EP2154431B1 - Thermal machine - Google Patents

Thermal machine Download PDF

Info

Publication number
EP2154431B1
EP2154431B1 EP09167590.0A EP09167590A EP2154431B1 EP 2154431 B1 EP2154431 B1 EP 2154431B1 EP 09167590 A EP09167590 A EP 09167590A EP 2154431 B1 EP2154431 B1 EP 2154431B1
Authority
EP
European Patent Office
Prior art keywords
cooling
shells
parting plane
shroud segments
thermal machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09167590.0A
Other languages
German (de)
French (fr)
Other versions
EP2154431A2 (en
EP2154431A3 (en
Inventor
Remigi Tschuor
Hartmut Hähnle
Uwe Rüdel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
General Electric Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH filed Critical General Electric Technology GmbH
Publication of EP2154431A2 publication Critical patent/EP2154431A2/en
Publication of EP2154431A3 publication Critical patent/EP2154431A3/en
Application granted granted Critical
Publication of EP2154431B1 publication Critical patent/EP2154431B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/54Reverse-flow combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00017Assembling combustion chamber liners or subparts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the present invention relates to the field of combustion technology. It relates to a thermal machine according to the preamble of claim 1.
  • IGT Modern industrial gas turbines
  • IGT are usually designed with annular combustion chambers.
  • Most smaller IGTs are designed as so-called "Can Annular Combustors".
  • An IGT with annular combustion chamber of the combustion chamber is limited by the side walls and the inlet and outlet plane of the hot gas.
  • Such a gas turbine is in the Fig. 1 and 2 shown.
  • the in the Fig. 1 and 2 Gas turbine 10 shown in the cutout has a turbine housing 11, in which a about an axis 27 rotating rotor 12th is housed.
  • the compressor 17 compresses air which flows into a plenum 14.
  • annular combustion chamber 15 is arranged, which is closed on the input side by a front plate cooling air 20 cooled front panel 19 and the output side is connected via a hot gas channel 25 with the input of the turbine 13 in connection.
  • EP599055 describes such a gas turbine.
  • burners 16 are arranged in a ring, which are designed for example as a double cone or EV burner and inject a fuel-air mixture into the combustion chamber 15.
  • the resulting during the combustion of the mixture hot air stream 26 passes through the hot gas channel 25 in the turbine 13 and is relaxed there under work.
  • the combustion chamber 15 with the hot gas channel 25 is outside with a distance surrounded by an outer and innerdehemd 21 and 31, which are fastened by means of fasteners 24 to the combustion chamber 15, 25 and between them and the combustion chamber 15, 25 each have a ring-shaped outer and inner Form cooling channel 22 and 32 respectively.
  • In the cooling channels 22, 32 flows in the opposite direction to the hot gas stream 26 cooling air on the walls of the combustion chamber 15, 25 along in a combustion chamber hood 18 and from there into the burner 16 and as a faceplate cooling air 20 directly into the combustion chamber 15th
  • the side walls of the combustion chamber 15, 25 are carried out either as shell elements or as solid shells (outer shell 23, inner shell 33).
  • a parting plane (29 in Fig. 2a ), which allows an upper half of the shell 23, 33 (upper half shell 33a in FIG Fig. 2a ) from the lower half (lower half-shell 33b in FIG Fig. 2a ), for example, to assemble or disassemble the gas turbine rotor 12.
  • the parting plane 29 has correspondingly two parting plane welding seams 30 (FIG. Fig.
  • the respective lower and upper half-shells 33a, 33b have to be cooled convectively.
  • the already mentioned cooling shirts (CoShirts) 21 and 31 are mounted on the half-shell cold side, which redirect ambient air and cause due to the combustion chamber pressure drop or burner pressure drop across the half-shells and thus cause a convective cooling.
  • the inner and outer shell 33 and 23 of a gas turbine such as the GT13E2 are thermally and mechanically stressed during operation.
  • the strength properties of the material of the shells 23, 33 are highly temperature dependent.
  • the shells 23, 33 are convectively cooled.
  • the shape and the high thermal load near the turbine inlet (hot gas channel 25) require, especially in this area a constant high heat transfer on the cooling air side. This is achieved in the outer shell 23 by impingement cooling.
  • space and flow conditions and a seal against a cross-flow for such an impingement cooling are not given. Therefore, a conventional convection cooling is resorted to, in which the intensity of the cooling is increased by reducing the channel height of the cooling channel 32.
  • the previously used configuration of the inner cooling sleeve 31 of 2 axial plates is on the one hand prone to distance tolerances and other irregularities, e.g. in the flow field before the cooling air inlet into the cooling channel, and on the other hand causes an undesirable reduction of the cooling air mass flow in the region of the smaller of the two axial plates.
  • the object is solved by the entirety of the features of claim 1.
  • Essential for the invention is that at least one of the cooling shirts on the Side on which the cooling air enters the cooling channel, to improve the Einström discipline has an outwardly curved, rounded leading edge.
  • the at least one cooling shirt in the region of the leading edge is flared bell-shaped or trumpet-like.
  • the inner cooling jacket on the side on which the cooling air emerges from the cooling channel to reduce the flow losses on an outwardly curved, rounded exit edge.
  • the cooling shirts are composed of individual, in the circumferential direction adjoiningdehemdsegmenten, wherein theharihemdsegmente are attached by means of distributed arranged fasteners to the associated shells.
  • a preferred development is characterized in that thedehemdsegmente overlap each other in pairs in the terminal areas, and that in each case adehemdsegment a pair is provided in the overlapping region with overlapping elements for a positive connection between the overlappingdehemdsegmenten.
  • the fastening elements are arranged in thedehemdsegmenten in the axial direction one behind the other, and that in the axial line with the fasteners additional holes are provided in thedehemdsegmenten, through which to improve the cooling cooling air in the rays from the outside flows into the respective cooling channel.
  • the combustion chamber is divided in a parting plane into an upper half with upper half shells and a lower half with lower half shells.
  • the half shells are interconnected in the parting plane by parting plane welds and have in the region of the parting plane welds deviating from the rotational symmetry shape.
  • the cooling shirts are adapted in the parting plane to the different shape of the shells.
  • the entirety of thedehemdsegmente in firstdehemdsegmente, which adjoin the parting plane, and seconddehemdsegmente, which are outside the parting plane, divided, wherein the firstdehemdsegmente to adapt to the different shape of the shells have a raised side edge.
  • Fig. 3 is shown in a side view of the part of an inner shell with segmented cooling shirt according to an embodiment of the invention.
  • an annular cooling channel 32 is formed on the outside of the inner shell 33 by a concentric inner cooling jacket 31 arranged concentrically therewith, in which on the in Fig. 3 Cooling air flows in on the left side, flows to the right and leaves the cooling channel 32 on the right side (see flow arrows in Fig. 3 ).
  • the innerdehemd 31 is composed of individual, extending in the axial directiondehemdsegmenten 34, which overlap each other. In the overlapping area, overlapping elements 36 protruding at the edges on the cooling-shirt segments are welded (see in particular FIG Fig. 7 ), which provide a positive fit between the overlapping segments in the overlap area.
  • Thedehemdsegmente 34 are distributed by means of fasteners 24 which pass through mounting holes 40 in the segments ( Fig. 5 . 6 and 8th ), attached to the associated inner shell 33.
  • the fastening elements 24 are arranged one behind the other in the axial direction.
  • additional holes 35 are provided in the cooling jacket segments 34 in the wake region of the fastening elements 24, flows through the air from the cooling air inlet. Due to its locally high velocity with respect to the incoming cooling air mass flow, the air jet entering the cooling channel 32 leads to an increase in the heat transfer coefficient and thus to a reduction in the wall temperature of the inner shell 33.
  • the inner cooling jacket 31 is flared bell-shaped or trumpet-like in the region of the leading edge 37.
  • This rounded "bellmouth-shaped" leading edge 37 of the axially one-piecede Kunststoffbleches allows on the one hand to minimize the pressure loss at the cooling air inlet and on the other an (unintended) variation of the heat transfer coefficient by detachment of the cooling air atdekanaleintritt (leading edge 37), as to Example of sharp-edged entries arise to prevent.
  • the achieved by the improved inflow conditions decreases the Verwirbelungsproe lead to a reduction of the required cooling air mass flow and thus to a more efficient operation of the combustion chamber.
  • the flow direction of the cooling air is opposite to the hot gas flow direction.
  • the inner shell cooling shirt or inner cooling shirt 31 is further designed so that at its outlet side (trailing edge 38) a new transition radius is selected, which causes a much more favorable, ie, lower, flow loss than the previous configuration.
  • the reduction in the flow loss at this point is compensated by a reduction in the cooling channel height, which in turn leads to an increase in the cooling air side heat transfer and thus leads to a reduction of the average material temperature of the inner shell 33.
  • the cooling jacket 31 recedes outward in the region of the parting plane weld seams 30 and creates space for a corresponding bulge of the combustion chamber shell 33 in the region of the parting plane weld seam 39.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Verbrennungstechnik. Sie betrifft eine thermische Maschine gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of combustion technology. It relates to a thermal machine according to the preamble of claim 1.

