind, Wasser in Wasserstoff und Sauerstoff zu spalten, und- The core forms a reactive unit and consists of a material that releases electrons when energy input by sunlight electrons, which are able to split water into hydrogen and oxygen, and
- die Hülle eine Schutzeinheit bildet, die in der Lage ist, die Spaltprodukte von der Oberfläche der Reaktiveinheit abzuhalten und die gleichzeitig leitfähige Anteile aufweist.- The shell forms a protective unit, which is able to keep the fission products from the surface of the reactive unit and at the same time has conductive components.
2. Beschichtung zur Spaltung von Wasser, dadurch gekennzeichnet, daß die Beschich- tung aus einer Unterschicht und einer Oberschicht besteht, wobei2. Coating for splitting water, characterized in that the coating consists of a lower layer and a top layer, wherein
- die Unterschicht eine Reaktiveinheit bildet und aus einem Material besteht, das bei Energieeintrag durch Sonnenlicht Elektronen freisetzt, die in der Lage sind, Wasser in Wasserstoff und Sauerstoff zu spalten, und- The underlayer forms a reactive unit and consists of a material that releases electrons when energy is introduced by sunlight, which are able to split water into hydrogen and oxygen, and
- die Oberschicht eine Schutzeinheit bildet, die in der Lage ist, die Spaltprodukte von der Oberfläche der Reaktiveinheit abzuhalten und die gleichzeitig leitfähige Anteile aufweist.- The upper layer forms a protective unit, which is able to keep the cleavage products from the surface of the reactive unit and at the same time has conductive portions.
3. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß in der Reaktiveinheit3. Particles according to claim 1 or coating according to claim 2, characterized in that in the reactive unit
- durch Anregung von Elektronen aus dem elektronischen Grundzustand in einen angeregten Zustand ausreichender Dauer Photonen absorbierbar sind, eine Ladungstrennung der angeregten Elektronen von positiv geladenen Defektelektronen in einem elektrischen Feld durchführbar ist,- Photons are absorbable by exciting electrons from the electronic ground state in an excited state of sufficient duration, a charge separation of the excited electrons of positively charged holes in an electric field is feasible,
- die Anregungsenergie der Elektronen durch Reduktion und der des Defektelektrons durch Oxidation geeigneter Moleküle in einem Elektrolyten nutzbar ist undthe excitation energy of the electrons can be utilized by reduction and that of the hole electron by oxidation of suitable molecules in an electrolyte, and
- die thermische, elektrische und chemische Umwandlung der Sonnenstrahlung in Ladungstrennung der angeregten Elektronen durchführbar ist.- The thermal, electrical and chemical conversion of solar radiation in charge separation of the excited electrons is feasible.
4. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Reaktiveinheit Verbindungen enthält, die in der Lage sind, durch Be- Strahlung mit UV-Licht und Freisetzen von Elektronen Wasser zu spalten, insbesondere Salze von Nebengruppenmetallen, Halbmetallen, mit Edelmetallen dotierte Salze, insbesondere mit Pt, Au, Pd, Rh, Ni, Cu oder Ag dotiertes TiO2, mit Seltenerdenmetallen, insbesondere mit Fe, Mo5 Ru, Os, Re, V, As, Cu, Mn oder Rh dotiertes TiO2, mit Fe, Co, Ni, Cu oder Zn dotiertes WO3j mit Anionen dotiertes TiO2, insbesondere Ani- onen von C, N, F, P, S, sowie Verbindungen aus der Gruppe bestehend aus CdS, GaAs, Ta2O5, dotiertes ZrO2, SrTiO3, Phosphiden, insbesondere ZnP2, SiC, Cersalzen, Ag/ AgCl, aber auch reinem Si oder Ge.4. A particle according to claim 1 or a coating according to claim 