EP2125260B1 - Method for the operation of a coiling device used for coiling or uncoiling a metallic strip, and control device and coiling device therefor - Google Patents

Method for the operation of a coiling device used for coiling or uncoiling a metallic strip, and control device and coiling device therefor Download PDF

Info

Publication number
EP2125260B1
EP2125260B1 EP08708447A EP08708447A EP2125260B1 EP 2125260 B1 EP2125260 B1 EP 2125260B1 EP 08708447 A EP08708447 A EP 08708447A EP 08708447 A EP08708447 A EP 08708447A EP 2125260 B1 EP2125260 B1 EP 2125260B1
Authority
EP
European Patent Office
Prior art keywords
strip
coiler
control device
coiling
driving roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08708447A
Other languages
German (de)
French (fr)
Other versions
EP2125260A1 (en
Inventor
Otto Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL08708447T priority Critical patent/PL2125260T3/en
Publication of EP2125260A1 publication Critical patent/EP2125260A1/en
Application granted granted Critical
Publication of EP2125260B1 publication Critical patent/EP2125260B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/003Regulation of tension or speed; Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/16Unwinding or uncoiling

Definitions

  • the invention relates to an operating method for a reeling device for winding or unwinding (winding or unwinding) of a metallic strip, which has at least one reel, optionally at least one reel associated with the reel, and a control device for the reel and optionally for the drive roller.
  • the invention also relates to a control device and a control system for a reel assembly for winding or unwinding a metallic strip, wherein the reel assembly comprises a reel and optionally at least one reel associated with the reel.
  • the subject of the invention is a reeling device for winding a metallic strip which has a reel, optionally a reel associated to the reel, and a control device for the reel and optionally for the drive roller.
  • the invention also relates to a data carrier.
  • Coiler arrangements are used both during hot rolling and during cold rolling, ie also below the recrystallization temperature.
  • a steel strip is first reeled in a hot rolling mill as a roll or spool, delivered in this form in a cold rolling mill, and there reeled off for cold rolling.
  • both an unwinding reel and a tensioning reel for winding can be present at the end of the travel.
  • a tensioning reel may also be present on both sides.
  • the KR-A-2005 041 118 discloses a method in which the torque of a reel and its associated capstan is controlled by a controller in response to a measured temperature of the belt.
  • the invention has for its object to improve the winding quality and thus the strip quality in a band reel on.
  • the torque value may be used as a torque setpoint and / or as a torque limit.
  • both terms are to be regarded as the same content.
  • the optional drive roller is in particular upstream of the reel.
  • a measurement of the current tensile force or the current angle of rotation of the reel is not mandatory in the method according to the invention for the torque input, but irrelevant for the control concept according to the invention, although may be advantageous for additional optional control concepts.
  • a current microstructural property of the tape is measured or determined by model calculation, in particular a grain size, a grain structure, a phase portion, a Gibbssche free enthalpy and / or a molecular or atomic distribution. All sizes which are due to the phase characteristics of the material of the tape, e.g. steel or alloy grade.
  • the strip is in particular a steel strip or a non-ferrous strip in a rolling mill and / or in a downstream treatment line, for example in a cold rolling mill of the aforementioned type.
  • the method according to the invention can also be used particularly well in a hot rolling mill. It is suitable for steel strip of any alloy but also for non-ferrous (NE) metal, e.g. Aluminum, usable.
  • NE non-ferrous
  • the control device preferably continuously determines torque values such that a variation in the winding moment or strip tension acting in the strip is reduced, wherein the winding moment or the strip tension in the material is preferably constant. It is significant that the variation in the band is reduced because a winding torque or strip tension acting in the band can - but need not - on the motor side or roller side also cause a constant moment.
  • the actual value is determined in real time, online and / or continuously, for example at a rate of at least 50 or 25 measurements per second.
  • the control device can operate the reel and / or the drive roller torque-limited, ie in particular with a respective currently calculated torque limit.
  • the location at which or to which the determination of the actual value takes place preferably lies between the reel and the drive roller, and / or immediately before the drive roller and / or between the reel system formed by the reel and the optional drive roller and a roller stand upstream of the reel system , in particular immediately after the roll stand.
  • the strip is the softest; There, the thickness and width of the band are particularly sensitive influenced, so that an actual value measurement is particularly advantageous there.
  • an actively or / and passively cooling the cooling line can be arranged.
  • an actual, in particular macroscopic, material property of the strip is determined from the actual value, in particular a stiffness, a tensile strength, a surface quality, a temperature, a geometric dimension, a yield strength, a toughness or a ductility.
  • a static material property of the strip is also transferred to the control device, in particular a material type, a hot flow limit as a function of the steel grade, an alloy code, information about a chemical Analysis or composition of the strip material and / or associated correction factors.
  • control device also outputs a desired reel speed to the reel and / or optionally a desired roller speed to the drive roller, so that the control device can preferably operate the reel and optionally the drive roller in a speed-controlled manner. Even a speed-limited operation is possible.
  • control device is designed such that it operates the reel and / or optionally the drive roller according to the aforementioned operating method.
  • advantages and preferred embodiments apply analogously to the control device.
  • control device particularly advantageously has a sensor for measuring a microstructure property of the strip and / or a model calculation unit for model-based calculation of a current microstructure property and / or a current temperature of the strip.
  • the control device or the control system has a model calculation unit for the model-based calculation of a characteristic of the band characterizing the microstructure of the band.
  • a model calculation unit for the model-based calculation of a characteristic of the band characterizing the microstructure of the band.
  • the model calculation unit can also determine the current strip temperature in the area of the reel device.
  • the control system also has a control device and at least one drive control device.
  • the object underlying the invention is achieved in that the control device or the control system is designed as described above.
  • a data carrier with a program code mapping the operating method also solves the problem.
  • the invention is also a rolling mill with a reel device according to the aforementioned embodiment.
  • FIG. 1 is a reeling device 1 downstream of a rolling train for hot rolling or cold rolling a steel strip 2, wherein the rolling mill is shown for reasons of clarity only with a last in the feed direction rolling mill 3 and the reel device 1.
  • the rolled strip 2 ends at a strip speed V from the last stand 3. It is after passing through a laminar cooling cooling section 4, which may be about 100 m long, fed to the coiler 1 and reeled there.
  • the length of the reel device 1 itself is typically 5 m.
  • the reel device 1 has a tensioning reel or reel 5, a drive roller 7 designed as a pair of driving rollers, and a control device 10.
  • the reel 5 has an expandable coiler mandrel.
  • the drive roller 7 is arranged upstream of the reel 5, ie it is arranged between the reel 5 and the last rolling stand 3 of the rolling train.
  • the control device 10 controls the reel 5 and the drive roller 7, so specifies their mode of operation and interaction. It is preferably designed as a process-controlled control device 10 in which preferably a processor device operates with a computer program loaded therein.
  • the Control device 10 is a computer program for carrying out the operating method according to the invention by means of a data carrier 40 loadable.
  • the torque setpoints M H , M R can also be understood in the illustrated embodiment as torque limits, because the drives are operated speed-overdriven, ie the speed controller never reaches its target speed, because the belt can not come fast enough from the mill. This applies to the so-called. Clamped operation of the rolling mill, in which the band is clamped on both sides. This Normal Sasphase upstream or downstream is a Anwickelphase or a Ausfädelphase, in which the speed control must be done differently.
  • the control device 10 determines the desired torque values M H , M R automatically, actively and continuously based on current actual values of those "inner" parameters of the belt which determine the stiffness of the belt over the entire winding process.
