EP2126950A1 - Schmelzlegierungselement, thermosicherung mit einem schmelzlegierungselement sowie verfahren zum herstellen einer thermosicherung - Google Patents

Schmelzlegierungselement, thermosicherung mit einem schmelzlegierungselement sowie verfahren zum herstellen einer thermosicherung

Info

Publication number
EP2126950A1
EP2126950A1 EP08708553A EP08708553A EP2126950A1 EP 2126950 A1 EP2126950 A1 EP 2126950A1 EP 08708553 A EP08708553 A EP 08708553A EP 08708553 A EP08708553 A EP 08708553A EP 2126950 A1 EP2126950 A1 EP 2126950A1
Authority
EP
European Patent Office
Prior art keywords
fusible
carrier layer
fusible alloy
alloy element
thermal fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08708553A
Other languages
German (de)
English (en)
French (fr)
Inventor
Norbert Knab
Georg Schulze-Icking-Konert
Thomas Mohr
Stefan Kotthaus
Nikolas Haberl
Stefan Stampfer
Michael Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2126950A1 publication Critical patent/EP2126950A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49107Fuse making

Definitions

  • Fusible alloy element thermal fuse with a melt alloying element and method for producing a thermal fuse
  • the invention relates to fusible alloy elements, in particular for use in thermal fuses, to protect modules, in particular control devices, in high-current applications against overheating.
  • thermal fuse In order to protect electrical modules against overheating, irreversible thermal fuses are required, which interrupt (trigger) a current-carrying conductor if the ambient temperature is too high.
  • the thermal fuses are designed in such a way that the tripping temperature is not reached as a result of a potentially occurring current flow, so that it is ensured that these can not be triggered by a high current, but only by an excessively high ambient temperature.
  • a thermal fuse serves to provide an independent shutdown path for electrical modules which are at impermissibly high temperatures in the module, e.g. due to component failures, short circuits, e.g. due to external influences, malfunctions of insulating materials and the like. safely interrupts the flow of electricity.
  • thermal fuses are usually based on the concept of a fixed spring (eg soldered leaf spring), in which the fixation dissolves (eg by melting) at a temperature effect, whereby the spring force Thermal fuse is opened.
  • a fixed spring eg soldered leaf spring
  • the fixation dissolves (eg by melting) at a temperature effect, whereby the spring force Thermal fuse is opened.
  • a mechanical force is exerted on the connection point, which can lead to quality problems, especially with long operating times in the automotive sector, for example to a disruption of the solder joint.
  • thermo fuse uses a conductive fusible material which begins to melt at a triggering temperature and thereby breaks a connection.
  • the thermal fuse can be constructed by equipping a stamped grid with a fusible alloy element in a simple manner, without already causing a complete or partial melting of the fusible alloy element during the processing during production.
  • a fusible alloy element in particular for the production of a thermal fuse.
  • the fusible alloy element comprises a fusible element of a material fusible at a triggering temperature; and a carrier layer on a surface at least in a contacting region of the fusible alloy element.
  • a melting temperature of the material of the carrier layer is higher than the triggering temperature, wherein the material of the carrier layer is chosen so that it goes into solid state in the molten material of the fusible element in solution.
  • a fusible alloy element can be provided, which can be mounted more easily and reliably, since it has an increased resistance to high temperatures during soldering or other assembly process.
  • the process temperature when assembling the fusible alloy does not immediately cause the fusible alloy to flow, because contraction of the melted material at the process temperature is prevented by lowering the surface tension. In other words, contraction of the molten material of the fuser, due to its surface tension, does not provide energy gain when the support layer is provided.
  • the carrier layer is also designed so that it does not permanently hinder the flow of the fusible alloy element, since the material of the carrier layer in the material of the fusible element can go into solution.
  • the material of the fusible element may contain tin and the material of the carrier layer may comprise copper.
  • the melting element is cuboidal in order to provide a defined current distribution when used as a thermal fuse.
  • the carrier layer can be formed continuously on the surface.
  • the carrier layer can be formed on the surface and an opposite surface of the fusible element and in particular completely encloses the fusible element.
  • the thickness and the material of the carrier layer may be chosen so as not to completely dissolve in the molten material of the fusible element with molten material of the fusible element for a certain period of time.
  • Surface comprising at least one of the layers solder layer, corrosion protection layer and adhesion improvement layer.
  • a thermal fuse is provided with a connection point on a stamped grid and with an above fusible alloy element which is fastened, in particular soldered, to the surface at the connection point.
