EP2160821A2 - Vorrichtung zum umrichten eines elektrischen stromes - Google Patents

Vorrichtung zum umrichten eines elektrischen stromes

Info

Publication number
EP2160821A2
EP2160821A2 EP08774095A EP08774095A EP2160821A2 EP 2160821 A2 EP2160821 A2 EP 2160821A2 EP 08774095 A EP08774095 A EP 08774095A EP 08774095 A EP08774095 A EP 08774095A EP 2160821 A2 EP2160821 A2 EP 2160821A2
Authority
EP
European Patent Office
Prior art keywords
voltage
interface
semiconductor
control unit
voltage interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08774095A
Other languages
English (en)
French (fr)
Inventor
Marcos Pereira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2160821A2 publication Critical patent/EP2160821A2/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • H02M1/092Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the control signals being transmitted optically
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/497Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by combination of several voltages being out of phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/521Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the invention relates to a device for converting an electrical current or for forming an electrical voltage with semiconductor modules connected in series, which have at least one controllable power semiconductor, a high-voltage control unit lying at the potential of one of the semiconductor modules and a low-voltage control unit close to ground potential at least one optical waveguide is connected to the high-voltage control unit.
  • Such a device is already known from US 5,969,956.
  • the device described therein is an inverter that is part of a high voltage direct current (HVDC) transmission.
  • the inverter shown there has valve branches, each having a series circuit of semiconductor modules.
  • the semiconductor modules each comprise a thyristor, which can be converted by an electric ignition pulse from a blocking position in which a current flow is interrupted via the thyristor in a forward position, in which a current flow through the thyristor is enabled.
  • To ignite the thyristors is a control device.
  • the control device comprises a high-voltage potential at a high voltage control unit and a ground potential near low-voltage control unit, which are connected to each other by means of potential separating optical waveguides.
  • the electrical signals of the low-voltage control unit are therefore converted into optical signals and transmitted via the optical waveguide to the high-voltage control unit over ⁇ .
  • the high-voltage control unit has an opto-electrical converter which measures the received optical signals. converted into electrical signals.
  • the received Signa ⁇ le provide an expedient ignition of the thyristors.
  • condition monitoring sensors are assigned to each thyristor, which monitor the state of the respective associated thyristor while obtaining status data.
  • the state data are finally transmitted to the approximation unit Hochnapsssteue-, said the state data at least partly processed and transmits the ge in the processing ⁇ data acquired via the optical waveguide to the low-voltage control unit.
  • Inverters with a series connection of semiconductor modules are also known from the practice of energy transmission and distribution.
  • the series connection distributes the voltage applied to the terminals of the series connection to the individual semiconductor modules.
  • inverter valves can be provided which are designed for a high voltage, although the dielectric strength of the individual semiconductor modules is limited.
  • the number of semiconductor modules required ranges from a few 10 to more than 1000.
  • the semiconductor modules include, for example, a single controllable power semiconductor or else a capacitor and a plurality of power semiconductors interconnected to form a half or full bridge. As a rule, the power-holding conductors must be controlled accurately and quickly.
  • each Leis ⁇ tung semiconductor usually with a ground-level control.
  • This has the disadvantage that very many optical fibers are needed.
  • the number of optical waveguides moreover increases by more than a factor of two. It is also difficult to obtain all the data obtained during the surveillance, Waveguides are transmitted in the need to process time centrally.
  • the object of the invention is therefore to provide a device of the type mentioned at the outset which is safe, low-effort and inexpensive.
  • the invention achieves this object by virtue of the high-voltage control unit having a high-voltage interface which is at the potential of one of the semiconductor modules and is connected via signal lines to at least two controllable power semiconductors, the high-voltage interface being connected to the low-voltage control unit via at least one of the said optical fibers is.
  • a high voltage interface vorgese ⁇ hen receiving the ge from the low voltage control unit ⁇ sent data and further distributed to multiple power semiconductors.
  • the high-voltage ⁇ interface is at the potential of the semiconductor switch.
  • the high voltage interface can be arranged in UNMIT ⁇ ately local vicinity of the semiconductor, so that the leading to the power semiconductors signal lines, such as electrical data lines and optical data lines can be designed correspondingly short and inexpensive.
  • OF INVENTION ⁇ dung modern device requires only a reduced number of optical fibers between the high voltage interface and the low voltage control unit with a reduced copy ⁇ tion of the cost of the device according to the invention in the aftermath.
  • the data transmitted by the low-voltage control unit expediently have a response address which determines to which of the Power semiconductors the high-voltage interface, the data or signals forwarded.
  • the transmitted data may be both analog but also preferably digital data, which are sent in the form of data telegrams.
  • controllable power semiconductors is to be understood in the context of the invention, any power semiconductor, which proves to be useful for use in the field of high voltage. Way of example only, therefore, 's (Gate Turn-off Thyristor), IGCT, GCT (Gate Commutaded turn-off thyristor) and IGBT are Thy ⁇ varistors, so-called GTO (Integrated Gate Commutated Thyristor) (Insulated Gate Bipolar Transistor) mentioned.
  • a semiconductor module has only one of these power semiconductors. Notwithstanding thereof has a semiconductor module in the context of the invention, several controllable and optionally also not controllable Leis ⁇ tung semiconductor, which are connected together in a half or full bridge. The semiconductor module may also include other components such as capacitors.
  • Power semiconductors in the context of the invention are to be understood as the smallest controllable unit. In this case there is any Leis ⁇ semiconductor processing of a plurality of any one another contacted semiconductor chips.
  • each high-voltage interface is connected to at least four controllable power semiconductors.
  • the four controllable power semiconductors are interconnected to form a full bridge, to which a capacitor is connected in parallel.
  • the high voltage interface is for receiving control signals via an optical fiber connected to it and for distributing the received control signals. Signals are set up to the power semiconductors connected to it.
  • the device erfindungsgemä- SEN state sensors are provided, which are connected to the high voltage interface, so that the high voltage interface ⁇ measurement signals of the status sensors intercepts emp ⁇ .
  • the high-voltage interface for example, also acts as a simple distributor with regard to the measurement signals of the state sensors, the measurement signals being forwarded to the low-voltage control unit.
  • Each low-voltage control unit is connected via the Lichtwel ⁇ lenleiter only with the high voltage interface. Another connection between the low-voltage control unit and a component of the device according to the invention at high-voltage potential is not provided.
