EP2149771B1 - Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs - Google Patents

Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs Download PDF

Info

Publication number
EP2149771B1
EP2149771B1 EP09166272.6A EP09166272A EP2149771B1 EP 2149771 B1 EP2149771 B1 EP 2149771B1 EP 09166272 A EP09166272 A EP 09166272A EP 2149771 B1 EP2149771 B1 EP 2149771B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
passage
cooling body
cooling
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09166272.6A
Other languages
English (en)
French (fr)
Other versions
EP2149771A1 (de
EP2149771B8 (de
Inventor
Heiko Neff
Tobias Isermeyer
Caroline Schmid
Jalal Mohamed-Ali
Thomas Heckenberger
Hans-Georg Herrmann
Achim Wiebelt
Stefan Hirsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200810035400 external-priority patent/DE102008035400A1/de
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP2149771A1 publication Critical patent/EP2149771A1/de
Publication of EP2149771B1 publication Critical patent/EP2149771B1/de
Application granted granted Critical
Publication of EP2149771B8 publication Critical patent/EP2149771B8/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a device for cooling a heat source of a motor vehicle and to a refrigerant circuit for a motor vehicle.
  • Modern hybrid electric or electric vehicles use powerful energy storage systems such as Li-ion or NiMH batteries or Super Caps. With these energy stores, rapid charging and discharging causes heating due to resistances inside and outside the cells. Temperatures above 50 ° C damage the energy storage permanently. To ensure the function of the energy storage, they must be actively cooled. For this purpose, the energy storage are brought into thermal contact with a flow-through with refrigerant plate and thus cooled.
  • the battery cooling plate is integrated as an additional, second evaporator in the existing air conditioning circuit in the vehicle (two-evaporator system).
  • Fig. 4 shows a refrigerant circuit according to the prior art, in which a battery cooling plate 402 is connected in series with an air conditioner 404.
  • the refrigerant circuit includes a compressor 406, a condenser 408, a fixed orifice valve (FXV) 414, and a thermal expansion valve (TXV) 414.
  • FXV fixed orifice valve
  • TXV thermal expansion valve
  • the cooling plate 402 for cooling the energy storage is always “wet” driven to ensure the uniform cooling of all cells of the energy storage.
  • the battery cooling plate 402 is connected in series with the main air conditioner 404.
  • the still existing liquid portion of the refrigerant is re-evaporated in the main climate evaporator 404, so that liquid blows on the compressor 406 are prevented.
  • the mass flow through the battery cooling plate 404 is determined by the fixed orifice valve 412.
  • the fixed orifice diameter of the valve 412 is determined by the largest load case in the battery.
  • Fig. 5 shows a battery cooling plate 520 according to the prior art.
  • the battery cooling plate 520 has a plurality of refrigerant flows 526.
  • the refrigerant floods 526 have a common inlet 532 and a common outlet 534.
  • the operating points for the battery cooling plate 520 are recirculated so that the operating point of the plate 520 is always in the wet steam area and thus the refrigerant in the plate 520 is at nearly the same temperature.
  • the refrigerant is distributed evenly into the floods 526, the pressure loss in the plate 520 does not become too high and that sufficient floods 526 are provided for uniform cooling of the plate 520 .
  • the floods 526 meet again in the exit point 534. Spatially, flow and return flow are relatively far apart.
  • the US 2004/182560 A1 discloses an apparatus for creating channels in heat exchanger devices.
  • a plurality of Vorströmungsfluten and a plurality of return flow passages are provided, wherein a plurality of Vorströmungsfluten and remindströmungsfluten are arranged alternately adjacent to each other.
  • the US 2004/182560 A1 shows a device with the features of the preamble of claim 1.
  • the present invention is based on the finding that a refrigerant plate can be operated directly in front of a compressor when the refrigerant is gaseous in the exit from the refrigerant plate.
  • the refrigerant flows are arranged in the refrigerant plate according to the invention so that flow and return flows are directly next to each other.
  • the interconnection of the battery cooling plate according to the invention in the refrigerant circuit can be realized so that the battery cooling can be operated without air evaporator.
  • the design of the battery cooling plate is designed for the resulting from the new interconnection challenges for uniform cell cooling.
  • the present invention provides a device for cooling a heat source of a motor vehicle, comprising a heat sink having multiple Vorströmungsfluten and multiple return flow, wherein at least a plurality of Vorströmungsfluten and remindströmungsfluten are arranged alternately adjacent to each other in the heat sink, wherein a Vorströmungsflut in a first partial flow and at least a second partial flow is divided and the first partial flow of Vorströmungsflut is disposed immediately adjacent to the second partial flow of the Vorströmungsflut remindströmungsflut and the second partial flow of the Vorströmungsflut immediately adjacent to the first partial flow of the Vorströmungsflut corresponding remindströmungsflut is arranged, characterized in that to the first Partial flood of Vorströmungsflut corresponding return flow and the corresponding to the second part of the Vorströmungsflut backflow Flood are formed as separate floods.
  • the alternating arrangement of Vorströmungsfluten and remindströmungsfluten a uniform temperature distribution within the heat sink can be
  • the pre-flow floods and the return flow floods may be arranged in the heat sink such that at least one return flow flood is arranged between adjacent feed flow floods.
  • the pre-flow passages and the return flow passages may be disposed in the heat sink such that at least one pre-flow passage is disposed between adjacent return flow passages.
  • the heat sink may have an inlet opening connected to the pre-flow passages and having one or a plurality of outlet openings each connected to one of the return flow passages.
  • the heat sink may include a plurality of junctions configured to connect one of the preflow flows to each of the return flow passages.
  • the plurality of connection points in a first half of the heat sink and the inlet opening and the one or more of the outlet openings may be arranged in a second side of the heat sink, wherein the first and second halves face each other.
  • the heat sink comprises a plurality of layered plates, wherein between the plates floods are formed and a fluid from an inlet opening through the floods can be guided to an outlet opening.
  • the plates By stacking the plates, it is possible to arrange the floods in different levels.
  • the floods may overlap in the various planes and be merged into an exit point and an exit port. Complex terminal blocks can thus be dispensed with.
  • the device can be designed to receive a fluid, in particular a refrigerant, in at least partially liquid form and to deliver the fluid, in particular a refrigerant, in gaseous form.
  • the device can be followed by a compressor, without the risk that the compressor is damaged by liquid hammer.
  • the return flow floods can each have an overheating zone, at least in the region of the outlet openings.
  • the device according to the invention may have a connection block which has a feed opening and a discharge opening and is designed to connect the inlet opening of the heat sink to the feed opening and the one or more outlet openings of the heat sink to the discharge opening.
  • the connection block allows a coordinated connection of the heat sink to a refrigerant circuit.
  • the connection block can be designed to distribute the fluid, in particular the refrigerant, evenly to the multiple flow vortexes.
  • the present invention further provides a refrigerant circuit for a motor vehicle, with a device according to the invention for cooling a heat source of a motor vehicle and a compressor, which is connected downstream of the device for cooling.
  • the refrigerant circuit can also be operated without an additional air-conditioning evaporator.
  • the refrigerant circuit to an air conditioner, which is connected in parallel to the device for cooling. Due to the parallel connection, the device for cooling and the air conditioner can be operated independently.
  • the refrigerant circuit may have a regulated expansion valve for controlling a refrigerant flow through the heat sink.
  • a thermal expansion valve can be used.
  • the controlled expansion valve can be designed to regulate the refrigerant flow as a function of a temperature of the fluid, in particular of the refrigerant, after flowing through the heat sink.
  • the control also allows a clocked cooling of the heat source.
  • the expansion valve can form a structural unit with the heat sink.
  • the number of parts of the refrigerant circuit can be reduced and the assembly can be facilitated.
  • Fig. 1 shows a refrigerant circuit according to an embodiment of the present invention.
  • the refrigerant circuit can be used for example in a motor vehicle for cooling a heat source.
  • the heat source can be a powerful energy storage, such as Li-ion or NiMH batteries or super-caps.
  • the refrigerant circuit has a device for cooling the heat source, which is designed according to this embodiment as a battery cooling plate 102.
  • the battery cooling plate 102 is connected in parallel to an air conditioner 104.
  • the refrigerant circuit includes a compressor 106, a condenser 108, a first regulated expansion valve (TXV) 112 and a second regulated expansion valve (TXV) 114.
  • the refrigerant circuit can be traversed by a refrigerant.
  • the first expansion valve 112 is arranged in the flow direction in front of the battery cooling plate 102 and configured to regulate a flow of the refrigerant through the battery cooling plate 102.