STAND DER TECHNIKSTATE OF THE ART

Moderne Industrie-Gasturbinen (IGT) werden in der Regel mit Ringbrennkammern ausgelegt. Meist kleinere IGTs werden als so genannte "Can Annular Combustors" ausgeführt. Bei einer IGT mit Ringbrennkammer ist der Brennraum begrenzt durch die Seitenwände sowie die Eintritts- und Austrittsebene des Heissgases. Eine solche Gasturbine ist in den Fig. 1 und 2 dargestellt. Die in den Fig. 1 und 2 im Ausschnitt gezeigte Gasturbine 10 hat ein Turbinengehäuse 11, in dem ein um eine Achse 27 drehender Rotor 12 untergebracht ist. Auf der rechten Seite ist an Rotor 12 ein Verdichter 17 zur Verdichtung von Verbrennungs- und Kühlluft ausgebildet, auf der linken Seite ist eine Turbine 13 angeordnet. Der Verdichter 17 verdichtet Luft, die in ein Plenum 14 einströmt. Im Plenum ist konzentrisch zur Achse 27 eine ringförmige Brennkammer 15 angeordnet, die eingangsseitig durch eine mit Frontplattenkühlluft 20 gekühlte Frontplatte 19 abgeschlossen ist und ausgangsseitig über einen Heissgaskanal 25 mit dem Eingang der Turbine 13 in Verbindung steht.Modern industrial gas turbines (IGT) are usually designed with annular combustion chambers. Most smaller IGTs are designed as so-called "Can Annular Combustors". In an IGT with annular combustion chamber of the combustion chamber is limited by the side walls and the inlet and outlet plane of the hot gas. Such a gas turbine is in the Fig. 1 and 2 shown. The in the Fig. 1 and 2 Gas turbine 10 shown in the cutout has a turbine housing 11, in which a about an axis 27 rotating rotor 12th is housed. On the right side of the rotor 12 a compressor 17 is formed for the compression of combustion and cooling air, on the left side of a turbine 13 is arranged. The compressor 17 compresses air which flows into a plenum 14. In the plenary concentric with the axis 27, an annular combustion chamber 15 is arranged, which is closed on the input side by a front plate cooling air 20 cooled front panel 19 and the output side is connected via a hot gas channel 25 with the input of the turbine 13 in connection.

EP599055 beschreibt eine derartige Gasturbine. EP599055 describes such a gas turbine.