2, characterized in that the reactive unit contains compounds which are able by loading Radiation with UV light and release of electrons to split water, in particular salts of subgroup metals, semimetals, precious metals doped salts, especially with Pt, Au, Pd, Rh, Ni, Cu or Ag doped TiO 2 , with rare earth metals, in particular with Fe , Mo 5 Ru, Os, Re, V, As, Cu, Mn or Rh doped TiO 2 , WO 3j doped with Fe, Co, Ni, Cu or Zn with anion-doped TiO 2 , in particular anions of C, N, F, P, S, and compounds from the group consisting of CdS, GaAs, Ta 2 O 5 , doped ZrO 2 , SrTiO 3 , phosphides, in particular ZnP 2 , SiC, Cersalzen, Ag / AgCl, but also pure Si or Ge.
5. Partikel gemäß Anspruch 1, dadurch gekennzeichnet, daß diese in reinem Wasser oder Säuren, Laugen oder Salzen von Alkali- und Erdalkalimetallen, insbesondere NaOH, Na3PO4, Na2CO3, NaBO2, Na2HPO4, NaHCO3, Na2SO4, NaCl, HCl, H2PO4 oder H2SO4 suspendiert sind.5. Particles according to claim 1, characterized in that these in pure water or acids, bases or salts of alkali and alkaline earth metals, in particular NaOH, Na 3 PO 4 , Na 2 CO 3 , NaBO 2 , Na 2 HPO 4 , NaHCO 3 , Na 2 SO 4 , NaCl, HCl, H 2 PO 4 or H 2 SO 4 are suspended.
6. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß diese Farbstoffe, insbesondere Thionin, Toluidinblau, Methylenblau, Azur A, Azur B, Azur C, Phenosafranin, Safranin-O, Safranin-T, Neutralrot, Fluores- cein, Erythrosin, Erythrosin B, Rhodamin B, Bengalrosa, Pyronine Y, Eosin, Rhoda- min 6G, Acridine, Proflavin, Acridingelb, Fusion, Kristallviolett, Malachitgrün und Methylviolett, enthält.6. Particles according to claim 1 or coating according to claim 2, characterized in that these dyes, in particular thionine, toluidine blue, methylene blue, azure A, azure B, azure C, phenosafranine, safranine-O, safranine-T, neutral red, fluorescein , Erythrosine, erythrosine B, rhodamine B, rose bengal, pyronine Y, eosin, rhodamine 6G, acridines, proflavine, acridine yellow, fusion, crystal violet, malachite green and methyl violet.
7. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß diese Halbleitermaterialien, insbesondere SnO2, WO3, V2O5, ZnO, Fe2O3, SiC oder Gemische hiervon enthält.7. Particles according to claim 1 or coating according to claim 2, characterized in that these semiconductor materials, in particular SnO 2 , WO 3 , V 2 O 5 , ZnO, Fe 2 O 3 , SiC or mixtures thereof.
8. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Reaktiveinheit durch Bestrahlung, insbesondere mit Sonnenlicht, E- lektronen abspaltet.8. Particles according to claim 1 or coating according to claim 2, characterized in that the reactive unit splits off by irradiation, in particular with sunlight, electrons.
9. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Schutzeinheit aus Materialien besteht, die gegen die gebildeten Radikale aus Sauerstoff und Wasserstoff inert sind. 9. Particles according to claim 1 or coating according to claim 2, characterized in that the protective unit consists of materials which are inert to the radicals formed from oxygen and hydrogen.
10. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Schutzeinheit aus inerten Oxiden oder Salzen, insbesondere SiO2, Al2O3, ZrO2, BaSO4, die mit inerten Metallen, Metallegierungen oder Edelmetallen dotiert sind, oder aus reinen inerten Metallen, Metallegierungen oder Edelmetallen, wie Pt, Au, Pd, Rh, Ni, Cr, Cu oder Ag besteht.10. Particles according to claim 1 or coating according to claim 2, characterized in that the protective unit of inert oxides or salts, in particular SiO 2 , Al 2 O 3 , ZrO 2 , BaSO 4 , which are doped with inert metals, metal alloys or precious metals, or pure inert metals, metal alloys or precious metals such as Pt, Au, Pd, Rh, Ni, Cr, Cu or Ag.
11. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Schutzeinheit eine Schichtdicke hat, die kleiner als die maximale kinetische Reichweite eines herausgeschlagenen Elektrons ist, bevorzugt kleiner als die mittlere kinetische Reichweite eines ausgeschlagenen Elektrons ist.11. Particles according to claim 1 or coating according to claim 2, characterized in that the protective unit has a layer thickness which is smaller than the maximum kinetic range of a knocked-out electron, preferably smaller than the mean kinetic range of a knocked out electron.
12. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Schutzeinheit für die eingehende Strahlung, insbesondere Sonnenstrahlung bzw. UV-Strahlung , zumindest teilweise durchlässig ist.12. Particles according to claim 1 or coating according to claim 2, characterized in that the protective unit for the incoming radiation, in particular solar radiation or UV radiation, is at least partially permeable.
13. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Schutzeinheit gegenüber Elektronen durchlässig ist.13. Particles according to claim 1 or coating according to claim 2, characterized in that the protective unit is permeable to electrons.
14. Partikel gemäß Anspruch 1 oder Beschichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Schutzeinheit gegenüber Wasserstoffatomen oder Protonen dicht ist.14. Particles according to claim 1 or coating according to claim 2, characterized in that the protective unit is dense to hydrogen atoms or protons.
15. Partikel oder Beschichtung gemäß Anspruch 10, dadurch gekennzeichnet, daß der Anteil der Edelmetalle in der Schutzeinheit von 1 bis 100 Gew.-% beträgt.15. Particle or coating according to claim 10, characterized in that the proportion of noble metals in the protective unit of 1 to 100 wt .-% is.
16. Verfahren zum Herstellen einer Beschichtung gemäß den Ansprüchen 2 bis 15, dadurch gekennzeichnet, daß auf eine dichte eine Reaktiveinheit bildende Unterschicht eine Oberschicht als Schutzeinheit aufgebracht wird.16. A process for producing a coating according to claims 2 to 15, characterized in that a top layer is applied as a protective unit to a dense reactive layer forming a lower layer.
17. Verfahren gemäß Anspruch 16, dadurch gekennzeichnet, daß die Unterschicht und die Oberschicht im Vakuumdampfverfahren (CVD, PVD) oder elektrochemisch (galvanisch) oder durch naßchemische Applikationsverfahren, insbesondere im Sol-Gel- Verfahren aufgetragen werden. 17. The method according to claim 16, characterized in that the lower layer and the upper layer in the vacuum vapor method (CVD, PVD) or electrochemically (electroplated) or by wet chemical application methods, in particular in the sol-gel process are applied.
18. Verfahren gemäß Anspruch 16, dadurch gekennzeichnet, daß eine Partikelsuspension als Reaktiveinheit, mittels elektrochemischer, galvanischer oder naßchemischer Applikationsverfahren, insbesondere im Sol-Gel-Verfahren mit einer Schutzschicht überzogen wird. 18. The method according to claim 16, characterized in that a particle suspension is coated as a reactive unit, by means of electrochemical, galvanic or wet chemical application method, in particular in the sol-gel process with a protective layer.
EP08773261A 2007-06-15 2008-06-13 Particles or coating for splitting water Withdrawn EP2162215A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007028391A DE102007028391A1 (en) 2007-06-15 2007-06-15 Particles or coating for splitting water
PCT/DE2008/000962 WO2008154894A2 (en) 2007-06-15 2008-06-13 Particles or coating for splitting water

