EP2132559B1 - Gas sensor for the measurement of a gas component in a gas mixture - Google Patents

Gas sensor for the measurement of a gas component in a gas mixture Download PDF

Info

Publication number
EP2132559B1
EP2132559B1 EP08708256.6A EP08708256A EP2132559B1 EP 2132559 B1 EP2132559 B1 EP 2132559B1 EP 08708256 A EP08708256 A EP 08708256A EP 2132559 B1 EP2132559 B1 EP 2132559B1
Authority
EP
European Patent Office
Prior art keywords
gas
electrode
gas sensor
inner electrode
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08708256.6A
Other languages
German (de)
French (fr)
Other versions
EP2132559A1 (en
Inventor
Thomas Wahl
Bernd Schumann
Sabine Thiemann-Handler
Berndt Cramer
Helge Schichlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2132559A1 publication Critical patent/EP2132559A1/en
Application granted granted Critical
Publication of EP2132559B1 publication Critical patent/EP2132559B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered

Definitions

  • the invention relates to a gas sensor for measuring a gas component in a gas mixture and its use according to the preamble of the independent claims.
  • gas sensors which enable the determination of gaseous pollutants in the ppm range independently of the temperature of the measuring gas, play a major role here.
  • the determination of the content of nitrogen oxides in combustion exhaust gases is a particular challenge due to the often high oxygen content in exhaust gases.
  • measuring gas entering the sensor is selectively freed of oxygen by means of two electrochemical pumping cells arranged one after the other in the flow direction of the measuring gas and thus the oxygen partial pressure is greatly reduced.
  • the respective pumping electrodes have different potentials, so that the oxygen content of the measuring gas can be gradually reduced without the proportion of nitrogen oxides in the measuring gas being significantly changed.
  • this sensor structure requires a large number of electrical connections for contacting pumping electrodes, measuring electrodes, heating elements, etc.
  • a high number of connections leads to a high outlay with regard to the lead-out of the electrical supply lines from the sensor element during the electrical contacting and the lead-out of the cables from the sensor housing. This results in high material and manufacturing costs as well as an increased quality risk.
  • the document US 2004/0238378 discloses a gas sensor for measuring nitrogen oxides.
  • Deiser known sensor has two pumping cells, which are operated separately.
  • the technical features of the preamble of claim 1 are of the gas sensor, the document US 2004/0238378 is disclosed.
  • the object of the present invention is to provide a gas sensor, which i.a. the determination of nitrogen oxides in combustion exhaust gases allows at the same time low number of required electrical contacts.
  • the gas sensor comprises a sensor element, wherein two electrodes of the sensor element have a common electrical contact.
  • the complex separate contacting of one of the two electrodes can be saved.
  • at least one of the electrodes is preceded by an electrical resistance.
  • the electrical resistance is integrated in a ceramic layer plane of the sensor element, within which the first or the second electrode is formed.
  • the contacting of the electrodes or the integration of the electrical resistance in the electrode lead at least one of the electrodes manufacturing technology done in a simple way.
  • the electrical resistance can be positioned on a large area of the sensor element. This also represents a production-technically satisfactory solution.
  • the gas sensor has only a common electrical contact for the first electrode and for the further electrode, but this electrode lead branched before entering the sensor element of the gas sensor and the sensor element for the first electrode, a first electrode lead and for second electrode has a second electrode lead.
  • the electrical resistance is then assigned within the gas sensor at least one of the electrode leads and therefore does not need to be integrated into the sensor element manufacturing technology.
  • the electrical resistance is made of a metal alloy. If suitable alloys of a platinum metal and / or coin metal are used, the electrical resistance shows only a low heat dependence of its ohmic resistance. In this way, temperature-stable potentials can be realized at the corresponding electrodes.
  • FIG. 1 shows a basic structure of a first embodiment of the present invention.
  • Denoted at 10 is a planar sensor element of an electrochemical gas sensor having, for example, a plurality of oxygen ion conductive solid electrolyte layers 11a, 11b, 11c, 11d and 11e.
  • the solid electrolyte layers 11a, 11c and 11e are embodied as ceramic foils and form a planar ceramic body.
  • the integrated shape of the planar ceramic body of the sensor element 10 is produced by laminating together the functional films printed with ceramic films and then sintering the laminated structure in a conventional manner.
  • Each of the solid electrolyte layers 11a-11e is made of oxygen ion conductive solid electrolyte material such as partially or fully stabilized ZrO 2 with Y 2 O 3 .
  • the solid electrolyte layers 11a-11e may alternatively be replaced, at least in part, with films of alumina at locations where ionic conduction in the solid electrolyte is not important or even undesirable.
  • the sensor element 10 preferably includes, in the layer plane of the ceramic layer 11b, a measurement gas space 13 which is in contact with a gas mixture surrounding the gas sensor via a gas inlet opening 15. Between the gas inlet opening 15 and the measuring gas chamber 13, a diffusion barrier 19, for example of porous ceramic material, is provided in the diffusion direction of the measuring gas, whereby the gas inlet into the measuring gas chamber 13 is limited due to the porous structure of the diffusion barrier 19.
  • a reference gas channel 30 which contains a reference gas atmosphere.
  • the reference gas atmosphere may be, for example, air.
  • the reference gas channel 30 has an opening (not shown) on a side of the sensor element facing away from the measurement gas, which ensures gas exchange with the ambient air.
  • a resistance heating element In the ceramic base body of the sensor element 10 is preferably further embedded, not shown, a resistance heating element.
  • the resistance heating element serves to heat the sensor element 10 to the necessary operating temperature.
  • a first inner electrode 20 and a second inner electrode 24 are provided in the diffusion direction of the measuring gas. These are preferably made of a platinum-gold alloy.
  • an outer electrode 22 On the outer, the gas mixture immediately facing side of the solid electrolyte layer 11a is an outer electrode 22, which may be covered with a porous protective layer, not shown.
  • the electrodes 20, 22 and 24, 22 form a first and a second electrochemical pumping cell. Operation as a pumping cell involves applying a voltage between the electrodes 20, 22 and 24, 22 of the pumping cells, resulting in ion transport between the electrodes 20, 22 and 24, 22, respectively, through the solid electrolyte 11a.
  • the number of "pumped" ions is directly proportional to a pumping current flowing between the electrodes 20, 22 and 24, 22, respectively.
  • the first pumping cell 20, 22 and the second pumping cell 24, 22 are used selectively to regulate the oxygen content of the gas mixture diffusing into the measuring gas space 13.
  • a constant oxygen partial pressure of, for example, 0.1 to 1000 ppm is set in the measuring gas chamber 13. In this case, decomposition of nitrogen oxides or sulfur oxides should be avoided as much as possible despite similar electrochemical behavior.
  • the inner electrodes 20, 24 have different electrical potentials.
  • the first inner electrode 20 has an inferior cathodic potential while the second inner electrode 24 has a higher cathodic potential.
  • the first inner electrode 20 in the flow direction of the gas mixture downstream electrode 24 is still reduced in the gas mixture remaining oxygen due to the applied there higher cathodic potential, whereby there is a change in the concentration of nitrogen or sulfur oxides avoided in the gas mixture.
  • a potential difference is provided, which can be adjusted depending on the remaining oxygen content in the gas mixture. For example, at a high partial pressure of oxygen in the gas mixture, a comparatively high potential difference between the first and second pumping electrodes 20, 24 may be required.
  • the sensor element 10 comprises a further measuring gas space 17, which is separated from the first measuring gas space 13 by a further diffusion barrier 18, preferably in the same layer plane as the measuring gas space 13.
  • a further inner electrode 26 is provided, which forms together with the outer electrode 22 or alternatively with the reference electrode 28, a further electrochemical pumping cell 22, 26 and 28, 26.
  • the further inner electrode 26 is preferably formed of a catalytically active material such as, for example, platinum or an alloy of a plurality of platinum metals.
  • the electrode material for all electrodes in a conventional manner is designed as a cermet to sinter with the ceramic films of the sensor element.
  • the nitrogen or sulfur oxides contained in the gas mixture are electrochemically reduced due to a voltage applied to the other inner electrode 26 cathodic potential and the oxygen ions formed thereby on the further inner electrode 26 are transported to the outer electrode 22 or to the reference electrode 26 where they are oxidized.
  • the nitrogen that also forms in this process diffuses out of the sensor element.
  • the pumping current at the third pumping cell formed from further inner electrode 26 and outer electrode 22 or reference electrode 28 is used to determine the concentration of nitrogen oxides and / or sulfur oxides, since it behaves proportional to the nitrogen oxide concentration or sulfur oxide concentration in the gas mixture.
  • the oxygen pumping current of the first or second pumping cell 20, 22 or 24, 22 can be used to determine the oxygen content in the gas mixture in a comparable manner.
  • the control of the oxygen partial pressure in the sample gas space 13 is preferably carried out with the aid of an additional concentration cell provided in the sensor element.
  • the reference electrode 28 is preferably connected together with the second inner electrode 24 as an electrochemical Nernst or concentration cell.
  • Nernst- or concentration cell is generally understood a two-electrode arrangement in which both electrodes 24, 28 are exposed to different gas concentrations and a difference of the voltage applied to the electrodes 24, 28 potentials is measured. This potential difference allows, according to the Nernst equation, a conclusion about the oxygen concentrations present at the electrodes 24, 28.
  • the pumping voltage at the first and / or second pumping cell 20, 22 or 24, 22 is varied so that a constant potential difference is established between the electrodes 24, 28 of the concentration cell.
  • the adjustment of the pumping potential applied to the first and second inner electrodes 20, 24 can be effected by determining the Nernst potential difference between the second inner electrode 24 and the reference electrode 28.
  • a further alternative is to provide for the determination of the oxygen concentration in the first measuring gas chamber 13, a separate additional, designed as Nemstelektrode inner electrode, which is preferably positioned in the region of the second diffusion barrier 18 and forms an electrochemical concentration cell with the reference electrode 28.
  • the additional inner electrode embodied as a Nernst electrode can also be arranged in the second measuring gas chamber 17, for example, in the flow direction in front of the further inner electrode 26.
  • the first inner electrode 20 and the second inner electrode 24 are contacted via a common electrode feed line 32. Nevertheless, at the inner electrodes 20, 24th To be able to achieve different potentials, the electrode lead 32 in its the first connecting to the second inner electrode region an electrical resistance R k , in FIG. 1 is shown schematically. In this way, part of the voltage applied to the electrode feed line 32 drops across the resistor R k , so that the second inner electrode 24 shows the applied potential, but the first inner electrode 20 has a different, compared to the second inner electrode 24 applied comparatively low Potential.
  • the potential to be invested will be provided via a corresponding, in FIG. 1 only schematically illustrated Sensorauswertescaria 34 set, the voltage sources 34a, 34b and signal detections for current I and voltage U Nernst has.
  • a first form of electrical contacting of first and second inner electrodes 20, 24 is in FIG FIG. 2 shown.
  • the electrode feed line 32 for example, a branch in the region of the second inner electrode 24, wherein by means of a first branch of the branch, the second inner electrode 24 is contacted and a second branch of the branch has the electrical resistance R k and the first inner electrode 20th contacted.
  • the electrical resistance R k is preferably carried out in thick film technology and integrated into the ceramic material of the solid electrolyte layer 11 b. It comprises a resistance conductor track 36 and preferably a ceramic insulation 38, for example of aluminum oxide, to avoid shunts.
  • the electrical resistance R k embodied as a thick-film resistor comprises, for example, a binary or ternary metal alloy as a resistance conductor track 36. Preference is given to alloys of noble metals of the platinum metal group, such as Ru, Rh, Pd, Ir or Pt, and the coinage metal group, such as Au or Ag.
  • the material of the resistance trace 36 further contains ceramic components in an amount greater than 2% by volume.
  • the ohmic resistance of the resulting electrical resistance R k is in the range of 2 to 300 ⁇ at the operating temperature of the sensor element, preferably in the range 10 to 200 ⁇ .
  • the operating temperature of the sensor element is in the range of 650 ° C to 950 ° C.
  • the present embodiment is not limited to the integration of an electrical resistance R k into the ceramic layer plane 11b also containing the inner electrodes 20, 24, 26. Rather, a corresponding electrical resistance R k can be arranged at an arbitrary position within the sensor element 10, for example also in one of the sample gas chambers 13, 17 or on one of the outer surfaces of the sensor element 10. Furthermore, alternatively, the electrical resistance R k may be provided within a housing of the gas sensor, but outside of the sensor element. Although the gas sensor has a common contact for the first and second inner electrodes 20, 24, the corresponding electrode lead branches within the housing of the gas sensor outside the sensor element 10, so that the sensor element 10 in this case for each inner electrode 20, 24th a separate electrode lead, of which at least one comprises a resistor R k .
  • the electrical resistance R k designed as a thick-film resistor is preferably made of a material with a low coefficient of thermal resistance.
  • the resistor from a PTC or NTC material. This would have the advantage that upon intervention in a temperature control or regulation of the sensor element, for example.
  • a temperature window of ⁇ 50 ° C the resistor R k when using a PTC or NTC resistor, a desired higher or lower potential difference between the first and second internal electrode 20, 24, since a change in the sensor temperature would be accompanied by a corresponding change in the electrical resistance of the resistor R k .
  • FIG. 3 A further alternative embodiment of the described sensor element of the gas sensor is shown in FIG. 3 shown.
  • the second inner electrode 24 is arranged in the second measuring gas chamber 17 instead of in the first measuring gas chamber 13. This has the advantage that the regulation of the oxygen pumping current takes place in accordance with the oxygen partial pressure present in the measurement gas to which the further inner electrode 26 is also exposed.
  • the invention is not limited to a common contacting of the first and second inner electrodes 20, 24.
  • the further inner electrode 26 can be connected to the the first and / or the second inner electrode 20, 24 are contacted together by integrating a plurality of electrical resistors R k through a common electrode feed line, so that all electrodes of the sensor element which come into contact with the gas mixture have a common contact.
  • R k electrical resistance
  • gas components of the gas mixture can be determined amperometrically by means of the third pumping cell 26, 22 either by electrochemical reduction or oxidation with a suitable choice of the pumping voltage applied to the third pumping cell 26, 22.
  • reducible gas components can be determined, in the second case oxidizable, such as, for example, ammonia, hydrocarbons or hydrogen. Since the pump voltage applied to the electrodes 26, 22 can also be varied in the short term, it is also possible to determine one or more reducing or oxidizing gas components with a gas sensor alternately one after the other periodically or in short time intervals.

