EP2125482B1 - Vitale festkörpersteuerung - Google Patents

Vitale festkörpersteuerung Download PDF

Info

Publication number
EP2125482B1
EP2125482B1 EP07866027.1A EP07866027A EP2125482B1 EP 2125482 B1 EP2125482 B1 EP 2125482B1 EP 07866027 A EP07866027 A EP 07866027A EP 2125482 B1 EP2125482 B1 EP 2125482B1
Authority
EP
European Patent Office
Prior art keywords
vital
controller
processing device
logic
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07866027.1A
Other languages
English (en)
French (fr)
Other versions
EP2125482A1 (de
EP2125482A4 (de
Inventor
David Baldwin
Ahtasham Ashraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Signal LLC
Original Assignee
Central Signal LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Signal LLC filed Critical Central Signal LLC
Publication of EP2125482A1 publication Critical patent/EP2125482A1/de
Publication of EP2125482A4 publication Critical patent/EP2125482A4/de
Application granted granted Critical
Publication of EP2125482B1 publication Critical patent/EP2125482B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/30Trackside multiple control systems, e.g. switch-over between different systems

Definitions

  • the present invention relates to supervisory control systems. More specifically the present invention relates to an improved and cost effective vital programmable logic controller system.
  • PLC programmable logic controllers
  • Conventional programmable logic controllers are prevalent in various industries since they can provide a means for intelligently controlling, among other things, mechanical and electrical processes. Consistency and reliability of specific types of PLCs affects their use within process control applications. It is common for known PLCs to be sufficiently functional for a variety of uses, including traffic control, production and assembly lines, and electromechanical machinery control. However, PLCs have not been deemed suitable for use in railroad signal systems based in part upon the non-vital nature of known PLCs.
  • a variety of warning systems intended to warn vehicle operators of approaching trains have employed two major warning systems. These major warning systems include an audible signal sent from the train itself and a visual warning signal located at the site of the grade crossing.
  • the visual warning system almost always includes passive markings (road signs, roadway painted markings, etc.), but active markings (drop down gates, flashing lights, etc.) are not always employed.
  • Visual railroad signaling device functionality is often governed by national and/or local governing body signaling standards.
  • any device designed for railroad signal service must conform to established federal, state and railroad signal standards for design and operation of the signaling devices.
  • an audible signal and/or passive warning methods are not sufficient to provide a motor vehicle operator with sufficient time to avoid a collision.
  • the likelihood of a collision is increased significantly. It is therefore advantageous to provide an active vital and preemptive visual warning system.
  • German Patent Application DE 195 32 640 A1 discloses a device that allows transmission of test data (P1,P2) from at least two independent, parallel, processors via a single transmission channel by inverting each test data, before inverting selected bits of each inverted test data using different maskings (M1,M2), with the results combined to provide a new test data (P1/P2).
  • the new test data is transmitted along a single transmission channel together with the useful data (N1) from one of the processors via a common output channel for both processors.
  • a vital system is often characterized as being failsafe and consistent with the closed circuit principle.
  • a signal design is failsafe if the failure of any element of the system causes the system to revert to its safest condition. Operation at the safest condition is often activation of the warning system.
  • failsafe design requires that if any element of the active system cannot perform its intended function that the active crossing warning devices will operate and continue to operate until the failure is repaired.
  • failsafe design requires that if any element necessary to the safe and proper operation of the system cannot perform its intended function that the system will revert to the safest condition, i.e.
  • a red signal indicating stop or proceed at restricted speed according to rules is in effect.
  • a signal design is in conformance with the closed circuit principle when the components of the system do not share elements which could afford alternative energy or logic paths, as these elements would violate the failsafe principle. It would be highly advantageous to employ cost effective and failsafe vehicle detection systems using microprocessors or PLCs.
  • the present invention comprises an apparatus according to claim 1 and a method for controlling a vital active warning device adjacent to a railroad track according to claim 12.
  • a vital solid state processing device (VPD) 10 is provided.
  • the device 10 includes a first controller 12, second controller 14, a first vital input 16, a second vital input 18, a third vital input 20, an optional fourth vital output 22, a first vital output 24, a second vital output 26, a third vital output 28, an optional fourth vital output 30, a health check line 32 and a third controller 34.
  • greater than 3 vital input and vital output lines can be employed.
  • the number of vital inputs and vital outputs is determined by the specific application requirements, and can be greater than about 3 inputs and 3 outputs depending upon the specific use requirements of the device 10.
  • the device can be configured to provide independent and redundant processing of input states thereby configured such that the VPD output is not logically high if any hardware or component in the path between the output and the associated input is damaged, missing, or otherwise nonfunctional.
  • the device 10 also includes a communication port 36, memory module 38, real time clock (RTC) 40, battery 42 for back up power, a user interface 44, a radio module 46, GPS module 48, and a Bluetooth module 50 operably connected to the third controller 34, and alternatively operably connected to the first controller 12, second controller 14, or a combination of the three controllers 12, 14, 34.
  • RTC real time clock
  • the inputs 16, 18, 20, and 22 represent signals received from vital railroad relays (not shown) or alternative signal sources.
  • Railroad relays are often existing devices connected to most railroad tracks.
  • the relays are located near railroad grade crossings and can be utilized for active grade crossing warning systems.
  • the device 10 outputs 24, 26, 28, 30 represent the vital outputs from the system 10 to system devices (not shown) such as, by example, drive relays and warning signals, which can include active grade crossing devices.
  • system devices not shown