Publications (1)

Publication Number Publication Date
EP2162215A2 true EP2162215A2 (en) 2010-03-17

Family

ID=39968030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08773261A Withdrawn EP2162215A2 (en) 2007-06-15 2008-06-13 Particles or coating for splitting water

Country Status (4)

Country Link
US (1) US20100184592A1 (en)
EP (1) EP2162215A2 (en)
DE (1) DE102007028391A1 (en)
WO (1) WO2008154894A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114016053A (en) * 2021-12-10 2022-02-08 福州大学 Method for improving stability of transition metal sulfide catalyst

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056841A1 (en) * 2009-09-10 2011-03-10 Pixelligent Technologies, Llc System and method for direct conversion of solar energy to chemical energy
WO2012154692A1 (en) * 2011-05-06 2012-11-15 Molycorp Minerals, Llc Lanthanide-mediated water splitting process for hydrogen and oxygen generation
CN102502917B (en) * 2011-10-22 2013-05-29 桂林理工大学 Method for photocatalytically degrading rhodamine B by using SiC nanowires
US9593053B1 (en) 2011-11-14 2017-03-14 Hypersolar, Inc. Photoelectrosynthetically active heterostructures
CN103691459B (en) * 2012-09-27 2016-06-29 陈怀超 Steam pyrolysis catalyst and method for making thereof and steam pyrolysis hydrogen burning method
JP6265410B2 (en) * 2013-10-02 2018-01-24 国立研究開発法人物質・材料研究機構 Method for producing core-shell photocatalyst
US10100415B2 (en) 2014-03-21 2018-10-16 Hypersolar, Inc. Multi-junction artificial photosynthetic cell with enhanced photovoltages
DE102014008533A1 (en) 2014-06-16 2015-12-17 Universität Augsburg Photoelectrochemical colloid and process for the preparation of colloidal particles
WO2017037599A1 (en) * 2015-08-28 2017-03-09 Sabic Global Technologies B.V. Hydrogen production using hybrid photonic-electronic materials
CN109453798A (en) * 2018-12-04 2019-03-12 山东科技大学 A kind of preparation method and application of silicon carbide-based photochemical catalyst
CN111874988A (en) * 2020-09-01 2020-11-03 中认英泰检测技术有限公司 Based on multi-element co-doped TiO2Organic wastewater treatment method of nano photocatalytic material
DE102021211738B3 (en) 2021-10-18 2023-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Supraparticle and additive for the optical indication of hydrogen gas, method for producing the supraparticle(s) or the additive, and use of the supraparticle(s) or the additive
CN114471639B (en) * 2022-02-21 2023-06-20 内蒙古科技大学 Transition metal element doped and cadmium sulfide loaded transition metal phosphide photocatalytic material with sulfur vacancy and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011149A (en) * 1975-11-17 1977-03-08 Allied Chemical Corporation Photoelectrolysis of water by solar radiation
CH644471A5 (en) * 1981-02-02 1984-07-31 Michael Graetzel PRODUCT FOR USE AS A PHOTOCATALYST, PROCESS FOR PREPARING THE SAME AND USE OF THE SAME.
US4484992A (en) * 1981-02-04 1984-11-27 Ciba-Geigy Corporation Process for the production of hydrogen by means of heterogeneous photoredox catalysis
US6592842B2 (en) * 1999-10-01 2003-07-15 Battelle Memorial Institute Nanocrystalline heterojunction materials
JP2005261988A (en) * 2002-09-20 2005-09-29 Andes Denki Kk Photocatalyst material and its manufacturing method
AU2003295880A1 (en) * 2002-11-27 2004-06-23 University Of Toledo, The Integrated photoelectrochemical cell and system having a liquid electrolyte
DE10332570B4 (en) * 2003-07-13 2007-09-06 Hahn-Meitner-Institut Berlin Gmbh Photovoltaic system for direct hydrogen production and collection and use thereof
US20050059186A1 (en) * 2003-09-15 2005-03-17 Kelly Nelson A. Photoelectrochemical device and method of making
DE102004012303B3 (en) * 2004-03-11 2005-07-14 Dieter Ostermann Reaction cell for photo-electrochemical generation of hydrogen, useful particularly in conjunction with fuel cells, has two electrodes, in facial contact, and light source for irradiating the electrodes
US20060223700A1 (en) * 2005-03-31 2006-10-05 Seoul National University Industry Foundation Methods for forming porous oxide coating layer on titanium dioxide (TiO2) particle surface and titanium dioxide (TiO2) powder and film manufactured therefrom
US7625835B2 (en) * 2005-06-10 2009-12-01 Gm Global Technology Operations, Inc. Photocatalyst and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008154894A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114016053A (en) * 2021-12-10 2022-02-08 福州大学 Method for improving stability of transition metal sulfide catalyst
CN114016053B (en) * 2021-12-10 2023-11-14 福州大学 Method for improving stability of transition metal sulfide catalyst