Description

Die Erfindung betrifft einen Gassensor zur Messung einer Gaskomponente in einem Gasgemisch und dessen Verwendung nach dem Oberbegriff der unabhängigen Ansprüche.The invention relates to a gas sensor for measuring a gas component in a gas mixture and its use according to the preamble of the independent claims.

Stand der TechnikState of the art

Im Zuge einer fortschreitenden Umweltgesetzgebmg wächst der Bedarf an Sensoren, mit deren Hilfe auch kleinste Schadstoffmengen zuverlässig bestimmt werden können. Hierbei spielen vor allen Dingen Gassensoren eine große Rolle, die die Bestimmung von gasförmigen Schadstoffen im ppm-Bereich unabhängig von der Temperatur des Messgases ermöglichen. Dabei stellt jedoch insbesondere die Bestimmung des Gehaltes an Stickoxiden in Verbrennungsabgasen aufgrund des oft hohen Sauerstoffanteils in Abgasen eine besondere Herausforderung dar.As environmental legislation progresses, there is a growing need for sensors that can reliably determine even the smallest quantities of pollutants. Above all, gas sensors, which enable the determination of gaseous pollutants in the ppm range independently of the temperature of the measuring gas, play a major role here. However, in particular the determination of the content of nitrogen oxides in combustion exhaust gases is a particular challenge due to the often high oxygen content in exhaust gases.