  • the high-voltage cut parts for processing the measurement signals of the state ⁇ sensors and for driving the power semiconductors connected to it in dependence of the measurement signals.
  • the high voltage interface radio ⁇ tions that would otherwise be carried out from the low voltage control unit takes over. Therefore, a large loufa ⁇ chung for overall control of the device according to the invention is obtained.
  • Reactions to measurement signals of the semiconductor switches that must take place in a very short time, for example in the range of microseconds customer can, by the high-voltage cut parts efficiently independently and are locally Runaway ⁇ leads. In this way, the low-voltage control unit is relieved.
  • a ground potential near Energyversor ⁇ supply unit is provided, which is connected via potential connecting Verbin ⁇ tion medium with the high voltage interface, so that the power supply in the high voltage interface is provided by the ground potential near power supply unit.
  • a high-voltage power supply which lies at the potential of one of the semiconductor modules and which is set up for the power supply of the high-voltage interface.
  • the semiconductor modules include, as already stated, turn-off and / or non-turn-off power semiconductors, such as thyristors. While thyristors can only be transferred from the breaker position to the passage position active, it is at turn-off power stop ⁇ conductors such as IGBTs, possible actively to convert these by a drive signal from the passage position into the locked position. Of course, this extends the control possibilities of the semiconductor switches. Turn-off power semiconductors generally have an antiparallel-connected freewheeling diode.
  • light-controllable power semiconductors are provided, which can be controlled by a suitable light signal. Deviating ⁇ therefrom electrically controllable power semiconductors are provided in the context of the invention.
  • each controllable power semiconductor is connected via a so-called gate unit to the high voltage interface, wherein the gate unit for the electrical control of the controllable Power semiconductors of the semiconductor module is set up.
  • the gate unit thus serves to drive the electrically addressable power semiconductors.
  • the gate unit is connected directly to the semiconductor switch.
  • the high voltage interface is provided for the response of the gate device, so that the latter generates the necessary STEU ⁇ ersignale for its connected power semiconductors.
  • gate units are known as such, so it need not be discussed in detail at this point.
  • the high-voltage interface for supplying power to the gate unit is set. Also through this interconnection between see gate unit and the high voltage interface, the cost of the wiring of the device according to the invention is further reduced.
  • Figure 1 shows a schematic representation of astrasbei ⁇ game of a series circuit of semiconductor modules, which is part of the device according to the invention, and Figure 2 illustrates the control of power semiconductors through the high voltage interface.
  • Figure 1 shows a series circuit of semiconductor modules 1, which are each composed of switching modules 2.
  • the switching modules are connected to a capacitor C to a so-called interconnected th H-circuit or full bridge circuit, so that at the terminals of each semiconductor module 1, depending on the position of the switching modules falling on the capacitor C condensate ⁇ capacitor voltage U c , the inverted capacitor voltage -U c or a zero voltage drops.
  • Switching module a turn-off power semiconductor here an IGBT 3 and an antiparallel connected to this freewheeling diode 4.
  • the device shown in Figure 1 is ⁇ example connected to a phase of an AC network bar and serves to suppress harmonics that can form in the AC network, for reactive power compensation, for voltage stabilization or the like.
  • For connection to the phase of the AC voltage ⁇ network serve terminals 5 and 6.
  • three such series circuits form an embodiment of the device according to the invention.
  • a device with valve branches according to the series connection in Figure 1 is also referred to as a multi-level inverter.
  • a high-voltage interface 7 To drive the four IGBTs of a semiconductor module 1 is a high-voltage interface 7, which is connected via potential tren ⁇ nende optical waveguide with a low-voltage control unit figuratively not shown in Figure 1.
  • the high-voltage interface 7 is part of a high-voltage control unit, which is also not illustrated in FIG. 1. Deviating from this, the high-voltage control unit only consists of the high-voltage interface.
  • FIG. 2 shows the control of the controllable power semiconductors VIl, V12, V21 and V22 through the high voltage interface 7 in more detail.
  • the gate unit 8 becomes often referred to in practice as a gate unit or gate driver. It serves to generate the drive signals for the respective gate terminal of the power semiconductor connected to it.
  • the high voltage interface for each gate unit 8 comprises a high-voltage power supply ⁇ 9.
  • Each power supply unit 9 is connected to the gate unit via a cable connection 10th
  • a signal line 11 serves to transmit the connection and disconnection signals which are received and forwarded by the high-voltage interface 7.
  • each gate unit 8 has state encoders which are connected to the high-voltage interface 7 via signal lines 12, 13 and 14.
  • the high tension voltage ⁇ interface 7 is for receiving and processing the supply state timer was set up signals. The processing takes place with the help of an internal logic implemented in the high-voltage interface. This is also used to ALTERATION, generating or suppressing Boost switch-off signals and adapted, if this is necessary on the basis of he ⁇ stopped state signals.
  • the only schematically indicated temperature sensor 15 detects a temperature averaged over all switching modules 2 of the semiconductor module 1.
  • the detected capacitor voltage value U c and the temperature T ⁇ turire beitet be processed from the high voltage interface 7, wherein an internal logic of the high voltage interface ⁇ spot 7 determines whether Zuscibils- and shutdown signals are generated or suppressed.
  • ground potential close to the low voltage interface serve two only schematically ⁇ pointed light waveguide 17 and 18, wherein through the optical waveguide 17 receiving data control unit of the not-shown low-voltage and on the optical waveguide 18 Data are sent from the high voltage interface 7 to the low voltage control unit.
  • the high-voltage interface 7 is advantageously a so-called Field Programmable Gate Array or FPGA.
  • FPGAs are programmable semiconductor components, which are known as sol ⁇ che, so then at this point need not be discussed nä ⁇ ago.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Um eine Vorrichtung zum Umrichten eines elektrischen Stromes oder zum Bilden einer elektrischen Spannung mit in Reihe geschalteten Halbleitermodulen (1), die wenigstens einen ansteuerbaren Leistungshalbleiter (3) aufweisen, einer auf dem Potential eines der Halbleitermodule (1) liegenden Hochspannungssteuerungseinheit und einer Erdpotential nahen Niederspannungssteuerungseinheit, die mittels wenigstens eines Lichtwellenleiters (17, 18) mit der Hochspannungssteuerungseinheit verbunden ist bereitzustellen, die sicher, aufwandsarm und kostengünstig ist, wird vorgeschlagen, dass die Hochspannungssteuerungseinheit eine Hochspannungsschnittstelle (7) aufweist, die auf dem Potential eines der Halbleitermodule (1) liegt und über Signalleitungen (10, 11, 12, 13, 14) mit wenigstens zwei ansteuerbaren Leistungshalbleitern (3) verbunden ist, wobei die Hochspannungsschnittstelle über wenigstens einen der besagten Lichtwellenleiter (17, 18) mit der Niederspannungssteuerungseinheit verbunden ist.