  • the grade crossing devices are not activated when the outputs 22, 24, 26 are energized.
  • Any of the outputs 24, 26, 28, 30 can be assigned to provide an output which corresponds to the health check line 32.
  • the controllers 12, 14, 34 can be suitable microprocessors known within the art.
  • the two independent controllers 12, 14 of the system independently receive the same vital inputs 16, 18, 20, 22 and execute the timing functions, resulting in the outputs 24, 26, 28, 30.
  • the controllers 12, 14 are completely redundant.
  • the controllers 12, 14 can be logically redundant while having the capability to perform non-redundant processes.
  • the system 10 can have more than two redundant controllers, and by example have three or four redundant controllers.
  • the third controller 34 is operably connected to the first and second controllers 12, 14 and is configured to execute and control the housekeeping functions of the system 10.
  • housekeeping functions can include system data logging to memory 38, external communication and various other system functions.
  • the third controller 34 is operably connected to and in communication with the GPS module 48 and Bluetooth module 50.
  • Access to the system 10 can be password protected in order to prevent unwarranted access.
  • the controllers 12, 14, 34 each can be a single processor package, or alternatively be multiple processors.
  • the system 10 can provide redundant processing of all vital inputs and complementary control of vital outputs ( Fig. 2 ), the device 10 being configured for vitality.
  • the user interfaces with the system 10 by providing input to the system via the interface 44.
  • the user can choose to set the device timing parameters, login to the device, change the device authorization, initiate data log collection, display the logic states or display the state of the device.
  • the interface 44 provides the user the ability to select varying operation parameters of the system 10 depending upon the particular characteristics of the signaling devices or grade crossing for which it serves.
  • the memory module 38 can be used to store logged data identifying vital timing states.
  • the communication devices 36, 46, 48, 50 can be employed to show real time device activity and remotely retrieve logged data, in addition to other interface connectivity purposes with the device 10.
  • the VPD 10 can be operably connected to a computer or suitable computing device (not shown) through communication port 36.
  • a user can access the device 10 through the computer's graphical user interface, allowing the user to access various parameters and system functions of the device 10.
  • the user can, among other functions, login into the device, change access authorization, initiate data collection and logging, download device data logs, display the logic states of the device 10, access current or historical data states of the device 10, change device clock and view device data logs.
  • Communication with the system 10 can be configured through the communication port 36, which by example, can be a USB port, an Internet port, or a file writer.
  • System users can select operation parameters of the system 10 depending upon the particular application program and system applications. Logged data, including vital timing states, can be saved to the memory module 38.
  • Multiple VPDs 10 can communicate with each other through the communication means 36, 46, 48, 50, as well as through a hardwire connection. Communication between VPDs 10 can include system data sharing and coordinated operation of devices 10, which can be operably connected
  • the output of microprocessor 12 controls a dedicated relay driver circuit 60 that provides positive referenced energy to the positive terminal of the output 30.
  • the output of microprocessor 14 controls a dedicated relay driver circuit 62 that provides negative referenced energy to the negative terminal of output 30.
  • Input 16 is connected to the first microprocessor 12 and to the second microprocessor 14 and the intervening components and connections are functional.
  • the components and connections from input 16 to microprocessor 12 are independent of the connections from input 16 to microprocessor 14 to maintain fill redundancy.
  • Microprocessor 12 executes the same application program as microprocessor 14.
  • the operating clock of microprocessor 12 coincides with the operating clock of microprocessor 14 and the operating clock of microprocessor 14 coincides with the operating clock of microprocessor 12.
  • the positive relay driver circuit 60 and terminal of output 30 are connected to microprocessor 12.
  • the negative relay driver circuit and terminal of output 30 is connected to microprocessor 14. Damage to or failure of any component in the input or output circuit of either microprocessor or the failure of either of the microprocessors will result in no energy at output 30 regardless of the status of input 16. Output 30 will be energized only if input 16 is energized and the VPD 10 is operating properly.
  • an output 24, 26, 28, 30 can represent a signal to a preemption signal device (not shown).
  • the preemption signal device When the output 24, 26, 28, 30 is de-energized the preemption signal device is activated.
  • Preemptive signal devices include, by example, flashing light signals and other methods to warn motor vehicle operators that grade crossing signals will shortly be activated.
  • the preemption signal devices are activated based upon a timing protocol that is predetermined by the system 10 user.
  • Grade crossings are located in a wide variety of locations and under varying circumstances. Grade crossings can be in close proximity to alternate vehicle intersections, grade crossings can be located at varying distances from each other, and the location of the crossing can be with in an area of the railroad tracks that consistently has high or low speed locomotives.
  • a system output represents a signal to a crossing control device, by example, this can include mechanical devices for impeding vehicle traffic and flashing light signals used to prevent vehicles from traveling across a grade crossing when a locomotive is approaching.
  • the control devices are representative of active warning systems known in the art. Active warning systems that impede traffic from traveling through the crossing are not utilized at all railroad grade crossings.
  • At least one embodiment of the present invention provides a cost effective and novel system that will provide a solution for placing active preemptive warning systems at crossings that are currently limited to passive warning systems.
  • a VPD 10 application program can provide multiple independent and programmable timers convenient to systems control applications.
  • a timer example application in which the condition of an assigned output corresponding to a specific input is delayed by either a predetermined or user selected value for the purpose of eliminating the unwanted effects of intermittent interruption of the input signal are contemplated.