  • temperature sensors 19, 20, 21, 22 which function at an optical measuring principle, for example bolometry, are present at different points of the belt, namely between the last roll stand 3 and the reel system formed by drive roller 7 and reel 5 preferably immediately after the last roll stand 3, further immediately before the drive roller 7, between the drive roller 7 and the reel 5 and immediately in front of the reel 5, respectively online and continuously measure temperature values T 0 , T 1 , T 2 and T 3 .
  • the first two temperature sensors 19, 20 (T 0 and T 1 ) are particularly preferred.
  • the control device 10 determines currently, in real time, online and continuously the torque setpoints M H , M R such that a variation in the winding torque acting in the band 2 or a Bandzug reduced or preferably constant. This is based on known per se, for example, that the stiffness decreases with increasing temperature. As the temperature increases, the torque is reduced. Measurement (actual value acquisition) and torque calculation take place with a repetition period of approx. 8 ms to 16 ms. So there is a dynamic torque limit instead.
  • a current material property of the strip can also be measured (not explicitly shown).
  • information or data about static material properties of the belt are transferred from a superordinate control computer 25, ie data that is not online or continuous be changed during tape production.
  • the control device 10 together with the drive control devices 16, 18 and the temperature sensors 19, 20, 21, 22 forms a control system 11 for the reel device 1.
  • Model calculation unit 30 which receives input data from the host computer 25 or from another data processing unit, data acquisition unit or data input unit 50, these data may be measurements of belt temperature or belt property elsewhere in the upstream mill.
  • the control computer 25 or the model calculation unit 30 receive the currently calculated speed and torque setpoints via the control unit 10 for adaptation.
  • the model calculation unit 30 uses model heat calculation equations and heat radiation laws to calculate the temperatures T 0 , T 1 , T 2 , T 3 of the belt 2 in the area of the reel device 1 and in this way simulates actual measured values.
  • the sensors 19, 20, 21, 22 of the FIG. 1 are not essential in this case.
  • the measurement parameters according to the model are sent to the control device 10 for the further calculation of the torques M H , M R.
  • the model calculation unit 30 can alternatively or additionally calculate actual values of macroscopic material properties, eg rigidity, toughness, ductility, surface, tensile strength or of microscopic material properties, eg grain structure, grain size, distribution of phases, Gibbs free enthalpy, etc., at arbitrary locations. This can be based on the known modeling methods, such as described in EP 1 576 429 B1 or DE 10 2004 005 919 A1 be resorted to.
  • the model calculation unit 30 can calculate in real time or at least for the band control sufficiently fast a size, which as a measure of the not immediately detectable with this speed current Microstructure of the band acts. For example, for the stiffness of the strip, the hot yield point (abbreviated to HYP) is used as a measure, measured in N / mm 2 .
  • HYP hot yield point
  • the invention is based on an active adaptation of the torque calculation based on actual values of the respective parameters which determine the rigidity of the belt 2 over the entire winding process, namely the belt temperature and the material properties reflecting the microstructure of the belt.
  • a current model calculation including a microstructure calculation with regard to the material property, can be used as the actual value.
  • the advantage is a more uniform winding moment, i. Tensile torque on the material side (in the material), and thus leads to better winding quality and more consistent belt tension.
  • the torque calculation and thus the torque input to the reel motors M1, M2 is related to actual values and actual belt properties, and not to target values which remained unchanged during the winding process.
  • the disadvantages of during the winding process remain unchanged target specifications, namely the resulting differences between the setpoint and actual value, which adversely affect the winding quality avoided.
  • the quality of the wound tape such as constant thickness and width, is improved.
  • the microstructure actual value for example by means of X-ray diffraction, can be determined by direct measurement.
  • FIG. 3 shows details of the structure of the control unit 10 and the drive control device 16 of the reel drive and their interaction.
  • this description of figures applies analogously.
  • the control unit 10 receives - for example from the master computer 25 - the so-called set-up tape data, in particular the desired tape thickness d and bandwidth b. Furthermore, it receives the values which reflect the current band properties, ie, for example, measured values for the temperatures T 0 , T 1 , T 2 , T 3 or values calculated or simulated by the model calculation unit 30 for the material properties or for the current microstructure of the band 2.
  • the data and values enter a torque calculation module 61, which calculates the torque setpoint M H.
  • a speed calculation module 62 of the control unit 10 calculates the desired reel speed f H as a function of the winding phase predetermined by the master computer 25.
  • Winding phases for a coil to be produced are in particular "winding" (start phase), "clamped state” (operating phase) and "unthreading” (final phase).
  • the reel setpoint speed f H for the reel motor M 2 is fed via line 12 to a speed control loop. Typical values are in the range of 500 to 1000 revolutions per minute.
  • the reel motor M 2 is assigned a tachometer 63 whose measured actual speed f act serves as a controlled variable for calculating the control difference "f act -f H " for a speed controller 64 formed in the drive control device 16.
  • the output value of the speed controller 64 is a torque value which, after conversion via the motor flux ⁇ E, becomes a reel target motor current i H.
  • the reel target motor current i H serves as input for a current regulator 65, which is likewise formed in the drive control device 16.
  • the current controller 65 is supplied as a control variable measured by an ammeter 66 current motor current i act on the input side.
  • the current controller 65 controls the drive current of the reel motor M 2 .
  • Part of the drive control device 16 is also a torque limiting module 68, which limits the torque value determined by the speed controller 64.
  • the torque limiting module 68 both an upper limit and a lower limit, both then referred to as torque reference M H , can be transmitted from the torque calculation module 61 (via the line 12).
  • the upper limit is preferably used for the reel 5 and the drive roller 7, the lower limit preferably only for the drive roller 7, the control and regulation can otherwise be done analogous to the reel 5.
  • the upper limit is preferably used in the "clamped state" to avoid exceeding the yield strength of the belt 2, the lower limit in the other winding phases.
  • the specific reel pull S spec changes as a function of the current tape properties.
  • the stiffness / hardness of the strip is used, which depends on the microstructure and also on the strip temperature.
  • the tensile torque M H, Z and the bending moment M H, B are therefore strongly dependent on the HYP, apart from the strip thickness d and the bandwidth b, thus thus the actual strip temperature T.
  • the temperature values T 0 , T 1 , T 2 , T 3 are used.
  • control device 10 can react dynamically to changing belt temperatures and thus ensure a largely constant winding torque in the belt 2 with varying engine torque, thus reducing undesirable tension fluctuations and belt quality losses. It is not only possible to correct periodic fluctuations in tension, for example due to out-of-roundness in the wound strip, as if it were corrected exclusively for band-external parameters such as the current adjustment angle, but also for changes that occur unperiodically. Rather, in the coiling method according to the invention, a measurement of the current reel and / or driving roller torsion angle and a measurement of the current tensile force to determine the train / torque setpoint is not mandatory, because the desired value is derived from the temperature and / or microstructure property of the tape. The dynamic adaptation of the torque limits taking into account the current temperature or microstructure ensures that e.g. the yield strength is not exceeded and a good winding result is achieved with tightly wound band (coil).
  • a force calculation module 81 is formed for this purpose in the control unit 10, which calculates the driver setpoint force F R from the roller torque setpoint M R and possibly further influencing variables.
  • the driver target force F R is fed to the employment controller 80 of the driver, namely a force regulator 82 formed therein.
  • To form the force control circuit there is a hydraulic adjustment 83 acting on the pair of rollers 7, to which the controller 82 influences by means of a controlled valve 84.
  • the adjusting movement is represented by the double arrow 85.
  • An unillustrated sensor measures the current hydraulic pressure p act . This is supplied after conversion into a current drive force F act the input of the force controller 82 as a controlled variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Basic Packing Technique (AREA)
  • Massaging Devices (AREA)
  • Package Closures (AREA)