Description

Beschreibung
Vorrichtung zum Umrichten eines elektrischen Stromes
Die Erfindung betrifft eine Vorrichtung zum Umrichten eines elektrischen Stromes oder zum Bilden einer elektrischen Spannung mit in Reihe geschalteten Halbleitermodulen, die wenigstens einen ansteuerbaren Leistungshalbleiter aufweisen, einer auf dem Potential eines der Halbleitermodule liegenden Hoch- spannungssteuerungseinheit und einer Erdpotential nahen Nie- derspannungssteuerungseinheit , die mittels wenigstens eines Lichtwellenleiters mit der Hochspannungssteuerungseinheit verbunden ist.
Eine solche Vorrichtung ist aus US 5,969,956 bereits bekannt. Die dort beschriebene Vorrichtung ist ein Umrichter, der Teil einer Hochspannungsgleichstromübertragungs (HGÜ) -anläge ist. Der dort gezeigte Umrichter verfügt über Ventilzweige, die jeweils eine Reihenschaltung aus Halbleitermodulen aufweisen. Die Halbleitermodule umfassen jeweils einen Thyristor, der durch einen elektrischen Zündpuls von einer Sperrstellung, in der ein Stromfluss über den Thyristor unterbrochen ist, in eine Durchlassstellung überführt werden kann, in der ein Stromfluss über den Thyristor ermöglicht ist. Zum Zünden der Thyristoren dient eine Regelungseinrichtung. Die Regelungseinrichtung umfasst eine auf einem Hochspannungspotential liegende Hochspannungssteuereinheit sowie eine Erdpotential nahe Niederspannungssteuerungseinheit , die mittels Potential trennender Lichtwellenleiter miteinander verbunden sind. Die elektrischen Signale der Niederspannungssteuerungseinheit werden daher in optische Signale umgewandelt und über den Lichtwellenleiter an die Hochspannungssteuerungseinheit über¬ tragen. Die Hochspannungssteuerungseinheit verfügt über einen optoelektrischen Wandler, der die empfangenen optischen Sig- nale in elektrische Signale umwandelt. Die empfangenen Signa¬ le sorgen für eine zweckmäßige Zündung der Thyristoren. Darüber hinaus sind jedem Thyristor Zustandsüberwachungssensoren zugeordnet, die den Zustand des jeweils zugeordneten Thy- ristors unter Gewinnung von Zustandsdaten überwachen. Die Zu- standsdaten werden schließlich an die Hochspannungssteue- rungseinheit übertragen, wobei diese die Zustandsdaten zumindest teilweise verarbeitet und die bei der Verarbeitung ge¬ wonnenen Daten über die Lichtwellenleiter an die Niederspan- nungsteuerungseinheit überträgt.
Umrichter mit einer Reihenschaltung aus Halbleitermodulen sind auch aus der Praxis der Energieübertragung und - Verteilung bekannt. Durch die Reihenschaltung verteilt sich die an den Klemmen der Reihenschaltung anliegende Spannung auf die einzelnen Halbleitermodule. Auf diese Weise können Umrichterventile bereitgestellt werden, die für eine hohe Spannung ausgelegt sind, obwohl die Spannungsfestigkeit der einzelnen Halbleitermodule begrenzt ist. Bei Hochspannungsan- Wendungen liegt die Anzahl der benötigten Halbleitermodule im Bereich von einigen 10 bis über 1000. Die Halbleitermodule umfassen beispielsweise einen einzelnen ansteuerbaren Leistungshalbleiter oder aber einen Kondensator und mehrere miteinander zu einer Halb- oder Vollbrücke verschaltete Leis- tungshalbleiter . Die Leistungshaltleiter müssen in der Regel genau und schnell angesteuert werden. Wie bereits weiter oben ausgeführt wurde, ist gemäß dem Stand der Technik jeder Leis¬ tungshalbleiter über in der Regel zwei Lichtwellenleiter mit einer Erdpotential nahen Steuerung verbunden. Dies hat den Nachteil, dass sehr viele Lichtwellenleiter benötigt werden. Im Falle einer redundanten Auslegung der Steuerung erhöht sich die Anzahl der Lichtwellenleiter darüber hinaus noch ü- ber den Faktor zwei. Auch ist es schwierig, alle bei der Ü- berwachung gewonnenen Daten, die über die jeweiligen Licht- Wellenleiter übertragen werden, in der benötigen Zeit zentral zu verarbeiten.
Aufgabe der Erfindung ist es daher eine Vorrichtung der ein- gangs genannten Art bereitzustellen, die sicher, aufwandsarm und kostengünstig ist.