  • a further example is a timer application in which the condition of the assigned output(s) corresponding to specific inputs or sequential input changes, is maintained for a specific period or interrupted after a specific period. The period length can be either a programmed fixed variable or a user input variable.
  • the VPD 10 application program can identify and process sequential input changes to control conditions of assigned outputs.
  • the application compares the sequential status of two or more inputs to determine the condition of an assigned output. This feature allows the VPD 10 to provide a logical output that corresponds to directional movement of a vehicle, such as a locomotive or motor vehicle.
  • the VPD 10 can be configured to provide vital control for any control system application.
  • the VPD 10 can be configured to provide single vital input control of multiple vital outputs.
  • the VPD 10 can also be configured to allow a user to specify the sequence, delay, dependence or independence of controlled outputs. There is no limit to the number of software timers or alarms that can be defined.
  • the VPD 10 utilizes redundant microprocessors 12, 1.4, each running the same application and each checking the health of the other processor to ensure integrity and vitality.
  • the application program assigns the condition of specific outputs to be dependent upon the condition of specific inputs.
  • the application program incorporates timers and sequential logic to define the input -output relationship. Each output provides a discrete positive and negative. Each output is hardware independent and electrically isolated from every other output.
  • Each microprocessor receives identical information from each input and each microprocessor executes the same application program logic. Furthermore, the output of microprocessor 12 is identical to the output of the microprocessor 14.
  • the VPD 10 can be programmed by the user for a particular application through use of a Ladder Logic based programming Integrated Development Environment (IDE).
  • IDE Ladder Logic based programming Integrated Development Environment
  • the IDE provides advanced ladder logic editing, compiling, debugging, assembly and program download features.
  • the editor, or system user can provide a set of configurable blocks which can be arranged into a ladder logic program. These blocks can include Normally Open, Normally closed, Timers, Counters, Set, Reset, Single Output Up, Single Output Down, Data Move, Data Comparison, Data Conversion, Data Display, Data Communication and Binary Arithmetic tools.
  • the editor also provides rich editing and ladder formatting tools.
  • the compiler checks for syntax errors in the ladder program and generates mnemonics in case there are no syntax errors.
  • the Assembler converts the program into a device specific hex file which is downloaded into the device using the program downloader built into the IDE.
  • the ladder logic programming can also offer advanced debugging features for this dual controller based vital processing device. It can be configured for step by step debugging with real-time updates on the ladder blocks.
  • VPD 10 input and output scheme
  • the health check protocol is initiated at step 66. If the health check is not confirmed then all outputs are de-energized at step 68. As a result of the outputs being de-energized the safest state of the VPD 10 occurs, and energy to any vital device controlled by any of the VPD 10 is removed. Deactivation of the VPD outputs in the event of a failed VPD health check 66 is consistent with the failsafe principles of the VPD 10. Subsequently, the VPD 10 identifies whether any input 16, 18, 20, 22 is energized at step 70. The application program is executed 72 and outputs are energized 74 consistent with the condition of the inputs mediated by the program logic. The VPD 10 then loops back to the health check step 66.
  • One system output 26 represents the result of the health check protocol that is executed by each of the controllers 12, 14.
  • Output 26 is dedicated to vital relays with the purpose of indicating system 10 vitality.
  • the controllers check the operations parameters through a health check monitor 32.
  • the health check protocol is designed to monitor and compares the clock frequencies for each of the controllers. In the event that the clock frequencies of the two controllers are not consistent, the health check protocol causes the output 26 to become de-energized. Alternatively, if the monitoring function of the health check protocol identifies a problem with one or both of the controllers then output 26 is de-energized. In most situations the health check parameters are satisfied and output 26 remains energized.
  • the health check is constantly maintained by the redundant controllers 12, 14 by exchanging precisely timed heartbeats.
  • a health-check protocol is executed separately by two independent microprocessors 12, 14.
  • the health check protocol is configured to monitor and compare the clock frequencies for each of the controllers 12, 14, 34. In the event that the clock frequencies of the two controllers are not consistent, the health check protocol causes one of the designated vital outputs to become de- energized. Alternatively, if the monitoring function of the health check protocol identifies a problem with one or both of the microprocessors then health check output is de-energized. During normal system 10 operating conditions, the health check parameters are satisfied and the health check output remains energized. In the present embodiment, the health check is constantly maintained by the redundant controllers 12, 14 by exchanging precisely timed heartbeats.
  • the microprocessors 12 and 14 exchange an independently generated, precisely timed heartbeat clock which can have a time period of 1 second.
  • the health check protocol is designed to keep check on the performance of timers and events that form the basis of any operational logic of an application. Delays and variations in timers' execution can result in compromise of the device vitality. Various hardware, software and environmental conditions pertaining to the device can result in timer variations and hence the dual redundant nature of the design of the VPD 10 is configured to address and counter such discrepancies.
  • a Master timer in each microprocessor is used to update the heartbeat and other program timers simultaneously. Any shift in the Master timer will result in proportional drift in the heartbeat timer as well as other program timers. Both microprocessors will monitor this drift and upon exceeding a defined limit will generate a fault condition. Accurate timer operations ensure vital device operation.
  • the VPD 10 has an onboard GPS module for providing location, speed and direction of travel information.
  • the microprocessor 34 requests the information from the GPS receiver through a communication port 36 (by example, serial RS232) and forwards it to the microprocessors 12 and 14.