In der Frontplatte 19 sind in einem Ring Brenner 16 angeordnet, die beispielsweise als Doppelkegel- oder EV-Brenner ausgelegt sind und ein Brennstoff-Luft-Gemisch in die Brennkammer 15 eindüsen. Der bei der Verbrennung des Gemisches entstehende Heissluftstrom 26 gelangt durch den Heissgaskanal 25 in die Turbine 13 und wird dort unter Arbeitsleistung entspannt. Die Brennkammer 15 mit dem Heissgaskanal 25 ist aussen mit Abstand von einem äusseren und inneren Kühlhemd 21 bzw. 31 umgeben, die mittels Befestigungselementen 24 an der Brennkammer 15, 25 befestigt sind und zwischen sich und der Brennkammer 15, 25 jeweils einen ringsförmigen äusseren und inneren Kühlkanal 22 bzw. 32 ausbilden. In den Kühlkanälen 22, 32 strömt in Gegenrichtung zum Heissgasstrom 26 Kühlluft an den Wänden der Brennkammer 15, 25 entlang in eine Brennkammerhaube 18 ein und von dort in die Brenner 16 bzw. als Frontplattenkühlluft 20 direkt in die Brennkammer 15.In the front panel 19 burners 16 are arranged in a ring, which are designed for example as a double cone or EV burner and inject a fuel-air mixture into the combustion chamber 15. The resulting during the combustion of the mixture hot air stream 26 passes through the hot gas channel 25 in the turbine 13 and is relaxed there under work. The combustion chamber 15 with the hot gas channel 25 is outside with a distance surrounded by an outer and inner Kühlhemd 21 and 31, which are fastened by means of fasteners 24 to the combustion chamber 15, 25 and between them and the combustion chamber 15, 25 each have a ring-shaped outer and inner Form cooling channel 22 and 32 respectively. In the cooling channels 22, 32 flows in the opposite direction to the hot gas stream 26 cooling air on the walls of the combustion chamber 15, 25 along in a combustion chamber hood 18 and from there into the burner 16 and as a faceplate cooling air 20 directly into the combustion chamber 15th

Die Seitenwände der Brennkammer 15, 25 werden dabei entweder als Schalenelemente ausgeführt oder als Vollschalen (Aussenschale 23, Innenschale 33). Bei der Verwendung von Vollschalen ergibt sich montagebedingt die Notwendigkeit einer Trennebene (29 in Fig. 2a), die es erlaubt eine obere Hälfte der Schale 23, 33 (obere Halbschale 33a in Fig. 2a) von der unteren Hälfte (untere Halbschalle 33b in Fig. 2a) abzunehmen, um zum Beispiel den Gasturbinen-Rotor 12 zu montieren bzw. zu demontieren. Die Trennebene 29 weist entsprechend zwei Trennebenenschweissnähte 30 (Fig. 2a) auf, die sich im Beispiel der von der Anmelderin gebauten Gasturbine vom Typ GT13E2 auf der Höhe der Maschinenachse 27 befinden (3- und 9-Uhr-Position). Wie bereits erwähnt, müssen die jeweils unteren und oberen Halbschalen 33a, 33b konvektiv gekühlt werden. Um die Kühlung zu begünstigen, werden auf die Halbschalenkaltseite die bereits genannten Kühlhemden (CoShirts) 21 und 31 montiert, welche Umgebungsluft umleiten und aufgrund des Brennkammerdruckabfalls bzw. Brennerdruckabfalls über die Halbschalen führen und damit eine konvektive Kühlung bewirken.The side walls of the combustion chamber 15, 25 are carried out either as shell elements or as solid shells (outer shell 23, inner shell 33). When using full shells arises due to the installation, the need for a parting plane (29 in Fig. 2a ), which allows an upper half of the shell 23, 33 (upper half shell 33a in FIG Fig. 2a ) from the lower half (lower half-shell 33b in FIG Fig. 2a ), for example, to assemble or disassemble the gas turbine rotor 12. The parting plane 29 has correspondingly two parting plane welding seams 30 (FIG. Fig. 2a ), which in the example of the Applicant built gas turbine from Type GT13E2 are located at the height of the machine axis 27 (3 o'clock and 9 o'clock position). As already mentioned, the respective lower and upper half-shells 33a, 33b have to be cooled convectively. To favor the cooling, the already mentioned cooling shirts (CoShirts) 21 and 31 are mounted on the half-shell cold side, which redirect ambient air and cause due to the combustion chamber pressure drop or burner pressure drop across the half-shells and thus cause a convective cooling.

Die Kühlhemden 21, 31 haben dabei vorzugsweise folgende Eigenschaften und Funktionen:

  • Sie dichten zwei Plena bzw. Kammern ab;
  • Sie müssen untereinander auch dichten (Montage einer Dichtlippe oder Überlappung nötig);
  • Sie werden, mit Ausnahme der Trennebene 29, rotationssymmetrisch ausgeführt;
  • Sie müssen bei der Montage der Brennkammerhalbschalen in der Trennebene ineinander geführt werden;
  • Die Kühlhemden 31 der Brennkammer-Innenschalen 33a,b müssen an der Trennebene 29 "blind" ineinander geführt werden (kein Zugang für eine visuelle Kontrolle der Verbindungsebene, da von den Brennkammer-Innenschalen abgedeckt);
  • Sie können Kühllöcher aufweisen (für einen gezielten Kühlluftmassenstrom)
  • Sie können Kühllöcher für eine allfällige Prallkühlung aufweisen (für eine gezielte, lokal forcierte Kühlung der Halbschalen);
  • Sie müssen keine grossen axialen oder radialen Kräfte aufnehmen;
  • Sie sind i.d. Regel nicht selbsttragend, sondern werden auf ein Trägerteil montiert;
  • Sie müssen einen grossen axialen und radialen Bewegungsspielraum aufweisen, insbesondere bei transienten Betriebszuständen;
  • Sie müssen temperaturfest sein (Zeitfestigkeit - Dauerfestigkeit);
  • Sie müssen einfach und kostengünstig herstellbar sein; und
  • Sie dürfen im Betrieb keine Eigenschwingungen ausweisen.
The cooling shirts 21, 31 preferably have the following properties and functions:
  • They seal off two plena or chambers;
  • They must also seal with each other (installation of a sealing lip or overlap necessary);
  • They are, with the exception of the parting plane 29, executed rotationally symmetrical;
  • They must be guided in the assembly of the combustion chamber half shells in the parting line into each other;
  • The cooling shrouds 31 of the combustion chamber inner shells 33a, b must be blindly "nested" at the parting plane 29 (no access for visual control of the joint plane, as covered by the combustion chamber inner shells);
  • You may have cooling holes (for a targeted cooling air mass flow)
  • They may have cooling holes for possible impingement cooling (for a targeted, locally forced cooling of the half-shells);
  • You do not have to absorb large axial or radial forces;
  • As a rule, they are not self-supporting but are mounted on a carrier part;
  • They must have a large axial and radial range of motion, especially in transient operating conditions;
  • They must be temperature-resistant (fatigue strength - fatigue strength);
  • They must be easy and inexpensive to produce; and
  • You must not identify any natural oscillations during operation.