Die Erfindung löst diese Aufgabe dadurch, dass die Hochspan- nungssteuerungseinheit eine Hochspannungsschnittstelle auf- weist, die auf dem Potential eines der Halbleitermodule liegt und über Signalleitungen mit wenigstens zwei ansteuerbaren Leistungshalbleitern verbunden ist, wobei die Hochspannungsschnittstelle über wenigstens einen der besagten Lichtwellenleiter mit der Niederspannungssteuerungseinheit verbunden ist.
Erfindungsgemäß ist eine Hochspannungsschnittstelle vorgese¬ hen, welche die von der Niederspannungsteuerungseinheit ge¬ sendeten Daten empfängt und an mehrere Leistungshalbleiter weiter verteilt. Dabei befindet sich die Hochspannungs¬ schnittstelle auf dem Potential der Halbleiterschalter. Aus diesem Grunde kann die Hochspannungsschnittstelle in unmit¬ telbarer örtlicher Nähe der Halbleiter angeordnet sein, so dass sich die zu den Leistungshalbleitern führenden Signal- leitungen, wie beispielsweise elektrische Datenleitungen und optische Datenleitungen, entsprechend kurz und kostengünstig ausgelegt sein können. Darüber hinaus benötigt die erfin¬ dungsgemäße Vorrichtung eine lediglich reduzierte Anzahl von Lichtwellenleitern zwischen den Hochspannungsschnittstellen und der Niederspannungssteuerungseinheit mit einer Verringe¬ rung der Kosten der erfindungsgemäßen Vorrichtung im Gefolge. Zur geeigneten Weiterverteilung weisen die von der Nieder- spannungssteuerungseinheit übertragenen Daten zweckmäßigerweise eine Ansprechadresse auf, die festlegt, an welche der Leistungshalbleiter die Hochspannungsschnittstelle die Daten bzw. Signale weiterleitet. Bei den übertragenen Daten kann es sich im Rahmen der Erfindung sowohl um analoge aber auch bevorzugt um digitale Daten handeln, die in Form von Datentele- grammen versandt werden.
Unter dem Begriff ansteuerbarer Leistungshalbleiter ist im Rahmen der Erfindung jeglicher Leistungshalbleiter zu verstehen, der für einen Einsatz im Bereich der Hochspannung sich als zweckmäßig erweist. Nur beispielsweise seien daher Thy¬ ristoren, so genannte GTO' s (Gate Turn-Off-Thyristor) , IGCT (Integrated Gate Commutated Thyristor) , GCT (Gate Commutaded Turn-Off-Thyristor) und IGBT (Insulated Gate Bipolar Transistor) genannt. Ein Halbleitermodul weist beispielsweise nur einen dieser Leistungshalbleiter auf. Abweichend davon verfügt ein Halbleitermodul im Rahmen der Erfindung über mehrere ansteuerbare und gegebenenfalls auch nicht ansteuerbare Leis¬ tungshalbleiter, die miteinander zu einer Halb- oder Vollbrücke verschaltet sind. Das Halbleitermodul kann darüber hinaus auch weitere Bauteile wie Kondensatoren umfassen. Unter Leistungshalbleiter ist im Rahmen der Erfindung die kleinste ansteuerbare Einheit zu verstehen. Dabei besteht jeder Leis¬ tungshalbleiter aus mehreren miteinander beliebig kontaktierten Halbleiterchips.
Gemäß einer bevorzugten Ausgestaltung der Erfindung ist jede Hochspannungsschnittstelle mit wenigstens vier ansteuerbaren Leistungshalbleitern verbunden. Die vier ansteuerbaren Leistungshalbleiter sind miteinander zu einer Vollbrücke ver- schaltet, der ein Kondensator parallel geschaltet ist.
Vorteilhafterweise ist die Hochspannungsschnittstelle zum Empfangen von Steuersignalen über einen mit ihr verbundenen Lichtwellenleiter und zum Verteilen der empfangenen Steuer- Signale an die mit ihr verbundenen Leistungshalbleiter eingerichtet .
Bei einer vorteilhaften Weiterentwicklung der erfindungsgemä- ßen Vorrichtung sind Zustandssensoren vorgesehen, die mit der Hochspannungsschnittstelle verbunden sind, so dass die Hoch¬ spannungsschnittstelle Messsignale der Zustandssensoren emp¬ fängt. Die Hochspannungsschnittstelle wirkt beispielsweise auch im Hinblick auf die Messsignale der Zustandssensoren als einfacher Verteiler, wobei die Messsignale zur Niederspan- nungssteuerungseinheit weitergeleitet werden.
Jede Niederspannungssteuerungseinheit ist über die Lichtwel¬ lenleiter nur mit der Hochspannungsschnittstelle verbunden. Eine andere Verbindung zwischen der Niederspannungssteue- rungseinheit und einem Bauteil der erfindungsgemäßen Vorrichtung auf Hochspannungspotential ist nicht vorgesehen.