  • a method for producing a thermal fuse is provided, with the steps of applying a contact material, in particular a solder, to a connection point; the application of the above fusible alloy element, so that at least a portion of the carrier layer rests on the contact material; heating the contact material to or above its melting point such that the contact material bonds to the material of the carrier layer and the junction for a period of time limited by the length of time after which the material of FIG
  • Carrier layer is completely dissolved in the region of the carrier layer in the molten materials of the fusible element and the contact material.
  • FIG. 2 shows a further embodiment of the fusible alloy element according to the present invention
  • Fig. 3c is a representation of the thermal fuse in a state after triggering.
  • the fusible alloy element 1 essentially comprises a bar-shaped block with a fusible element 2 of a fusible material.
  • the fusible element 2 contains a metal or other highly electrically conductive alloy or material through which a current flows when the Fusible alloy element 1 in a thermal fuse (see Figs 3a - 3c) is installed. Due to a sufficiently large cross-section of the fusible alloy element, a sufficiently low specific resistance and a good thermal connection to the environment, the fusible alloy element 1 heats up only slightly with respect to the environment even at the maximum permissible current flow.
  • the melting point of the material of the fusible element 2 is chosen such that the block is subject to an increase in temperature due to malfunctions such as malfunctioning. Failures of electronic components, malfunctions of the insulating materials, short-circuits due to external influences above a melting temperature melts and thereby interrupts a current path that exists through the fusible alloy element.
  • the fusible alloy element 1 is applied between two connection points that are otherwise electrically insulated from each other and, e.g. soldered there. When soldering the fusible alloy element 1 care must be taken that the
  • Fusible alloy element 1 does not interrupt the current path during assembly, which can occur if a temperature would be applied which is equal to or greater than the melting temperature of the fusible element 2.
  • a carrier layer 4 is provided, with which the fusible alloy element 1 is applied to the connection points or soldered there.
  • the carrier layer 4 has a high melting point, which is higher than the melting point of the fusible material 2 and the solder used in the soldering process.
  • the carrier layer 4 is furthermore provided from a material which slowly dissolves in the material of the melt element 2, ie can go into solution.
  • the fusible element 2 materials with a sufficient tin content for example of more than 30%, more than 50%, more than 70% and particularly preferably more than 80% into consideration.
  • the material of the carrier layer 4 copper or a copper alloy having a high copper content, such as more than 70%, may be used. Copper is advantageous because it already dissolves in solid state in liquid tin, the temperature of which corresponds to its melting temperature, at about 10 ⁇ m / min, whereby this value approximately doubles for every 10 K increase in temperature above the melting temperature.
  • Other material systems for the materials of the fusible element 2 and the carrier layer 4 are also possible.
  • a conventional solder is used, for example, the same material as the material of the fusible element 2.
  • the fusible element 2 of the fusible alloy element 1 melts completely or partially and the material of the carrier layer 4 begins to be in the materi - To dissolve al of the molten melting element 2.
  • the soldering process should be completed before the carrier layer is completely dissolved. As long as the carrier layer 4 has not yet completely settled in the molten melting element. has dissolved, it prevents the fusion of the fusible alloy element 1 on one or more of the connection points by reducing the surface tension.
  • the thickness of the carrier layer 4 and the duration of the soldering process for attaching the fusible alloy element 1 at the connection points is to be selected such that only part of the carrier layer 4 dissolves, so that the current path is not interrupted despite melting or melting of the fusible element 2.
  • the carrier layer 4 remaining after the soldering process during mounting dissolves in the molten material of the fusible element 2, and the fusible alloy element 1 interrupts the current path by exposing at the junctions portions of the molten material, e.g. drop-shaped due to the surface tension of the molten material attaches.
  • the delay of the response at a temperature increase above the melting temperature of the melting element 2 should be as short as possible.
  • FIGS. 1 a to 1 e show various configurations of the fusible alloy element 1. As shown in FIG. 1 a, the fusible alloy element 1 has a fusible element 2 on which the carrier layer 4 is applied on one side. The carrier layer 4 is on the side of
  • the carrier layer 4 is not applied flatly on the surface of the fusible element 2 with which the fusible alloy element 1 is mounted, but only on the areas which are to be connected to the connection points. That the carrier layer 4 is e.g. interrupted in a central area. However, a continuous support layer is on the opposite surface and / or on a side surface (plane of representation of the figure) to effect the effect of preventing the contraction of the molten material of the fusible element.