Die Innen- und Aussenschale 33 bzw. 23 einer Gasturbine wie der GT13E2 sind thermisch und mechanisch im Betrieb stark beansprucht. Die Festigkeitseigenschaften des Materials der Schalen 23, 33 sind stark temperaturabhängig. Um die Materialtemperatur unter dem maximal zulässigen Materialtemperaturniveau zu halten, werden die Schalen 23, 33 konvektiv gekühlt. Die Formgebung und die hohe thermische Belastung nahe dem Turbineneintritt (Heissgaskanal 25) erfordern vor allem in diesem Bereich einen konstant hohen Wärmeübergang auch auf der Kühlluftseite. Dies wird bei der Aussenschale 23 durch Prallkühlung erreicht. An der Innenschale 33 sind Platz und Strömungszustände sowie eine Abdichtung gegen einen Querstrom für solch eine Prallkühlung nicht gegeben. Daher wird auf eine konventionelle Konvektionskühlung zurückgegriffen, bei der die Intensität der Kühlung durch Verringerung der Kanalhöhe des Kühlkanals 32 erhöht wird.The inner and outer shell 33 and 23 of a gas turbine such as the GT13E2 are thermally and mechanically stressed during operation. The strength properties of the material of the shells 23, 33 are highly temperature dependent. In order to keep the material temperature below the maximum allowable material temperature level, the shells 23, 33 are convectively cooled. The shape and the high thermal load near the turbine inlet (hot gas channel 25) require, especially in this area a constant high heat transfer on the cooling air side. This is achieved in the outer shell 23 by impingement cooling. On the inner shell 33 space and flow conditions and a seal against a cross-flow for such an impingement cooling are not given. Therefore, a conventional convection cooling is resorted to, in which the intensity of the cooling is increased by reducing the channel height of the cooling channel 32.

Die bisher eingesetzte Konfiguration des inneren Kühlhemds 31 aus 2 axialen Blechen ist zum einen anfällig für Abstandstoleranzen und sonstige Ungleichförmigkeiten, z.B. im Strömungsfeld vor dem Kühllufteintritt in den Kühlkanal, und bewirkt zum anderen eine unerwünschte Verringerung des Kühlluftmassenstroms im Bereich des kleineren der beiden axialen Bleche.The previously used configuration of the inner cooling sleeve 31 of 2 axial plates is on the one hand prone to distance tolerances and other irregularities, e.g. in the flow field before the cooling air inlet into the cooling channel, and on the other hand causes an undesirable reduction of the cooling air mass flow in the region of the smaller of the two axial plates.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist daher Aufgabe der Erfindung, eine thermische Maschine der eingangs genannten Art so zu gestalten, dass die Nachteile der bisherigen Lösungen vermieden und insbesondere die Strömungsverhältnisse der Kühlluft in den Kühlkanälen zwischen den Schalen und den Kühlhemden im Sinne einer intensivierten Kühlung deutlich verbessert werden.It is therefore an object of the invention to design a thermal machine of the type mentioned above so that the disadvantages of the previous solutions are avoided and in particular the flow conditions of the cooling air in the cooling channels between the shells and the cooling shirts in terms of intensified cooling significantly improved.

Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Wesentlich für die Erfindung ist, dass zumindest eines der Kühlhemden auf der Seite, auf welcher die Kühlluft in den Kühlkanal eintritt, zur Verbesserung der Einströmbedingungen eine nach aussen gebogene, abgerundete Eintrittskante aufweist. Vorzugsweise ist das zumindest eine Kühlhemd im Bereich der Eintrittskante glockenförmig bzw. trompetenartig aufgeweitet. Erfindungsgemäss weist das innere Kühlhemd auf der Seite, auf welcher die Kühlluft aus dem Kühlkanal austritt, zur Verringerung der Strömungsverluste eine nach aussen gebogene, abgerundete Austrittskante auf. Gemäss einer anderen Ausgestaltung der Erfindung sind die Kühlhemden aus einzelnen, in Umfangsrichtung aneinander anschliessenden Kühlhemdsegmenten zusammengesetzt, wobei die Kühlhemdsegmente mittels verteilt angeordneten Befestigungselementen an den zugehörigen Schalen befestigt sind.The object is solved by the entirety of the features of claim 1. Essential for the invention is that at least one of the cooling shirts on the Side on which the cooling air enters the cooling channel, to improve the Einströmbedingungen has an outwardly curved, rounded leading edge. Preferably, the at least one cooling shirt in the region of the leading edge is flared bell-shaped or trumpet-like. According to the invention, the inner cooling jacket on the side on which the cooling air emerges from the cooling channel, to reduce the flow losses on an outwardly curved, rounded exit edge. According to another embodiment of the invention, the cooling shirts are composed of individual, in the circumferential direction adjoining Kühlhemdsegmenten, wherein the Kühlhemdsegmente are attached by means of distributed arranged fasteners to the associated shells.

Eine bevorzugte Weiterbildung ist dadurch gekennzeichnet, dass die Kühlhemdsegmente in den Anschlussbereichen einander paarweise überlappen, und dass jeweils ein Kühlhemdsegment eines Paares im Überlappungsbereich mit Überlappungselementen für eine formschlüssige Verbindung zwischen den überlappenden Kühlhemdsegmenten ausgestattet ist.A preferred development is characterized in that the Kühlhemdsegmente overlap each other in pairs in the terminal areas, and that in each case a Kühlhemdsegment a pair is provided in the overlapping region with overlapping elements for a positive connection between the overlapping Kühlhemdsegmenten.