Abstract

A coiling device (1) for coiling or uncoiling a strip (2), has at least one coiler (5), an optional drive roll (7) associated with the coiler (5), and a control device (10) for the coiler (5) and the optional drive roll (7). The control device (10) operates the coiling device (1) in such a way that a current strip temperature and/or a current microstructure property of the strip is/are determined by taking measurements or calculating a model, the control device (10) determines a current desired torque value (MH,MR) from the actual value or a variable derived therefrom, and the control device (10) operates the coiler (5) and the optional drive roll (7) by the current desired torque value (MH,MR). The coiling device (1) has the advantage of improving the coiling quality as well as the strip quality in terms of the strip thickness and width.

Description

Die Erfindung betrifft ein Betriebsverfahren für eine Haspeleinrichtung zum Aufhaspeln oder Abhaspeln (Aufspulen oder Abspulen) eines metallischen Bandes, die zumindest einen Haspel, optional mindestens eine dem Haspel zugeordnete Treibrolle, und eine Steuereinrichtung für den Haspel und gegebenenfalls für die Treibrolle aufweist.The invention relates to an operating method for a reeling device for winding or unwinding (winding or unwinding) of a metallic strip, which has at least one reel, optionally at least one reel associated with the reel, and a control device for the reel and optionally for the drive roller.

Die Erfindung bezieht sich außerdem auf eine Steuereinrichtung und ein Steuersystem für eine Haspelanordnung zum Auf- oder Abhaspeln eines metallischen Bandes, wobei die Haspelanordnung einen Haspel und optional mindestens eine dem Haspel zugeordnete Treibrolle aufweist. Außerdem ist Gegenstand der Erfindung eine Haspeleinrichtung zum Aufhaspeln eines metallischen Bandes, die einen Haspel, optional eine dem Haspel zugeordnete Treibrolle, und eine Steuereinrichtung für den Haspel und gegebenenfalls für die Treibrolle aufweist. Die Erfindung betrifft auch einen Datenträger.The invention also relates to a control device and a control system for a reel assembly for winding or unwinding a metallic strip, wherein the reel assembly comprises a reel and optionally at least one reel associated with the reel. In addition, the subject of the invention is a reeling device for winding a metallic strip which has a reel, optionally a reel associated to the reel, and a control device for the reel and optionally for the drive roller. The invention also relates to a data carrier.

Haspelanordnungen zum Aufhaspeln eines Bandes sind allgemein bekannt, so z.B. aus EP 0 790 084 B1 für ein Stahlwalzwerk.Reel arrangements for winding a tape are well known, such as EP 0 790 084 B1 for a steel mill.

Haspelanordnungen werden sowohl beim Warmwalzen als auch beim Kaltwalzen, also auch unterhalb der Rekristallisationstemperatur, verwendet. Beispielsweise wird ein Stahlband zunächst in einer Warmwalzstraße als Rolle oder Spule aufgehaspelt, in dieser Form in ein Kaltwalzwerk geliefert, und dort zum Kaltwalzen wieder abgespult. Im Kaltwalzwerk kann also sowohl ein Abspulhaspel als auch am Streckenende ein Spannhaspel zum Aufwickeln vorhanden sein. Falls im Reversierbetrieb gearbeitet wird, d.h. falls das Band in beiden Richtungen durch die Kaltwalzanlage fährt, kann auch auf beiden Seiten ein Spannhaspel vorhanden sein. Im Zusammenhang mit der Erfindung wird nachfolgend das Abspulhaspeln und Aufhaspeln unter dem Begriff Aufhaspeln zusammengefasst.Coiler arrangements are used both during hot rolling and during cold rolling, ie also below the recrystallization temperature. For example, a steel strip is first reeled in a hot rolling mill as a roll or spool, delivered in this form in a cold rolling mill, and there reeled off for cold rolling. In the cold rolling mill, therefore, both an unwinding reel and a tensioning reel for winding can be present at the end of the travel. If working in reversing mode, ie if the belt travels through the cold rolling mill in both directions, a tensioning reel may also be present on both sides. In connection with the invention will below the unwinding and coiling summarized under the term coiling.

Es ist ferner bekannt, in Walzwerken einen Haspel drehzahlübersteuert und mit fixer Drehmomentengrenze zu betreiben. Hierbei gibt eine Steuereinrichtung an den Haspel eine Haspelsolldrehzahl und ein in Bandlaufrichtung wirkendes Haspelgrenzmoment vor. Ebenso gibt die Steuereinrichtung an eine Treibrolle eine Rollensolldrehzahl und sowohl ein in Bandlaufrichtung wirkendes Rollengrenzmoment als auch ein entgegen der Bandlaufrichtung wirkendes Rollengrenzmoment vor, so dass die Steuereinrichtung auch die Treibrolle drehzahlgeregelt und momentenbegrenzt betreibt.It is also known to overspeed a reel in rolling mills and to operate with a fixed torque limit. In this case, a control device to the reel before a reel target speed and acting in the strip running direction reel limit moment before. Likewise, the control device gives to a drive roller a desired roller speed and both acting in the direction of travel roll limit torque and acting counter to the strip direction roller limit torque, so that the control device and the drive roller speed-controlled and torque-limited operates.

Bei bekannten Haspelanordnungen besteht das Problem, dass Zugschwankungen im Band auftreten. Der erhöhte Zug kann dabei so groß sein, dass er die Streckgrenze des Bandes übersteigt, also zu plastischen Formveränderungen, z.B. Einschnürungen, des Bandes führt. Die Dicke und insbesondere auch die Breite des auf zuhaspelnden Bandes können dadurch variieren. Ein Verlust von konstanter Dicke und Breite des zu wickelnden Bandes stellt einen Qualitätsverlust dar. In AT 408 526 B ist beispielsweise ein Verfahren zur Verringerung von Zugkraftschwankungen beim Haspeln beschrieben, wobei solche Zugkraftschwankungen als von Unrundheiten im Bereich der Haspel herrührend beschrieben sind. Zur Korrektur wird die jeweils aktuelle Zugkraft und der jeweils aktuelle Verdrehwinkel der Haspel ermittelt.In known reel arrangements, there is the problem that tension fluctuations occur in the belt. The increased tension can be so great that it exceeds the yield strength of the band, thus leading to plastic changes in shape, eg constrictions, of the band. The thickness and in particular the width of the tape to be reeled on can vary as a result. A loss of constant thickness and width of the tape to be wound represents a loss of quality AT 408 526 B For example, a method for reducing traction fluctuations during reeling is described, such traction variations being described as resulting from non-circularity in the area of the reel. For correction, the respective current tensile force and the current twist angle of the reel is determined.