  • the expansion valve 112 may be configured to regulate the flow rate of the refrigerant depending on a temperature of the refrigerant on the output side of the battery cooling plate 102.
  • the temperature of the refrigerant may be detected by a temperature sensor and provided to a controller of the expansion valve 112.
  • the second expansion valve 114 is disposed upstream of the air-conditioning evaporator 104 and is configured to control a flow of the refrigerant through the air-conditioning evaporator 104.
  • the compressor 106 is disposed in the flow path of the refrigerant downstream of the battery cooling plate 102 and the air-conditioning evaporator 104. On the output side, the compressor 106 is connected to the capacitor 108. The capacitor 108 is output connected via the valves 112, 114 with the battery cooling plate 102 and the air conditioner 104.
  • the air conditioner 104 is not required to operate the refrigeration cycle.
  • the battery cooling 102 may no longer be coupled to the function of the air-conditioning evaporator 104.
  • the battery cooling plate 102 is connected in parallel to the air conditioner 104, as shown in FIG Fig. 1 is shown.
  • the control of the mass flow through the battery cooling plate 102 is no longer carried out by a valve with a fixed opening (FXV), but by an expansion valve 112 which controls the mass flow through the battery cooling plate 102 after overheating behind the battery cooling plate.
  • FXV fixed opening
  • Such a regulation can be analogous to the regulation of the air-conditioning evaporator 104.
  • overheating zones occur in the exit area of the floods in the battery cooling plate 102 (physical effect).
  • the overheating is usually in the range of 1-10 K.
  • the temperature gradient in the refrigerant directly affects the plate temperature due to the overheating zone because the battery cooling plate 102 is usually made of a highly thermally conductive material such as aluminum becomes. This means there are “cold” and "warm” zones on the plate surface.
  • the required temperature gradient on the plate of 5 K can no longer be met.
  • plate 520 has three floods 525 and an inlet and outlet area 532, 534. The flow and return are not arranged directly adjacent to each other, so that a temperature compensation on the plate 520 in the required extent can not take place.
  • Fig. 2 shows an illustration of a device for cooling a heat source according to an embodiment of the present invention.
  • the cooling device is designed as a battery cooling plate for overheating control.
  • the battery cooling plate has a heat sink 220 in which a plurality of Vorströmungsfluten 222 and a plurality of remindströmungsfiuten 224 are arranged.
  • the pre-flow floods 222 and return flow passages 224 may be formed as channels within the heat sink 220 through which a refrigerant suitable for cooling may flow.
  • the Vorströmungsfluten 222 are connected via connection points 226 each with an associated return flow 224.
  • the heat sink 220 has an inlet opening 232 and a plurality of outlet openings 234.
  • the refrigerant can flow into the cooling body 220 via the inlet opening 232 and out of the cooling body 220 via the majority of the outlet openings 234.
  • the refrigerant may flow into the pre-flow passages 222 via the inlet port 232, into the return flow passages 224 via the connection points 226, and out of the return flow passages 234 out of the exit ports 234.
  • the connection points 226 are arranged on an edge of the heat sink 220 and the inlet and outlet openings 232, 234 on an opposite edge of the heat sink 220.
  • the Vorströmungsfluten 222 and the remindströmungsfluten 224 are guided in the heat sink 220 parallel to each other.
  • Vorströmungsfluten 222 and the remindströmungsfluten 224 are each arranged alternately, so that in addition to a Vorströmungsflut 222 each have a return flow 224 is disposed, and vice versa.
  • two return flow passages 224 are arranged side by side according to this exemplary embodiment.
  • the temperature level of the refrigerant in the floods 222, 224 of the battery cooling plate 220 before the overheating zone is nearly constant due to the evaporation of the refrigerant and in any case lower than the temperature level in the overheating zone.
  • the displacement of the vapor pressure in the refrigerant by the pressure loss in the floods 222, 224 is with optimal channel design too to neglect.
  • the temperature gradients in the plate 220 equalize and the temperature on the plate surface equalizes.
  • One possible flood design is in Fig. 2 shown. Here, forward and backward flow 222, 224 are arranged directly next to each other.
  • Such a design of the power guide in the plate 220 carries a complex terminal block (shown in FIGS Fig. 3a - 3c ).
  • the entry into the plate 220 takes place according to the in Fig. 2 shown embodiment in a point 232nd
  • the point 232 should be arranged as symmetrical as possible to the flood guide 222 in order to ensure an optimal, even distribution of the two-phase refrigerant (vapor and liquid) entering the plate 220 in the individual floods 222 in the plate 220. If a symmetrical arrangement is not possible for space reasons, then the floods 222, 224 in the plate 220 are to be correspondingly adapted in their cross section. A uniform distribution of the refrigerant is very important for a uniform, homogeneous temperature distribution. If no uniform distribution of the refrigerant is given, this can result in undesired, undefined overheating zones.
  • the exit of the refrigerant can no longer be summarized in one point without flooding 224 overlapping. Therefore, the plate 220 has a plurality of outlet points 224 of the refrigerant, which reunite only in the connection block.
  • Another advantage of the flood arrangement according to the invention is shown when the cooling of the plate 220 is not continuous, but the cooling is operated in ON / OFF mode (clocking).
  • the principle of clocking does not allow the battery to cool until the cells have reached a certain critical temperature. Once the cells have reached the critical temperature, the cooling will start switched on and the cells are cooled, until a minimum temperature is reached.
  • the optimum temperature range for the cell is between 30 ° C and 40 ° C.
  • the clocked injection of the refrigerant makes it possible to keep the cells always in this optimum temperature range.
  • the refrigerant When refrigerant is injected into the "heated" plate 220, the refrigerant first begins to evaporate and overheat in the entry region. The overheat front continues to push toward plate exit 234 until a steady state condition is reached. Until the stationary state is reached, the temperature gradient in the refrigerant is often greater than 10 K. The flow of current in the plate 220 with flow and return 222, 224 directly next to each other makes it possible to compensate for these high temperature gradients and mitigate. Thus, a self-sufficient operation of the battery cooling is possible and the flood design compensates for temperature gradients of overheating control and / or clocked injection of the refrigerant in the disk surface.
  • the battery cooling plate according to the invention is suitable for overheating control and clocking.
  • FIGS. 3a-3c show different representations of a terminal block according to an embodiment of the present invention.
  • the terminal block is suitable for the in Fig. 2 shown heatsink to the in Fig. 1 complete the refrigerant circuit shown.
  • the terminal block is formed to distribute the inflowing refrigerant evenly to the multiple Vorströmungsfluten the heat sink.
  • Fig. 3a shows a view of the terminal block with a feed opening 342 and a discharge opening 344.
  • the terminal block is cuboid-shaped and the feed opening 342 and the discharge opening 344 are arranged side by side on a surface of the terminal block.
  • the feed opening 342 forms an inlet and the discharge opening 344 forms an outlet for the refrigerant flowing through the heat sink.
  • the terminal block on channels which are formed to the feed opening 342 with the inlet opening of the heat sink and the discharge opening 344 with the outlet openings of To connect heatsink.
  • the channel connected to the discharge opening 344 is connected to another horizontal channel within the terminal block to connect to the plurality of outlet openings of the heat sink.
  • Fig. 3b shows a plan view of the in Fig. 3a shown terminal block.
  • Fig. 3c shows a cross section through the terminal block along the in Fig. 3a shown section line AA.
  • the discharge opening 344 has an extension of the diameter in a region facing the heat sink.
  • the cooling device can be used for cooling other than the heat sources described.
  • the heat sink may be adapted in shape to the heat sources.
  • a surface of the heat sink of a surface to be contacted of the heat source can be modeled.
  • the arrangement of the floods can be adjusted. In this case, preferably, an alternating arrangement of the Vorströmungsfluten and return flow is maintained.
  • the floods can be grouped into individual groups. In particular, in the transition region between two groups, there may be a deviation of the alternating arrangement, so that occasionally two Vorströmungsfluten or two remindströmungs floods can be arranged side by side.
  • an alternating arrangement of, for example, two Vorströmungsfluten and two remindströmungsfluten each may be possible.
  • Such variations in the alternating arrangement are possible according to the invention, as long as the selected alternating arrangement enables a compensation of the temperature difference between evaporation zones and overheating zones.
  • the inlet and outlet openings can be arranged at other locations of the heat sink and varied in number. So you can do more be provided as an inlet opening or individual return flow passages have a common outlet opening.
  • the Fig. 6a to 6f show a further embodiment of a device according to the invention for cooling a heat source of a motor vehicle.
  • the heat sink 220 comprises a plurality of plates, namely a cover plate 601, a channel plate 602, an intermediate plate 603, a passage plate 604 and a bottom plate 605, which are stacked and preferably soldered and thus form the heat sink 220.