Also Published As

Publication number Publication date
WO2008154894A2 (en) 2008-12-24
DE102007028391A1 (en) 2008-12-18
WO2008154894A3 (en) 2009-04-30
US20100184592A1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
EP2162215A2 (en) Particles or coating for splitting water
Chen et al. Synthesis of Au–CuS–TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline
Avasare et al. Room‐temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production
Wang et al. Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors
US9735432B2 (en) Method for fabricating core-shell particles supported on carrier and core-shell particles supported on carrier fabricated by the same
Sakai et al. Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light
Chen et al. Interfacial charge carrier dynamics of the three-component In2O3–TiO2–Pt heterojunction system
Di Paola et al. Coupled semiconductor systems for photocatalysis. Preparation and characterization of polycrystalline mixed WO3/WS2 powders
CN101143712B (en) Method for using solar energy decomposing water to prepare hydrogen nanometer electrode
DE112010005334T5 (en) Catalyst with supported fine metal particles and its use
DE10332570B4 (en) Photovoltaic system for direct hydrogen production and collection and use thereof
DE102009019565A1 (en) Catalyst system and process for the photolysis of water
KR20160069342A (en) Plasmonic core-shell structure with three component system for visible light energy conversion and method for synthesizing thereof
CH648218A5 (en) PHOTOLYTIC METHOD AND DEVICE FOR ENDO-ENERGY PRODUCTION OF OXIDATION AND REDUCTION PRODUCTS.
Mandari et al. Ag3PO4-Bi2WO6-TiO2 as a high performance electrocatalyst for oxygen evolution reaction
Lai et al. Two-step process of a crystal facet-modulated BiVO4 photoanode for efficiency improvement in photoelectrochemical hydrogen evolution
Ying et al. S-scheme construction boosts highly active self-supporting CeO2/Cu2O photocatalyst for efficient degradation of indoor VOCs
Bora et al. Broadening the sunlight response region with carbon dot sensitized TiO 2 as a support for a Pt catalyst in the methanol oxidation reaction
US9308526B2 (en) Visible light sensitive photocatalyst, method of producing visible light sensitive photocatalyst, and electrochemical water decomposition cell and organic material decomposition system each including visible light sensitive photocatalyst
WO2011000857A1 (en) CO-CATALYST IN TiO2 FILMS
DE202015106071U1 (en) Electrochemical cell, electrode and electrocatalyst for an electrochemical cell
Joo et al. Efficient photoelectrochemical water oxidation by metal-doped bismuth vanadate photoanode with iron oxyhydroxide electrocatalyst
Hamilton et al. Photo-oxidation of water using nanocrystalline tungsten oxide under visible light
EP2691966B1 (en) Dye sensitised solar cell comprising nitrogen doped carbon nanotubes
Arjun Kumar et al. CdSe Quantum Dots Bedecked on ZnO/TiO2/CuO Ternary Nanocomposite for Enhanced Photocatalytic and Photovoltaic Applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20120710

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150106