  • carrier layers 4 can be provided on both sides of the fusible element 2 (or on two or more than two different surfaces extending between the contact points of the fusible alloy element 1) in order to be fully fused of the fusible element 2 and a subsequent dissolution of the material of the carrier layer 4 in the material of the fused fusible element 2, triggering of the thermal fuse formed by the fusible alloy element 1. Furthermore, according to the embodiment of FIG. Id, provision can be made for the melting element 2 to be completely surrounded by carrier layers 4, so that outflow of the material of the melting element 2 out of the region between the carrier layers 4 opposite the surfaces can be avoided.
  • FIG. 1e based on the embodiment of FIG. Id, it is shown that, in addition to the carrier layer, one or more further layers can also be provided, which accordingly perform an additional function.
  • a section of the fusible alloy element 1 of Fig. Ie is shown for example in Fig. 2. There one recognizes that on the melting element 2 on the one hand, the carrier layer 4 and an additional layer 5 is applied.
  • the additional layer 5 may be, for example, a solder layer, which provides an additional provision of a solder paste and the like. makes it superfluous for soldering the fusible alloy element 1 between the connection points. A soldering of the fusible alloy element 1 can then be done by placing the fusible alloy element 1 on the connection points and a corresponding heating.
  • the additional layer 5 may additionally or alternatively constitute an oxidation protection layer for the carrier layer 4 in order to create a higher corrosion resistance. fen. Possible materials for this are eg Entec or SnAg-Cu.
  • the additional layer 5 may alternatively or additionally constitute an adhesion enhancing layer, e.g. Ni or Au, in order to facilitate gluing or bonding of the fusible alloy element 1 to the connection point in an alternative application form.
  • the or one of the additional layers may contain a flux.
  • the materials of the one or more additional layers are chosen so that they also go into solution during the melting of the fusible element 2 therein, or melt or evaporate due to the process temperature.
  • FIGS. 3a and 3b a mounting process for a thermal fuse is outlined.
  • FIG. 3 a shows a process state which shows a fusible alloy element 1 of the embodiment of FIG. 1 a shortly before it is placed on connection points 6 of line regions 9 of a stamped grid 7.
  • the connection points 6 of the stamped grid 7 are provided with a solder paste 8.
  • the fusible alloy is placed and then the solder paste 8 is heated above its melting temperature.
  • the melting element 2 also heats up and the carrier layer 4 of the fusible alloy element 1 is dissolved in the soldering paste 8 as well as in the fusible element 2, as far as the fusible element 2 is also melted.
  • the carrier layer is thinner at points at which the fusible element 2 is soldered at the connection points than at the remaining regions.
  • the thickness of the carrier layer 4 and the materials the melting element and the carrier layer 4 are chosen so that a reliable fastening of the fusible alloy element 1 at the connection points can be achieved by, for example, soldering, without the carrier layer 4 completely dissolving in the molten part of the fusible element 2.
  • the reliability of the soldering process would be impaired, since in this case an interruption of the current path through the fusible alloy element 1 of the thermal fuse can occur.
  • the thickness is limited by the fact that in the case of triggering the material of the carrier layer 4 in the molten material of the melting element as completely as possible in a short time, for example in 1 to 10 seconds, in solution. Due to the thickness, the inertia of the thermal fuse can thus be adjusted.
  • Fig. 3c the thermal fuse is shown after a triggering event in which the fusible alloy has melted due to a high ambient temperature and the carrier layer 4 has dissolved in the molten fusible element 2. Due to the surface tension, portions of the molten fusible alloy are referred to the lead regions 9, where they contract to droplets due to their surface tension, respectively. Due to the surface tension and the affinity of the molten material of the fusible member 2 to contract on the lead portions 9, the molten material of the fusing member is drawn out of the region between the lead portions 9 and separated there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuses (AREA)
EP08708553A 2007-03-26 2008-02-01 Schmelzlegierungselement, thermosicherung mit einem schmelzlegierungselement sowie verfahren zum herstellen einer thermosicherung Withdrawn EP2126950A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007014334A DE102007014334A1 (de) 2007-03-26 2007-03-26 Schmelzlegierungselement, Thermosicherung mit einem Schmelzlegierungselement sowie Verfahren zum Herstellen einer Thermosicherung
PCT/EP2008/051244 WO2008116681A1 (de) 2007-03-26 2008-02-01 Schmelzlegierungselement, thermosicherung mit einem schmelzlegierungselement sowie verfahren zum herstellen einer thermosicherung