  • the plates which will be described in more detail later, have different recesses, so that a fluid can be guided from an inlet opening 232 to an outlet opening 234, which is respectively arranged in the cover plate 601.
  • the recesses are preferably produced by punching or lasing.
  • the channel plate 602 On the cover plate 601 ( Fig. 6b ), the channel plate 602 ( Fig. 6c ) set.
  • the channel plate has recesses 222 and 223, which are the forward and periodically staves floods similar to the embodiment according to Fig. 2 form.
  • the height of the floods thus corresponds to the thickness of the channel plate 602.
  • the channel plate also has openings 632 and 634a, in order to establish a fluidic connection to the cover plate 601 or intermediate plate 603.
  • the function of the opening 634b will be discussed later.
  • On the open channel plate 602 is now the intermediate plate 603 ( Fig. 6d ) stacked. By the intermediate plate 603, the open floods are covered in the channel plate.
  • the intermediate plate also has four openings 634c and an opening 634d, which ensure a fluidic connection to the channel plate 602 and the passage plate 604, respectively.
  • the outlets of the floods 634a of the channel plate are summarized by the floods 635 at a point 636.
  • the bottom plate is preferably the same size as all the other plates, but can be made smaller for the sake of saving material. However, the floods 635 of the passage plate must be covered.
  • a fluid therefore flows through the inlet opening 232 of the cover plate 601 in the channel plate 602.
  • the fluid is then passed to the openings 634a and passed through the openings 634c of the intermediate plate 603 to the passage plate 604.
  • the fluid undergoes a diversion in the flows 635 to a common exit point 636.
  • the fluid is led out of the heat sink 220 through the openings 634d, 634b and 234.
  • All plates are preferably made of a good heat-conducting material, in particular aluminum.
  • the inventive solution combines three advantages. On the one hand, the plates can be produced very inexpensively. An expensive production of plates with milled floods can be omitted.
  • the floods overlap on the one hand, on the other hand can be made very simple by the merger of the floods to an exit point and thus to an outlet opening 234, the terminal block 301 (see Fig. 7a ).
  • the tubes can also be soldered directly to the heat sink 220 during the soldering process.
  • Fig. 7b shows a connection situation for a connection pipe 701 on a heat sink 220.
  • the pipe has a bead 702 at one end to ensure positioning of the pipe and to prevent too much penetration into the heat sink 220 prevent.
  • a solder ring or solder sheet 703 is inserted between the pipe and the heat sink.
  • the channel plate may comprise a plurality of plates with ridges in the channels, which serve to ensure the stability of the construction.
  • the channel height then corresponds to the total height of the individual plates.
  • FIGS. 8a . 8c and 8e show further examples of a device not according to the invention for cooling a heat source of a motor vehicle.
  • FIGS. 8b and 8d show further embodiments of a device according to the invention for cooling a heat source of a motor vehicle.
  • a section 8 of a heat sink 220 is shown, in which a particularly homogeneous refrigerant distribution and concomitant temperature distribution at the surface of the heat sink is achieved.
  • a pre-flow flood 222 is split into a first partial flow 222a and a second partial flow 222b.
  • a refrigerant flowing in the pre-flow tide is equally divided into the two partial tides.
  • the two partial flows are guided in the "U-flow", so that a first partial flow 222a of the Vorströmungsflut a corresponding first partial flow 224a of a return flow and a second partial flow 222b of the Vorströmungsflut has a corresponding second partial flow 224b of the return flow.
  • a refrigerant therefore flows from a Vorströmungsflut 222 into a first partial flow 222a and then in countercurrent in a first partial flow 224a of the return flow.
  • the first partial flow of the Vorströmungsflut and the first partial flow of the return flow are formed the same length.
  • FIG. 8a It can be seen that the first partial flow 222a of the Vorströmungsflut immediately adjacent to the second partial flow 224b of the return flow and the second partial flow 222b of Vorströmungsflut immediately adjacent to the first partial flow 224a is arranged.
  • “immediately adjacent” is meant that there is no further tide between these two floods, so that there is a correspondingly good heat-conducting connection between the two floods.
  • Vorströmungsfluten and sudströmungsfluten in the heat sink has two key advantages in principle. Firstly, by equalizing the temperature differences at the inlet and at the outlet of a refrigerant flow, a uniform temperature distribution in the heat sink over the entire length of a partial flood is achieved. Second, inhomogeneous refrigerant flows inevitably equalize in the individual partial floods. If, for example, there is an increase in the pressure loss in the first partial flow of the Vorströmungsflut and thus to a reduced refrigerant mass flow, then increases in accordance with the refrigerant mass flow in the second partial flow of the Vorströmungsflut and the corresponding return flow.
  • the reduced power of the first partial flood can be largely compensated by the additional power of the second partial flood.
  • FIG. 8b a division of the Vorströmungsflut 222 into four partial floods 222a-222d and thus corresponding partial floods 224a-224d the return flow.
  • Fig. 8b shows a division of the Vorströmungsflut 222 into four partial floods 222a-222d and thus corresponding partial floods 224a-224d the return flow.
  • further splits to 8, 16, 32, 64 or more floods in the manner of a cascade connection are conceivable.
  • the branch point 9 of the Vorströmungsflut outside be arranged within or adjacent to the branch point 10 of the return flow.
  • the heat sink 220 consist of a first heat sink unit 220a and a second heat sink unit 220b, wherein the number of heat sink units forming the heat sink may be larger.
  • Fig. 8a - 8d are suitable not only for the use of a refrigerant, but also for a coolant, for example a mixture of water and glycol.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf eine Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs und auf einen Kältemittelkreislauf für ein Kraftfahrzeug.
  • In modernen Hybridelektro- oder Elektrofahrzeugen (HEV/EV Fahrzeugen) werden leistungsfähige Energiespeicher, wie zum Beispiel Li-Ionen oder NiMH-Akkumulatoren oder Super-Caps eingesetzt. Bei diesen Energiespeichern kommt es beim schnellen Laden und Entladen aufgrund von Widerständen in und außerhalb der Zellen zur Erwärmung. Temperaturen über 50°C schädigen die Energiespeicher dauerhaft. Um die Funktion der Energiespeicher zu gewährleisten, müssen diese aktiv gekühlt werden. Dazu werden die Energiespeicher mit einer mit Kältemittel durchströmten Platte in thermischen Kontakt gebracht und somit gekühlt. Die Batteriekühlplatte wird als zusätzlicher, zweiter Verdampfer in den bestehenden Klimakältekreis im Fahrzeug eingebunden (Zwei-Verdampfer-Anlage).
  • Bei der Kühlung der Zellen ist es wichtig, dass alle Zellen gleichmäßig gekühlt werden. So ist ein maximaler Temperaturgradient in der Kühlplatte von ca. 5K einzuhalten. Bei ungleichmäßiger Kühlung der Zellen altern die Zellen unterschiedlich schnell, was die Funktion und Leistung der Energiespeicher negativ beeinflusst.
  • Fig. 4 zeigt einen Kältemittelkreislauf gemäß dem Stand der Technik, bei dem eine Batteriekühlplatte 402 in Reihe mit einem Klimaverdampfer 404 geschaltet ist. Neben der Batteriekühlplatte 402 und dem Klimaverdampfer 404 weist der Kältemittelkreislauf einen Verdichter 406, einen Kondensator 408, ein Ventil 412 mit fester Öffnung (FXV) und ein thermisches Expansionsventil (TXV) 414 auf.
  • Die Kühlplatte 402 zur Kühlung der Energiespeicher wird immer "nass" gefahren, um die gleichmäßige Kühlung aller Zellen der Energiespeicher sicherzustellen. Das bedeutet, dass der Batteriekühlplatte 402 immer so viel Kältemittel zur Verfügung gestellt werden muss, dass sich die physikalischen Prozesse in der Batteriekühlplatte 402 immer im Nassdampfgebiet abspielen. Um eine gleichmäßige Temperaturverteilung auf der Platte 402 zu gewährleisten, darf es in der Platte 402 nie zur Überhitzung kommen.
  • Übertragen auf den Kältekreis im Fahrzeug bedeutet dies, dass es nicht möglich ist, den Ausgang der Batteriekühlplatte 402, analog zur Verschaltung des Klimaverdampfers 404, direkt vor dem Verdichter 406 einzubringen. Denn im Austritt der Platte 402 ist immer noch flüssiges Kältemittel vorhanden, so dass der Verdichter 406 Flüssigkeitsschlägen ausgesetzt sein kann und beschädigt werden würde.
  • Deshalb wird die Batteriekühlplatte 402 in Reihe zum Hauptklimaverdampfer 404 geschaltet. Der noch vorhandene flüssige Anteil des Kältemittels wird im Hauptklimaverdampfer 404 nachverdampft, so dass Flüssigkeitsschläge am Verdichter 406 verhindert werden. Der Massenstrom durch die Batteriekühlplatte 404 wird durch das Ventil 412 mit fester Öffnung bestimmt. Der feste Öffnungsdurchmesser des Ventils 412 wird durch den größten Lastfall in der Batterie bestimmt.
  • Fig. 5 zeigt eine Batteriekühlplatte 520 nach dem Stand der Technik. Die Batteriekühlplatte 520 weist eine Mehrzahl von Kältemittelfluten 526 auf. Die Kältemittelfluten 526 weisen einen gemeinsamen Eintritt 532 und einen gemeinsamen Austritt 534 auf.
  • Die Betriebspunkte für die Batteriekühlplatte 520 werden im Kreislauf so eingestellt, dass sich der Operationspunkt der Platte 520 immer im Nassdampfgebiet befindet und somit das Kältemittel in der Platte 520 nahezu dieselbe Temperatur aufweist. Bei der Gestaltung der Strömungsfluten in der Platte 520 muss also vor allem beachtet werden, dass das Kältemittel gleichmäßig in die Fluten 526 verteilt wird, der Druckverlust in der Platte 520 nicht zu hoch wird und dass genügend Fluten 526 zur gleichmäßigen Kühlung der Platte 520 vorhanden sind. Um eine Gleichverteilung des Kältemittels zu gewährleisten bietet es sich an, das Kältemittel in einem Punkt 532 in der Platte 520 eintreten zu lassen, so dass es sich in die einzelnen Fluten 526 in der Platte 520 verteilen kann. Die Fluten 526 treffen sich wieder in dem Austrittspunkt 534. Räumlich sind Vor- und Rückströmung relativ weit voneinander entfernt.