So ist aus der US 2003/0075441 ein Gassensor zu entnehmen, der u.a. der Bestimmung von Stickoxiden dient. Dessen Funktionsweise ist dem sog. Doppelkammer-Grenzstromprinzip zuzuordnen. Dabei wird in den Sensor eintretendes Messgas mittels zweier in Strömungsrichtung des Messgases hintereinander angeordneter elektrochemischer Pumpzellen selektiv von Sauerstoff befreit und somit der Sauerstoffpartialdruck stark reduziert. Die jeweiligen Pumpelektroden weisen unterschiedliche Potenziale auf, sodass der Sauerstoffgehalt des Messgases stufenweise reduziert werden kann, ohne dass der Anteil an Stickoxiden im Messgas nennenswert verändert wird.So is out of the US 2003/0075441 to take a gas sensor, which serves, among other things, the determination of nitrogen oxides. Its mode of operation is assigned to the so-called double-chamber limit current principle. In this case, measuring gas entering the sensor is selectively freed of oxygen by means of two electrochemical pumping cells arranged one after the other in the flow direction of the measuring gas and thus the oxygen partial pressure is greatly reduced. The respective pumping electrodes have different potentials, so that the oxygen content of the measuring gas can be gradually reduced without the proportion of nitrogen oxides in the measuring gas being significantly changed.

Dieser Sensoraufbau bedingt jedoch eine Vielzahl elektrischer Anschlüsse zur Kontaktierung von Pumpelektroden, Messelektroden, Heizelement etc. Eine hohe Anzahl an Anschlüssen führt jedoch zu einem hohen Aufwand in Bezug auf die Herausführung der elektrischen Zuleitungen aus dem Sensorelement, bei der elektrischen Kontaktierung und der Herausführung der Kabel aus dem Sensorgehäuse. Daraus resultieren hohe Stoff- und Fertigungskosten sowie ein erhöhtes Qualitätsrisiko.However, this sensor structure requires a large number of electrical connections for contacting pumping electrodes, measuring electrodes, heating elements, etc. However, a high number of connections leads to a high outlay with regard to the lead-out of the electrical supply lines from the sensor element during the electrical contacting and the lead-out of the cables from the sensor housing. This results in high material and manufacturing costs as well as an increased quality risk.

Das Dokument US 2004/0238378 offenbart ein Gassensor zur Messung von Stickoxiden. Deiser bekannte Sensor weist zwei Pumpzellen aus, die Separat betrieben werden. Die technischen Merkmale der Präambel des Anspruchs 1 sind vom Gassensor, das im Dokument US 2004/0238378 offenbart ist, bekannt.The document US 2004/0238378 discloses a gas sensor for measuring nitrogen oxides. Deiser known sensor has two pumping cells, which are operated separately. The technical features of the preamble of claim 1 are of the gas sensor, the document US 2004/0238378 is disclosed.

Aufgabe und Vorteile der ErfindungPurpose and advantages of the invention

Aufgabe der vorliegenden Erfindung ist es, einen Gassensor bereitzustellen, der u.a. die Bestimmung von Stickoxiden in Verbrennungsabgasen ermöglicht bei gleichzeitig geringer Anzahl an benötigten elektrischen Kontaktierungen.The object of the present invention is to provide a gas sensor, which i.a. the determination of nitrogen oxides in combustion exhaust gases allows at the same time low number of required electrical contacts.

Der erfindungsgemäße Gassensor mit den kennzeichnenden Merkmalen der unabhängigen Ansprüche löst in vorteilhafter Weise die der Erfindung zugrundeliegende Aufgabe. Dabei umfasst der Gassensor ein Sensorelement, wobei zwei Elektroden des Sensorelementes eine gemeinsame elektrische Kontaktierung aufweisen. Auf diese Weise kann die aufwendige separate Kontaktierung einer der beiden Elektroden eingespart werden. Um dennoch unterschiedliche Potentiale an den betreffenden Elektroden realisieren zu können, ist mindestens einer der Elektroden ein elektrischer Widerstand vorgeschaltet.The gas sensor according to the invention with the characterizing features of the independent claims solves the problem underlying the invention in an advantageous manner. In this case, the gas sensor comprises a sensor element, wherein two electrodes of the sensor element have a common electrical contact. In this way, the complex separate contacting of one of the two electrodes can be saved. In order nevertheless to be able to realize different potentials at the respective electrodes, at least one of the electrodes is preceded by an electrical resistance.

Weitere vorteilhafte Ausführungsformen der vorliegenden Vorrichtung ergeben sich aus den Unteransprüchen.Further advantageous embodiments of the present device will become apparent from the dependent claims.

Weiterhin ist von Vorteil, wenn der elektrische Widerstand in eine keramische Schichtebene des Sensorelementes integriert ist, innerhalb der die erste bzw. die zweite Elektrode ausgebildet ist. Auf diese Weise kann die Kontaktierung der Elektroden bzw. die Integration des elektrischen Widerstandes in die Elektrodenzuleitung mindestens einer der Elektroden fertigungstechnisch auf einfache Weise erfolgen. Alternativ kann der elektrische Widerstand auf einer Großfläche des Sensorelementes positioniert werden. Auch dies stellt eine fertigungstechnisch befriedigende Lösung dar.Furthermore, it is advantageous if the electrical resistance is integrated in a ceramic layer plane of the sensor element, within which the first or the second electrode is formed. In this way, the contacting of the electrodes or the integration of the electrical resistance in the electrode lead at least one of the electrodes manufacturing technology done in a simple way. Alternatively, the electrical resistance can be positioned on a large area of the sensor element. This also represents a production-technically satisfactory solution.

Besonders vorteilhaft ist, wenn der Gassensor zwar nur eine gemeinsame elektrische Kontaktierung für die erste Elektrode und für die weitere Elektrode aufweist, diese Elektrodenzuleitung sich jedoch noch vor Eintritt in das Sensorelement des Gassensors verzweigt und das Sensorelement für die erste Elektrode eine erste Elektrodenzuleitung und für die zweite Elektrode eine zweite Elektrodenzuleitung aufweist. Der elektrische Widerstand wird dann innerhalb des Gassensors mindestens einer der Elektrodenzuleitungen zugeordnet und muss daher fertigungstechnisch nicht in das Sensorelement integriert werden.It is particularly advantageous if the gas sensor has only a common electrical contact for the first electrode and for the further electrode, but this electrode lead branched before entering the sensor element of the gas sensor and the sensor element for the first electrode, a first electrode lead and for second electrode has a second electrode lead. The electrical resistance is then assigned within the gas sensor at least one of the electrode leads and therefore does not need to be integrated into the sensor element manufacturing technology.

Besonders vorteilhaft ist weiterhin, wenn der elektrische Widerstand aus einer Metalllegierung ausgeführt ist. Werden dabei geeignete Legierungen eines Platinmetalls und/oder Münzmetalls herangezogen, so zeigt der elektrische Widerstand nur eine geringe Wärmeabhängigkeit seines ohmschen Widerstandes. Auf diese Weise können temperaturstabile Potenziale an den entsprechenden Elektroden realisiert werden.It is furthermore particularly advantageous if the electrical resistance is made of a metal alloy. If suitable alloys of a platinum metal and / or coin metal are used, the electrical resistance shows only a low heat dependence of its ohmic resistance. In this way, temperature-stable potentials can be realized at the corresponding electrodes.

Ausführungsbeispieleembodiments

Die Erfindung wird anhand der Zeichnungen und der nachfolgenden, darauf Bezug nehmenden Beschreibung näher erläutert. Es zeigt

  • Figur 1: einen schematischen Längsschnitt durch das Sensorelement eines Gassensors gemäß einem ersten Ausführungsbeispiel,
  • Figur 2: einen Querschnitt des in Figur 1 dargestellten Sensorelementes entlang der Schnittlinie A---A und
  • Figur 3: einen Querschnitt eines Sensorelementes gemäß einem zweiten Ausführungsbeispiels entlang der Schnittlinie A---A.
The invention will be explained in more detail with reference to the drawings and the following description taken in conjunction therewith. It shows
  • FIG. 1 FIG. 2 shows a schematic longitudinal section through the sensor element of a gas sensor according to a first exemplary embodiment, FIG.
  • FIG. 2 : a cross section of the in FIG. 1 shown sensor element along the section line A --- A and
  • FIG. 3 FIG. 2: a cross-section of a sensor element according to a second embodiment along the section line A --- A. FIG.