Gemäß einer bevorzugten Ausgestaltung ist die Hochspannungs- schnittsteile zum Verarbeiten der Messsignale der Zustands¬ sensoren und zum Ansteuern der mit ihr verbundenen Leistungshalbleiter in Abhängigkeit der Messsignale eingerichtet. Mit anderen Worten übernimmt die Hochspannungsschnittstelle Funk¬ tionen, die sonst von der Niederspannungssteuerungseinheit durchgeführt werden. Daher ergibt sich eine große Vereinfa¬ chung für die gesamte Steuerung der erfindungsgemäßen Vorrichtung. Reaktionen auf Messsignale der Halbleiterschalter, die in kürzester Zeit, beispielsweise im Bereich von Mikrose- kunden erfolgen müssen, können durch die Hochspannungs- schnittsteile effizienter selbstständig und lokal durchge¬ führt werden. Auf diese Weise wird die Niederspannungssteue- rungseinheit entlastet. Vorteilhafterweise ist eine Erdpotential nahe Energieversor¬ gungseinheit vorgesehen, die über Potential trennende Verbin¬ dungsmittel mit der Hochspannungsschnittstelle verbunden ist, so dass die Energieversorgung in der Hochspannungsschnitt- stelle durch die Erdpotential nahe Energieversorgungseinheit bereitgestellt ist.
Gemäß einer zweckmäßigen Weiterentwicklung ist eine Hochspannungsenergieversorgung vorgesehen, die auf dem Potential ei- nes der Halbleitermodule liegt und die zur Energieversorgung der Hochspannungsschnittstelle eingerichtet ist.
Die Halbleitermodule umfassen, wie bereits ausgeführt wurde, abschaltbare und/oder nicht abschaltbare Leistungshalbleiter, wie beispielsweise Thyristoren. Während Thyristoren aktiv nur von der Unterbrecherstellung in die Durchgangsstellung überführt werden können, ist es bei abschaltbaren Leistungshalt¬ leitern, wie IGBT' s, möglich, diese durch ein Ansteuersignal auch aktiv von der Durchgangsstellung in die Sperrstellung zu überführen. Dies erweitert selbstverständlich die Steuerungs¬ möglichkeiten der Halbleiterschalter. Abschaltbare Leistungshalbleiter weisen in der Regel eine antiparallel geschaltete Freilaufdiode auf.
Im Rahmen der Erfindung sind beispielsweise durch Licht ansteuerbare Leistungshalbleiter vorgesehen, die durch ein zweckmäßiges Lichtsignal angesteuert werden können. Abwei¬ chend davon sind elektrisch steuerbare Leistungshalbleiter im Rahmen der Erfindung vorgesehen.
Bei einer weiteren Ausgestaltung der Erfindung ist jeder ansteuerbare Leistungshalbleiter über eine so genannte Gate- Einheit mit der Hochspannungsschnittstelle verbunden, wobei die Gate-Einheit zum elektrischen Ansteuern der ansteuerbaren Leistungshalbleitern des Halbleitermoduls eingerichtet ist. Die Gate-Einheit dient somit zum Ansteuern der elektrisch ansprechbaren Leistungshalbleiter. Dabei ist die Gate-Einheit in der Regel unmittelbar mit dem Halbleiterschalter verbun- den. Die Hochspannungsschnittstelle ist zum Ansprechen der Gate-Einheit vorgesehen, so dass diese die notwendigen Steu¬ ersignale für den mit ihr verbundenen Leistungshalbleiter erzeugt. Gate-Einheiten sind jedoch als solche bekannt, so dass an dieser Stelle hierauf nicht detailliert eingegangen zu werden braucht.
Gemäß einer diesbezüglichen zweckmäßigen Weiterentwicklung ist die Hochspannungsschnittstelle zur Energieversorgung der Gate-Einheit eingestellt. Auch durch diese Verschaltung zwi- sehen Gate-Einheit und der Hochspannungsschnittstelle ist der Aufwand an die Verkabelung der erfindungsgemäßen Vorrichtung noch weiter herabgesetzt.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfin- düng sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleichwirkende Bauteile verweisen und wobei
Figur 1 eine schematische Darstellung eines Ausführungsbei¬ spiels einer Reihenschaltung aus Halbleitermodulen zeigt, die Teil der erfindungsgemäßen Vorrichtung ist, und Figur 2 die Ansteuerung von Leistungshalbleitern durch die Hochspannungsschnittstelle verdeutlicht.
Figur 1 zeigt eine Reihenschaltung aus Halbleitermodulen 1, die jeweils aus Schaltmodulen 2 zusammengesetzt sind. Die Schaltmodule sind mit einem Kondensator C zu einer so genann- ten H-Schaltung oder Vollbrückenschaltung verschaltet, so dass an den Klemmen jedes Halbleitermoduls 1 je nach Stellung der Schaltmodule die an dem Kondensator C abfallende Konden¬ satorspannung Uc, die invertierte Kondensatorspannung -Uc oder eine Nullspannung abfällt. Dabei umfasst jedes