Die KR-A-2005 041 118 offenbart ein Verfahren, in welchem das Drehmoment eines Haspels und der zugehörigen Treibrolle in Abhängigkeit von einer gemessenen Temperatur des Bandes durch eine Steuereinrichtung geregelt wird.The KR-A-2005 041 118 discloses a method in which the torque of a reel and its associated capstan is controlled by a controller in response to a measured temperature of the belt.

Der Erfindung liegt die Aufgabe zugrunde, die Wickelqualität und somit die Bandqualität bei einem Bandhaspel weiter zu verbessern.The invention has for its object to improve the winding quality and thus the strip quality in a band reel on.

Diese Aufgabe wird bezogen auf das eingangs genannte Betriebsverfahren gemäß der Erfindung dadurch gelöst, dass

  1. a) als Istwert eine aktuelle Mikrostruktureigenschaft des Bandes gemessen oder durch Modellberechnung ermittelt wird,
  2. b) von der Steuereinrichtung aus dem Istwert oder aus einer hieraus abgeleiteten Größe ein in und/oder entgegen der Bandlaufrichtung wirkender aktueller Drehmomentwert ermittelt wird, und
  3. c) die Steuereinrichtung den Haspel und/oder gegebenenfalls die Treibrolle unter Verwendung des aktuellen Drehmomentwerts betreibt.
This object is related to the above-mentioned operating method according to the invention in that
  1. a) as actual value a current microstructural property the band measured or determined by model calculation,
  2. b) is determined by the control device from the actual value or from a variable derived therefrom acting in and / or counter to the strip running direction current torque value, and
  3. c) the control means operates the reel and / or optionally the capstan using the current torque value.

Aus dem primären Istwert können rechnerisch andere Istwerte abgeleitet werden, die dann ihrerseits zur Ermittlung des Drehmomentwertes herangezogen werden.Other actual values can be derived from the primary actual value, which in turn are then used to determine the torque value.

Der Drehmomentwert kann als Drehmomentsollwert und/ oder als Drehmomentgrenzwert verwendet werden. Zum Beispiel falls die Antriebe drehzahlübersteuert betrieben werden sind beide Begriffe als inhaltsgleich anzusehen. Die optionale Treibrolle ist dem Haspel insbesondere vorgeordnet.The torque value may be used as a torque setpoint and / or as a torque limit. For example, if the drives are operated overspeed-controlled, both terms are to be regarded as the same content. The optional drive roller is in particular upstream of the reel.

Es ist somit eine dynamische Regelung über das Drehmoment auf aktuelle Bandeigenschaften möglich. Die Erfinder haben erkannt, dass eine wichtige Kenngröße für die Berechnung der Drehmomentengrenzen die aktuelle Steifigkeit des zu wickelnden Bandes ist, und dass diese Steifigkeit maßgeblich durch die Mikrostruktur des Bandes beeinflusst ist. Durch die aktive Anpassung der Drehmomentenberechnung basierend auf Istwerten der Parameter, welche die Steifigkeit eines Bandes über den gesamten Wickelprozess hinweg bestimmen, ergibt sich ein gleichmäßigeres Wickelmoment, d.h. Moment auf der Materialseite (im Material), und es ergibt sich somit insgesamt eine bessere Wickelqualität und weniger variierende oder konstante Bandzüge (Zugkräfte).It is thus a dynamic control of the torque on current band properties possible. The inventors have recognized that an important parameter for the calculation of the torque limits is the current stiffness of the belt to be wound, and that this rigidity is significantly influenced by the microstructure of the belt. By actively adjusting the torque calculation based on actual values of the parameters that determine the stiffness of a belt throughout the entire winding process, a more uniform winding torque, i. Moment on the material side (in the material), and it thus results in an overall better winding quality and less varying or constant tape tension (tensile forces).

Eine Messung der aktuellen Zugkraft oder des aktuellen Verdrehwinkels des Haspels ist bei dem Verfahren nach der Erfindung für die Drehmomentvorgabe nicht obligatorisch, sondern für das erfindungsgemäße Regelkonzept irrelevant, wenngleich für zusätzliche optionale Regelkonzepte unter Umständen vorteilhaft.A measurement of the current tensile force or the current angle of rotation of the reel is not mandatory in the method according to the invention for the torque input, but irrelevant for the control concept according to the invention, although may be advantageous for additional optional control concepts.

Erfindungsgemäß wird eine aktuelle Mikrostruktureigenschaft des Bandes gemessen oder durch Modellberechnung ermittelt, insbesondere eine Korngröße, ein Korngefüge, ein Phasenanteil, eine Gibbssche freie Enthalpie oder/und eine Molekular- oder Atomarverteilung. Geeignet sind (auch) alle Größen, die sich aufgrund der Phaseneigenschaften des Materials des Bandes, z.B. der Stahl- oder Legierungssorte, ergeben.According to the invention a current microstructural property of the tape is measured or determined by model calculation, in particular a grain size, a grain structure, a phase portion, a Gibbssche free enthalpy and / or a molecular or atomic distribution. All sizes which are due to the phase characteristics of the material of the tape, e.g. steel or alloy grade.

An der Variante, bei welcher als Istwert eine Mikrostruktureigenschaft des Bandes aus einer Modellrechnung ermittelt wird, wird der neue Weg, den die Erfinder beschreiten, ebenfalls besonders deutlich. War die bisherige Denkweise bei der Entwicklung von Walzwerken auf die Temperatur im Band und entsprechende Abkühlprozesse gerichtet, so gehen die Erfinder davon aus, dass künftig stärker auf die direkten Materialeigenschaften eingeregelt werden wird. Entsprechende Modellierverfahren sind z.B. aus EP 1 576 429 B1 oder DE 10 2004 005 919 A1 bekannt. Dabei haben sie erkannt, dass dann beim Haspeln, also Aufwickeln oder Abspulen des Bandes, eine entsprechende Steuerung in Abhängigkeit von den die Mikrostruktur betreffenden Materialeigenschaften besonders vorteilhaft ist.In the variant in which the actual value of a microstructural property of the band is determined from a model calculation, the new way, the inventor tread, also particularly clear. Whereas the previous way of thinking in the development of rolling mills was directed to the temperature in the strip and corresponding cooling processes, the inventors assume that in the future, more direct control of the direct material properties will take place. Corresponding modeling methods are for example EP 1 576 429 B1 or DE 10 2004 005 919 A1 known. They have recognized that then when reeling, so winding or unwinding of the tape, a corresponding Control depending on the microstructure material properties is particularly advantageous.

Das Band ist insbesondere ein Stahlband oder ein Nichteisenband in einem Walzwerk und/oder in einer nachgeschalteten Behandlungslinie beispielsweise in einem Kaltwalzwerk der eingangs genannten Art. Das Verfahren nach der Erfindung ist besonders gut auch in einem Warm-Walzwerk einsetzbar. Es ist für Stahlband jeglicher Legierung aber auch für Nichteisen-(NE-)Metall, z.B. Aluminium, einsetzbar.The strip is in particular a steel strip or a non-ferrous strip in a rolling mill and / or in a downstream treatment line, for example in a cold rolling mill of the aforementioned type. The method according to the invention can also be used particularly well in a hot rolling mill. It is suitable for steel strip of any alloy but also for non-ferrous (NE) metal, e.g. Aluminum, usable.