Die in den Figuren 1 bis 3 verwendeten Bezugszeichen bezeichnen, soweit nicht anders angegeben, stets funktionsgleiche Baukomponenten eines Sensorelements.The in the FIGS. 1 to 3 Unless stated otherwise, reference symbols used always denote functionally identical structural components of a sensor element.

Figur 1 zeigt einen prinzipiellen Aufbau einer ersten Ausführungsform der vorliegenden Erfindung. Mit 10 ist ein planares Sensorelement eines elektrochemischen Gassensors bezeichnet, das beispielsweise eine Mehrzahl von sauerstoffionenleitenden Festelektrolytschichten 11a, 11b, 11c, 11d und 11e aufweist. Die Festelektrolytschichten 11a, 11c und 11e werden dabei als keramische Folien ausgeführt und bilden einen planaren keramischen Körper. Die integrierte Form des planaren keramischen Körpers des Sensorelements 10 wird durch Zusammenlaminieren der mit Funktionsschichten bedruckten keramischen Folien und anschließendem Sintern der laminierten Struktur in an sich bekannter Weise hergestellt. Jede der Festelektrolytschichten 11a-11e ist aus sauerstoffionenleitendem Festelektrolytmaterial, wie beispielsweise mit Y2O3 teil- oder vollstabilisiertem ZrO2 ausgeführt. Die Festelektrolytschichten 11a-11e können alternativ zumindest teilweise an Stellen, an denen eine Ionenleitung im Festelektrolyt nicht wichtig oder sogar unerwünscht ist, durch Folien aus Aluminiumoxid ersetzt werden. FIG. 1 shows a basic structure of a first embodiment of the present invention. Denoted at 10 is a planar sensor element of an electrochemical gas sensor having, for example, a plurality of oxygen ion conductive solid electrolyte layers 11a, 11b, 11c, 11d and 11e. The solid electrolyte layers 11a, 11c and 11e are embodied as ceramic foils and form a planar ceramic body. The integrated shape of the planar ceramic body of the sensor element 10 is produced by laminating together the functional films printed with ceramic films and then sintering the laminated structure in a conventional manner. Each of the solid electrolyte layers 11a-11e is made of oxygen ion conductive solid electrolyte material such as partially or fully stabilized ZrO 2 with Y 2 O 3 . The solid electrolyte layers 11a-11e may alternatively be replaced, at least in part, with films of alumina at locations where ionic conduction in the solid electrolyte is not important or even undesirable.

Das Sensorelement 10 beinhaltet vorzugsweise in der Schichtebene der keramischen Schicht 11b einen Messgasraum 13, der über eine Gaseintrittsöffnung 15 in Kontakt mit einem den Gassensor umgebenden Gasgemisch steht. Zwischen der Gaseintrittsöffnung 15 und dem Messgasraum 13 ist in Diffusionsrichtung des Messgases eine Diffusionsbarriere 19 beispielsweise aus porösem keramischem Material vorgesehen, wodurch der Gaszutritt in den Messgasraum 13 aufgrund der porösen Struktur der Diffusionsbarriere 19 limitiert ist.The sensor element 10 preferably includes, in the layer plane of the ceramic layer 11b, a measurement gas space 13 which is in contact with a gas mixture surrounding the gas sensor via a gas inlet opening 15. Between the gas inlet opening 15 and the measuring gas chamber 13, a diffusion barrier 19, for example of porous ceramic material, is provided in the diffusion direction of the measuring gas, whereby the gas inlet into the measuring gas chamber 13 is limited due to the porous structure of the diffusion barrier 19.

In einer weiteren Schichtebene der keramischen Schicht 11d des Sensorelements ist ein Referenzgaskanal 30 ausgebildet, der eine Referenzgasatmosphäre enthält. Die Referenzgasatmosphäre kann beispielsweise Luft sein. Der Referenzgaskanal 30 weist dazu an einer dem Messgas abgewandten Seite des Sensorelements eine nicht dargestellte Öffnung auf, die den Gasaustausch mit der Umgebungsluft gewährleistet.In a further layer plane of the ceramic layer 11d of the sensor element, a reference gas channel 30 is formed, which contains a reference gas atmosphere. The reference gas atmosphere may be, for example, air. For this purpose, the reference gas channel 30 has an opening (not shown) on a side of the sensor element facing away from the measurement gas, which ensures gas exchange with the ambient air.

In den keramischen Grundkörper des Sensorelements 10 ist vorzugsweise ferner ein nicht dargestelltes Widerstandsheizelement eingebettet. Das Widerstandsheizelement dient dem Aufheizen des Sensorelements 10 auf die notwendige Betriebstemperatur.In the ceramic base body of the sensor element 10 is preferably further embedded, not shown, a resistance heating element. The resistance heating element serves to heat the sensor element 10 to the necessary operating temperature.

Im ersten Messgasraum 13 ist in Diffusionsrichtung des Messgases eine erste innere Elektrode 20 und eine zweite innere Elektrode 24 vorgesehen. Diese sind vorzugsweise aus einer Platin-Gold-Legierung ausgeführt. An der äußeren, dem Gasgemisch unmittelbar zugewandten Seite der Festelektrolytschicht 11a befindet sich eine äußere Elektrode 22, die mit einer nicht dargestellten porösen Schutzschicht bedeckt sein kann. Die Elektroden 20, 22 bzw. 24, 22 bilden eine erste und eine zweite elektrochemische Pumpzelle. Die Betriebsweise als Pumpzelle umfasst das Anlegen einer Spannung zwischen den Elektroden 20, 22 bzw. 24, 22 der Pumpzellen, woraus ein Ionentransport zwischen den Elektroden 20, 22 bzw. 24, 22 durch den Festelektrolyten 11a hindurch resultiert. Die Zahl der "gepumpten" Ionen ist direkt proportional zu einem zwischen den Elektroden 20, 22 bzw. 24, 22 fließenden Pumpstrom.In the first measuring gas chamber 13, a first inner electrode 20 and a second inner electrode 24 are provided in the diffusion direction of the measuring gas. These are preferably made of a platinum-gold alloy. On the outer, the gas mixture immediately facing side of the solid electrolyte layer 11a is an outer electrode 22, which may be covered with a porous protective layer, not shown. The electrodes 20, 22 and 24, 22 form a first and a second electrochemical pumping cell. Operation as a pumping cell involves applying a voltage between the electrodes 20, 22 and 24, 22 of the pumping cells, resulting in ion transport between the electrodes 20, 22 and 24, 22, respectively, through the solid electrolyte 11a. The number of "pumped" ions is directly proportional to a pumping current flowing between the electrodes 20, 22 and 24, 22, respectively.

Für den Betrieb des Sensorelements 10 als Gassensor werden die erste Pumpzelle 20, 22 und die zweite Pumpzelle 24, 22 selektiv zur Regulierung des Sauerstoffanteils des in den Messgasraum 13 eindiffundierenden Gasgemischs herangezogen. Durch Zu- oder Abpumpen von Sauerstoff wird im Messgasraum 13 ein konstanter Sauerstoffpartialdruck von beispielsweise 0.1 bis 1000 ppm eingestellt. Dabei sollte eine Zersetzung von Stick- oder Schwefeloxiden trotz ähnlichem elektrochemischem Verhalten derselben möglichst unterbleiben.For the operation of the sensor element 10 as a gas sensor, the first pumping cell 20, 22 and the second pumping cell 24, 22 are used selectively to regulate the oxygen content of the gas mixture diffusing into the measuring gas space 13. By pumping or pumping oxygen, a constant oxygen partial pressure of, for example, 0.1 to 1000 ppm is set in the measuring gas chamber 13. In this case, decomposition of nitrogen oxides or sulfur oxides should be avoided as much as possible despite similar electrochemical behavior.