Schaltmodul einen abschaltbaren Leistungshalbleiter hier einen IGBT 3 sowie eine antiparallel zu dieser geschaltete Freilaufdiode 4. Die in Figur 1 gezeigte Vorrichtung ist bei¬ spielsweise mit einer Phase eines Wechselstromnetzes verbind- bar und dient zur Unterdrückung von harmonischen Oberschwingungen, die sich im Wechselstromnetz bilden können, zur Blindleistungskompensation, zur Spannungsstabilisierung oder dergleichen. Zum Anschluss an die Phase des Wechselspannungs¬ netzes dienen Anschlussklemmen 5 und 6. Bei einem dreiphasi- gen Wechselstromnetz bilden drei solcher Reihenschaltungen eine Ausgestaltung der erfindungsgemäßen Vorrichtung. Eine Vorrichtung mit Ventilzweigen gemäß der Reihenschaltung in Figur 1 wird auch als Multi-Level-Umrichter bezeichnet.
Zur Ansteuerung der vier IGBTs eines Halbleitermoduls 1 dient eine Hochspannungsschnittstelle 7, die über potential tren¬ nende Lichtwellenleiter mit einer in Figur 1 figürlich nicht dargestellten Niederspannungssteuerungseinheit verbunden ist. Die Hochspannungsschnittstelle 7 ist Teil einer weiterhin e- benfalls in Figur 1 nicht verdeutlichten Hochspannungssteue- rungseinheit . Abweichend hiervon besteht die Hochspannungs- steuerungseinheit nur aus der Hochspannungsschnittstelle.
Figur 2 zeigt die Ansteuerung der ansteuerbaren Leistungs- halbleiter VIl, V12, V21 und V22 durch die Hochspannungsschnittstelle 7 genauer. Insbesondere ist erkennbar, dass je¬ der der ansteuerbaren Leistungshalbleiter VIl, V12, V21 und V22 über eine so genannte Gate-Einheit 8 mit der Hochspan¬ nungsschnittstelle 7 verbunden ist. Die Gate-Einheit 8 wird in der Praxis oft als Gate-Unit oder Gate-Driver bezeichnet. Sie dient zum Erzeugen der Ansteuersignale für den jeweiligen Gate-Anschluss des mit ihr verbundenen Leistungshalbleiters. Zur Versorgung jeder Gate-Einheit 8 mit Energie umfasst die Hochspannungsschnittstelle für jede Gate-Einheit 8 eine Hoch¬ spannungsenergieversorgung 9. Dabei ist jede Energieversorgungseinheit 9 über eine Kabelverbindung 10 an die Gate- Einheit angeschlossen. Eine Signalleitung 11 dient zur Übertragung der Zuschaltungs- und Abschaltungssignale, die von der Hochspannungsschnittstelle 7 empfangen und weitergeleitet werden .
Darüber hinaus verfügt jede Gate-Einheit 8 über Zustandsge- ber, die über Signalleitungen 12, 13 und 14 mit der Hochspan- nungsschnittstelle 7 verbunden sind. Dabei ist die Hochspan¬ nungsschnittstelle 7 zum Empfangen und Verarbeiten der Zu- standssignale der Zustandgeber eingerichtet. Die Verarbeitung erfolgt mit Hilfe einer in der Hochspannungsschnittstelle implementierten internen Logik. Diese ist auch zur Verände- rung, Erzeugung oder Unterdrückung von Zuschalt- und Abschaltsignalen eingerichtet, wenn dies auf Grundlage der er¬ haltenen Zustandssignale erforderlich ist.
Der nur schematisch angedeuteten Temperatursensor 15 erfasst eine über alle Schaltmodule 2 des Halbleitermoduls 1 gemit- telte Temperatur.
Die ermittelten Kondensatorspannungswerte Uc und die Tempera¬ turwerte T werden von der Hochspannungsschnittstelle 7 verar- beitet, wobei eine interne Logik der Hochspannungsschnitt¬ stelle 7 bestimmt, ob Zuschaltungs- und Abschaltungssignale erzeugt oder unterdrückt werden. Zur Verbindung der Hochspannungsschnittstelle 7 mit einer in Figur 2 figürlich nicht dargestellten Erdpotential nahe Niederspannungsschnittstelle dienen zwei nur schematisch ange¬ deutete Lichtwellenleiter 17 und 18, wobei über den Lichtwel- lenleiter 17 Daten von der nicht gezeigten Niederspannungs- steuerungseinheit empfangen werden und über den Lichtwellenleiter 18 Daten von der Hochspannungsschnittstelle 7 an die Niederspannungsteuerungseinheit gesendet werden.
Die Hochspannungsschnittstelle 7 ist vorteilhafterweise ein so genanntes Field Programmable Gate Array oder FPGA. Solche FPGA' s sind programmierbare Halbleiterbausteine, die als sol¬ che bekannt sind, so dass an dieser Stelle hierauf nicht nä¬ her eingegangen zu werden braucht.