Vorzugsweise ermittelt die Steuereinrichtung fortlaufend Drehmomentwerte derart, dass eine Variation in dem im Band wirkenden Wickelmoment oder Bandzug verringert ist, wobei das Wickelmoment oder der Bandzug im Material vorzugsweise konstant sind. Es ist bedeutsam, dass die Variation im Band verringert ist, denn ein im Band wirkendes Wickelmoment oder Bandzug kann - muss aber nicht - auf der Motorseite bzw. Rollenseite ebenfalls ein konstantes Moment bedingen.The control device preferably continuously determines torque values such that a variation in the winding moment or strip tension acting in the strip is reduced, wherein the winding moment or the strip tension in the material is preferably constant. It is significant that the variation in the band is reduced because a winding torque or strip tension acting in the band can - but need not - on the motor side or roller side also cause a constant moment.

Insbesondere erfolgt die Ermittlung des Istwertes in Echtzeit, online und/oder kontinuierlich, beispielsweise mit einer Rate von mindestens 50 oder 25 Messungen pro Sekunde.In particular, the actual value is determined in real time, online and / or continuously, for example at a rate of at least 50 or 25 measurements per second.

Die Steuereinrichtung kann den Haspel und/oder die Treibrolle momentenbegrenzt betreiben, also insbesondere mit einem jeweils aktuell berechneten Drehmomentgrenzwert.The control device can operate the reel and / or the drive roller torque-limited, ie in particular with a respective currently calculated torque limit.

Der Ort, an welchem oder zu welchem die Ermittlung des Istwertes erfolgt, liegt vorzugsweise zwischen dem Haspel und der Treibrolle, und/ oder unmittelbar vor der Treibrolle und/oder zwischen dem aus dem Haspel und der optionalen Treibrolle gebildeten Haspelsystem und einem dem Haspelsystem vorgelagerten Walzgerüst, insbesondere unmittelbar nach dem Walzgerüst. Unmittelbar hinter dem letzten Walzgerüst eines Walzwerks ist das Band am weichsten; dort werden Dicke und Breite des Bandes besonders empfindlich beeinflusst, so dass eine Istwertmessung dort besonders vorteilhaft ist. Zwischen dem letzten Walzgerüst und dem Haspelsystem kann eine aktiv oder/ und passiv das Band kühlende Kühlstrecke angeordnet sein.The location at which or to which the determination of the actual value takes place preferably lies between the reel and the drive roller, and / or immediately before the drive roller and / or between the reel system formed by the reel and the optional drive roller and a roller stand upstream of the reel system , in particular immediately after the roll stand. Immediately behind the last roll stand of a rolling mill, the strip is the softest; There, the thickness and width of the band are particularly sensitive influenced, so that an actual value measurement is particularly advantageous there. Between the last rolling stand and the reel system, an actively or / and passively cooling the cooling line can be arranged.

Vorzugsweise wird aus dem Istwert eine, insbesondere makroskopische, Materialeigenschaft des Bandes ermittelt, insbesondere eine Steifigkeit, eine Zugfestigkeit, eine Oberflächengüte, eine Temperatur, eine geometrische Abmessung, eine Dehngrenze, eine Zähigkeit oder eine Duktilität.Preferably, an actual, in particular macroscopic, material property of the strip is determined from the actual value, in particular a stiffness, a tensile strength, a surface quality, a temperature, a geometric dimension, a yield strength, a toughness or a ductility.

Außerdem ist es von Vorteil, falls zusätzlich zu den jeweils aktuellen und veränderlichen Werten für Bandtemperatur und Materialeigenschaft auch eine statische Materialeigenschaft des Bandes an die Steuereinrichtung übergeben wird, insbesondere ein Materialtyp, eine Warmfließgrenze als Funktion der Stahlsorte, ein Legierungscode, eine Information über eine chemische Analyse oder Zusammensetzung des Bandmaterials und/oder zugehörige Korrekturfaktoren.Moreover, it is advantageous if, in addition to the respective current and variable values for strip temperature and material property, a static material property of the strip is also transferred to the control device, in particular a material type, a hot flow limit as a function of the steel grade, an alloy code, information about a chemical Analysis or composition of the strip material and / or associated correction factors.

Vorzugsweise gibt die Steuereinrichtung an den Haspel auch eine Haspelsolldrehzahl und/oder gegebenenfalls an die Treibrolle auch eine Rollensolldrehzahl aus, so dass die Steuereinrichtung den Haspel und gegebenenfalls die Treibrolle vorzugsweise drehzahlgeregelt betreiben kann. Auch ein drehzahlbegrenzter Betrieb ist möglich.Preferably, the control device also outputs a desired reel speed to the reel and / or optionally a desired roller speed to the drive roller, so that the control device can preferably operate the reel and optionally the drive roller in a speed-controlled manner. Even a speed-limited operation is possible.

Die eingangs genannte Aufgabe wird bezogen auf die eingangs genannte Steuereinrichtung gemäß der Erfindung dadurch gelöst, dass die Steuereinrichtung derart ausgebildet ist, dass sie den Haspel und/oder gegebenenfalls die Treibrolle gemäß dem vorgenannten Betriebsverfahren betreibt. Für das Betriebsverfahren genannte Vorteile und bevorzugte Ausführungen gelten für die Steuereinrichtung analog.The object mentioned above is based on the aforementioned control device according to the invention solved in that the control device is designed such that it operates the reel and / or optionally the drive roller according to the aforementioned operating method. For the operating method mentioned advantages and preferred embodiments apply analogously to the control device.

Hierzu weist die Steuereinrichtung mit besonderem Vorteil einen Sensor zur Messung einer Mikrostruktureigenschaft des Bandes auf und/oder eine Modellberechnungseinheit zur modellbasierten Berechnung einer aktuellen Mikrostruktureigenschaft und/oder einer aktuellen Temperatur des Bandes.For this purpose, the control device particularly advantageously has a sensor for measuring a microstructure property of the strip and / or a model calculation unit for model-based calculation of a current microstructure property and / or a current temperature of the strip.

Erfindungsgemäß weist die Steuereinrichtung oder das Steuersystem in einer zweiten Variante eine Modellberechnungseinheit auf zur modellbasierten Berechnung einer aktuellen die Mikrostruktur des Bandes kennzeichnenden Eigenschaft des Bandes. Es kommen insbesondere bekannte Modelle für das thermodynamische Verhalten eines Materials, z.B. sog. Microstructure-Modelle und/oder Phasenumwandlungsmodelle, in Betracht. Die Modellberechnungseinheit kann auch die aktuelle Bandtemperatur im Bereich der Haspeleinrichtung ermitteln. Auch weist das Steuersystem eine Steuereinrichtung und mindestens eine Antriebsregeleinrichtung auf.According to the invention, in a second variant, the control device or the control system has a model calculation unit for the model-based calculation of a characteristic of the band characterizing the microstructure of the band. There are in particular known models for the thermodynamic behavior of a material, e.g. so-called microstructure models and / or phase transformation models into consideration. The model calculation unit can also determine the current strip temperature in the area of the reel device. The control system also has a control device and at least one drive control device.