Zu diesem Zweck weisen die inneren Elektroden 20, 24 unterschiedliche elektrische Potenziale auf. So weist die erste innere Elektrode 20 ein vom Betrag her geringeres kathodisches Potenzial auf, während hingegen die zweite innere Elektrode 24 ein höheres kathodisches Potenzial aufweist. Auf diese Wiese ist gewährleistet, dass im Bereich der ersten inneren Elektrode 20 ein Großteil des im Gasgemisch enthaltenen Sauerstoffs entfernt wird, wobei der Anteil an entfernten Stickoxiden aufgrund des relativ geringen elektrischen Potenzials der ersten inneren Elektrode 20 auf ein Minimum beschränkt werden kann. An der zweiten inneren, der ersten inneren Elektrode 20 in Strömungsrichtung des Gasgemischs nachgeordneten Elektrode 24 wird dann noch im Gasgemisch verbliebener Sauerstoff aufgrund des dort anliegenden höheren kathodischen Potenzials reduziert, wobei auch dort eine Veränderung der Konzentration an Stick- oder Schwefeloxiden im Gasgemisch vermieden wird. Somit ist grundsätzlich zwischen erster und zweiter innerer Elektrode 20, 24 eine Potentialdifferenz vorgesehen, die in Abhängigkeit vom verbliebenen Sauerstoffgehalt im Gasgemisch eingestellt werden kann. So kann bspw. bei einem großen Partialdruck an Sauerstoff im Gasgemisch eine vergleichsweise hohe Potenzialdifferenz zwischen erster und zweiter Pumpelektrode 20, 24 erforderlich sein.For this purpose, the inner electrodes 20, 24 have different electrical potentials. Thus, the first inner electrode 20 has an inferior cathodic potential while the second inner electrode 24 has a higher cathodic potential. In this way it is ensured that in the region of the first inner electrode 20, a large part of the oxygen contained in the gas mixture is removed, wherein the proportion of removed nitrogen oxides due to the relatively low electrical potential of the first inner electrode 20 can be minimized. At the second inner, the first inner electrode 20 in the flow direction of the gas mixture downstream electrode 24 is still reduced in the gas mixture remaining oxygen due to the applied there higher cathodic potential, whereby there is a change in the concentration of nitrogen or sulfur oxides avoided in the gas mixture. Thus, in principle between the first and second inner electrode 20, 24, a potential difference is provided, which can be adjusted depending on the remaining oxygen content in the gas mixture. For example, at a high partial pressure of oxygen in the gas mixture, a comparatively high potential difference between the first and second pumping electrodes 20, 24 may be required.

Weiterhin umfasst das Sensorelement 10 einen weiteren Messgasraum 17, der durch eine weitere Diffusionsbarriere 18 von dem ersten Messgasraum 13 separiert vorzugsweise in der selben Schichtebene wie der Messgasraum 13 ausgebildet ist. In diesem ist eine weitere innere Elektrode 26 vorgesehen, die zusammen mit der äußeren Elektrode 22 oder alternativ mit der Referenzelektrode 28 eine weitere elektrochemische Pumpzelle 22, 26 bzw. 28, 26 bildet. Die weitere innere Elektrode 26 ist dabei vorzugsweise aus einem katalytisch aktiven Material wie bspw. Platin oder einer Legierung mehrerer Platinmetalle ausgebildet. Dabei ist das Elektrodenmaterial für alle Elektroden in an sich bekannter Weise als Cermet ausgeführt, um mit den keramischen Folien des Sensorelementes zu versintern.Furthermore, the sensor element 10 comprises a further measuring gas space 17, which is separated from the first measuring gas space 13 by a further diffusion barrier 18, preferably in the same layer plane as the measuring gas space 13. In this, a further inner electrode 26 is provided, which forms together with the outer electrode 22 or alternatively with the reference electrode 28, a further electrochemical pumping cell 22, 26 and 28, 26. The further inner electrode 26 is preferably formed of a catalytically active material such as, for example, platinum or an alloy of a plurality of platinum metals. In this case, the electrode material for all electrodes in a conventional manner is designed as a cermet to sinter with the ceramic films of the sensor element.

Das mittels der ersten und der zweiten elektrochemischen Pumpzelle weitgehend von Sauerstoff befreite Gasgemisch strömt durch die weitere Diffusionsbarriere 18 in den weiteren Messgasraum 17. Dort werden die im Gasgemisch enthaltenen Stick- oder Schwefeloxide aufgrund eines an der weiteren inneren Elektrode 26 anliegenden kathodischen Potenzials elektrochemisch reduziert und die dabei an der weiteren inneren Elektrode 26 entstehenden Sauerstoffionen zur äußeren Elektrode 22 bzw. zur Referenzelektrode 26 transportiert und dort oxidiert. Der bei diesem Prozess ebenfalls entstehende Stickstoff diffundiert aus dem Sensorelement. Der Pumpstrom an der aus weiterer innerer Elektrode 26 und äußerer Elektrode 22 bzw. Referenzelektrode 28 gebildeten dritten Pumpzelle wird zur Bestimmung der Konzentration an Stick- und/oder Schwefeloxiden verwendet, da er sich verfahrensbedingt proportional zur Stick- bzw. Schwefeloxidkonzentration im Gasgemisch verhält. Darüber hinaus kann in vergleichbarer Weise der Sauerstoff-Pumpstrom der ersten oder zweiten Pumpzelle 20, 22 bzw. 24, 22 zur Bestimmung des Sauerstoffgehaltes im Gasgemisch herangezogen werden. Die Kontrolle des Sauerstoffpartialdrucks im Messgasraum 13 erfolgt vorzugsweise mit Hilfe einer im Sensorelement vorgesehenen zusätzlichen Konzentrationszelle. Dazu wird vorzugsweise die Referenzelektrode 28 zusammen mit der zweiten inneren Elektrode 24 als elektrochemische Nernst- oder Konzentrationszelle geschaltet. Unter einer Nernst- oder Konzentrationszelle wird allgemein eine Zweielektrodenanordnung verstanden, bei der beide Elektroden 24, 28 unterschiedlichen Gaskonzentrationen ausgesetzt sind und eine Differenz der an den Elektroden 24, 28 anliegenden Potentiale gemessen wird. Diese Potentialdifferenz lässt gemäß der Nernst'schen Gleichung einen Rückschluss auf die an den Elektroden 24, 28 anliegenden Sauerstoffkonzentrationen zu. Dabei wird die Pumpspannung an der ersten und/oder zweiten Pumpzelle 20, 22 bzw. 24, 22 so variiert, dass sich zwischen den Elektroden 24, 28 der Konzentrationszelle eine konstante Potentialdifferenz einstellt.The largely free of oxygen by means of the first and the second electrochemical pumping cell gas mixture flows through the further diffusion barrier 18 in the other measuring gas space 17. There, the nitrogen or sulfur oxides contained in the gas mixture are electrochemically reduced due to a voltage applied to the other inner electrode 26 cathodic potential and the oxygen ions formed thereby on the further inner electrode 26 are transported to the outer electrode 22 or to the reference electrode 26 where they are oxidized. The nitrogen that also forms in this process diffuses out of the sensor element. The pumping current at the third pumping cell formed from further inner electrode 26 and outer electrode 22 or reference electrode 28 is used to determine the concentration of nitrogen oxides and / or sulfur oxides, since it behaves proportional to the nitrogen oxide concentration or sulfur oxide concentration in the gas mixture. In addition, the oxygen pumping current of the first or second pumping cell 20, 22 or 24, 22 can be used to determine the oxygen content in the gas mixture in a comparable manner. The control of the oxygen partial pressure in the sample gas space 13 is preferably carried out with the aid of an additional concentration cell provided in the sensor element. For this purpose, the reference electrode 28 is preferably connected together with the second inner electrode 24 as an electrochemical Nernst or concentration cell. Under a Nernst- or concentration cell is generally understood a two-electrode arrangement in which both electrodes 24, 28 are exposed to different gas concentrations and a difference of the voltage applied to the electrodes 24, 28 potentials is measured. This potential difference allows, according to the Nernst equation, a conclusion about the oxygen concentrations present at the electrodes 24, 28. In this case, the pumping voltage at the first and / or second pumping cell 20, 22 or 24, 22 is varied so that a constant potential difference is established between the electrodes 24, 28 of the concentration cell.