Claims

Patentansprüche
1. Vorrichtung zum Umrichten eines elektrischen Stromes oder zum Bilden einer elektrischer Spannung mit in Reihe ge- schalteten Halbleitermodulen (1), die wenigstens einen ansteuerbaren Leistungshalbleiter (3) aufweisen, einer auf dem Potential eines der Halbleitermodule (1) liegen¬ den Hochspannungssteuerungseinheit und einer Erdpotential nahen Niederspannungssteuerungseinheit , die mittels we- nigstens eines Lichtwellenleiters (17, 18) mit der Hoch¬ spannungssteuerungseinheit verbunden ist, d a d u r c h g e k e n n z e i c h n e t , dass die Hochspannungssteuerungseinheit eine Hochspannungs¬ schnittstelle (7) aufweist, die auf dem Potential eines der Halbleitermodule (1) liegt und über Signalleitungen (10, 11, 12, 13, 14) mit wenigstens zwei ansteuerbaren Leistungshalbleitern (3) verbunden ist, wobei die Hochspannungsschnittstelle über wenigstens einen der besagten Lichtwellenleiter (17, 18) mit der Niederspannungssteue- rungseinheit verbunden ist.
2. Vorrichtung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass die Hochspannungsschnittstelle (7) zum Empfang von Steue- rungssignalen über einen der mit ihr verbundenen Lichtwellenleiter (17, 18) und zum Verteilen der empfangenen Steuerungssignale an die mit ihr verbundenen ansteuerba¬ ren Leistungshalbleiter (3) eingerichtet ist.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h Zustandssensoren (15, 16), die mit der Hochspannungs¬ schnittstelle (7) verbunden sind, so dass die Hochspan¬ nungsschnittstelle (7) Messsignale der Zustandssensoren (15, 16) empfängt
4. Vorrichtung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , dass die Hochspannungsschnittstelle (7) zum Verarbeiten der
Messsignale der Zustandssensoren (15, 16) und zum Ansteu¬ ern des mit ihr verbundenen ansteuerbaren Leistungshalbleiters (3) in Abhängigkeit der Messsignale eingerichtet ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h eine Erdpotential nahe Energieversorgungseinheit, die ü- ber Potential trennende Verbindungsmittel mit der Hoch- Spannungsschnittstelle (7) verbunden ist, so dass die E- nergieversorgung der Hochspannungsschnittstelle (7) durch die Erdpotential nahe Energieversorgungseinheit bereitge¬ stellt ist.
6. Vorrichtung nach einem der Anspruch 1 bis 4, g e k e n n z e i c h n e t d u r c h durch eine auf dem Potential eines der Halbleitermodule (1) liegenden Hochspannungsenergieversorgung, die mit der Hochspannungsschnittstelle zu deren Energieversorgung verbunden ist.
7. Vorrichtung nach Anspruch 5 oder 6, d a d u r c h g e k e n n z e i c h n e t , dass jeder ansteuerbare Leistungshalbleiter (3) über eine Ga- te-Einheit (8) mit der Hochspannungsschnittstelle verbun¬ den ist, wobei die Gate-Einheit (8) zum Erzeugen eines Ansteuersignals für den ansteuerbaren Leistungshalbleiter (3) des Halbleitermoduls (1) eingerichtet ist.
8. Vorrichtung nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , dass die Hochspannungsschnittstelle (7) die Gate-Einheit (8) mit einer Energieversorgung (9) mit Energie versorgt.
EP08774095A 2007-07-02 2008-06-16 Vorrichtung zum umrichten eines elektrischen stromes Ceased EP2160821A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007031140A DE102007031140A1 (de) 2007-07-02 2007-07-02 Vorrichtung zum Umrichten eines elektrischen Stromes
PCT/EP2008/057557 WO2009003834A2 (de) 2007-07-02 2008-06-16 Vorrichtung zum umrichten eines elektrischen stromes

Publications (1)

Publication Number Publication Date
EP2160821A2 true EP2160821A2 (de) 2010-03-10

Family

ID=39967866

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08774095A Ceased EP2160821A2 (de) 2007-07-02 2008-06-16 Vorrichtung zum umrichten eines elektrischen stromes

Country Status (7)