Eine andere Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Befestigungselemente bei den Kühlhemdsegmenten jeweils in axialer Richtung hintereinander angeordnet sind, und dass in axialer Linie mit den Befestigungselementen zusätzliche Bohrungen in den Kühlhemdsegmenten vorgesehen sind, durch welche zur Verbesserung der Kühlung Kühlluft in Strahlen von aussen in den jeweiligen Kühlkanal einströmt. Erfindungsgemäss ist die Brennkammer in einer Trennebene in eine obere Hälfte mit oberen Halbschalen und eine untere Hälfte mit unteren Halbschalen aufgeteilt. Die Halbschalen sind in der Trennebene durch Trennebenenschweissnähte miteinander verbunden und weisen im Bereich der Trennebenenschweissnähte eine von der Rotationssymmetrie abweichende Form auf. Die Kühlhemden sind in der Trennebene an die abweichende Form der Schalen angepasst. Vorzugsweise ist die Gesamtheit der Kühlhemdsegmente in erste Kühlhemdsegmente, welche an die Trennebene angrenzen, und zweite Kühlhemdsegmente, welche ausserhalb der Trennebene liegen, unterteilt, wobei die ersten Kühlhemdsegmente zur Anpassung an die abweichende Form der Schalen eine hochgezogene Seitenkante aufweisen.Another embodiment of the invention is characterized in that the fastening elements are arranged in the Kühlhemdsegmenten in the axial direction one behind the other, and that in the axial line with the fasteners additional holes are provided in the Kühlhemdsegmenten, through which to improve the cooling cooling air in the rays from the outside flows into the respective cooling channel. According to the invention, the combustion chamber is divided in a parting plane into an upper half with upper half shells and a lower half with lower half shells. The half shells are interconnected in the parting plane by parting plane welds and have in the region of the parting plane welds deviating from the rotational symmetry shape. The cooling shirts are adapted in the parting plane to the different shape of the shells. Preferably, the entirety of the Kühlhemdsegmente in first Kühlhemdsegmente, which adjoin the parting plane, and second Kühlhemdsegmente, which are outside the parting plane, divided, wherein the first Kühlhemdsegmente to adapt to the different shape of the shells have a raised side edge.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen

Fig. 1
den Längsschnitt durch eine gekühlte Ringbrennkammer einer Gasturbine nach dem Stand der Technik;
Fig. 2
im einzelnen die Ringbrennkammer aus Fig. 1 mit den aussen befestigten Kühlhemden;
Fig. 2a
in einer Prinzipdarstellung am Beispiel der Innenschale die Unterteilung der Brennkammerschalen in einer Trennebene in zwei Halbschalen;
Fig. 3
in einer Seitenansicht den Teil einer Innenschale mit segmentiertem Kühlhemd gemäss einem Ausführungsbeispiel der Erfindung;
Fig. 4
einen vergrösserten Ausschnitt des Ausführungsbeispiels aus Fig. 3 mit der besonderen Ausgestaltung des an die Trennebene angrenzenden Kühlhemdsegments;
Fig. 5
ein nicht an die Trennebene angrenzendes Kühlhemdsegment des Ausführungsbeispiels aus Fig. 3;
Fig. 6
ein an die Trennebene angrenzendes Kühlhemdsegment des Ausführungsbeispiels aus Fig. 3 mit der speziellen Seitenkante;
Fig. 7
in einem Ausschnitt die Anordnung der Überlappungselemente an dem Kühlhemdsegment aus Fig. 5 bzw. 6 und
Fig. 8
den Längsschnitt durch das Kühlhemdsegment aus Fig. 6 in der dort eingezeichneten Ebene VIII-VIII.
The invention will be explained in more detail with reference to embodiments in conjunction with the drawings. Show it
Fig. 1
the longitudinal section through a cooled annular combustion chamber of a gas turbine according to the prior art;
Fig. 2
in detail, the annular combustion chamber Fig. 1 with cooling shirts attached to the outside;
Fig. 2a
in a schematic diagram of the example of the inner shell, the subdivision of the combustion chamber shells in a parting plane in two half-shells;
Fig. 3
in a side view of the part of an inner shell with segmented cooling shirt according to an embodiment of the invention;
Fig. 4
an enlarged section of the embodiment Fig. 3 with the particular configuration of the Kühlhemdsegments adjacent to the dividing plane;
Fig. 5
a Kühlhemdsegment not adjacent to the parting plane of the embodiment of Fig. 3 ;
Fig. 6
an adjacent to the parting plane Kühlhemdsegment of the embodiment Fig. 3 with the special side edge;
Fig. 7
in a section, the arrangement of the overlapping elements on the Kühlhemdsegment Fig. 5 or 6 and
Fig. 8
the longitudinal section through the Kühlhemdsegment Fig. 6 in the plane VIII-VIII marked there.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

In Fig. 3 ist in einer Seitenansicht der Teil einer Innenschale mit segmentiertem Kühlhemd gemäss einem Ausführungsbeispiel der Erfindung wiedergegeben. Zur Kühlung der Innenschale 33 ist auf der Aussenseite der Innenschale 33 durch ein im Abstand dazu konzentrisch angeordnetes inneres Kühlhemd 31 ein ringförmiger Kühlkanal 32 ausgebildet, in den auf der in Fig. 3 linken Seite Kühlluft einströmt, nach rechts fliesst und auf der rechten Seite den Kühlkanal 32 wieder verlässt (siehe Strömungspfeile in Fig. 3). Das innere Kühlhemd 31 ist aus einzelnen, sich in axialer Richtung erstreckenden Kühlhemdsegmenten 34 zusammengesetzt, die überlappend aneinander anschliessen. Im Überlappungsbereich sind an den Kühlhemdsegmenten 34 randseitig abstehende Überlappungselemente 36 angeschweisst (siehe insbesondere Fig. 7), die im Überlappungsbereich für einen Formschluss zwischen den überlappenden Segmenten sorgen.In Fig. 3 is shown in a side view of the part of an inner shell with segmented cooling shirt according to an embodiment of the invention. For cooling the inner shell 33, an annular cooling channel 32 is formed on the outside of the inner shell 33 by a concentric inner cooling jacket 31 arranged concentrically therewith, in which on the in Fig. 3 Cooling air flows in on the left side, flows to the right and leaves the cooling channel 32 on the right side (see flow arrows in Fig. 3 ). The inner Kühlhemd 31 is composed of individual, extending in the axial direction Kühlhemdsegmenten 34, which overlap each other. In the overlapping area, overlapping elements 36 protruding at the edges on the cooling-shirt segments are welded (see in particular FIG Fig. 7 ), which provide a positive fit between the overlapping segments in the overlap area.