  • the information about speed, location and travel direction can be used by in a number of ways by the device depending on the application at hand.
  • Bluetooth module 50 provides authenticated short range two way communication with a laptop, PDA, Smartphone, keypad or alternative mobile computing device.
  • the Radio module 46 can be used for communication with a remote device, another VPD or other devices communicating on the same radio band.
  • a graphical user interface discussed earlier can be used for changing the VPD 10 parameters. This user interface can be used on a laptop as well as a PDA or a Smartphone through the Bluetooth module 50 for parameter updates.
  • a commercially available Bluetooth keypad/keyboard can be paired up with the VPD Bluetooth module 50 to provide user input options for a certain application.
  • system 10 is configured to provide advance preemption and crossing signal control logic from the same track relay circuit.
  • the system 10 further provides multiple independent and programmable loss of shunt timers in a single device. Additionally, the system 10 provides directional logic and programmable release timer functions in a single device.
  • a first timing function is a delay timer for output 24, which delays the operation of a crossing control with respect to the operation of preemption signals.
  • An output delay timer is initiated by one of two situations, when input 16 or input 24 are de-energized. Upon the completion of the delay timer, output 24 is de-energized.
  • the duration of this timer is user programmable and can be dependent upon a specific type of crossing.
  • a track section can receive fast moving trains, therefore it is necessary to delay the crossing control device for a shorter period of time than a track section that can receive slower moving trains.
  • the system 10 can dynamically adjust the delay duration based upon the information received from the track relays on the inputs 16, 18, 20.
  • a second timing function can include an input interrupt delay timer.
  • an input interrupt delay timer that is dedicated to that specific input is initiated.
  • the duration of this timer can be user programmable to increase the adaptability of the system.
  • the input change is not processed until the timer has elapsed.
  • a third timing function can include an input sequence delay output timer. Upon the failure of either microprocessor to pass the health check protocol, energy is removed from all outputs.
  • a sequence delayed output timer is initiated when inputs have been de-energized in two specific sequences: input 18, then input 16 de-energized followed by input 18 energized; or input 18, then input 20 de-energized followed by input 18 energized. Once the sequence delayed output timer is initiated output 24 and output 26 are energized upon reenergizing input 18.
  • the sequence delay output timer can be user programmable.
  • sequence delay output timer During the operation of the sequence delay output timer the system will function as follows: input 20 and input 18 are energized and input 16 is de-energized. Output 24, output 26 and output 28 are also energized. Alternatively, input 16 and input 18 are energized and input 20 is de-energized and output 16, output 18 and output 20 energized. Upon the completion of the sequence delay output timer, if input 16 or input 20 is de-energized, then output 24 and output 26 are immediately de-energized. If all inputs are energized before completion of the sequence delay timer, output 24 and output 26 remain energized.
  • isolated vital input and output relay terminals are included. This will allow for the system 10 to be retrofit into pre-existing grade crossings.
  • the vital timing device 10 can be configured with at least four vital inputs and four vital outputs.
  • the number of inputs is greater than the number of outputs, as each vital output has an associated input as a feedback to check the actual operation of the device attached to the corresponding output.
  • the device has a small time window to confirm the agreement between a Vital Output and the associated feedback Input.
  • the device has less than four inputs and less than four outputs. In an alternative embodiment there are greater than four inputs and greater than 4 outputs.
  • the system 10 is designed for a railroad signal environment to perform vital signal functions.
  • the primary application for the device is to enable the use of a single conventional track relay circuits to provide advance preemption of highway traffic light signals and initiate operation of highway-railroad grade crossing signals.
  • the system 10 enhances the operational safety of the conventional circuit by providing vital loss of shunt timer function for each track relay input.
  • the system 10 provides train movement directional logic, thereby eliminating at least two vital railroad relays and provides a vital directional logic release timer function which causes the crossing signals to operate should the receding track relay circuit fail to recover within a predetermined time following a train movement.
  • the system 10 can be configured for a variety of control systems.
  • the system 10 can be configured for roadway motor vehicle traffic control systems.
  • the system 10 can be configured for control systems not associated with vehicle detection, but where a cost effective vital logic controller system is advantageous.
  • any conventional signal track circuit or motion sensor is adequate to simultaneous preemption of the traffic light signals with the activation of the railroad crossing signals.
  • the only device available which also provides motion sensing features is a constant warning device with auxiliary programmable modules.
  • the conversion from simultaneous to advance traffic signal preemption requires replacement of the motion sensor with a grade crossing predictor.
  • the system 10 provides another solution. If the system 10 is controlled by the motion detector relay, the VPD can be programmed to provide a fixed amount of delay prior to the interrupt of the vital output which controls the operation of the railroad crossing signals.
  • the system 10 vital output controlling the traffic light signals would initiate preemption as soon as the motion detector relay input is removed from the system 10.
  • Rail rules require that trains stopped or delayed in the approach to a crossing equipped with signals can not occupy the crossing until the signals have been operating long enough to provide warning (GCOR, 5 th Ed. - 6.32.2). Because of this rule the VPD provides a feature for advance preemption of traffic light signals that is not available from constant warning devices: advance preemption time, that is, the time between the initiation of traffic light signal preemption and operation of crossing signals is a constant and always the same regardless of train position. Constant warning devices do not provide this feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Electrotherapy Devices (AREA)