Country Link
US (1) US20100176850A1 (de)
EP (1) EP2160821A2 (de)
JP (1) JP5138034B2 (de)
CN (1) CN101689800B (de)
DE (1) DE102007031140A1 (de)
RU (1) RU2467457C2 (de)
WO (1) WO2009003834A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065326B2 (en) * 2010-02-03 2015-06-23 Abb Technology Ltd Switching module for use in a device to limit and/or break the current of a power transmission or distribution line
US8896364B2 (en) 2011-06-27 2014-11-25 Abb Technology Ag Reliability in semiconductor device control
DE102011086087A1 (de) 2011-11-10 2013-05-16 Ge Energy Power Conversion Gmbh Elektrischer Umrichter
CN102437717B (zh) * 2012-01-16 2014-07-02 天津电气传动设计研究所 一种晶闸管变流器主回路控制装置
US9876347B2 (en) * 2012-08-30 2018-01-23 Siemens Aktiengesellschaft Apparatus and methods for restoring power cell functionality in multi-cell power supplies
JP6109649B2 (ja) * 2013-05-31 2017-04-05 株式会社東芝 直流電流遮断装置
DE102017202208A1 (de) 2017-02-13 2018-08-16 Siemens Aktiengesellschaft Versorgungseinrichtung für ein elektrisches Modul mit Sicherungselement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1269502A (en) * 1968-05-16 1972-04-06 English Electric Co Ltd Improvements in thyristor firing circuits
US3579081A (en) * 1968-11-12 1971-05-18 Gulton Ind Inc Low frequency sine wave generator circuit
JPS51116663A (en) * 1975-04-07 1976-10-14 Hitachi Ltd Gate control unit for thyrister valve
JPS5743561A (en) * 1980-08-28 1982-03-11 Fuji Electric Co Ltd Arc-ignition method of thyristor converter
JPS61116968A (ja) * 1984-11-07 1986-06-04 Fuji Electric Co Ltd 直列サイリスタの点弧装置
SU1443090A1 (ru) * 1986-01-30 1988-12-07 Ю.В.Бо ринов Устройство дл управлени тиристорным вентилем статического компенсатора реактивной мощности
SE523420C2 (sv) 1997-06-11 2004-04-20 Abb Ab Förfarande för kommunikation mellan låg potential och en på högspänningspotential liggande ventil hos en högspänningsomriktarstation samt en anordning för sådan kommunikation
GB0117817D0 (en) * 2001-07-21 2001-09-12 Tyco Electronics Amp Gmbh Power module
US6556461B1 (en) * 2001-11-19 2003-04-29 Power Paragon, Inc. Step switched PWM sine generator
DE10205832A1 (de) * 2002-02-13 2003-08-28 Semikron Elektronik Gmbh Ansteuerung für Stromrichterventile
CN2694611Y (zh) * 2004-04-16 2005-04-20 孝感市大禹电气有限公司 高压交流电动机固态软起动装置
DE102005032962A1 (de) * 2005-07-14 2007-01-18 Siemens Ag Ansteuerschaltung für Leistungshalbleitermodule
DE102005045090B4 (de) * 2005-09-21 2007-08-30 Siemens Ag Verfahren zur Steuerung eines mehrphasigen Stromrichters mit verteilten Energiespeichern
DE102005045957A1 (de) * 2005-09-26 2006-11-16 Siemens Ag Verfahren und Vorrichtung zur Übertragung von Signalen
DE102005052800A1 (de) * 2005-11-05 2007-08-16 Semikron Elektronik Gmbh & Co. Kg Treiberschaltungsanordnung zur Ansteuerung von leistungselektronischen Schaltungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009003834A2 *

Also Published As

Publication number Publication date
WO2009003834A3 (de) 2009-03-19
US20100176850A1 (en) 2010-07-15
WO2009003834A2 (de) 2009-01-08
RU2010103041A (ru) 2011-08-10
RU2467457C2 (ru) 2012-11-20
JP2010532149A (ja) 2010-09-30
DE102007031140A1 (de) 2009-01-08
CN101689800A (zh) 2010-03-31
JP5138034B2 (ja) 2013-02-06
CN101689800B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
EP1922803B1 (de) Vorrichtung für die elektroenergieübertragung
EP2160821A2 (de) Vorrichtung zum umrichten eines elektrischen stromes
EP2118993A1 (de) Verfahren zur schadenbegrenzung eines leistungshalbleiter aufweisenden stromrichters bei einem kurzschluss im gleichspannungszwischenkreis
EP2338214A1 (de) Vorrichtung mit einem umrichter
EP2284973A1 (de) Rückstromsensor für parallel geschaltete Solarmodule
DE102008050543A1 (de) Schutzschaltung für einen Zwischenkreis eines Wechselrichters, insbesondere eines Solarwechselrichters, gegen Überspannungen
EP2328264B1 (de) Direktumrichter sowie System mit einem solchen Direktumrichter
WO2018196964A1 (de) Verfahren und anordnung zum erzeugen eines auslösesignals für einen hvdc-schalter
DE102012100673A1 (de) Vorrichtung zur elektrischen Energieeinspeisung aus einer dezentralen Eigenerzeugeranlage in ein Stromnetz
EP2412094A1 (de) Schaltungsanordnung sowie verfahren zur versorgung einer hochenergie-funktionskomponente mit hochspannungspulsen
DE102011053013A1 (de) Vorrichtung und Verfahren zur Symmetrierung der Spannungsaufteilung von in Reihe geschalteten Energiespeichern
DE112015007193T5 (de) Eine Filteranordnung
EP2514087B1 (de) Verfahren zum betrieb einer direktumrichterschaltung sowie vorrichtung zur durchführung des verfahrens
EP3783783A1 (de) Anordnung zum regeln eines leistungsflusses in einem wechselspannungsnetz und verfahren zum schutz der anordnung
EP2385381B1 (de) Vorrichtung zur Messung der Netzimpedanz eines elektrischen Versorgungsnetzes
EP2845214B1 (de) Vorrichtung zum schalten in einem gleichspannungsnetz
EP3220527B1 (de) Modularer mehrstufenumrichter
EP3117511A1 (de) Verfahren zur erkennung eines zusammenbruchs einer spannung
WO2018113926A1 (de) Stromrichter
DE102013109714A1 (de) Verfahren zum Betreiben einer elektrischen Schaltung sowie elektrische Schaltung
EP3656031B1 (de) Anordnung zur frequenzstabilisierung
DE102011075658B4 (de) Verfahren zum Erzeugen von Energie mittels einer Photovoltaikanlage und Photovoltaikanlage
EP3696928A1 (de) Energieversorgungsnetzwerk
WO2016055106A1 (de) Stromrichteranordnung mit kurzschlusseinheit sowie verfahren zum trennen einer wechselspannungsleitung
EP3741023A1 (de) Vorrichtung und verfahren zum steuern eines lastflusses in einem wechselspannungsnetz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091119

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100520

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20180714