Vorteile und bevorzugte Ausgestaltungen, welche im Zusammenhang mit dem Betriebsverfahren genannt wurden, gelten für das Steuersystem analog.Advantages and preferred embodiments, which were mentioned in connection with the operating method, apply analogously to the control system.

Bezogen auf die eingangs genannte Haspeleinrichtung wird die der Erfindung zugrunde liegende Aufgabe dadurch gelöst, dass die Steuereinrichtung oder das Steuersystem wie vorstehend beschrieben ausgebildet ist.Relative to the aforementioned reel device, the object underlying the invention is achieved in that the control device or the control system is designed as described above.

Auch ein Datenträger mit einem das Betriebsverfahren abbildenden Programmcode löst die Aufgabe. Gegenstand der Erfindung ist auch ein Walzwerk mit einer Haspeleinrichtung nach vorgenannter Ausgestaltung.A data carrier with a program code mapping the operating method also solves the problem. The invention is also a rolling mill with a reel device according to the aforementioned embodiment.

Zwei Ausführungsbeispiele einer Haspeleinrichtung nach der Erfindung samt zugehörigem Betriebsverfahren werden nachfolgend anhand der Figuren 1 bis 4 näher erläutert. Es zeigen:

FIG 1
ein erstes Ausführungsbeispiel einer Haspeleinrichtung nach der Erfindung mit mehreren Sensoren,
FIG 2
ein zweites Ausführungsbeispiel einer Haspeleinrichtung nach der Erfindung mit einer Modellberechnungseinheit,
FIG 3
Einzelheiten zum Zusammenwirken einer Steuereinheit mit einer Antriebsregeleinrichtung am Beispiel des Haspel- antriebs der vorgenannten Ausführungsbeispiele (für al- ternativen Treibrollenantrieb analog), und
FIG 4
eine Weiterbildung der vorgenannten Ausführungsbeispie- le unter Zusammenwirken der Steuereinheit mit einer Kraftregeleinrichtung der Treibrolle(n).
Two embodiments of a reel device according to the invention, including associated operating method are described below with reference to the FIGS. 1 to 4 explained in more detail. Show it:
FIG. 1
A first embodiment of a reel device according to the invention with a plurality of sensors,
FIG. 2
A second embodiment of a reeling device according to the invention with a model calculation unit,
FIG. 3
Details of the interaction of a control unit with a drive control device on the example of the reel drive of the aforementioned embodiments (for alternative drive roller drive analogous), and
FIG. 4
a development of the aforementioned Ausführungsbeispie- le with interaction of the control unit with a force control device of the drive roller (s).

Gemäß FIG 1 ist eine Haspeleinrichtung 1 einer Walzstrasse zum Warmwalzen oder Kaltwalzen eines Stahlbandes 2 nachgeordnet, wobei die Walzstrasse aus Gründen der Übersichtlichkeit nur mit einem in Durchlaufrichtung letzten Walzgerüst 3 und der Haspeleinrichtung 1 dargestellt ist. Das gewalzte Band 2 läuft mit einer Bandgeschwindigkeit V aus dem letzten Walzgerüst 3 aus. Es wird nach Durchlaufen einer z.B. laminar kühlenden Kühlstrecke 4, die ca. 100 m lang sein kann, der Haspeleinrichtung 1 zugeführt und dort aufgehaspelt. Die Länge der Haspeleinrichtung 1 selbst beträgt typisch 5 m.According to FIG. 1 is a reeling device 1 downstream of a rolling train for hot rolling or cold rolling a steel strip 2, wherein the rolling mill is shown for reasons of clarity only with a last in the feed direction rolling mill 3 and the reel device 1. The rolled strip 2 ends at a strip speed V from the last stand 3. It is after passing through a laminar cooling cooling section 4, which may be about 100 m long, fed to the coiler 1 and reeled there. The length of the reel device 1 itself is typically 5 m.

Die Haspeleinrichtung 1 weist einen Spannhaspel oder Haspel 5, eine als Treibrollenpaar ausgebildete Treibrolle 7 und eine Steuereinrichtung 10 auf. Der Haspel 5 weist einen aufspreizbaren Haspeldorn auf. Die Treibrolle 7 ist dem Haspel 5 vorgeordnet, d.h. sie ist zwischen dem Haspel 5 und dem letzten Walzgerüst 3 der Walzstrasse angeordnet. Die Steuereinrichtung 10 steuert den Haspel 5 und die Treibrolle 7 an, legt also deren Betriebsweise und Zusammenwirken fest. Sie ist vorzugsweise als prozessgesteuerte Steuereinrichtung 10 ausgebildet, in welcher bevorzugt eine Prozessoreinrichtung mit einem darin geladenen Computerprogramm arbeitet. In die Steuereinrichtung 10 ist ein Computerprogramm zur Ausführung des Betriebsverfahrens nach der Erfindung mittels eines Datenträgers 40 ladbar.The reel device 1 has a tensioning reel or reel 5, a drive roller 7 designed as a pair of driving rollers, and a control device 10. The reel 5 has an expandable coiler mandrel. The drive roller 7 is arranged upstream of the reel 5, ie it is arranged between the reel 5 and the last rolling stand 3 of the rolling train. The control device 10 controls the reel 5 and the drive roller 7, so specifies their mode of operation and interaction. It is preferably designed as a process-controlled control device 10 in which preferably a processor device operates with a computer program loaded therein. In the Control device 10 is a computer program for carrying out the operating method according to the invention by means of a data carrier 40 loadable.

Aufgrund des Computerprogramms betreibt die Steuereinrichtung 10 den Haspel 5 und die Treibrolle 7 auf folgende Weise:

  • Die Steuereinrichtung 10 steht über Leitungen 12, 14 mit je einer Antriebsregeleinrichtung 16 bzw. 18 für die Antriebselemente oder Motoren M1, M2 der Treibrolle 7 bzw. des Haspels 5 in Verbindung. Über die erste Leitung 12 übergibt die Steuereinrichtung 10 an die Antriebsregeleinrichtung 16 für den Haspel 5 eine Haspelsolldrehzahl fH und einen in Bandlaufrichtung wirkenden aktuellen Haspel-Drehmomentsollwert MH. Über die zweite Leitung 14 gibt die Steuereinrichtung 10 an die Antriebsregeleinrichtung 18 für die Treibrolle 7 eine Rollensolldrehzahl fR und einen in Bandlaufrichtung wirkenden Rollen-Drehmomentsollwert MR. Je nach Betriebsphase des Haspelvorgangs kann der Rollen-Drehmomentsollwert MR auch gegen die Bandlaufrichtung wirken. Alternativ zu dem hier dargestellten Ausführungsbeispiel kann entweder nur der Haspel 5 oder nur der "Treiber", also z.B. die Treibrolle 7 bzw. das Treibrollenpaar, von der Steuereinrichtung 10 unter Verwendung des jeweiligen aktuellen Drehmomentwerts MH bzw. MR betrieben werden.
Due to the computer program, the controller 10 operates the reel 5 and the capstan 7 in the following manner:
  • The control device 10 is connected via lines 12, 14 each with a drive control device 16 or 18 for the drive elements or motors M 1 , M 2 of the drive roller 7 and the reel 5 in combination. Via the first line 12, the control device 10 transfers to the drive control device 16 for the reel 5 a reel setpoint speed f H and a current reel torque setpoint M H acting in the direction of strip travel. Via the second line 14, the control device 10 outputs to the drive control device 18 for the drive roller 7 a desired roller speed f R and a roller torque setpoint M R acting in the direction of travel of the strip. Depending on the operating phase of the reeling process, the roller torque setpoint M R can also act against the direction of strip travel. As an alternative to the exemplary embodiment illustrated here, either only the reel 5 or only the "driver", that is to say the drive roller 7 or the pair of driving rollers, for example, can be operated by the control device 10 using the respective actual torque value M H or M R.