  • Die in Fig. 4 gezeigte Verschaltung der Batteriekühlplatte im Kältekreis des Fahrzeuges hat den Nachteil, dass die Batteriekühlung immer mit der Klimatisierung der Fahrzeugkabine gekoppelt ist. Es ist nicht möglich, die Batteriekühlplatte alleine, ohne den Klimaverdampfer, zu betreiben. Dies hat vor allem im Winter enorme Nachteile, denn der Klimaverdampfer wird nur bis zu bestimmten Außentemperaturen betrieben, um Vereisung zu verhindern. Konkret bedeutet dies, dass bei kalten Außentemperaturen kein Betrieb der Batterie mehr möglich ist.
  • Die US 2004/182560 A1 offenbart eine Vorrichtung zur Erzeugung von Kanälen in Wärmetauschervorrichtungen. Dabei sind mehrere Vorströmungsfluten und mehrere Rückströmungsfluten vorgesehen, wobei eine Mehrzahl von Vorströmungsfluten und Rückströmungsfluten abwechselnd nebeneinanderliegend angeordnet sind.
  • Die US 2004/182560 A1 zeigt damit eine Vorrichtung mit den Merkmalen des Oberbegriffs von Anspruch 1.
  • Es ist die Aufgabe der vorliegenden Erfindung, eine verbesserte Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs und einen verbesserten Kältemittelkreislauf für ein Kraftfahrzeug zu schaffen.
  • Diese Aufgabe wird durch eine Vorrichtung gemäß Anspruch 1 sowie einen Kältemittelkreislauf gemäß Anspruch 11 gelöst.
  • Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass eine Kältemittelplatte direkt vor einem Verdichter betrieben werden kann, wenn das Kältemittel im Austritt aus der Kältemittelplatte gasförmig ist. Um eine gleichmäßige Temperaturverteilung auf der Kältemittelplatte zu realisieren, werden die Kältemittelfluten in der Kältemittelplatte erfindungsgemäß so angeordnet, das Vor- und Rückströmungen direkt nebeneinander liegen.
  • Vorteilhafterweise kann die Verschaltung der erfindungsgemäßen Batteriekühlplatte im Kältekreis so realisiert werden, dass die Batteriekühlung auch ohne Klimaverdampfer betrieben werden kann. Die Gestaltung der Batteriekühlplatte ist dabei für die sich aus der neuen Verschaltung ergebenden Herausforderungen für eine gleichmäßige Zellkühlung ausgelegt.
  • Die vorliegende Erfindung schafft eine Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs, mit einem Kühlkörper, der mehrere Vorströmungsfluten und mehrere Rückströmungsfluten aufweist, wobei zumindest eine Mehrzahl der Vorströmungsfluten und Rückströmungsfluten abwechselnd nebeneinanderliegend in dem Kühlkörper angeordnet sind, wobei eine Vorströmungsflut in eine erste Teilflut und mindestens eine zweite Teilflut aufgeteilt wird und die erste Teilflut der Vorströmungsflut unmittelbar benachbart zur der zweiten Teilflut der Vorströmungsflut korrespondierenden Rückströmungsflut angeordnet ist und die zweite Teilflut der Vorströmungsflut unmittelbar benachbart zur der ersten Teilflut der Vorströmungsflut korrespondierenden Rückströmungsflut angeordnet ist, dadurch gekennzeichnet, dass die zu der ersten Teilflut der Vorströmungsflut korrespondierende Rückströmungsflut und die zu der zweiten Teilflut der Vorströmungsflut korrespondierende Rückströmungsflut als getrennte Fluten ausgebildet sind. Durch die abwechselnde Anordnung der Vorströmungsfluten und Rückströmungsfluten kann eine möglichst gleichmäßige Temperaturverteilung innerhalb des Kühlkörpers erreicht werden. Somit kann ein vorbestimmter maximaler Temperaturgradient auf dem Kühlkörper eingehalten werden.
  • Beispielsweise können die Vorströmungsfluten und die Rückströmungsfluten so in dem Kühlkörper angeordnet sein, dass zwischen benachbarten Vorströmungsfluten mindestens eine Rückströmungsflut angeordnet ist. Auch können die Vorströmungsfluten und die Rückströmungsfluten so in dem Kühlkörper angeordnet sein, dass zwischen benachbarten Rückströmungsfluten mindestens eine Vorströmungsflut angeordnet ist. Somit kann gewährleistet werden, dass ein Temperaturunterschied zwischen Vorströmungsfluten und Rückströmungsfluten ausgeglichen wird.
  • Der Kühlkörper kann eine Eintrittsöffnung aufweisen, die mit den Vorströmungsfluten verbunden ist und eine oder eine Mehrzahl von Austrittsöffnungen aufweisen, die jeweils mit einer der Rückströmungsfluten verbunden sind. Somit kann ein Überkreuzen von Vorströmungsfluten oder Rückströmungsfluten vermieden werden.
  • Der Kühlkörper kann eine Mehrzahl von Verbindungsstellen aufweisen, die ausgebildet sind, um jeweils eine der Vorströmungsfluten mit jeweils einer der Rückströmungsfluten zu verbinden. Dabei können die Mehrzahl der Verbindungsstellen in einer ersten Hälfte des Kühlkörpers und die Eintrittsöffnung und die eine oder Mehrzahl der Austrittsöffnungen in einer zweiten Seite des Kühlkörpers angeordnet sein, wobei die erste und die zweite Hälfte einander gegenüberliegen. Somit können die Vorströmungsfluten und die Rückströmungsfluten über eine möglichst große Strecke nebeneinander geführt werden.
  • Gemäß einer besonders bevorzugten Ausführungsform umfasst der Kühlkörper mehrere geschichtete Platten, wobei zwischen den Platten Fluten gebildet werden und ein Fluid von einer Eintrittsöffnung durch die Fluten zu einer Austrittsöffnung führbar ist. Durch die Stapelung der Platten ist es möglich, die Fluten in verschiedenen Ebenen anzuordnen. Die Fluten können sich in den verschiedenen Ebenen überschneiden und zu einem Austrittspunkt und zu einer Austrittsöffnung zusammengeführt werden. Auf komplexe Anschlussblöcke kann somit verzichtet werden.
  • Vorteilhafterweise kann die Vorrichtung ausgebildet sein, um ein Fluid, insbesondere ein Kältemittel, in zumindest teilweise flüssiger Form aufzunehmen und das Fluid, insbesondere ein Kältemittel in gasförmiger Form abzugeben. Somit kann der Vorrichtung ein Verdichter nachgeschaltet werden, ohne dass die Gefahr besteht, dass der Verdichter durch Flüssigkeitsschläge beschädigt wird. Dazu können die Rückströmungsfluten zumindest im Bereich der Austrittsöffnungen jeweils eine Überhitzungszone aufweisen.
  • Die erfindungsgemäße Vorrichtung kann einen Anschlussblock aufweisen, der eine Zuführöffnung und eine Abführöffnung aufweist und ausgebildet ist, um die Eintrittsöffnung des Kühlkörpers mit der Zuführöffnung und die eine oder Mehrzahl von Austrittsöffnungen des Kühlkörpers mit der Abführöffnung zu verbinden. Der Anschlussblock ermöglicht eine abgestimmte Anbindung des Kühlkörpers an einen Kältemittelkreis. Insbesondere kann der Anschlussblock ausgebildet sein, um das Fluid, insbesondere das Kältemittel, gleichmäßig auf die mehreren Vorströmungsfluten zu verteilen.
  • Die vorliegende Erfindung schafft ferner einen Kältemittelkreislauf für ein Kraftfahrzeug, mit einer erfindungsgemäßen Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs und einem Verdichter, der der Vorrichtung zur Kühlung nachgeschaltet ist. Vorteilhafterweise kann der Kältemittelkreislauf auch ohne einen zusätzlichen Klimaverdampfer betrieben werden.
  • Gemäß einer Ausgestaltung weist der Kältemittelkreislauf einen Klimaverdampfer auf, der parallel zu der Vorrichtung zur Kühlung geschaltet ist. Durch die Parallelschaltung können die Vorrichtung zur Kühlung und der Klimaverdampfer unabhängig voneinander betrieben werden.
  • Gemäß einer Ausgestaltung kann der Kältemittelkreislauf ein geregeltes Expansionsventil zur Regelung eines Kältemittelstroms durch den Kühlkörper aufweisen. Beispielsweise kann ein thermisches Expansionsventil eingesetzt werden. Das geregelte Expansionsventil kann ausgebildet sein, um den Kältemittelstrom abhängig von einer Temperatur des Fluids, insbesondere des Kältemittels, nach Durchströmen des Kühlkörpers zu regeln. Somit kann gewährleistet werden, dass das Fluid, insbesondere das Kältemittel, im Austritt gasförmig ist. Die Regelung ermöglicht auch eine getaktete Kühlung der Wärmequelle.
  • Gemäß einer weiteren Ausgestaltung kann das Expansionsventil eine Baueinheit mit dem Kühlkörper bilden. Somit kann die Anzahl der Teile des Kältemittelkreislaufes reduziert und die Montage erleichtert werden.
  • Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    eine Darstellung eines erfindungsgemäßen Kältemittelkreises;
    Fig. 2
    eine Darstellung einer erfindungsgemäßen Vorrichtung zur Kühlung;
    Fig. 3a - 3c
    Darstellungen eines Anschlussblocks für die erfindungsgemäße Vorrichtung zur Kühlung;
    Fig. 4
    eine Darstellung eines Kältemittelkreises gemäß dem Stand der Technik;
    Fig. 5
    eine Darstellung einer Kühlplatte gemäß dem Stand der Technik;
    Fig. 6a - 6f
    eine Darstellung einer erfindungsgemäßen Vorrichtung zur Kühlung;
    Fig. 7a
    Darstellung eines Anschlussblockes für die erfindungsgemäße Vorrichtung zur Kühlung;
    Fig. 7b
    Darstellung einer Anbindung eines Anschlussrohres an eine erfindungsgemäße Vorrichtung zur Kühlung;
    Fig. 8a, 8c, 8e
    verschiedene Darstellungen einer nicht erfindungsgemäßen Vorrichtung zur Kühlung; und
    Fig. 8b, 8d
    verschiedene Darstellungen einer erfindungsgemäßen Vorrichtung zur Kühlung.
  • In der nachfolgenden Beschreibung der bevorzugten Ausführungsbeispiele der vorliegenden Erfindung werden für die in den verschiedenen Zeichnungen dargestellten und ähnlich wirkenden Elemente gleiche oder ähnliche Bezugszeichen verwendet, wobei eine wiederholte Beschreibung dieser Elemente weggelassen wird.
  • Fig. 1 zeigt einen Kältemittelkreislauf gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der Kältemittelkreislauf kann beispielsweise in einem Kraftfahrzeug zur Kühlung einer Wärmequelle eingesetzt werden. Bei der Wärmequelle kann es sich um einen leistungsfähigen Energiespeicher, wie zum Beispiel Li-Ionen oder NiMH-Akkumulatoren oder Super-Caps handeln. Der Kältemittelkreislauf weist eine Vorrichtung zur Kühlung der Wärmequelle auf, die gemäß diesem Ausführungsbeispiel als Batteriekühlplatte 102 ausgebildet ist. Die Batteriekühlplatte 102 ist parallel zu einem Klimaverdampfer 104 geschaltet. Neben der Batteriekühlplatte 102 und dem Klimaverdampfer 104 weist der Kältemittelkreislauf einen Verdichter 106, einen Kondensator 108, ein erstes geregeltes Expansionsventil (TXV) 112 und ein zweites geregeltes Expansionsventil (TXV) 114 auf.