Publications (1)

Publication Number Publication Date
EP2126950A1 true EP2126950A1 (de) 2009-12-02

Family

ID=39535368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08708553A Withdrawn EP2126950A1 (de) 2007-03-26 2008-02-01 Schmelzlegierungselement, thermosicherung mit einem schmelzlegierungselement sowie verfahren zum herstellen einer thermosicherung

Country Status (6)

Country Link
US (1) US20100176910A1 (ja)
EP (1) EP2126950A1 (ja)
JP (1) JP2010522420A (ja)
CN (1) CN101641758B (ja)
DE (1) DE102007014334A1 (ja)
WO (1) WO2008116681A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5583991B2 (ja) * 2010-03-03 2014-09-03 矢崎総業株式会社 ヒューズ及びヒューズの製造方法
DE102010038401B4 (de) 2010-07-26 2013-11-14 Vishay Bccomponents Beyschlag Gmbh Thermosicherung sowie Verwendung einer solchen
DE202011001820U1 (de) * 2011-01-21 2012-04-27 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Schutzvorrichtung für die Steuerelektronik einer Kraftfahrzeugkomponente
CN103460447B (zh) 2011-11-28 2016-06-15 株式会社Lg化学 电池模块和应用于电池模块的汇流条
JP5896412B2 (ja) * 2012-05-17 2016-03-30 エヌイーシー ショット コンポーネンツ株式会社 保護素子用ヒューズ素子およびそれを利用した回路保護素子
US20160005561A1 (en) * 2013-03-14 2016-01-07 Littelfuse, Inc. Laminated electrical fuse
JP6420053B2 (ja) * 2013-03-28 2018-11-07 デクセリアルズ株式会社 ヒューズエレメント、及びヒューズ素子
JP6437239B2 (ja) * 2013-08-28 2018-12-12 デクセリアルズ株式会社 ヒューズエレメント、ヒューズ素子
JP6173859B2 (ja) * 2013-09-26 2017-08-02 デクセリアルズ株式会社 短絡素子
KR101516333B1 (ko) * 2013-12-13 2015-05-06 주식회사 피플웍스 Tco 제조장치 및 제조방법
JP6307762B2 (ja) * 2014-09-26 2018-04-11 デクセリアルズ株式会社 電線
JP6719983B2 (ja) * 2015-06-04 2020-07-08 デクセリアルズ株式会社 ヒューズエレメント、ヒューズ素子、保護素子、短絡素子、切替素子
DE102015225376B3 (de) * 2015-12-16 2017-01-19 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzgerät vom Typ II
JP6756490B2 (ja) * 2016-02-19 2020-09-16 デクセリアルズ株式会社 電流ヒューズ
JP6707428B2 (ja) * 2016-09-16 2020-06-10 デクセリアルズ株式会社 ヒューズエレメント、ヒューズ素子、保護素子
CN106759456B (zh) * 2016-12-07 2018-10-26 西京学院 一种一次成型的机床地基浇注与回收方法及其实施装置
US10566164B2 (en) * 2017-04-27 2020-02-18 Manufacturing Networks Incorporated (MNI) Temperature-triggered fuse device and method of production thereof
RU2666841C1 (ru) * 2017-09-04 2018-09-12 Акционерное общество Инжиниринговая компания "АСЭ" Аварийный термоклапан одноразового действия
JP2020077523A (ja) * 2018-11-07 2020-05-21 デクセリアルズ株式会社 保護素子
JP7231527B2 (ja) * 2018-12-28 2023-03-01 ショット日本株式会社 保護素子用ヒューズ素子およびそれを利用した保護素子
JP7256667B2 (ja) * 2019-03-28 2023-04-12 デクセリアルズ株式会社 保護素子
JP7433811B2 (ja) * 2019-08-23 2024-02-20 デクセリアルズ株式会社 ヒューズエレメント、ヒューズ素子および保護素子
US20230154715A1 (en) * 2021-11-12 2023-05-18 Eaton Intelligent Power Limited Dual-element fuse with chemical trigger element and methods of manufacture