Alternativ kann die Einstellung des an der ersten bzw. zweiten inneren Elektrode 20, 24 anliegenden Pumppotenzials über eine Bestimmung der Nernstpotenzialdifferenz zwischen der zweiten inneren Elektrode 24 und der Referenzelektrode 28 erfolgen. Eine weitere Alternative besteht darin, für die Bestimmung der Sauerstoffkonzentration im ersten Messgasraum 13 eine separate zusätzliche, als Nemstelektrode ausgeführte innere Elektrode vorzusehen, die vorzugsweise im Bereich der zweiten Diffusionsbarriere 18 positioniert ist und mit der Referenzelektrode 28 eine elektrochemische Konzentrationszelle bildet. Die als Nernstelektrode ausgeführte zusätzliche innere Elektrode kann auch im zweiten Messgasraum 17 bspw. in Strömungsrichtung vor der weiteren inneren Elektrode 26 angeordnet sein.Alternatively, the adjustment of the pumping potential applied to the first and second inner electrodes 20, 24 can be effected by determining the Nernst potential difference between the second inner electrode 24 and the reference electrode 28. A further alternative is to provide for the determination of the oxygen concentration in the first measuring gas chamber 13, a separate additional, designed as Nemstelektrode inner electrode, which is preferably positioned in the region of the second diffusion barrier 18 and forms an electrochemical concentration cell with the reference electrode 28. The additional inner electrode embodied as a Nernst electrode can also be arranged in the second measuring gas chamber 17, for example, in the flow direction in front of the further inner electrode 26.

Aufgrund der Existenz zahlreicher Elektroden und des integrierten Heizelementes ist zunächst eine Vielzahl elektrischer Anschlüsse notwendig. Eine hohe Anzahl an Anschlüssen führt jedoch zu einem hohen Aufwand bei der Herausführung der betreffenden elektrischen Zuleitungen aus dem Sensorelement, bei der elektrischen Kontaktierung derselben in dem zugehörigen Gassensor sowie bei der Herausführung der Kabel aus dem Sensorgehäuse des Gassensors.Due to the existence of numerous electrodes and the integrated heating element, a large number of electrical connections is first necessary. However, a high number of terminals leads to a high cost in the lead out of the relevant electrical leads from the sensor element, in the electrical contacting of the same in the associated gas sensor and in the lead out of the cable from the sensor housing of the gas sensor.

Um eine Reduzierung der Anzahl der benötigten elektrischen Anschlüsse zu erreichen, werden die erste innere Elektrode 20 und die zweite innere Elektrode 24 über eine gemeinsame Elektrodenzuleitung 32 kontaktiert. Um dennoch an den inneren Elektroden 20, 24 unterschiedliche Potenziale erzielen zu können, weist die Elektrodenzuleitung 32 in ihrem die erst mit der zweiten inneren Elektrode verbindenden Bereich einen elektrischen Widerstand Rk auf, der in Figur 1 schematisch dargestellt ist. Auf diese Weise fällt ein Teil der an der Elektrodenzuleitung 32 anliegenden Spannung am Widerstand Rk ab, sodass die zweite innere Elektrode 24 das angelegte Potenzial zeigt, die erste innere Elektrode 20 jedoch ein abweichendes, gegenüber dem an der zweiten inneren Elektrode 24 anliegenden vergleichsweise niedriges Potenzial. Das anzulegende Potenzial wird über eine entsprechende, in Figur 1 nur schematisch dargestellte Sensorauswerteschaltung 34 eingestellt, die Spannungsquellen 34a, 34b sowie Signalerfassungen für Stromstärke I und Spannung UNernst aufweist.In order to achieve a reduction in the number of required electrical connections, the first inner electrode 20 and the second inner electrode 24 are contacted via a common electrode feed line 32. Nevertheless, at the inner electrodes 20, 24th To be able to achieve different potentials, the electrode lead 32 in its the first connecting to the second inner electrode region an electrical resistance R k , in FIG. 1 is shown schematically. In this way, part of the voltage applied to the electrode feed line 32 drops across the resistor R k , so that the second inner electrode 24 shows the applied potential, but the first inner electrode 20 has a different, compared to the second inner electrode 24 applied comparatively low Potential. The potential to be invested will be provided via a corresponding, in FIG. 1 only schematically illustrated Sensorauswerteschaltung 34 set, the voltage sources 34a, 34b and signal detections for current I and voltage U Nernst has.

Eine erste Form der elektrischen Kontaktierung von erster und zweiter innerer Elektrode 20, 24 ist in Figur 2 dargestellt. Dabei weist die Elektrodenzuleitung 32 bspw. eine Verzweigung im Bereich der zweiten inneren Elektrode 24 auf, wobei mittels eines ersten Astes der Verzweigung die zweite innere Elektrode 24 kontaktiert wird und ein zweiter Ast der Verzweigung den elektrischen Widerstand Rk aufweist und die erste innere Elektrode 20 kontaktiert. Der elektrische Widerstand Rk ist dabei bevorzugt in Dickschichttechnik ausgeführt und in das keramische Material der Festelektrolytschicht 11b integriert. Er umfasst eine Widerstandsleiterbahn 36 sowie vorzugsweise eine keramische Isolation 38 beispielsweise aus Aluminiumoxid zur Vermeidung von Nebenschlüssen. Der als Dickschichtwiderstand ausgeführte elektrische Widerstand Rk umfasst als Widerstandsleiterbahn 36 bspw. eine binäre oder ternäre Metalllegierung. Dabei kommen bevorzugt Legierungen von Edelmetallen der Platinmetallgruppe wie Ru, Rh, Pd, Ir oder Pt sowie der Münzmetallgruppe wie Au oder Ag in Betracht. Das Material der Widerstandsleiterbahn 36 enthält ferner keramische Komponenten zu einem Anteil größer als 2 Volumen%. Dabei liegt der ohmsche Widerstand des resultierenden elektrischen Widerstandes Rk im Bereich von 2 bis 300 Ω bei Betriebstemperatur des Sensorelements, bevorzugt im Bereich 10 bis 200 Ω. Die Betriebstemperatur des Sensorelementes liegt im Bereich von 650 °C bis 950 °C.A first form of electrical contacting of first and second inner electrodes 20, 24 is in FIG FIG. 2 shown. In this case, the electrode feed line 32, for example, a branch in the region of the second inner electrode 24, wherein by means of a first branch of the branch, the second inner electrode 24 is contacted and a second branch of the branch has the electrical resistance R k and the first inner electrode 20th contacted. The electrical resistance R k is preferably carried out in thick film technology and integrated into the ceramic material of the solid electrolyte layer 11 b. It comprises a resistance conductor track 36 and preferably a ceramic insulation 38, for example of aluminum oxide, to avoid shunts. The electrical resistance R k embodied as a thick-film resistor comprises, for example, a binary or ternary metal alloy as a resistance conductor track 36. Preference is given to alloys of noble metals of the platinum metal group, such as Ru, Rh, Pd, Ir or Pt, and the coinage metal group, such as Au or Ag. The material of the resistance trace 36 further contains ceramic components in an amount greater than 2% by volume. In this case, the ohmic resistance of the resulting electrical resistance R k is in the range of 2 to 300 Ω at the operating temperature of the sensor element, preferably in the range 10 to 200 Ω. The operating temperature of the sensor element is in the range of 650 ° C to 950 ° C.