Claims (13)

  1. Vorrichtung, umfassend eine Vitalverarbeitungseinrichtung (10) gekoppelt an eine Eisenbahnsignaleinrichtung, gekoppelt an eine Eisenbahnschiene, wobei die Vitalverarbeitungseinrichtung (10) derart ausgelegt ist, um einen Eingangssignalsatz, umfassend ein oder mehrere Eingangssignale, die ein oder mehrere Zustände auf der Eisenbahnschiene darstellen, aufzunehmen, wobei die Vitalverarbeitungseinrichtung (10) weiter umfasst:
    eine erste Steuervorrichtung (12), die ausgelegt ist, um einen ersten Logikprozess durchzuführen, der den Eingangssignalsatz verwendet, um ein erstes Steuervorrichtungsausgangssignal zu erzeugen;
    eine zweite Steuervorrichtung (14), die ausgelegt ist, um den ersten Logikprozess durchzuführen, der den Eingangssignalsatz verwendet, um ein zweites Steuervorrichtungsausgangssignal zu erzeugen; und
    eine Status-Check-Vorrichtung (32), die ausgelegt ist, um einen Integritätstest der ersten und zweiten Steuerungseinrichtungen (12, 14) durchzuführen;
    wobei die erste und zweite Steuerungsvorrichtung (12, 14) sich keine Komponenten teilen, welche alternative Energien oder Logikpfade bereit stellen;
    wobei weiter die Vitalverarbeitungseinrichtung (10) die Eisenbahnsignalvorrichtung in einen sichersten Eisenbahnsignalvorrichtungszustand versetzt, falls zumindest eines der folgenden eintritt:
    Versagen von einer oder mehreren Komponente(n) der Vitalverarbeitungseinrichtung (10);
    Integritätstestversagen bei einer oder mehreren der ersten Steuerungseinrichtung (12) und/oder der zweiten Steuerungseinrichtung (14); und
    wobei weiter, wenn die erste und zweite Steuerungseinrichtung (12, 14) beide den Integritätstest bestehen, und wenn es kein Komponentenversagen innerhalb der Vitalverarbeitungseinrichtung (10) gibt, sind die ersten und zweiten Steuerungseinrichtungsausgangssignale identisch, eine Funktion des Eingangssignalsatzes sind und werden verwendet, um die Eisenbahnsignalvorrichtung zu steuern, dadurch gekennzeichnet, dass das erste Steuerungseinrichtungsausgangssignal der ersten Steuerungseinrichtung (12) an eine erste Systemeinrichtungstreiberplatine (60) bereitgestellt ist, die positiv referenzierte Energie erzeugt und das zweite Steuerungseinrichtungsausgangssignal der zweiten Steuerungseinrichtung (14) an eine zweite Systemeinrichtungstreiberplatine (62) bereitgestellt ist, die negativ referenzierte Energie erzeugt.
  2. Vorrichtung nach Anspruch 1, bei welcher die erste und zweite Steuerungseinrichtungen (12, 14):
    ein Paar von doppelten Mikroprozessoren;
    ein Paar von doppelten programmierbaren Einrichtungen;
    zwei Mikroprozessoren, programmiert um eine doppelte Logikverarbeitung durchzuführten;
    zwei programmierbare Einrichtungen, programmiert um eine doppelte Logikverarbeitung durchzuführen; oder
    identische, eigene Logikeinrichtungen, sind.
  3. Vorrichtung nach einem der Ansprüche 1 bis 2, bei welcher:
    die erste Systemvorrichtungstreiberplatine (60) einen Strom ermöglicht, der ein erstes diskretes Gleichspannungssignal erzeugt, wenn das erste Steuerungseinrichtungsausgangssignal höher ist, und wobei weiter, die erste Systemeinrichtungstreiberplatine (60) einen Stromfluss verhindert, um jegliches Gleichspannungssignal zu erzeugen, wenn das erste Steuerungseinrichtungsausgangssignal niedriger ist; und
    die zweite Systemeinrichtungsplatine (62) einen Strom ermöglicht, der ein zweites diskretes Gleichspannungssignal erzeugt, wenn das zweite Steuerungseinrichtungsausgangssignal höher ist, und wobei weiter, die zweite Systemeinrichtungstreiberplatine (62) einen Stromfluss verhindert, um jegliches Gleichspannungssignal zu erzeugen, wenn das zweite Steuerungseinrichtungsausgangssignal niedrig ist;