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2762889A (en) * 1955-05-23 1956-09-11 Lyle G Walier Thermal switch
US3267238A (en) * 1964-08-17 1966-08-16 Sony Corp Electrical fuses
US3354282A (en) * 1966-05-25 1967-11-21 Gen Electric Canada Thermal fuse with capillary action
US3377448A (en) * 1966-08-22 1968-04-09 Littelfuse Inc Thermal responsive miniature fuse
US3385939A (en) * 1968-01-09 1968-05-28 Chase Shawmut Co Electric fuse adapted to be conductively connected to a cable
US3692924A (en) * 1971-03-10 1972-09-19 Barge Inc Nonflammable electrical cable
US3710297A (en) * 1972-02-04 1973-01-09 Nippon Denzai Ltd A stretched fuse device
US4067103A (en) * 1977-02-07 1978-01-10 Littelfuse, Inc. Method of making a plug-in fuse
JPS5443554A (en) * 1977-09-12 1979-04-06 Nifco Inc Temperature fuse
US4394602A (en) * 1981-11-25 1983-07-19 Western Electric Co., Inc. Enclosed electrical devices
DE3234826A1 (de) * 1982-09-21 1984-03-22 Loewe Opta Gmbh, 8640 Kronach Thermo-sicherungselement
US4625195A (en) * 1984-12-03 1986-11-25 Gould Inc. Electric fuse having positioning means for arc-quenching core
JPS62102238U (ja) * 1985-12-18 1987-06-29
US5122774A (en) * 1987-01-22 1992-06-16 Morrill Glasstek, Inc. Sub-miniature electrical component, particularly a fuse
JP2669674B2 (ja) * 1988-03-23 1997-10-29 矢崎総業株式会社 ヒューズ
US5097247A (en) * 1991-06-03 1992-03-17 North American Philips Corporation Heat actuated fuse apparatus with solder link
US5198792A (en) * 1992-06-12 1993-03-30 Cooper Industries, Inc. Electrical fuses and method of manufacture
FR2703184B1 (fr) * 1993-03-03 1995-12-01 Gen Electric Contacteur actionné électro-thermiquement.
EP0657978B1 (en) * 1993-12-10 1997-04-16 Texas Instruments Incorporated Failsafe device for use with electrical surge suppressor
JP3304179B2 (ja) * 1993-12-30 2002-07-22 内橋エステック株式会社 薄型ヒュ−ズ
US5552757A (en) * 1994-05-27 1996-09-03 Littelfuse, Inc. Surface-mounted fuse device
US5790008A (en) * 1994-05-27 1998-08-04 Littlefuse, Inc. Surface-mounted fuse device with conductive terminal pad layers and groove on side surfaces
US5777540A (en) * 1996-01-29 1998-07-07 Cts Corporation Encapsulated fuse having a conductive polymer and non-cured deoxidant
US5652562A (en) * 1996-05-21 1997-07-29 Spectrol Electronics Corporation Thermally fused resistor having a portion of a solder loop thermally connected to an electrically insulated portion of an outer surface of the resistor
JPH1125829A (ja) * 1997-07-04 1999-01-29 Yazaki Corp 温度ヒューズ及び車両用ワイヤハーネスの異常検出装置
EP0935273A3 (de) * 1998-02-04 2000-03-22 Lindner GmbH Schmelzleiter für einen elektrischen Sicherungseinsatz
US5982268A (en) * 1998-03-31 1999-11-09 Uchihashi Estec Co., Ltd Thin type fuses
JP2000100291A (ja) * 1998-09-26 2000-04-07 Uchihashi Estec Co Ltd 温度ヒュ−ズエレメントの取付け構造及び取付け方法