Die Drehmomentsollwerte MH, MR können im dargestellten Ausführungsbeispiel auch als Drehmomentgrenzwerte verstanden werden, weil die Antriebe hierbei drehzahl-übersteuert betrieben werden, d.h. der Drehzahlregler erreicht nie seine Solldrehzahl, weil das Band nicht schnell genug aus dem Walzwerk kommen kann. Dies gilt für den sog. eingespannten Betrieb des Walzwerks, bei dem das Band beidseitig eingespannt ist. Dieser Normalbetriebsphase vor- bzw. nachgeschaltet ist eine Anwickelphase bzw. eine Ausfädelphase, in welchen die Drehzahlregelung anders erfolgen muss.The torque setpoints M H , M R can also be understood in the illustrated embodiment as torque limits, because the drives are operated speed-overdriven, ie the speed controller never reaches its target speed, because the belt can not come fast enough from the mill. This applies to the so-called. Clamped operation of the rolling mill, in which the band is clamped on both sides. This Normalbetriebsphase upstream or downstream is a Anwickelphase or a Ausfädelphase, in which the speed control must be done differently.

Die Steuereinrichtung 10 ermittelt die Drehmomentsollwerte MH, MR automatisch, aktiv und kontinuierlich basierend auf jeweils aktuellen Istwerten derjenigen "inneren" Parameter des Bandes, welche die Steifigkeit des Bandes über den gesamten Wickelprozess hin bestimmen. Im gezeichneten Beispiel sind hierzu nach einem optischen Messprinzip, z.B. der Bolometrie, fungierende Temperatursensoren 19, 20, 21, 22 vorhanden, die an verschiedenen Stellen des Bandes, nämlich zwischen dem letzten Walzgerüst 3 und dem aus Treibrolle 7 und Haspel 5 gebildeten Haspelsystem, hierbei bevorzugt unmittelbar nach dem letzten Walzgerüst 3, ferner unmittelbar vor der Treibrolle 7, zwischen der Treibrolle 7 und dem Haspel 5 und unmittelbar vor dem Haspel 5, jeweils online und kontinuierlich Temperaturwerte T0, T1, T2 bzw. T3 messen. Die beiden ersten Temperatursensoren 19, 20 (T0 bzw. T1) sind besonders bevorzugt. Aus den jeweils aktuellen Temperaturwerten T0, T1, T2, T3 ermittelt die Steuereinrichtung 10 jeweils aktuell, in Echtzeit, online und kontinuierlich die Drehmomentsollwerte MH, MR derart, dass eine Variation in dem im Band 2 wirkenden Wickelmoment oder ein Bandzug verringert oder vorzugsweise konstant ist. Dabei wird auf an sich bekannte Zusammenhänge abgestellt, z.B. dass die Steifigkeit mit zunehmender Temperatur abnimmt. Bei zunehmender Temperatur wird das Drehmoment verringert. Messung (Istwerterfassung) und Drehmomenterrechnung finden mit einer Wiederholperiode von ca. 8 ms bis 16 ms statt. Es findet also eine dynamische Drehmomentgrenzwertbildung statt.The control device 10 determines the desired torque values M H , M R automatically, actively and continuously based on current actual values of those "inner" parameters of the belt which determine the stiffness of the belt over the entire winding process. In the example shown, temperature sensors 19, 20, 21, 22 which function at an optical measuring principle, for example bolometry, are present at different points of the belt, namely between the last roll stand 3 and the reel system formed by drive roller 7 and reel 5 preferably immediately after the last roll stand 3, further immediately before the drive roller 7, between the drive roller 7 and the reel 5 and immediately in front of the reel 5, respectively online and continuously measure temperature values T 0 , T 1 , T 2 and T 3 . The first two temperature sensors 19, 20 (T 0 and T 1 ) are particularly preferred. From the respective current temperature values T 0 , T 1 , T 2 , T 3, the control device 10 determines currently, in real time, online and continuously the torque setpoints M H , M R such that a variation in the winding torque acting in the band 2 or a Bandzug reduced or preferably constant. This is based on known per se, for example, that the stiffness decreases with increasing temperature. As the temperature increases, the torque is reduced. Measurement (actual value acquisition) and torque calculation take place with a repetition period of approx. 8 ms to 16 ms. So there is a dynamic torque limit instead.

Alternativ zur Bandtemperatur T0, T1, T2, T3 kann auch - nicht explizit dargestellt - eine aktuelle Materialeigenschaft des Bandes gemessen werden. Außerdem ist es vom Vorteil, dass zusätzlich zu den dynamisch veränderlichen Temperatur- oder Materialeigenschaftsdaten der Steuereinrichtung 10 von einem übergeordneten Leitrechner 25 Informationen oder Daten über statische Materialeigenschaften des Bandes, beispielsweise dem Materialtyp etc., übergeben werden, also Daten, die nicht online oder fortlaufend während der Bandherstellung verändert werden.As an alternative to the strip temperature T 0 , T 1 , T 2 , T 3 , a current material property of the strip can also be measured (not explicitly shown). In addition, it is advantageous that, in addition to the dynamically variable temperature or material property data of the control device 10, information or data about static material properties of the belt, for example the type of material etc., are transferred from a superordinate control computer 25, ie data that is not online or continuous be changed during tape production.

Die Steuereinrichtung 10 zusammen mit den Antriebsregeleinrichtungen 16, 18 und den Temperatursensoren 19, 20, 21, 22 bildet ein Steuersystem 11 für die Haspeleinrichtung 1.The control device 10 together with the drive control devices 16, 18 and the temperature sensors 19, 20, 21, 22 forms a control system 11 for the reel device 1.