    wobei das erste und zweite diskrete Gleichspannungssignal erforderlich sind, um einen Stromfluss und eine Differenzspannung herzustellen, um einem Relais in der Eisenbahnsignaleinrichtung Energie zu liefern.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, bei welcher die erste Systemeinrichtungstreiberplatine eine Emittererfolgertransistoreinstellung (60) umfasst, und wobei weiter die zweite Systemeinrichtungstreiberplatine eine Emittererfolgertransistoreinstellung (62) umfasst.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, bei welcher die erste Systemeinrichtungstreiberplatine (60) eine Opto-Isolatoreinstellung umfasst, und wobei weiter die zweite Systemeinrichtungstreiberplatine (62) eine Opto-Isolatoreinstellung umfasst.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, bei welcher die Vitalverarbeitungseinrichtung (10) weiter durch eine dritte Steuerungseinrichtung (34) gekennzeichnet ist, gekoppelt an die erste und zweite Steuerungseinrichtung (12, 14), wobei die dritte Steuerungseinrichtung (34) eines oder mehrere von dem Folgenden durchführt:
    Steuern von Housekeeping-Funktionen für die ersten und zweiten Steuerungseinrichtungen (12, 14);
    Zulassen von Kommunikation mit einem Computer außerhalb der Vitalverarbeitungseinrichtung (10);
    Zulassen von Kommunikation mit einer oder mehreren Vitalverarbeitungseinrichtung(en);
    Bereitstellen einer Benutzerschnittstelle um eines oder mehrere der folgenden zu Steuern:
    einstellen von Vitalverarbeitungseinrichtungszeitparametern;
    anmelden in die Vitalverarbeitungseinrichtung (10);
    ändern der Vitalverarbeitungseinrichtungsberechtigung;
    initiieren der Messwerterfassungssammlung;
    Vorrichtungsmesswerterfassung und -abrufung;
    anzeigen von logischen Zuständen;
    anzeigen von ein oder mehreren Vitalverarbeitungseinrichtungszuständen;
    einstellen von Vitalverarbeitungseinrichtungsparametern;
    Bereitstellen von Speicher um Daten bezüglich der Vitalverarbeitungseinrichtung (10) zu speichern.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, bei welcher die Status-Check-Vorrichtung ein Paar von Status-Check-Leitungen umfasst, koppelnd die erste Steuerungseinrichtung, die an die zweite Steuerungseinrichtung gekoppelt ist, und wobei weiter, der Integritätstest zumindest eines der Folgenden umfasst:
    Überwachen unabhängiger erzeugter, gestoppter Pulse der ersten Steuerungseinrichtung und unabhängiger erzeugter, gestoppter Pulse der zweiten Steuerungseinrichtung;
    Vergleichen der unabhängig erzeugten, gestoppten Pulse der ersten Steuerungseinrichtung und der unabhängig erzeugten, gestoppten Pulse der zweiten Steuerungseinrichtung;
    Erkennen eines Problems mit zumindest der ersten oder zweiten Steuerungseinrichtung durch Benutzung der unabhängig erzeugten, gestoppten Pulse der ersten Steuerungseinrichtung und unabhängig erzeugten, gestoppten Pulse der zweiten Steuerungseinrichtung.
  8. Vorrichtung nach einem der Ansprüche 1 bis 6, bei welcher die Status-Check-Vorrichtung gekennzeichnet ist durch:
    die erste Steuerungseinrichtung (12), welche die Integrität der Pulse, erzeugt durch die zweite Steuerungseinrichtung (14), überwacht und überprüft; und
    die zweite Steuerungseinrichtung (14), welche die Integrität der Pulse, erzeugt durch die erste Steuerungseinrichtung (12), überwacht und überprüft.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, bei welcher das Eingangssignal ein Vitaleisenbahnschienenrelaissignal ist.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9, bei welcher die erste und zweite Steuerungseinrichtungen (12, 14) ausgelegt sind, um unabhängige und redundante Verarbeitung des Eingangssignalsatzes bereitzustellen.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, bei welcher die Eisenbahnsignaleinrichtung zumindest eines der folgenden umfasst:
    eine Eisenbahnschienenüberquerungswarneinrichtung;
    eine Vorschausignaleinrichtung;