US6201679B1 (en) * 1999-06-04 2001-03-13 California Micro Devices Corporation Integrated electrical overload protection device and method of formation
JP3478785B2 (ja) * 2000-07-21 2003-12-15 松下電器産業株式会社 温度ヒューズ及びパック電池
EP1189252A1 (de) * 2000-09-13 2002-03-20 Siemens Aktiengesellschaft Sicherungseinsatz, Verfahren zu seiner Herstellung und Lotsubstanz
DE60234813D1 (de) * 2001-02-20 2010-02-04 Panasonic Corp Thermische sicherung
CN1249761C (zh) * 2001-03-02 2006-04-05 威克曼工厂股份有限公司 制造熔丝元件的方法
WO2002095783A1 (fr) * 2001-05-21 2002-11-28 Matsushita Electric Industrial Co., Ltd. Fusible thermique
EP1300867A1 (fr) * 2001-10-03 2003-04-09 Metalor Technologies International S.A. Element de fusible et son procédé de fabrication
JP4162917B2 (ja) * 2002-05-02 2008-10-08 内橋エステック株式会社 合金型温度ヒュ−ズ
US6902434B2 (en) * 2002-07-23 2005-06-07 Cooper Technologies Company Battery fuse bus bar assembly
EP1550733B1 (en) * 2002-10-07 2013-08-28 Panasonic Corporation Element for thermal fuse, thermal fuse and battery including the same
JP4230194B2 (ja) * 2002-10-30 2009-02-25 内橋エステック株式会社 合金型温度ヒューズ及び温度ヒューズエレメント用線材
JP4204852B2 (ja) * 2002-11-26 2009-01-07 内橋エステック株式会社 合金型温度ヒューズ及び温度ヒューズエレメント用材料
JP4110967B2 (ja) * 2002-12-27 2008-07-02 ソニーケミカル&インフォメーションデバイス株式会社 保護素子
JP2004214033A (ja) * 2002-12-27 2004-07-29 Sony Chem Corp 保護素子
JP4230251B2 (ja) * 2003-03-04 2009-02-25 内橋エステック株式会社 合金型温度ヒューズ及び温度ヒューズエレメント用材料
JP4207686B2 (ja) * 2003-07-01 2009-01-14 パナソニック株式会社 ヒューズ、それを用いたパック電池およびヒューズ製造方法
JP2005026188A (ja) * 2003-07-03 2005-01-27 Koa Corp 電流ヒューズ及び電流ヒューズの製造方法
TWI254503B (en) * 2003-11-05 2006-05-01 Polytronics Technology Corp Over-current protection apparatus and manufacturing method thereof
DE10358444A1 (de) * 2003-12-13 2005-07-07 Wilhelm Pudenz Gmbh Einstückiger Sicherungseinsatz, Verfahren zur Herstellung des einstückigen Sicherungseinsatzes und Vorrichtung zur Durchführung des Verfahrens
JP2005197005A (ja) * 2003-12-26 2005-07-21 Fuji Xerox Co Ltd 可動体表面の温度過昇防止素子、並びに、これを用いた温度過昇防止装置および温度制御素子
DE102004033251B3 (de) * 2004-07-08 2006-03-09 Vishay Bccomponents Beyschlag Gmbh Schmelzsicherung für einem Chip
US7564337B2 (en) * 2005-03-03 2009-07-21 Littelfuse, Inc. Thermally decoupling fuse holder and assembly
DE102005024346B4 (de) * 2005-05-27 2012-04-26 Infineon Technologies Ag Sicherungselement mit Auslöseunterstützung
DE102005024347B8 (de) * 2005-05-27 2010-07-08 Infineon Technologies Ag Elektrisches Bauteil mit abgesichertem Stromzuführungsanschluss
DE102005027681A1 (de) * 2005-06-15 2006-12-28 Autecto Industrievertretungen Gmbh Schmelzsicherung und Verfahren zu deren Herstellung
US20070018774A1 (en) * 2005-07-20 2007-01-25 Dietsch Gordon T Reactive fuse element with exothermic reactive material
DE102008040345A1 (de) * 2008-07-11 2010-01-14 Robert Bosch Gmbh Thermosicherung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008116681A1 *