  • Der Kältemittelkreislauf kann von einem Kältemittel durchflossen werden. Das erste Expansionsventil 112 ist in Flussrichtung vor der Batteriekühlplatte 102 angeordnet und ausgebildet, um einen Durchfluss des Kältemittels durch die Batteriekühlplatte 102 zu regeln. Beispielsweise kann das Expansionsventil 112 ausgebildet sein, um den Durchfluss des Kältemittels abhängig von einer Temperatur des Kältemittels ausgangsseitig der Batteriekühlplatte 102 zu regeln. Die Temperatur des Kältemittels kann dazu von einem Temperaturfühler erfasst und an eine Steuerung des Expansionsventils 112 bereitgestellt werden. Das zweite Expansionsventil 114 ist in Flussrichtung vordem Klimaverdampfer 104 angeordnet und ist ausgebildet, um einen Durchfluss des Kältemittels durch den Klimaverdampfer 104 zu regeln. Der Verdichter 106 ist im Strömungspfad des Kältemittels hinter der Batteriekühlplatte 102 und dem Klimaverdampfer 104 angeordnet. Ausgangsseitig ist der Verdichter 106 mit dem Kondensator 108 verbunden. Der Kondensator 108 ist ausgangsseitig über die Ventile 112, 114 mit der Batteriekühlplatte 102 und dem Klimaverdampfer 104 verbunden.
  • Der Klimaverdampfer 104 ist zum Betrieb des Kühlkreises nicht erforderlich. Um eine autarke Funktion der Batteriekühlung 102 zu gewährleisten, darf die Batteriekühlung 102 nicht mehr an die Funktion des Klimaverdampfers 104 gekoppelt sein. Dazu wird die Batteriekühlplatte 102 parallel zum Klimaverdampfer 104 geschaltet, wie es in Fig. 1 gezeigt ist. Die Regelung des Massenstroms durch die Batteriekühlplatte 102 erfolgt nun nicht mehr durch ein Ventil mit fester Öffnung (FXV), sondern durch ein Expansionsventil 112, welches den Massenstrom durch die Batteriekühlplatte 102 nach Überhitzung hinter der Batteriekühlplatte regelt. Eine solche Regelung kann analog zur Regelung des Klimaverdampfers 104 sein.
  • Bei der erfindungsgemäßen Verschaltung treten lokal definierte Überhitzungszonen (überhitzter Dampf) im Austrittsbereich der Fluten in der Batteriekühlplatte 102 auf (physikalischer Effekt). Die Überhitzungen liegen üblicherweise im Bereich von 1-10 K. Auf der Platte 102 wirkt sich der Temperaturgradient im Kältemittel aufgrund der Überhitzungszone direkt auf die Plattentemperatur aus, da in der Regel die Batteriekühlplatte 102 aus einem sehr gut wärmeleitenden Material, wie zum Beispiel Aluminium hergestellt wird. Das bedeutet, es gibt "kalte" und "warme" Zonen auf der Plattenoberfläche. Beim Design der Batteriekühlplatten 102 nach dem Stand der Technik, wie in Fig. 5 gezeigt, kann der geforderte Temperaturgradient auf der Platte von 5 K nicht mehr eingehalten werden. Die in Fig. 5 gezeigte Platte 520 hat drei Fluten 525 und einen Ein- und Austrittsbereich 532, 534. Die Vor- und Rückströmung sind nicht unmittelbar nebeneinander angeordnet, so dass ein Temperaturausgleich auf der Platte 520 im benötigten Maße nicht stattfinden kann.
  • Deshalb wird bei der in Fig. 1 gezeigten erfindungsgemäßen Verschaltung der Batteriekühlplatte 102 im Kältekreislauf das Design der Kühlplatte 102 bzw. die Flutenführung an die Überhitzungszonen so angepasst, dass eine gleichmäßige Temperaturverteilung auf der Platte 102 und somit eine gleichmäßige Kühlung der Zellen, trotz Überhitzung in der Platte 102, gewährleistet werden kann.
  • Fig. 2 zeigt eine Darstellung einer Vorrichtung zur Kühlung einer Wärmequelle gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Gemäß diesem Ausführungsbeispiel ist die Vorrichtung zur Kühlung als Batteriekühlplatte für eine Überhitzungsregelung ausgebildet. Die Batteriekühlplatte weist einen Kühlkörper 220 auf, in dem mehrere Vorströmungsfluten 222 und mehrere Rückströmungsfiuten 224 angeordnet sind. Die Vorströmungsfluten 222 und Rückströmungsfluten 224 können als Kanäle innerhalb des Kühlkörpers 220 ausgebildet sein, durch die ein zur Kühlung geeignetes Kältemittel strömen kann. Die Vorströmungsfluten 222 sind über Verbindungsstellen 226 jeweils mit einer zugeordneten Rückströmungsflut 224 verbunden. Der Kühlkörper 220 weist eine Eintrittsöffnung 232 und eine Mehrzahl von Austrittsöffnungen 234 auf. Das Kältemittel kann über die Eintrittsöffnung 232 in den Kühlkörper 220 hinein und über die Mehrzahl der Austrittsöffnungen 234 aus dem Kühlkörper 220 hinaus strömen. Insbesondere kann das Kältemittel über die Eintrittsöffnung 232 in die Vorströmungsfluten 222, über die Verbindungsstellen 226 in die Rückströmungsfluten 224 und aus den Austrittsöffnungen 234 aus den Rückströmungsfluten 234 heraus strömen. Gemäß diesem Ausführungsbeispiel sind die Verbindungsstellen 226 an einem Rand des Kühlkörpers 220 und die Ein- und Austrittsöffnungen 232, 234 an einem gegenüberliegenden Rand des Kühlkörpers 220 angeordnet. Die Vorströmungsfluten 222 und die Rückströmungsfluten 224 sind im Kühlkörper 220 parallel zueinander geführt. Die Vorströmungsfluten 222 und die Rückströmungsfluten 224 sind dabei jeweils abwechselnd angeordnet, so dass neben einer Vorströmungsflut 222 jeweils eine Rückströmungsflut 224 angeordnet ist, und umgekehrt. Im mittleren Bereich des Kühlkörpers 220 sind gemäß diesem Ausführungsbeispiel zwei Rückströmungsfluten 224 nebeneinanderliegend angeordnet.
  • Das Temperaturniveau des Kältemittels in den Fluten 222, 224 der Batteriekühlplatte 220 vor der Überhitzungszone ist aufgrund der Verdampfung des Kältemittels nahezu konstant und auf jeden Fall niedriger als das Temperaturniveau in der Überhitzungszone. Die Verschiebung des Dampfdruckes im Kältemittel durch den Druckverlust in den Fluten 222, 224 ist bei optimaler Kanalauslegung zu vernachlässigen. Um eine Gleichverteilung der Temperatur auf der Plattenoberfläche zu realisieren, ist es deshalb notwendig, die Fluten 222, 224 mit "kalten" Verdampfungszonen direkt neben "warmen" Überhitzungszonen anzuordnen, also Vor- und Rückströmung direkt nebeneinander. Die Temperaturgradienten in der Platte 220 gleichen sich aus und die Temperatur auf der Plattenoberfläche egalisiert sich. Eine mögliche Flutengestaltung ist in Fig. 2 gezeigt. Hier sind Vor- und Rückströmung 222, 224 unmittelbar nebeneinander angeordnet.
  • Eine solche Gestaltung der Stromführung in der Platte 220 führt einen komplexen Anschlussblock mit sich (gezeigt in den Fig. 3a - 3c). Der Eintritt in die Platte 220 erfolgt gemäß dem in Fig. 2 gezeigten Ausführungsbeispiel in einem Punkt 232.
  • Der Punkt 232 sollte möglichst symmetrisch zur Flutenführung 222 angeordnet sein, um eine optimale, gleichmäßige Aufteilung des am Eintritt der Platte 220 zweiphasigen Kältemittels (Dampf und Flüssigkeit) in die einzelnen Fluten 222 in der Platte 220 zu gewährleisten. Ist eine symmetrische Anordnung aus Bauraumgründen nicht möglich, so sind die Fluten 222, 224 in der Platte 220 in ihrem Querschnitt entsprechend anzupassen. Eine gleichmäßige Aufteilung des Kältemittels ist sehr wichtig für eine gleichmäßige, homogene Temperaturverteilung. Ist keine gleichmäßige Verteilung des Kältemittels gegeben, kann dies in ungewünschten, undefinierten Überhitzungszonen resultieren.
  • Der Austritt des Kältemittels kann bei diesem Plattendesign nun nicht mehr in einem Punkt zusammengefasst werden, ohne dass sich Fluten 224 überschneiden würden. Deshalb weist die Platte 220 mehrere Austrittspunkte 224 des Kältemittels auf, die sich erst im Anschlussblock wieder vereinen.
  • Ein weiterer Vorteil der erfindungsgemäßen Flutenanordnung zeigt sich, wenn die Kühlung der Platte 220 nicht kontinuierlich erfolgt, sondern die Kühlung im ON/OFF-Betrieb betrieben wird (Taktung). Das Prinzip der Taktung sieht vor, die Batterie so lange nicht zu kühlen bis die Zellen eine bestimmte kritische Temperatur erreicht haben. Haben die Zellen die kritische Temperatur erreicht, wird die Kühlung angeschaltet und die Zellen werden gekühlt, und zwar so lange, bis eine minimale Temperatur erreicht wird. In der Regel liegt der optimale Temperaturbereich für die Zelle zwischen 30°C und 40°C. Die getaktete Einspritzung des Kältemittels ermöglicht es, die Zellen immer in diesem optimalen Temperaturbereich zu halten.
  • Wird Kältemittel in die "aufgeheizte" Platte 220 eingespritzt, so fängt das Kältemittel zuerst im Eintrittsbereich an zu verdampfen und zu überhitzen. Die Überhitzungsfront schiebt sich immer weiter Richtung Plattenaustritt 234, bis ein stationärer Zustand erreicht wird. Bis der stationäre Zustand erreicht wird, ist der Temperaturgradient im Kältemittel oftmals größer als 10 K. Die Stromführung in der Platte 220 mit Vor- und Rückströmung 222, 224 direkt nebeneinander ermöglicht es, diese hohen Temperaturgradienten auszugleichen und abzumildern. Somit ist ein autarker Betrieb der Batteriekühlung möglich und das Flutendesign gleicht Temperaturgradienten aus Überhitzungsregelung und/oder getakteter Einspritzung des Kältemittels in der Plattenoberfläche aus. Die erfindungsgemäße Batteriekühlplatte ist für Überhitzungsregelung und Taktung geeignet.
  • Die Figuren 3a - 3c zeigen unterschiedliche Darstellungen eines Anschlussblockes gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der Anschlussblock ist geeignet, um den in Fig. 2 gezeigten Kühlkörper an den in Fig. 1 gezeigten Kältemittelkreislauf abzuschließen. Insbesondere ist der Anschlussblock ausgebildet, um das einströmende Kältemittel gleichmäßig auf die mehreren Vorströmungsfluten des Kühlkörpers zu verteilen.
  • Fig. 3a zeigt eine Ansicht des Anschlussblockes mit einer Zuführöffnung 342 und einer Abführöffnung 344. Gemäß diesem Ausführungsbeispiel ist der Anschlussblock quaderförmig ausgebildet und die Zuführöffnung 342 und die Abführöffnung 344 sind nebeneinander auf einer Oberfläche des Anschlussblocks angeordnet. Die Zuführöffnung 342 bildet einen Eintritt und die Abführöffnung 344 bildet einen Austritt für das durch den Kühlkörper strömende Kältemittel. Dazu weist der Anschlussblock Kanäle auf, die ausgebildet sind, um die Zuführöffnung 342 mit der Eintrittsöffnung des Kühlkörpers und die Abführöffnung 344 mit den Austrittsöffnungen des Kühlkörpers zu verbinden. Dazu führen gemäß diesem Ausführungsbeispiel von der Zuführöffnung 342 und der Abführöffnung 344 jeweils Kanäle senkrecht in den Anschlussblock hinein. Der mit der Abführöffnung 344 verbundene Kanal ist mit einem weiteren horizontalen Kanal innerhalb des Anschlussblocks verbunden, um eine Verbindung zu der Mehrzahl der Austrittsöffnungen des Kühlkörpers herzustellen.