Die Kühlhemdsegmente 34 sind mittels verteilt angeordneten Befestigungselementen 24, die durch Befestigungslöcher 40 in den Segmenten gehen (Fig. 5, 6 und 8), an der zugehörigen Innenschale 33 befestigt. Die Befestigungselemente 24 sind dabei in axialer Richtung hintereinander angeordnet. In axialer Linie mit den Befestigungselementen 24 sind im Nachlaufgebiet der Befestigungselemente 24 zusätzliche Bohrungen 35 in den Kühlhemdsegmenten 34 vorgesehen, durch die Luft aus dem Kühllufteintritt zuströmt. Der in den Kühlkanal 32 eintretende Luftstrahl führt auf Grund seiner lokal hohen Geschwindigkeit bezüglich des ankommenden Kühlluftmassenstromes zu einer Anhebung des Wärmeübergangskoeffizienten und damit zu einer Reduktion der Wandtemperatur der Innenschale 33.The Kühlhemdsegmente 34 are distributed by means of fasteners 24 which pass through mounting holes 40 in the segments ( Fig. 5 . 6 and 8th ), attached to the associated inner shell 33. The fastening elements 24 are arranged one behind the other in the axial direction. In the axial direction of the fastening elements 24 additional holes 35 are provided in the cooling jacket segments 34 in the wake region of the fastening elements 24, flows through the air from the cooling air inlet. Due to its locally high velocity with respect to the incoming cooling air mass flow, the air jet entering the cooling channel 32 leads to an increase in the heat transfer coefficient and thus to a reduction in the wall temperature of the inner shell 33.

Das innere Kühlhemd 31 ist im Bereich der Eintrittskante 37 glockenförmig bzw. trompetenartig aufgeweitet. Diese abgerundete "bellmouth-shaped" Eintrittskante 37 des in axialer Richtung einteiligen Kühlluftbleches erlaubt es, zum einen den Druckverlust am Kühllufteintritt zu minimieren und zum anderen eine (unbeabsichtigte) Variation des Wärmeübergangskoeffizienten durch Ablösung der Kühlluft am Kühlkanaleintritt (Eintrittskante 37), wie sie zum Beispiel an scharfkantigen Eintritten entstehen, zu verhindern. Die durch die verbesserten Einströmbedingungen erzielten Verminderungen der Verwirbelungsverluste führen zu einer Verringerung des benötigten Kühlluftmassenstromes und damit zu einer effizienteren Wirkungsweise der Brennkammer. Die Strömungsrichtung der Kühlluft ist dabei der Heissgasströmungsrichtung entgegengesetzt.The inner cooling jacket 31 is flared bell-shaped or trumpet-like in the region of the leading edge 37. This rounded "bellmouth-shaped" leading edge 37 of the axially one-piece Kühlluftbleches allows on the one hand to minimize the pressure loss at the cooling air inlet and on the other an (unintended) variation of the heat transfer coefficient by detachment of the cooling air at Kühlkanaleintritt (leading edge 37), as to Example of sharp-edged entries arise to prevent. The achieved by the improved inflow conditions decreases the Verwirbelungsverluste lead to a reduction of the required cooling air mass flow and thus to a more efficient operation of the combustion chamber. The flow direction of the cooling air is opposite to the hot gas flow direction.

Das Innenschalenkühlhemd bzw. innere Kühlhemd 31 ist weiterhin so ausgeführt, dass an seiner Austrittsseite (Austrittskante 38) neu ein Übergangsradius gewählt wird, der einen wesentlich günstigeren, d.h. geringeren, Strömungsverlust verursacht als die bisherige Konfiguration. Die Reduktion im Strömungsverlust an dieser Stelle wird kompensiert durch eine Verminderung der Kühlkanalhöhe, was dort wiederum zu einer Erhöhung des kühlluftseitigen Wärmeüberganges und damit zu einer Absenkung der mittleren Materialtemperatur der Innenschale 33 führt.The inner shell cooling shirt or inner cooling shirt 31 is further designed so that at its outlet side (trailing edge 38) a new transition radius is selected, which causes a much more favorable, ie, lower, flow loss than the previous configuration. The reduction in the flow loss at this point is compensated by a reduction in the cooling channel height, which in turn leads to an increase in the cooling air side heat transfer and thus leads to a reduction of the average material temperature of the inner shell 33.

Die Kühlhemdsegmente 34:

  • können, müssen aber nicht, als Bleche (Walzmaterial) ausgeführt werden;
  • müssen untereinander dichten, Montage einer Dichtlippe oder Überlappung (Überlappungselemente 36) nötig
  • werden, mit Ausnahme der an die Trennebene 29 angrenzenden Kühlhemdsegmente 34a, rotationssymmetrisch ausgeführt;
  • können Kühllöcher (35) aufweisen (für einen gezielten Kühlluftmassenstrom);
  • müssen temperaturfest sein (Zeitfestigkeit - Dauerfestigkeit).
The cooling shirt segments 34:
  • may, but need not, be carried out as sheets (rolling stock);
  • must seal with each other, mounting a sealing lip or overlap (overlapping elements 36) necessary
  • be carried out, with the exception of the adjacent to the parting plane 29 Kühlhemdsegmente 34a, rotationally symmetrical;
  • may have cooling holes (35) (for a targeted cooling air mass flow);
  • must be temperature resistant (fatigue strength - fatigue strength).