Also Published As

Publication number Publication date
CN101641758B (zh) 2012-09-26
DE102007014334A1 (de) 2008-10-02
US20100176910A1 (en) 2010-07-15
CN101641758A (zh) 2010-02-03
JP2010522420A (ja) 2010-07-01
WO2008116681A1 (de) 2008-10-02

Similar Documents

Publication Publication Date Title
EP2126950A1 (de) Schmelzlegierungselement, thermosicherung mit einem schmelzlegierungselement sowie verfahren zum herstellen einer thermosicherung
EP2130210B1 (de) Thermosicherung
DE602004010119T2 (de) Sicherung, die sicherung verwendender akkupack, und verfahren zur herstellung der sicherung
EP2140469B1 (de) Schmelzsicherung zur unterbrechung eines spannungs- und/oder stromführenden leiters im thermischen fehlerfall und verfahren zur herstellung der schmelzsicherung
EP2126949B1 (de) Auslösevorrichtung für eine thermosicherung
EP0940835B1 (de) Sicherung, insbesondere für die Kfz-Technik
DE102010036909B3 (de) Thermische Überlastschutzvorrichtung
EP2471083B1 (de) Thermosicherung
EP2301053B1 (de) Thermosicherung
DE102008057166B4 (de) Elektrische Schaltung mit Übertemperaturschutz
DE3889563T2 (de) Halbleiteranordnung mit Schmelzsicherung.
DE3743857A1 (de) Elektrische sicherung und verfahren zu ihrer herstellung
EP2126948A1 (de) Thermosicherung für den einsatz in elektrischen modulen
DE112010004559T5 (de) Schaltungsschutzvorrichtung
EP3459133B1 (de) Elektrische energiespeicherzelle mit integrierter überbrückungseinrichtung
DE3731969C2 (ja)
EP1003190B1 (de) Durchlauferhitzer zum Erwärmen von Wasser
EP2689448B1 (de) Überlastauslöser, insbesondere für einen leistungsschalter
EP0727799A2 (de) Übertemperatursicherung für elektrische Heizeinrichtung
EP3724021A1 (de) Elektrochemisches energiespeichermodul und fahrzeug
EP3782172B1 (de) Thermistor-, varistor- oder kondensator-bauelement mit schmelzbarem verbindungselement zwischen dem grundkörper des bauelements und einer aussenelektrode
DE3234826A1 (de) Thermo-sicherungselement
EP3211643B1 (de) Strombegrenzer und elektrische baugruppe und/oder anlage
DE102005033426A1 (de) Thermosicherung
DE102016109961A1 (de) Elektrische Sicherungsvorrichtung und Herstellverfahren zum Herstellen einer elektrischen Sicherungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100817

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140902