  • Fig. 3b zeigt eine Draufsicht auf den in Fig. 3a gezeigten Anschlussblock.
  • Fig. 3c zeigt einen Querschnitt durch den Anschlussblock entlang der in Fig. 3a gezeigten Schnittlinie A-A. Die Abführöffnung 344 weist in einem dem Kühlkörper zugewandten Bereich eine Ausdehnung des Durchmessers auf.
  • Die erfindungsgemäße Vorrichtung zur Kühlung kann zur Kühlung anderer als der beschriebenen Wärmequellen eingesetzt werden. Der Kühlkörper kann in seiner Form an die Wärmequellen angepasst sein. Insbesondere kann eine Oberfläche des Kühlkörpers einer zu kontaktierenden Oberfläche der Wärmequelle nachgebildet sein. Abhängig von der Form des Kühlkörpers kann die Anordnung der Fluten angepasst werden. Dabei wird vorzugsweise eine abwechselnde Anordnung der Vorströmungsfluten und Rückströmungsfluten beibehalten. Die Fluten können in einzelne Gruppen zusammengefasst sein. Insbesondere im Übergangsbereich zwischen zwei Gruppen kann es zu einer Abweichung der abwechselnden Anordnung kommen, so dass vereinzelt zwei Vorströmungsfluten oder zwei Rückströmungsfluten nebeneinander angeordnet sein können. Abhängig von den Gegebenheiten kann auch eine abwechselnde Anordnung von beispielsweise jeweils zwei Vorströmungsfluten und jeweils zwei Rückströmungsfluten möglich sein. Solche Variationen in der abwechselnden Anordnung sind erfindungsgemäß möglich, solange die gewählte abwechselnde Anordnung einen Ausgleich des Temperaturunterschieds zwischen Verdampfungszonen und Überhitzungszonen ermöglicht. Die Eintritts- und Austrittsöffnungen können an anderen Stellen des Kühlkörpers angeordnet werden und in ihrer Anzahl variiert werden. So können mehr als eine Eintrittsöffnung vorgesehen werden oder einzelne Rückströmungsfluten eine gemeinsame Austrittsöffnung aufweisen.
  • Die Fig. 6a bis 6f zeigen ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs. Gemäß Fig. 6e umfasst der Kühlkörper 220 mehrere Platten, namentlich eine Deckplatte 601, eine Kanalplatte 602, eine Zwischenplatte 603, eine Durchlassplatte 604 und eine Bodenplatte 605, die übereinander geschichtet und vorzugsweise verlötet sind und somit den Kühlkörper 220 bilden.
  • Die Platten, die später noch näher beschrieben werden sollen, weisen unter-schiedliche Aussparungen auf, so dass ein Fluid von einer Eintrittsöffnung 232 zu einer Austrittsöffnung 234, die jeweils in der Deckplatte 601 angeordnet ist, führbar ist. Die Aussparungen werden vorzugsweise durch Stanzen oder Lasern hergestellt.
  • Um aus den einzelnen Platten einen Kühlkörper 220 mit Fluten zu erhalten, werden die Platten in folgender Reihenfolge zusammengesetzt:
  • Auf die Deckplatte 601 (Fig. 6b) wird die Kanalplatte 602 (Fig. 6c) gesetzt. Die Kanalplatte weist Aussparungen 222 und 223 auf, die die Vor- und Rückströmungsfluten ähnlich dem Ausführungsbeispiel gemäß Fig. 2 bilden. Die Höhe der Fluten entspricht somit der Dicke der Kanalplatte 602. Zusätzlich weist die Kanalplatte noch Öffnungen 632 und 634a auf, um eine fluidische Verbindung zur Deckplatte 601 beziehungsweise Zwischenplatte 603 herzustellen. Auf die Funktion der Öffnung 634b soll später noch eingegangen werden. Auf die offene Kanalplatte 602 wird nun die Zwischenplatte 603 (Fig. 6d) gestapelt. Durch die Zwischenplatte 603 werden die offenen Fluten in der Kanalplatte abgedeckt. Die Zwischenplatte weist ferner vier Öffnungen 634c und eine Öffnung 634d auf, die eine fluidische Verbindung zur Kanalplatte 602 beziehungsweise Durchlassplatte 604 sicherstellen. In der Durchlassplatte 604 (Fig. 6e) werden die Austritte der Fluten 634a der Kanalplatte durch die Fluten 635 in einem Punkt 636 zusammengefasst. Um die Fluten 635 in der Durchlassplatte 604 zu verschließen, wird auf die Durchlassplatte noch eine weitere Bodenplatte 605 (Fig. 6f) gestapelt. Die Bodenplatte weist vorzugsweise die gleiche Größe wie sämtliche anderen Platten auf, kann jedoch aus Gründen einer Materialersparnis kleiner ausgeführt werden. Zwingend müssen jedoch die Fluten 635 der Durchlassplatte abgedeckt werden.
  • Ein Fluid strömt daher durch die Eintrittsöffnung 232 der Deckplatte 601 in die Kanalplatte 602. Durch die Fluten 222 und 223 wird das Fluid anschließend zu den Öffnungen 634a geleitet und durch die Öffnungen 634c der Zwischenplatte 603 zur Durchlassplatte 604 geführt. Dort erfährt das Fluid in den Fluten 635 eine Umlenkung zu einem gemeinsamen Austrittspunkt 636. Durch die Öffnungen 634d, 634b und 234 wird das Fluid aus dem Kühlkörper 220 geführt.
  • Sämtliche Platten bestehen vorzugsweise aus einem gut wärmeleitenden Material, insbesondere Aluminium.
  • Durch die erfindungsgemäße Lösung werden drei Vorteile vereint. Einerseits können die Platten sehr kostengünstig hergestellt werden. Eine teure Herstellung von Platten mit gefrästen Fluten kann entfallen.
  • Durch die Gestaltung der Fluten in verschiedenen Ebenen ist es möglich, dass sich die Fluten einerseits überschneiden, andererseits kann durch die Zusammenführung der Fluten zu einem Austrittspunkt und somit zu einer Austrittsöffnung 234, der Anschlussblock 301 sehr einfach gestaltet werden (siehe Fig. 7a).
  • Da der Eintritt und Austritt in den Kühlkörper in jeweils einem Punkt erfolgt, ist es nicht mehr zwingend notwendig, einen Anschlussblock für die Anschlussrollre auf dem Kühlkörper anzubringen. Die Rohre können auch direkt während des Lötprozesses mit dem Kühlkörper 220 verlötet werden.
  • Fig. 7b zeigt eine Anschlusssituation für ein Anschlussrohr 701 an einem Kühlkörper 220. Das Rohr weist an einem Ende eine Sicke 702 auf, um eine Positionierung des Rohres sicherzustellen und ein zu weites Eindringen in den Kühlkörper 220 zu verhindern. Um eine Verlegung zwischen Rohr und Kühlkörper zu erreichen, wird zwischen dem Rohr und dem Kühlkörper ein Lotring oder Lotblech 703 eingelegt.
  • In einem weiteren Ausführungsbeispiel kann die Kanalplatte mehrere Platten mit Stegen in den Kanälen, die zur Stabilität der Konstruktion dienen, umfassen. Die Kanalhöhe entspricht dann der Gesamthöhe der einzelnen Platten.
  • Die Figuren 8a, 8c und 8e zeigen weitere Beispiele einer nicht erfindungsgemäßen Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs. Die Figuren 8b und 8d zeigen weitere Ausführungsbeispiele einer erfindungsgemäßen Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs.
  • Im Besonderen ist hierbei ein Ausschnitt 8 eines Kühlkörpers 220 dargestellt, in dem eine besonders homogene Kältemittelverteilung und damit einhergehende Temperaturverteilung an der Oberfläche des Kühlkörpers erreicht wird.
  • Gemäß Fig. 8a wird eine Vorströmungsflut 222 in eine erste Teilflut 222a und eine zweite Teilflut 222b aufgeteilt. Somit wird ein in der Vorströmungsflut fließendes Kältemittel in die beiden Teilfluten gleichmäßig aufgeteilt. Nicht dargestellt sind in Fig. 8a etwaige Ein- und Austrittsöffnungen.
  • Anschließend werden die beiden Teilfluten im "U-Flow" geführt, so dass eine erste Teilflut 222a der Vorströmungsflut eine korrespondierende erste Teilflut 224a einer Rückströmungsflut und eine zweite Teilflut 222b der Vorströmungsflut eine korrespondierende zweite Teilflut 224b der Rückströmungsflut aufweist. Ein Kältemittel strömt daher ausgehend von einer Vorströmungsflut 222 in eine erste Teilflut 222a und anschließend im Gegenstrom in einer ersten Teilflut 224a der Rückströmungsflut. Bevorzugt sind hierbei die erste Teilflut der Vorströmungsflut und die erste Teilflut der Rückströmungsflut gleich lang ausgebildet.
  • Ferner ist aus Fig. 8a ersichtlich, dass die erste Teilflut 222a der Vorströmungsflut unmittelbar benachbart zur zweiten Teilflut 224b der Rückströmungsflut und die zweite Teilflut 222b der Vorströmungsflut unmittelbar benachbart zur ersten Teilflut 224a angeordnet ist. Unter "unmittelbar benachbart" wird verstanden, dass sich zwischen diesen beiden Fluten keine weitere Flut befindet, so dass eine entsprechend gute wärmeleitende Verbindung zwischen den beiden Fluten besteht.
  • Eine derartige Anordnung der Vorströmungsfluten und Rückströmungsfluten in dem Kühlkörper hat prinzipiell zwei entscheidende Vorteile. Erstens wird durch den Ausgleich der Temperaturunterschiede am Eintritt und am Austritt eines Kältemittelstroms eine gleichmäßige Temperaturverteilung im Kühlkörper über die gesamte Länge einer Teilflut erreicht, zweitens gleichen sich inhomogene Kältemittelströme in den einzelnen Teilfluten zwangsläufig aus. Kommt es beispielsweise in der ersten Teilflut der Vorströmungsflut zu einem Anstieg des Druckverlustes und somit zu einem verminderten Kältemittelmassenstrom, so erhöht sich entsprechend der Kältemittelmassenstrom in der zweiten Teilflut der Vorströmungsflut und der korrespondierenden Rückströmungsflut. Da die erste Teilflut der Vorströmungsflut und die zweite Teilflut der Rückströmungsflut unmittelbar nebeneinander liegen, kann durch Wärmeleitung beziehungsweise durch einen direkten Wärmeübertrag der beiden Fluten die Minderleistung der ersten Teilflut durch die Mehrleistung der zweiten Teilflut weitgehend kompensiert werden.
  • Dieses Prinzip der Flutentrennung und die damit einhergehende Aufteilung der Kältemittelströme sind beliebig erweiterbar. Beispielsweise zeigt Fig. 8b eine Aufteilung der Vorströmungsflut 222 in vier Teilfluten 222a-222d und damit korrespondierende Teilfluten 224a-224d der Rückströmungsflut. Jedoch sind je nach Größe des Kühlkörpers auch weitere Aufteilungen auf 8, 16, 32, 64 oder mehr Fluten nach Art einer Kaskadenschaltung denkbar.
  • Je nach Anwendungsfall kann, wie in den Fig. 8a bis 8d dargestellt, der Verzweigungspunkt 9 der Vorströmungsflut außerhalb, innerhalb oder neben dem Verzweigungspunkt 10 der Rückströmungsflut angeordnet sein. Alternativ kann in einem weiteren Ausführungsbeispiel gemäß Fig. 8e der Kühlkörper 220 aus einer ersten Kühlkörpereinheit 220a und einer zweiten Kühlkörpereinheit 220b bestehen, wobei die Anzahl der Kühlkörpereinheiten, die den Kühlkörper bilden, auch größer sein kann.
  • Die Beispiele gemäß den Fig. 8a - 8d sind nicht nur für den Einsatz eines Kältemittels, sondern auch für ein Kühlmittel, beispielsweise ein Gemisch aus Wasser und Glykol, geeignet.