Wie in Fig. 4 und Fig. 6 zu erkennen ist, weisen die an die Trennebene 29 angrenzenden Kühlhemdsegmente 34a eine hochgezogene bzw. nach aussen gezogene Seitenkante 39 auf. Dadurch tritt das Kühlhemd 31 im Bereich der Trennebenenschweissnähte 30 nach aussen zurück und schafft Platz für eine entsprechende Ausbuchtung der Brennkammerschale 33 im Bereich der Trennebenenschweissnaht 39.As in Fig. 4 and Fig. 6 can be seen, the Kühlhemdsegmente 34a adjacent to the parting plane 29 on a raised or pulled out side edge 39 on. As a result, the cooling jacket 31 recedes outward in the region of the parting plane weld seams 30 and creates space for a corresponding bulge of the combustion chamber shell 33 in the region of the parting plane weld seam 39.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
Gasturbinegas turbine
1111
Turbinengehäuseturbine housing
1212
Rotorrotor
1313
Turbineturbine
1414
Plenumplenum
1515
Brennkammercombustion chamber
1616
Brenner (Doppelkegel- oder EV-Brenner)Burner (double cone or EV burner)
1717
Verdichtercompressor
1818
Brennkammerhaubecombustion chamber hood
1919
Frontplattefront panel
2020
FrontplattenkühlluftFront plate cooling air
2121
äusseres Kühlhemdouter cooling shirt
2222
äusserer Kühlkanalouter cooling channel
2323
Aussenschaleouter shell
2424
Befestigungselementfastener
2525
HeissgaskanalHot-gas duct
2626
HeissgasstromHot gas flow
2727
Achseaxis
2929
Trennebeneparting plane
3030
TrennebenenschweissnahtSplit line weld seam
3131
inneres Kühlhemdinner cooler shirt
3232
innerer Kühlkanalinner cooling channel
3333
Innenschaleinner shell
33a33a
obere Halbschale (Innenschale)upper half shell (inner shell)
33b33b
untere Halbschale (Innenschale)lower half shell (inner shell)
3434
KühlhemdsegmentCool shirt segment
34a34a
Kühlhemdsegment (Trennebene)Cooling jacket segment (parting line)
3535
Bohrungdrilling
3636
Überlappungselementlap element
3737
Eintrittskante (abgerundet, "bellmouth-shaped")Leading edge (rounded, "bellmouth-shaped")
3838
Austrittskante (abgerundet)Trailing edge (rounded)
3939
Seitenkante (hochgezogen)Side edge (raised)
4040
Befestigungslochmounting hole

Claims (7)

  1. Thermal machine, especially gas turbine (10), which comprises an annular combustor (15, 25) which is outwardly delimited by an outer shell (23) and an inner shell (33) and through which a hot gas flow (26) flows in the axial direction, wherein the outer shell (23) and inner shell (33) are provided in each case with a concentric cooling shroud (21 or 31) which is attached at a distance on their outer side, forming a cooling passage (22 or 32), through which cooling passage (22 or 32) cooling air can flow in a direction which is opposite to the hot gas flow (26), wherein at least one of the cooling shrouds (21 or 31), on the side on which the cooling air can enter the cooling passage (22 or 32), has an outwardly curved, rounded inlet edge (37) for improving the inflow conditions, that the combustor (15, 25) is split in a parting plane (29) into an upper half with upper half-shells (33a) and a lower half with lower half-shells (33b), characterized in that the half-shells (33a, 33b) are interconnected in the parting plane (29) by parting plane welded seams (30), in that the shells (23, 33) in the region of the parting plane welded seams (30) have a shape which deviates from the axial symmetry, and in that the cooling shrouds (21, 31) in the parting plane (29) are adapted to the deviating shape of the shells (23, 33).
  2. Thermal machine according to Claim 1, characterized in that the at least one cooling shroud (21 or 31) is widened out in the region of the inlet edge (37) in a bellmouth-shaped or flared manner.
  3. Thermal machine according to Claim 2, characterized in that the inner cooling shroud (31), on the side on which the cooling air discharges from the cooling passage (32), has an outwardly curved, rounded discharge edge (38) for reducing the flow losses.
  4. Thermal machine according to one of Claims 1 to 3, characterized in that the cooling shrouds (21, 31) are assembled from individual cooling shroud segments (34, 34a) which adjoin each other in the circumferential direction, and in that the cooling shroud segments (34, 34a) are fastened on the associated shells (23 or 33) by means of fastening elements (24) which are arranged in a distributed manner.
  5. Thermal machine according to Claim 4, characterized in that the cooling shroud segments (34, 34a) overlap each other in pairs in the adjoining regions, and in that a cooling shroud segment of a pair is equipped in each case in the overlapping region with overlapping elements (36) for a form-fitting connection between the overlapping cooling shroud segments (34, 34a).
  6. Thermal machine according to Claim 4 or 5, characterized in that the fastening elements (24) in the case of the cooling shroud segments (34, 34a) are arranged one behind the other in the axial direction in each case, and in that additional holes (35) are provided in the cooling shroud segments (34, 34a) in axial alignment with the fastening elements (24), through which cooling air flows in in jets from outside into the respective cooling passage (22 or 32) for improving the cooling.
  7. Thermal machine according to Claim 4, characterized in that the entirety of the cooling shroud segments (34, 34a) is divided into first cooling shroud segments (34a) which are adjacent of the parting plane (29), and second cooling shroud segments (34) which lie outside the parting plane (29), and in that the first cooling shroud segments (34a) have a raised side edge (39) for adapting to the deviating shape of the shells (23, 33).
EP09167590.0A 2008-08-14 2009-08-11 Thermal machine Active EP2154431B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01277/08A CH699309A1 (en) 2008-08-14 2008-08-14 Thermal machine with air cooled, annular combustion chamber.