Die vorliegende Ausführungsform ist jedoch nicht auf die Integration eines elektrischen Widerstandes Rk in die auch die inneren Elektroden 20, 24, 26 enthaltende keramische Schichtebene 11b beschränkt. Vielmehr kann ein entsprechender elektrischer Widerstand Rk an einer beliebigen Position innerhalb des Sensorelementes 10 angeordnet sein, bspw. auch in einem der Messgasräume 13, 17 oder auf der einer der Außenflächen des Sensorelementes 10. Weiterhin kann alternativ der elektrische Widerstand Rk zwar innerhalb eines Gehäuses des Gassensors, jedoch außerhalb des Sensorelementes vorgesehen werden. Dabei weist der Gassensor zwar eine gemeinsame Kontaktierung für die erste und zweite innere Elektrode 20, 24 auf, die entsprechende Elektrodenzuleitung verzweigt sich jedoch innerhalb des Gehäuses des Gassensors außerhalb des Sensorelementes 10, sodass das Sensorelement 10 in diesem Fall für jede innere Elektrode 20, 24 eine separate Elektrodenzuleitung aufweist, von der mindestens eine einen Widerstand Rk umfasst.However, the present embodiment is not limited to the integration of an electrical resistance R k into the ceramic layer plane 11b also containing the inner electrodes 20, 24, 26. Rather, a corresponding electrical resistance R k can be arranged at an arbitrary position within the sensor element 10, for example also in one of the sample gas chambers 13, 17 or on one of the outer surfaces of the sensor element 10. Furthermore, alternatively, the electrical resistance R k may be provided within a housing of the gas sensor, but outside of the sensor element. Although the gas sensor has a common contact for the first and second inner electrodes 20, 24, the corresponding electrode lead branches within the housing of the gas sensor outside the sensor element 10, so that the sensor element 10 in this case for each inner electrode 20, 24th a separate electrode lead, of which at least one comprises a resistor R k .

Um einen möglichst gleichmäßigen Widerstand des elektrischen Widerstandes Rk mit geringer Temperaturabhängigkeit zu gewährleisten, wird der als Dickschichtwiderstand ausgeführte elektrische Widerstand Rk vorzugsweise aus einem Material mit geringem thermischen Widerstandskoeffizienten ausgeführt.In order to ensure the most uniform possible resistance of the electrical resistance R k with a low temperature dependence, the electrical resistance R k designed as a thick-film resistor is preferably made of a material with a low coefficient of thermal resistance.

Ist jedoch eine gewisse Variabilität des zwischen erster und zweiter innere Elektrode anliegenden Potenzialunterschieds vorgesehen, so besteht alternativ die Möglichkeit, den Widerstand aus einem PTC- oder NTC-Material auszuführen. Dies hätte den Vorteil, dass bei Eingriff in eine Temperaturführung bzw. -regelung des Sensorelementes bspw. innerhalb eines Temperaturfensters von ±50 °C, der Widerstand Rk bei Verwendung eines PTC bzw. NTC-Widerstandes eine erwünscht höhere bzw. niedrigere Potenzialdifferenz zwischen erster und zweiter innerer Elektrode 20, 24 ermöglichen würde, da mit einer Veränderung der Sensortemperatur eine entsprechende Veränderung des elektrischen Widerstandes des Widerstandes Rk einhergehen würde.However, if a certain variability of the potential difference applied between the first and second inner electrodes is provided, it is alternatively possible to design the resistor from a PTC or NTC material. This would have the advantage that upon intervention in a temperature control or regulation of the sensor element, for example. Within a temperature window of ± 50 ° C, the resistor R k when using a PTC or NTC resistor, a desired higher or lower potential difference between the first and second internal electrode 20, 24, since a change in the sensor temperature would be accompanied by a corresponding change in the electrical resistance of the resistor R k .

Eine weitere alternative Ausführungsform des beschriebenen Sensorelement des Gassensors ist in Figur 3 dargestellt. Dabei ist die zweite innere Elektrode 24 anstatt im ersten Messgasraum 13 im zweiten Messgasraum 17 angeordnet. Dies hat den Vorteil, dass die Regelung des Sauerstoff-Pumpstromes entsprechend dem im Messgas vorliegenden Sauerstoffpartialdruck erfolgt, dem auch die weitere innere Elektrode 26 ausgesetzt ist.A further alternative embodiment of the described sensor element of the gas sensor is shown in FIG FIG. 3 shown. In this case, the second inner electrode 24 is arranged in the second measuring gas chamber 17 instead of in the first measuring gas chamber 13. This has the advantage that the regulation of the oxygen pumping current takes place in accordance with the oxygen partial pressure present in the measurement gas to which the further inner electrode 26 is also exposed.

Weiterhin ist die Erfindung nicht auf eine gemeinsame Kontaktierung von erster und zweiter innerer Elektrode 20, 24 beschränkt. Insbesondere dann, wenn zwischen erster bzw. zweiter innerer Elektrode einerseits und weiterer innerer Elektrode 26 andererseits weitgehend konstante Potentialdifferenzen anzulegen sind, kann die weitere innere Elektrode 26 mit der ersten und/oder der zweiten inneren Elektrode 20, 24 gemeinsam unter Integration mehrerer elektrischer Widerstände Rk durch eine gemeinsame Elektrodenzuleitung kontaktiert werden, sodass alle mit dem Gasgemisch in Kontakt kommenden Elektroden des Sensorelementes eine gemeinsame Kontaktierung aufweisen. Weiterhin ist es möglich, allen gemeinsam kontaktierten Elektroden jeweils einen elektrischen Widerstand Rk zuzuordnen, dessen ohmscher Widerstand jeweils unterschiedlich hoch ist.Furthermore, the invention is not limited to a common contacting of the first and second inner electrodes 20, 24. In particular, if substantially constant potential differences are to be applied between the first and second inner electrodes on the one hand and further inner electrodes 26 on the other hand, the further inner electrode 26 can be connected to the the first and / or the second inner electrode 20, 24 are contacted together by integrating a plurality of electrical resistors R k through a common electrode feed line, so that all electrodes of the sensor element which come into contact with the gas mixture have a common contact. Furthermore, it is possible to associate with each of the electrodes contacted in common an electrical resistance R k , whose ohmic resistance is different in each case.

Die Anwendung eines das Sensorelement 10 aufweisenden Gassensors ist nicht auf die Bestimmung von Stick- oder Schwefeloxiden beschränkt. Grundsätzlich lassen sich mittels der dritten Pumpzelle 26, 22 Gaskomponenten des Gasgemischs entweder durch elektrochemische Reduktion oder Oxidation bei geeigneter Wahl der an der dritten Pumpzelle 26, 22 anliegenden Pumpspannung amperometrisch bestimmen. Im ersten Fall können reduzierbare Gaskomponenten bestimmt werden, im zweiten Fall oxidierbare wie bspw. Ammoniak, Kohlenwasserstoffe oder Wasserstoff. Da die an den Elektroden 26, 22 anliegende Pumpspannung auch kurzfristig variiert werden kann, besteht darüber hinaus die Möglichkeit, periodisch oder in kurzen Zeitintervallen alternierend nacheinander eine oder mehrere reduzierende bzw. oxidierende Gaskomponenten mit einem Gassensor zu bestimmen.The application of a sensor element 10 having the gas sensor is not limited to the determination of nitrogen or sulfur oxides. In principle, gas components of the gas mixture can be determined amperometrically by means of the third pumping cell 26, 22 either by electrochemical reduction or oxidation with a suitable choice of the pumping voltage applied to the third pumping cell 26, 22. In the first case, reducible gas components can be determined, in the second case oxidizable, such as, for example, ammonia, hydrocarbons or hydrogen. Since the pump voltage applied to the electrodes 26, 22 can also be varied in the short term, it is also possible to determine one or more reducing or oxidizing gas components with a gas sensor alternately one after the other periodically or in short time intervals.