Claims (13)

  1. Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs, mit folgenden Merkmalen:
    einem Kühlkörper (220), der mehrere Vorströmungsfluten (222) und mehrere Rückströmungsfluten (224) aufweist, wobei zumindest eine Mehrzahl der Vorströmungsfluten und Rückströmungsfluten abwechselnd nebeneinanderliegend in dem Kühlkörper angeordnet sind, wobei eine Vorströmungsflut (222) in eine erste Teilflut (222a) und mindestens eine zweite Teilflut (222b) aufgeteilt wird und die erste Teilflut der Vorströmungsflut (222a) unmittelbar benachbart zur der zweiten Teilflut der Vorströmungsflut (222b) korrespondierenden Rückströmungsflut (224b) angeordnet ist und die zweite Teilflut der Vorströmungsflut (222b) unmittelbar benachbart zur der ersten Teilflut der Vorströmungsflut (222a) korrespondierenden Rückströmungsflut (224a) angeordnet ist, dadurch gekennzeichnet, dass die zu der ersten Teilflut der Vorströmungsflut (222a) korrespondierende Rückströmungsflut (224a) und die zu der zweiten Teilflut der Vorströmungsflut (222b) korrespondierende Rückströmungsflut (224b) als getrennte Fluten ausgebildet sind.
  2. Vorrichtung gemäß Anspruch 1, bei der die Vorströmungsfluten (222) und die Rückströmungsfluten (224) so in dem Kühlkörper (220) angeordnet sind, dass zwischen benachbarten Vorströmungsfluten mindestens eine Rückströmungsflut angeordnet ist.
  3. Vorrichtung gemäß einem der vorangegangenen Ansprüche, bei der die Vorströmungsfluten (222) und die Rückströmungsfluten (224) so in dem Kühlkörper (220) angeordnet sind, dass zwischen benachbarten Rückströmungsfluten mindestens eine Vorströmungsflut angeordnet ist.
  4. Vorrichtung gemäß einem der vorangegangenen Ansprüche, bei der der Kühlkörper (220) eine Eintrittsöffnung (232) aufweist, die mit den Vorströmungsfluten (222) verbunden ist und eine oder eine Mehrzahl von Austrittsöffnungen (234) aufweist, die jeweils mit einer der Rückströmungsfluten (224) verbunden sind.
  5. Vorrichtung gemäß einem der vorangegangenen Ansprüche, bei der der Kühlkörper (220) mehrere geschichtete Platten umfasst, wobei zwischen den Platten Fluten (222, 224) gebildet werden und ein Fluid von einer Eintrittsöffnung (232) durch die Fluten (222, 224) zu einer Austrittsöffnung (234) führbar ist.
  6. Vorrichtung gemäß einem der vorangegangenen Ansprüche, bei der der Kühlkörper (220) eine Mehrzahl von Verbindungsstellen (226) aufweist, die ausgebildet sind, um jeweils eine der Vorströmungsfluten (222) mit jeweils einer der Rückströmungsfluten (224) zu verbinden.
  7. Vorrichtung gemäß Anspruch 6, bei der die Mehrzahl der Verbindungsstellen (226) in einer ersten Hälfte des Kühlkörpers (220) und die Eintrittsöffnung (232) und die Mehrzahl der Austrittsöffnungen (234) in einer zweiten Hälfte des Kühlkörpers angeordnet sind, wobei die erste und die zweite Hälfte einander gegenüberliegen.
  8. Vorrichtung gemäß einem der vorangegangenen Ansprüche, die ausgebildet ist, um das Fluid, insbesondere ein Kältemittel , in zumindest teilweise flüssiger Form aufzunehmen und das Fluid, insbesondere ein Kältemittel , in gasförmiger Form abzugeben.
  9. Vorrichtung gemäß einem der Ansprüche 4 bis 8, bei der die Rückströmungsfluten (224) zumindest im Bereich der Austrittsöffnungen (234) jeweils eine Überhitzungszone aufweisen.
  10. Vorrichtung gemäß einem der Ansprüche 4 bis 9, mit einem Anschlussblock (301), der eine Zuführöffnung (342) und eine Abführöffnung (344) aufweist und ausgebildet ist, um die Eintrittsöffnung (232) des Kühlkörpers (220) mit der Zuführöffnung und die eine oder Mehrzahl von Austrittsöffnungen (234) des Kühlkörpers mit der Abführöffnung zu verbinden.
  11. Kältemittelkreislauf für ein Kraftfahrzeug, mit folgenden Merkmalen:
    einer Vorrichtung (102) zur Kühlung gemäß einem der vorangegangenen Ansprüche; und
    einem Verdichter (106), der der Vorrichtung zur Kühlung nachgeschaltet ist.
  12. Kältemittelkreislauf gemäß Anspruch 11, mit einem geregelten Expansionsventil (112) zur Regelung eines Fluidstroms, insbesondere eines Kältemittelstroms, durch den Kühlkörper (220).
  13. Kältemittelkreislauf gemäß Anspruch 12, bei der das geregelte Expansionsventil (112) ausgebildet ist, um den Fluidstrom, insbesondere den Kältemittelstrom, abhängig von einer Temperatur des Kältemittels nach Durchströmen des Kühlkörpers (220) zu regeln.
EP09166272.6A 2008-07-29 2009-07-23 Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs Not-in-force EP2149771B8 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810035400 DE102008035400A1 (de) 2008-07-29 2008-07-29 Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs
DE102008048577 2008-09-23