Publications (3)

Publication Number Publication Date
EP2154431A2 EP2154431A2 (en) 2010-02-17
EP2154431A3 EP2154431A3 (en) 2010-08-04
EP2154431B1 true EP2154431B1 (en) 2017-07-26

Family

ID=40342516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09167590.0A Active EP2154431B1 (en) 2008-08-14 2009-08-11 Thermal machine

Country Status (4)

Country Link
US (1) US8434313B2 (en)
EP (1) EP2154431B1 (en)
AU (1) AU2009208110B2 (en)
CH (1) CH699309A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY161317A (en) * 2008-02-20 2017-04-14 General Electric Technology Gmbh Gas turbine
US8899975B2 (en) * 2011-11-04 2014-12-02 General Electric Company Combustor having wake air injection
US9267687B2 (en) 2011-11-04 2016-02-23 General Electric Company Combustion system having a venturi for reducing wakes in an airflow
US9897317B2 (en) * 2012-10-01 2018-02-20 Ansaldo Energia Ip Uk Limited Thermally free liner retention mechanism
US20140208771A1 (en) * 2012-12-28 2014-07-31 United Technologies Corporation Gas turbine engine component cooling arrangement
US9739201B2 (en) 2013-05-08 2017-08-22 General Electric Company Wake reducing structure for a turbine system and method of reducing wake
US9322553B2 (en) 2013-05-08 2016-04-26 General Electric Company Wake manipulating structure for a turbine system
US9435221B2 (en) 2013-08-09 2016-09-06 General Electric Company Turbomachine airfoil positioning
EP2868898A1 (en) * 2013-10-30 2015-05-06 Siemens Aktiengesellschaft Improved partial load operation of a gas turbine with an adjustable bypass flow channel
GB201501817D0 (en) * 2015-02-04 2015-03-18 Rolls Royce Plc A combustion chamber and a combustion chamber segment
EP3236155B1 (en) * 2016-04-22 2020-05-06 Rolls-Royce plc Combustion chamber with segmented wall
US10641174B2 (en) 2017-01-18 2020-05-05 General Electric Company Rotor shaft cooling
US10801730B2 (en) * 2017-04-12 2020-10-13 Raytheon Technologies Corporation Combustor panel mounting systems and methods
US10697634B2 (en) * 2018-03-07 2020-06-30 General Electric Company Inner cooling shroud for transition zone of annular combustor liner
US11248797B2 (en) 2018-11-02 2022-02-15 Chromalloy Gas Turbine Llc Axial stop configuration for a combustion liner
WO2020092896A1 (en) * 2018-11-02 2020-05-07 Chromalloy Gas Turbine Llc System and method for providing compressed air to a gas turbine combustor
US11377970B2 (en) 2018-11-02 2022-07-05 Chromalloy Gas Turbine Llc System and method for providing compressed air to a gas turbine combustor
US11047575B2 (en) * 2019-04-15 2021-06-29 Raytheon Technologies Corporation Combustor heat shield panel
US11215367B2 (en) 2019-10-03 2022-01-04 Raytheon Technologies Corporation Mounting a ceramic component to a non-ceramic component in a gas turbine engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752014B2 (en) * 1986-03-20 1995-06-05 株式会社日立製作所 Gas turbine combustor
US4896510A (en) * 1987-02-06 1990-01-30 General Electric Company Combustor liner cooling arrangement
DE59010740D1 (en) * 1990-12-05 1997-09-04 Asea Brown Boveri Gas turbine combustor
DE4232442A1 (en) * 1992-09-28 1994-03-31 Asea Brown Boveri Gas turbine combustion chamber
DE4239856A1 (en) * 1992-11-27 1994-06-01 Asea Brown Boveri Gas turbine combustion chamber
DE4242721A1 (en) * 1992-12-17 1994-06-23 Asea Brown Boveri Gas turbine combustion chamber
DE19751299C2 (en) * 1997-11-19 1999-09-09 Siemens Ag Combustion chamber and method for steam cooling a combustion chamber
EP0985882B1 (en) * 1998-09-10 2003-12-03 ALSTOM (Switzerland) Ltd Vibration damping in combustors
DE69930455T2 (en) * 1998-11-12 2006-11-23 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor
JP2002195565A (en) * 2000-12-26 2002-07-10 Mitsubishi Heavy Ind Ltd Gas turbine
US7082770B2 (en) * 2003-12-24 2006-08-01 Martling Vincent C Flow sleeve for a low NOx combustor
GB2420614B (en) * 2004-11-30 2009-06-03 Alstom Technology Ltd Tile and exo-skeleton tile structure
GB2434199B (en) * 2006-01-14 2011-01-05 Alstom Technology Ltd Combustor liner with heat shield

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2154431A2 (en) 2010-02-17
US8434313B2 (en) 2013-05-07
AU2009208110B2 (en) 2014-07-10
US20100037621A1 (en) 2010-02-18
CH699309A1 (en) 2010-02-15
AU2009208110A1 (en) 2010-03-04
EP2154431A3 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
EP2154431B1 (en) Thermal machine
DE102005025823B4 (en) Method and device for cooling a combustion chamber lining and a transition part of a gas turbine
EP2242916B1 (en) Gas turbine
DE69006861T2 (en) Burner and fuel injector arrangement.
EP2423599B1 (en) Method for operating a burner arrangement and burner arrangement for implementing the method
CH697920A2 (en) Turbine engine with a combustor liner with wirbelluftgekühltem rear end and cooling methods.
EP2340397B1 (en) Burner insert for a gas turbine combustion chamber and gas turbine
DE69102032T2 (en) Gas turbine combustion chamber.
EP0244693B1 (en) Hot gas overheating protection device for gas turbine power plants
DE19538746B4 (en) Segmented centerbody for a double ring combustor
EP2242955B1 (en) Gas turbine having an annular combustion chamber and assembly method
CH709993A2 (en) Downstream nozzle in a combustor of a combustion turbine.
EP2559942A1 (en) Gas turbine combustion chamber head with cooling and damping
DE102012015449A1 (en) Gas turbine combustion chamber with mixed air openings and air guide elements in a modular design
EP1865259A2 (en) Gas-turbine combustion chamber wall for a lean-burning gas-turbine combustion chamber
DE112011103736T5 (en) Ultra-low emission gas turbine combustor
DE3309268C2 (en)
DE4223733C2 (en) Connection of mixing tube and flame tube of a gas turbine
EP2808611B1 (en) Injector for introducing a fuel-air mixture into a combustion chamber
EP3132202A1 (en) Bypass heat shield element
EP1724526A1 (en) Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine.
EP0636764A1 (en) Gasturbine with cooled rotor
WO2006111508A1 (en) Heat shield arrangement
EP2459934B1 (en) Gas turbine combustion chamber
CH706832B1 (en) The combustor liner cooling assembly.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110125

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170310

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 912692

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014186

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014186

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170811

26N No opposition filed

Effective date: 20180430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170811

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170926

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 912692

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 15