    einen Eisenbahnschienenverkehrsstatusindikator, Streckenabschnittssignale, eine Leistungsschaltersteuerungseinrichtung, einer Logik der direktionellen Bewegung.
  12. Verfahren zur Steuerung einer Vitalaktivwarnvorrichtung angrenzend zu einer Eisenbahnschiene, das Verfahren umfassend:
    Bereitstellen eines Vitaleingangssignalsatzes an eine Vitalverarbeitungseinrichtung (10), wobei der Vitaleingangssignalsatz ein oder mehrere Vitaleingangssignal(e) von einem oder mehreren Eisenbahnschienenrelais umfasst;
    die Vitalverarbeitungseinrichtung (10) ein Integritätstest der Vitalverarbeitungseinrichtung (10) durchführt;
    wenn die Vitalverarbeitungseinrichtung (10) den Integritätstest versagt, veranlasst die Vitalverarbeitungseinrichtung (10) die Aktivwarnvorrichtung in den sichersten Betriebsmodus;
    wenn eine Komponente der Vitalverarbeitungseinrichtung (10) versagt, veranlasst die Vitalverarbeitungseinrichtung (10) die Aktivwarnvorrichtung in den sichersten Betriebsmodus;
    wenn die Vitalverarbeitungseinrichtung (10) den Integritätstest besteht und kein Komponentenversagen auftritt, erzeugt die Vitalverarbeitungseinrichtung (10) ein Vitalverarbeitungseinrichtungsausgangssignal; und
    wenn die Vitalverarbeitungseinrichtung (10) nicht die Aktivwarnvorrichtung in den sichersten Betriebsmodus, aufgrund des Versagens des Integritätstests oder eines Komponentenversagens, veranlasst, benutzt die Steuerungsbetätigung der Vitalaktivwamvorrichtung das Vitalverarbeitungseinrichtungsausgangssignal;
    wobei die Vitalverarbeitungseinrichtung (10) erste und zweite redundante Verarbeitungseinheiten umfasst, die kein Element teilen, das eine alternative Energie oder ein Logikpfad bereitet;
    wobei weiter jede Verarbeitungseinheit identische Logikverarbeitung des Eingangssignalsatzes durchführt, um identische Logikverarbeitungsausgangssignale zu erzeugen, wenn die Vitalverarbeitungseinrichtung (10) einen Integritätstest besteht und an keinem Komponentenversagen leidet;
    wobei weiter ein Verarbeitungsvorrichtungsausgangssignal, umfassend Stromfluss und Differenzspannung, sich von den identischen ersten und zweiten Logikverarbeitungsausgangssignalen ableitet;
    wobei weiter die erzeugten identischen Verarbeitungsausgangssignale ein erstes logisches Verarbeitungsausgangssignal beinhalten, bereitgestellt an einer ersten Systemvorrichtungstreiberplatine (60), die positiv referenzierte Energie erzeugt und ein zweites logisches Verarbeitungsausgangssignal, bereitgestellt an einer zweiten Systemvorrichtungstreiberplatine (62), die negativ referenzierte Energie erzeugt.
  13. Verfahren nach Anspruch 12 weiter umfassend, ableiten des Vitalverarbeitungseinrichtungsausgangssignals von identischen ersten und zweiten logischen Verarbeitungsausgangssignalen durch:
    Bereitstellen des ersten logischen Verarbeitungsausgangssignals an die erste System-vorrichtungstreiberplatine (60) in der Vitalverarbeitungseinrichtung (10), um einen Stromfluss zu ermöglichen, der eine erste diskrete Gleichstromspannung nur wenn das erste logische Verarbeitungsausgangssignal hoch ist erzeugt; und
    Bereitstellen des zweiten logischen Verarbeitungsausgangssignals an die zweite Systemvorrichtungstreiberplatine (62) in der Vitalverarbeitungseinrichtung (10), um einen Stromfluss zu ermöglichen, der eine zweite diskrete Gleichstromspannung erzeugt nur wenn das zweite logische Verarbeitungsausgangssignal hoch ist;
    wobei die ersten und zweiten diskreten Gleichstromspannungssignale benötigt werden, um einen Stromfluss und eine Differenzspannung zu erzeugen, um einem Relais (Figur 2) in der Aktivwarnvorrichtung Energie zu liefern.
EP07866027.1A 2006-12-22 2007-12-26 Vitale festkörpersteuerung Not-in-force EP2125482B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US87160906P 2006-12-22 2006-12-22
US88493007P 2007-01-15 2007-01-15
PCT/US2007/088849 WO2008080169A1 (en) 2006-12-22 2007-12-26 Vital solid state controller