Claims (8)

  1. Gas sensor for measuring a gas component in a gas mixture, having a sensor element (10) comprising a first electrochemical pump cell and a further electrochemical pump cell, wherein the first electrochemical pump cell comprises a first inner electrode (20) and the further electrochemical pump cell comprises a further inner electrode (24), wherein only one common electrical contact is present for the first electrode (20) and for the further electrode (24), characterized in that an electrode lead (32) connects the common electrical contact and the first inner electrode (20) via the further inner electrode (24), wherein that region of the electrode lead (32) which connects the first inner electrode (20) and the second inner electrode (24) has an electrical resistor (Rk).
  2. Gas sensor according to Claim 1, characterized in that the sensor element (10) is made up of ceramic layers (11a - 11e), and in that the electrical resistor (Rk) is formed in the same ceramic layer plane (11b) as the first and/or second electrode (20, 24).
  3. Gas sensor according to either of Claims 1 and 2, characterized in that the electrical resistor (Rk) has a resistor conductor track (36) made of a metal alloy.
  4. Gas sensor according to Claim 3, characterized in that the resistor conductor track (36) is made of an alloy of a platinum metal and/or coinage metal.
  5. Gas sensor according to Claim 3 or 4, characterized in that the resistor conductor track (36) contains a ceramic component in a proportion of at least 2% by volume.
  6. Gas sensor according to one of Claims 3 to 5, characterized in that the resistor conductor track (36) is at least partially surrounded by a layer made of an insulating material (38).
  7. Gas sensor according to one of the preceding claims, characterized in that the electrical resistor (Rk) has an ohmic resistance of 2 to 300 Ω at a temperature of 650 to 950°C.
  8. Use of a gas sensor according to one of the preceding claims for determining nitrogen oxides, sulphur oxides and/or ammonia in combustion exhaust gases.
EP08708256.6A 2007-03-07 2008-01-28 Gas sensor for the measurement of a gas component in a gas mixture Not-in-force EP2132559B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007011049A DE102007011049A1 (en) 2007-03-07 2007-03-07 Gas sensor for measuring a gas component in a gas mixture
PCT/EP2008/050933 WO2008107229A1 (en) 2007-03-07 2008-01-28 Gas sensor for the measurement of a gas component in a gas mixture

Publications (2)

Publication Number Publication Date
EP2132559A1 EP2132559A1 (en) 2009-12-16
EP2132559B1 true EP2132559B1 (en) 2014-12-24

Family

ID=39677875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08708256.6A Not-in-force EP2132559B1 (en) 2007-03-07 2008-01-28 Gas sensor for the measurement of a gas component in a gas mixture

Country Status (4)

Country Link
US (1) US8343322B2 (en)
EP (1) EP2132559B1 (en)
DE (1) DE102007011049A1 (en)
WO (1) WO2008107229A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2300812B1 (en) * 2008-07-10 2016-11-02 Robert Bosch GmbH Sensor element and method for determining gas components in gas mixtures and use thereof
DE102011007447A1 (en) * 2011-04-15 2012-10-18 Robert Bosch Gmbh Method for operating at least one sensor element
US9970911B2 (en) 2013-09-16 2018-05-15 Lg Innotek Co., Ltd. Gas sensor package
KR102212850B1 (en) * 2014-03-25 2021-02-05 엘지이노텍 주식회사 Gas sensor package
US9851336B2 (en) * 2013-09-16 2017-12-26 Lg Innotek Co., Ltd. Gas sensor package
EP2857349B1 (en) * 2013-10-01 2020-08-05 LG Innotek Co., Ltd. Gas sensor package
KR102212845B1 (en) * 2014-03-25 2021-02-05 엘지이노텍 주식회사 Gas sensor package
CN104407034A (en) * 2014-11-14 2015-03-11 无锡信大气象传感网科技有限公司 Gas sensor chip

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494508B2 (en) * 1995-06-26 2004-02-09 日本碍子株式会社 Combustible gas sensor, method for measuring combustible gas concentration, and method for detecting catalyst deterioration
JPH09318594A (en) * 1996-03-25 1997-12-12 Ngk Insulators Ltd Gas sensor and method for measuring quantity of specific component in gas to be measured
US6344134B1 (en) 1998-01-16 2002-02-05 Ngk Spark Plug Co., Ltd. Method for measuring NOx concentration and NOx concentration sensor
DE19840888A1 (en) 1998-09-09 2000-03-16 Bosch Gmbh Robert Sensor for determining an oxygen concentration in a gas mixture
JP4005273B2 (en) * 1998-09-16 2007-11-07 株式会社デンソー Gas concentration detector
DE10100599B4 (en) 2001-01-09 2007-02-08 Robert Bosch Gmbh gas sensor
DE10149739A1 (en) 2001-10-09 2003-04-10 Bosch Gmbh Robert Sensor element used for determining concentration of oxygen and/or nitrogen oxides in Internal Combustion engine exhaust gases has first electrode arranged in inner gas chamber in same layer surface of sensor element
WO2003083465A1 (en) 2002-03-29 2003-10-09 Ngk Spark Plug Co.,Ltd. NOx MEASUREMENT DEVICE, NOx SENSOR SELF-DIAGNOSIS DEVICE, AND SELF-DIAGNOSIS METHOD THEREOF

Also Published As

Publication number Publication date
US20100230297A1 (en) 2010-09-16
EP2132559A1 (en) 2009-12-16
US8343322B2 (en) 2013-01-01
DE102007011049A1 (en) 2008-09-11
WO2008107229A1 (en) 2008-09-12

Similar Documents

Publication Publication Date Title
EP2132559B1 (en) Gas sensor for the measurement of a gas component in a gas mixture
EP1166096B1 (en) Electrochemical gas sensor
DE4311849C2 (en) Sensor for determining gas components and / or gas concentrations in gas mixtures
DE69629640T2 (en) NOx sensor and measuring method
DE2917160C2 (en) Method for determining the oxygen concentration in the combustion gas of an air / fuel mixture
DE102017008086A1 (en) gas sensor
DE69936553T2 (en) Method for concentration measurement of NOx
DE10247144A1 (en) Gas detector element used for directly measuring the concentration of nitrogen oxides in vehicle exhaust gases, comprises a solid electrolyte substrate, a measuring electrode
DE4333232A1 (en) Measuring sensor for determining the oxygen content of gas mixtures
EP1240506B1 (en) Gas sensor for determining the concentration of gas components in gas mixtures and use thereof
DE4445033A1 (en) Method for measuring the concentration of a gas in a gas mixture and electrochemical sensor for determining the gas concentration
EP1110079B1 (en) Electrochemical gas sensor and method for determining gas components
EP1155311A1 (en) Eletrochemical measuring sensor
DE10058014C2 (en) Sensor element of a gas sensor
DE10352062B4 (en) Gas sensor element with guaranteed measurement accuracy and method for its production
DE112018000051T5 (en) Sensor element and gas sensor
DE102021001431A1 (en) Sensor element and gas sensor
DE10339967A1 (en) Multilayer gas sensor element
DE10240918A1 (en) Gas sensor and method for determining a gas concentration
DE10308395A1 (en) Automotive exhaust gas sensing procedure removes hydrogen and carbon monoxide prior to determination of presence of third gas to be oxidized
DE10154869C1 (en) Gas sensor for determining properties of IC engine exhaust gas contains sensor component comprising solid electrolyte carrying electrode with porous protective coating above and insulating coating below
DE102007052754A1 (en) Gas sensor for detecting particles i.e. nitrogen oxide particles, in gas flow in exhaust gas after-treatment system in automobile, has oxygen pumping electrodes connected in series with each other via electrical resistors
DE10232355B4 (en) Electrochemical sensor for measuring the concentration of nitrogen oxides
DE19937016A1 (en) Sensor element and method for determining the oxygen concentration in gas mixtures
DE10040505A1 (en) Gas sensor, especially Lambada probe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100127

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 703402

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008012534

Country of ref document: DE

Effective date: 20150219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150324

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008012534

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20150925

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 703402

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180126

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502008012534

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220324

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220120

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008012534

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131