Publications (3)

Publication Number Publication Date
EP2149771A1 EP2149771A1 (de) 2010-02-03
EP2149771B1 true EP2149771B1 (de) 2016-12-14
EP2149771B8 EP2149771B8 (de) 2017-03-15

Family

ID=41319527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09166272.6A Not-in-force EP2149771B8 (de) 2008-07-29 2009-07-23 Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs

Country Status (4)

Country Link
US (1) US8863543B2 (de)
EP (1) EP2149771B8 (de)
CN (1) CN102112841B (de)
WO (1) WO2010012772A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289752B2 (en) 2016-02-03 2022-03-29 Modine Manufacturing Company Plate assembly for heat exchanger

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1013063B1 (pt) * 2009-05-18 2020-11-17 Huawei Technologies Co., Ltd. dispositivo de propagação de calor de termossifão e método para fabricar um dispositivo de propagação de calor de termossifão
US20110206967A1 (en) * 2010-02-25 2011-08-25 Sanyo Electric Co., Ltd. Battery cooling/heating structure and battery module
DE102010043628A1 (de) * 2010-03-05 2011-09-08 Mahle International Gmbh Kühlelement und Energiespeicher
DE102010002705A1 (de) 2010-03-09 2011-09-15 Behr Gmbh & Co. Kg Kühlvorrichtung
DE102010033188A1 (de) * 2010-08-03 2012-02-09 Rehau Ag + Co. Kühlvorrichtung für einen elektrischen Energiespeicher
KR101189417B1 (ko) * 2010-11-30 2012-10-15 기아자동차주식회사 차량의 온도 조절장치
DE102011000796B4 (de) * 2011-02-17 2023-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Klimatisierungssystem für insbesondere ein Hybridfahrzeug
JP5695988B2 (ja) * 2011-07-04 2015-04-08 日立オートモティブシステムズ株式会社 電池モジュールおよび電源装置
DE202012102349U1 (de) 2011-07-14 2012-07-18 Visteon Global Technologies, Inc. Batteriekühler
DE102011080499A1 (de) 2011-08-05 2013-02-07 Behr Gmbh & Co. Kg Wärmeübertrager für ein Fahrzeug und Verfahren zum Herstellen eines Wärmeübertragers für ein Fahrzeug
US8835039B2 (en) * 2011-10-21 2014-09-16 Avl Powertrain Engineering, Inc. Battery cooling plate and cooling system
JP5788774B2 (ja) * 2011-11-21 2015-10-07 日立オートモティブシステムズ株式会社 冷却装置
DE102012005870A1 (de) * 2012-03-23 2013-09-26 Valeo Klimasysteme Gmbh Kühlvorrichtung für eine Fahrzeugbatterie sowie Fahrzeugbatterie mit Kühlvorrichtung
US10256514B2 (en) * 2012-04-12 2019-04-09 Johnson Controls Technology Llc Air cooled thermal management system for HEV battery pack
DE102013111967A1 (de) * 2013-10-30 2015-04-30 Valeo Klimasysteme Gmbh Kältemittelverteiler für ein Hybrid- oder Elektrofahrzeug sowie Kältemittelkreislauf mit einem Kältemittelverteiler
DE102013225523A1 (de) 2013-12-11 2015-06-11 Bayerische Motoren Werke Aktiengesellschaft Kühlelement
DE102014206770A1 (de) * 2014-04-08 2015-10-08 MAHLE Behr GmbH & Co. KG Batteriekühleinrichtung und zugehöriges Betriebsverfahren
CN205985267U (zh) * 2016-08-24 2017-02-22 上海蔚来汽车有限公司 用于电动汽车动力电池的相变冷却***
US10608305B2 (en) 2017-01-19 2020-03-31 Dana Canada Corporation Counter-flow heat exchanger with in-line fittings
FR3063137B1 (fr) 2017-02-23 2021-05-21 Valeo Systemes Thermiques Echangeur thermique et dispositif de regulation thermique d’au moins un element de stockage d’energie electrique
DE202017107878U1 (de) * 2017-12-22 2019-03-25 Reinz-Dichtungs-Gmbh Plattenartiger Fluidbehälter
JP7380248B2 (ja) 2019-02-26 2023-11-15 株式会社デンソー 冷却システム
WO2020175325A1 (ja) * 2019-02-26 2020-09-03 株式会社デンソー 冷却システム
FR3093357B1 (fr) * 2019-03-01 2021-05-14 Valeo Systemes Thermiques Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
FR3096449B1 (fr) * 2019-05-21 2022-05-20 Valeo Systemes Thermiques Echangeur de chaleur fluide réfrigérant / liquide caloporteur
DE102019212864B3 (de) * 2019-08-27 2020-12-24 Audi Ag Kühlvorrichtung zum Kühlen einer Fahrzeugbatterie, eine Fahrzeugbatterie und ein Kraftfahrzeug mit einer Fahrzeugbatterie
DE102019132827A1 (de) * 2019-12-03 2021-06-10 Yazaki Systems Technologies Gmbh Kühlkörper und elektrisches System
DE102019220406A1 (de) * 2019-12-20 2021-06-24 Hanon Systems Wärmeübertrager und Wärmeübertrageranordnung mit mehreren Wärmeübertragern
WO2022124251A1 (ja) * 2020-12-11 2022-06-16 株式会社ヴァレオジャパン バッテリ冷却装置
DE102021100843A1 (de) 2021-01-18 2022-07-21 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher
CN113108507A (zh) * 2021-03-26 2021-07-13 苏州必信空调有限公司 一种电池冷却与机组一体制冷***
CN113899140B (zh) * 2021-09-23 2023-04-07 迈克医疗电子有限公司 试剂仓及试剂冷藏装置
CN113931729A (zh) * 2021-09-30 2022-01-14 东风商用车有限公司 一种车用可变散热量的散热器、散热***及其使用方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502297A (en) * 1981-12-18 1985-03-05 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co., Kg Evaporator particularly suitable for air conditioners in automotive vehicles
DE4408960C1 (de) * 1994-03-16 1995-04-27 Daimler Benz Ag Vorrichtung zur Kühlung einer Traktionsbatterie
DE19515526C1 (de) 1995-04-27 1996-05-23 Thermal Werke Beteiligungen Gm Flachrohrwärmetauscher mit mindestens zwei Fluten für Kraftfahrzeuge
FR2779872B1 (fr) * 1998-06-11 2000-08-04 Alsthom Cge Alcatel Batterie monobloc comportant un dispositif d'echange thermique par circulation d'un fluide
US6138466A (en) * 1998-11-12 2000-10-31 Daimlerchrysler Corporation System for cooling electric vehicle batteries
JP3441702B2 (ja) * 2000-06-28 2003-09-02 株式会社栗田工業 室内冷暖房システム及び空気循環パネル
US6382310B1 (en) * 2000-08-15 2002-05-07 American Standard International Inc. Stepped heat exchanger coils
JP3818084B2 (ja) * 2000-12-22 2006-09-06 日立電線株式会社 冷却板とその製造方法及びスパッタリングターゲットとその製造方法
DE10065205A1 (de) 2000-12-23 2002-07-04 Behr Gmbh & Co Kältemittel-Kondensator
US7278474B2 (en) * 2001-10-09 2007-10-09 Mikros Manufacturing, Inc. Heat exchanger
FR2830926B1 (fr) * 2001-10-12 2004-04-02 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique pour vehicule automobile, notamment de type electrique ou hybride
US20040038099A1 (en) * 2002-08-21 2004-02-26 General Electric Grc Fluid passages for power generation equipment
DE10253852A1 (de) * 2002-11-19 2004-06-09 Bayer Ag Thermoplastischer Wärmetauscher
US7017654B2 (en) * 2003-03-17 2006-03-28 Cooligy, Inc. Apparatus and method of forming channels in a heat-exchanging device
DE10312780A1 (de) 2003-03-21 2004-11-25 Behr Gmbh & Co. Kg Wärmetauscher
US6991025B2 (en) * 2004-03-17 2006-01-31 Dana Canada Corporation Cross-over rib pair for heat exchanger
DK1856458T3 (da) * 2005-02-18 2011-10-03 Carrier Corp Styring af et kølekredsløb med en intern varmeveksler
DE102006045564A1 (de) * 2006-09-25 2008-04-03 Behr Gmbh & Co. Kg Vorrichtung zur Kühlung elektrischer Elemente
US8240361B2 (en) * 2006-11-02 2012-08-14 The Boeing Company Combined thermal protection and surface temperature control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289752B2 (en) 2016-02-03 2022-03-29 Modine Manufacturing Company Plate assembly for heat exchanger

Also Published As

Publication number Publication date
US8863543B2 (en) 2014-10-21
EP2149771A1 (de) 2010-02-03
US20110174004A1 (en) 2011-07-21
CN102112841B (zh) 2012-12-12
CN102112841A (zh) 2011-06-29
WO2010012772A1 (de) 2010-02-04
EP2149771B8 (de) 2017-03-15

Similar Documents

Publication Publication Date Title
EP2149771B1 (de) Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs
EP2297814B1 (de) Vorrichtung zur kühlung einer fahrzeugbatterie
EP2305497B1 (de) Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs
DE212019000290U1 (de) Wärmemanagementsysteme und Wärmetauscher für eine Batterie-Wärmeanpassung
DE212019000351U1 (de) Wärmetauscher mit Parallelstromelementen zur Verbesserung der Wärmeleitung
EP2780958B1 (de) Batteriesystem mit einem temperierkörper enthaltend einen temperierkanal und einen bypass sowie kraftfahrzeug welches das batteriesystem enthält
DE112012004988T5 (de) Wärmetauscher
DE60317179T2 (de) Beheiztes und gekühltes Lenkrad
WO2017025234A1 (de) Kühlvorrichtung für energiespeicher
DE10238235A1 (de) Elektrochemischer Energiespeicher mit Wärmeaustauscherstruktur und mehreren elektrochemischen Speicherzellen
DE102011084536B4 (de) Kühleinrichtung für einen elektrischen Energiespeicher und Energiespeichervorrichtung
DE102017116984B4 (de) Temperiervorrichtung für eine Temperierung eines Batteriesystems sowie Batteriesystem
DE102015016241B4 (de) Elektrisch angetriebenes Fahrzeug mit einem Kühlsystem
DE102017114330A1 (de) Batterieanordnung und Verfahren zur Kühlung einer Batterieanordnung
WO2018036764A1 (de) Kühlvorrichtung für eine batteriebaugruppe sowie einheit aus einer batteriebaugruppe und einer kühlvorrichtung
EP3328678A1 (de) Traktionsbatterie für ein kraftfahrzeug mit einer kühlvorrichtung
EP3255688B1 (de) Thermoelektrischer generator für abgasanlagen und kontaktelement für einen thermoelektrischen generator
DE102008035400A1 (de) Vorrichtung zur Kühlung einer Wärmequelle eines Kraftfahrzeugs
DE112017001907T5 (de) Energiewiedergewinnungseinheit für den Fahrzeuggebrauch
WO2018158286A1 (de) Heizeinrichtung
DE102018006412A1 (de) Temperiereinheit für eine Batterie
EP3009780B2 (de) Wärmeübertrager
WO2013150477A2 (de) Kühlelement zur anordnung an zumindest einer solarzelle, anordnung aus mehreren kühlelementen sowie solarmodulelement
WO2011110497A2 (de) Kühlvorrichtung
WO2020233732A1 (de) Temperiereinrichtung für einen energiespeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100803

17Q First examination report despatched

Effective date: 20100908

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 3/12 20060101AFI20160609BHEP

Ipc: B60H 1/00 20060101ALI20160609BHEP

INTG Intention to grant announced

Effective date: 20160701

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: HIRSCH, STEFAN

Inventor name: HERRMANN, HANS-GEORG

Inventor name: WIEBELT, ACHIM

Inventor name: SCHMID, CAROLINE

Inventor name: HECKENBERGER, THOMAS

Inventor name: MOHAMED-ALI, JALAL

Inventor name: NEFF, HEIKO

Inventor name: ISERMEYER, TOBIAS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20161108

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RIN2 Information on inventor provided after grant (corrected)

Inventor name: WIEBELT, ACHIM

Inventor name: HECKENBERGER, THOMAS

Inventor name: MOHAMED-ALI, JALAL

Inventor name: JANZEN, CAROLINE

Inventor name: HIRSCH, STEFAN

Inventor name: NEFF, HEIKO

Inventor name: HERRMANN, HANS-GEORG

Inventor name: ISERMEYER, TOBIAS

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RIN2 Information on inventor provided after grant (corrected)

Inventor name: ISERMEYER, TOBIAS

Inventor name: WIEBELT, ACHIM

Inventor name: HIRSCH, STEFAN

Inventor name: HERRMANN, HANS-GEORG

Inventor name: NEFF, HEIKO

Inventor name: HECKENBERGER, THOMAS

Inventor name: JANZEN, CAROLINE

Inventor name: MOHAMED-ALI, JALAL

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 853979

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013465

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R083

Ref document number: 502009013465

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170414

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170314

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170414

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013465

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170723

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170723

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 853979

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180828

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180724

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090723

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220920

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009013465

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: MAHLE BEHR GMBH & CO. KG, 70469 STUTTGART, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009013465

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201