Publications (3)

Publication Number Publication Date
EP2125482A1 EP2125482A1 (de) 2009-12-02
EP2125482A4 EP2125482A4 (de) 2011-01-19
EP2125482B1 true EP2125482B1 (de) 2014-05-14

Family

ID=39562964

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07866027.1A Not-in-force EP2125482B1 (de) 2006-12-22 2007-12-26 Vitale festkörpersteuerung
EP08727699A Not-in-force EP2125483B1 (de) 2006-12-22 2008-01-15 Fahrzeugdetektionssystem und -methode

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08727699A Not-in-force EP2125483B1 (de) 2006-12-22 2008-01-15 Fahrzeugdetektionssystem und -methode

Country Status (4)

Country Link
EP (2) EP2125482B1 (de)
AT (1) ATE549228T1 (de)
CA (2) CA2710038C (de)
WO (1) WO2008080169A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081326A1 (de) * 2017-10-26 2019-05-02 Siemens Mobility GmbH Konzept zum betreiben eines schienenfahrzeugs

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028961B2 (en) 2006-12-22 2011-10-04 Central Signal, Llc Vital solid state controller
ITTO20090172A1 (it) * 2009-03-09 2010-09-10 Ansaldo Sts Spa Sistema di supporto alla protezione del personale di manutenzione su linee, in particolare su linee ferroviare, e relativo metodo
WO2011153115A2 (en) 2010-05-31 2011-12-08 Central Signal, Llc Roadway detection
US8668170B2 (en) 2011-06-27 2014-03-11 Thales Canada Inc. Railway signaling system with redundant controllers
CN104571008A (zh) * 2014-11-20 2015-04-29 杭州电子科技大学 一种印制电路板曝光机用的带安全功能的并行控制方法
CN109677468A (zh) * 2019-03-04 2019-04-26 中车青岛四方车辆研究所有限公司 列车用逻辑控制单元及逻辑控制方法
CN112596480B (zh) * 2020-12-09 2022-08-30 亚太森博(广东)纸业有限公司 一种双回路控制装置、方法及***
CN114179860A (zh) * 2021-12-28 2022-03-15 交控科技股份有限公司 用于列车控制的融合单元、列车控制管理***及列车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3810119A (en) * 1971-05-04 1974-05-07 Us Navy Processor synchronization scheme
DE19532640C2 (de) * 1995-08-23 2000-11-30 Siemens Ag Einrichtung zur einkanaligen Übertragung von aus zwei Datenquellen stammenden Daten
US7075427B1 (en) * 1996-01-12 2006-07-11 Eva Signal Corporation Traffic warning system
US6457682B2 (en) * 1999-12-07 2002-10-01 Railroad Controls Llc Automated railroad crossing warning system
US20020185571A1 (en) * 2001-05-01 2002-12-12 Bryant Jackie D. Automated railroad crossing gate management system
US6951132B2 (en) * 2003-06-27 2005-10-04 General Electric Company Rail and train monitoring system and method
US7053784B2 (en) * 2004-04-23 2006-05-30 General Electric Company System and method for monitoring alignment of a signal lamp
DE102004035901B4 (de) * 2004-07-19 2016-02-04 Siemens Aktiengesellschaft Einrichtung zum Steuern eines sicherheitskritischen Prozesses
DE202005020802U1 (de) * 2004-11-15 2007-03-15 Abb As Steuersystem für Schienenfahrzeuge
DE102006011361B4 (de) * 2006-03-09 2010-08-26 Lenord, Bauer & Co. Gmbh Umdrehungszähler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081326A1 (de) * 2017-10-26 2019-05-02 Siemens Mobility GmbH Konzept zum betreiben eines schienenfahrzeugs

Also Published As

Publication number Publication date
CA2710038A1 (en) 2008-07-03
EP2125483A2 (de) 2009-12-02
WO2008080169A1 (en) 2008-07-03
EP2125482A1 (de) 2009-12-02
EP2125483A4 (de) 2011-01-12
CA2710041A1 (en) 2009-07-03
ATE549228T1 (de) 2012-03-15
EP2125483B1 (de) 2012-03-14
EP2125482A4 (de) 2011-01-19
CA2710038C (en) 2015-11-10
CA2710041C (en) 2016-06-07

Similar Documents

Publication Publication Date Title
US8028961B2 (en) Vital solid state controller
EP2125482B1 (de) Vitale festkörpersteuerung
EP1498337B1 (de) Fernbedienter Neustart für eine Zugsteuerung
CN109278807B (zh) 基于车车通信列控***的列车跳停方法
AU2021204799B2 (en) Speed proving method and apparatus
CN105257141A (zh) 一种适用于全自动驾驶的车库门控制方法及***
CN105667544A (zh) 一种有轨电车自动防护***
US10449983B2 (en) Method for commanding a railway level crossing protection system
CN104149822A (zh) 基于信息冗余的列车追踪方法
US20040049327A1 (en) Radio based automatic train control system using universal code
CN104309643A (zh) 一种点式atp模式下pmi联锁***的临时限速方法
JP4755473B2 (ja) 信号制御システム
KR20150136976A (ko) 열차 방호 시스템
JP2023506871A (ja) 信号操作所連携型作業員警報システム
JP2010228576A (ja) 継電連動装置監視機能付きctc駅装置
CN109318936B (zh) 列车辅助驾驶***及列车控制***
US20200180670A1 (en) Advanced preemption
WO2008080175A2 (en) Vehicle detection system
US20230166780A1 (en) System and method for virtual block operational status control with long block time delay
RU2768688C1 (ru) Единая цифровая бортовая платформа безопасности (БСБ-Е)
JP7466604B1 (ja) 踏切保安システム
US20240149929A1 (en) Train control systems with hazard management and associated methods
KR102061676B1 (ko) 열차제어 안전 백업 장치 및 방법
RU2652363C1 (ru) Устройство для управления движением на железнодорожном переезде
CN116714640A (zh) 一种列车控制***

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20101222

17Q First examination report despatched

Effective date: 20120127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007036771

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B61L0013000000

Ipc: B61L0027000000

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 27/00 20060101AFI20131008BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 668040

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007036771

Country of ref document: DE

Effective date: 20140626

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140514

Ref country code: AT

Ref legal event code: MK05

Ref document number: 668040

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140514

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140815

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007036771

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007036771

Country of ref document: DE

Effective date: 20150217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141226

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071226

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140514

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181217

Year of fee payment: 12

Ref country code: GB

Payment date: 20181219

Year of fee payment: 12

Ref country code: IT

Payment date: 20181218

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190218

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007036771

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191226

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191226