Das in FIG 2 dargestellte Ausführungsbeispiel eines Walzwerks W ist mit dem in FIG 1 dargestellten Ausführungsbeispiel identisch mit dem Unterschied, dass an Stelle der Temperatursensoren 19, 20, 21, 22 eine - z.B. in den Leitrechner 25 integrierte - Modellberechnungseinheit 30 gebildet ist, welche Inputdaten vom Leitrechner 25 oder von einer anderen Datenverarbeitungseinheit, Datenerfassungseinheit oder Dateneingabeeinheit 50 erhält, wobei diese Daten Messwerte bezüglich Bandtemperatur oder Bandeigenschaft an anderer Stelle im vorgelagerten Walzwerk sein können. Der Leitrechner 25 bzw. die Modellberechnungseinheit 30 erhalten die aktuell errechneten Drehzahl- und Momentensollwerte über die Steuereinheit 10 zur Adaption mitgeteilt. Die Modellberechnungseinheit 30 berechnet unter Verwendung einschlägiger Wärmeleitgleichungen und Wärmestrahlungsgesetze die Temperaturen T0, T1, T2, T3 des Bandes 2 im Bereich der Haspeleinrichtung 1 und fingiert auf diese Weise tatsächliche Messwerte. Die Sensoren 19, 20, 21, 22 der FIG 1 sind in diesem Falle nicht unbedingt erforderlich. Die Messparameter gemäß Modell werden an die Steuereinrichtung 10 zur weiteren Berechnung der Drehmomente MH, MR gesandt.This in FIG. 2 illustrated embodiment of a rolling mill W is with the in FIG. 1 illustrated embodiment with the difference that instead of the temperature sensors 19, 20, 21, 22 a - for example integrated in the master computer 25 - Model calculation unit 30 is formed, which receives input data from the host computer 25 or from another data processing unit, data acquisition unit or data input unit 50, these data may be measurements of belt temperature or belt property elsewhere in the upstream mill. The control computer 25 or the model calculation unit 30 receive the currently calculated speed and torque setpoints via the control unit 10 for adaptation. Using model heat calculation equations and heat radiation laws, the model calculation unit 30 calculates the temperatures T 0 , T 1 , T 2 , T 3 of the belt 2 in the area of the reel device 1 and in this way simulates actual measured values. The sensors 19, 20, 21, 22 of the FIG. 1 are not essential in this case. The measurement parameters according to the model are sent to the control device 10 for the further calculation of the torques M H , M R.

Die Modellberechnungseinheit 30 kann alternativ oder zusätzlich Istwerte von makroskopischen Materialeigenschaften, z.B. Steifigkeit, Zähigkeit, Duktilität, Oberfläche, Zugfestigkeit oder von mikroskopischen Materialeigenschaften, z.B. Korngefüge, Korngröße, Verteilung von Phasen, Gibbssche freie Enthalpie etc., an beliebigen Stellen errechnen. Hierbei kann auf die an sich bekannten Modellierverfahren, wie z.B. beschrieben in EP 1 576 429 B1 oder DE 10 2004 005 919 A1 , zurückgegriffen werden. Die Modellberechnungseinheit 30 kann dabei in Echtzeit oder zumindest für die Bandregelung ausreichend schnell eine Größe berechnen, welche als Maß für die mit dieser Schnelligkeit nicht unmittelbar erfassbare aktuelle Mikrostruktur des Bandes fungiert. Beispielsweise wird für die Steifigkeit des Bandes die Warmfließgrenze ("Hot yield point", abgekürzt HYP) als Maß verwendet, gemessen in N/mm2.The model calculation unit 30 can alternatively or additionally calculate actual values of macroscopic material properties, eg rigidity, toughness, ductility, surface, tensile strength or of microscopic material properties, eg grain structure, grain size, distribution of phases, Gibbs free enthalpy, etc., at arbitrary locations. This can be based on the known modeling methods, such as described in EP 1 576 429 B1 or DE 10 2004 005 919 A1 be resorted to. The model calculation unit 30 can calculate in real time or at least for the band control sufficiently fast a size, which as a measure of the not immediately detectable with this speed current Microstructure of the band acts. For example, for the stiffness of the strip, the hot yield point (abbreviated to HYP) is used as a measure, measured in N / mm 2 .

Somit ist auch eine Kombination der Ausführungsbeispiele der Figuren 1 und 2 sinnvoll:

  • Messung der Temperaturen T0, T1, T2, T3 oder von anderen Materialzustandsgrößen an den in Figur 1 gezeigten Stellen durch Sensoren 19, 20, 21, 22 und
  • Berechnung einer Materialeigenschaft, insbesondere einer Mikrostruktur-Eigenschaft durch die Modellberechnungseinheit 30 an denselben (oder anderen) Stellen.
Thus, a combination of the embodiments of the FIGS. 1 and 2 sense:
  • Measurement of the temperatures T 0 , T 1 , T 2 , T 3 or other material state variables on the in FIG. 1 shown points by sensors 19, 20, 21, 22 and
  • Calculation of a material property, in particular a microstructure property, by the model calculation unit 30 at the same (or other) locations.

Die Erfindung beruht auf einer aktiven Anpassung der Drehmomentberechnung basierend auf Istwerten der jeweiligen Parameter, welche die Steifigkeit des Bandes 2 über den gesamten Wickelprozess hinweg bestimmen, nämlich Bandtemperatur und die Mikrostruktur des Bandes widerspiegelnde Materialeigenschaften. Dabei kann als Istwert auch eine aktuelle Modellberechnung, unter anderem auch eine Gefügeberechnung hinsichtlich der Materialeigenschaft, herangezogen werden. Der Vorteil liegt in einem gleichmäßigeren Wickelmoment, d.h. Zugmoment auf der Materialseite (im Material), und führt somit zur besseren Wickelqualität und konstanteren Bandzügen. Gemäß der Erfindung wird die Drehmomentberechnung und somit die Drehmomentvorgabe an die Haspelmotore M1, M2 auf Istwerte und aktuelle Bandeigenschaften bezogen, und nicht auf Sollvorgaben, die während des Wickelvorgangs unverändert blieben. Dadurch sind die Nachteile von während des Wickelvorgangs unverändert bleibenden Sollvorgaben, nämlich die sich ergebenden Abweichungen zwischen Soll- und Istwert, die die Wickelqualität negativ beeinflussen, vermieden. Die Qualität des gewickelten Bandes, wie z.B. konstante Dicke und Breite, ist verbessert.The invention is based on an active adaptation of the torque calculation based on actual values of the respective parameters which determine the rigidity of the belt 2 over the entire winding process, namely the belt temperature and the material properties reflecting the microstructure of the belt. In this case, a current model calculation, including a microstructure calculation with regard to the material property, can be used as the actual value. The advantage is a more uniform winding moment, i. Tensile torque on the material side (in the material), and thus leads to better winding quality and more consistent belt tension. According to the invention, the torque calculation and thus the torque input to the reel motors M1, M2 is related to actual values and actual belt properties, and not to target values which remained unchanged during the winding process. Thus, the disadvantages of during the winding process remain unchanged target specifications, namely the resulting differences between the setpoint and actual value, which adversely affect the winding quality avoided. The quality of the wound tape, such as constant thickness and width, is improved.

Alternativ zu einer Modellberechnung kann der Mikrostruktur-Istwert, z.B. mittels Röntgenbeugung, durch direkte Messung ermittelt werden.As an alternative to a model calculation, the microstructure actual value, for example by means of X-ray diffraction, can be determined by direct measurement.

FIG 3 zeigt Einzelheiten zum Aufbau der Steuereinheit 10 und der Antriebsregeleinrichtung 16 des Haspelantriebs sowie deren Zusammenwirken. Für den alternativen oder zusätzlichen Treibrollenantrieb gilt diese Figurenbeschreibung analog. FIG. 3 shows details of the structure of the control unit 10 and the drive control device 16 of the reel drive and their interaction. For the alternative or additional drive roller drive this description of figures applies analogously.

Die Steuereinheit 10 erhält - z.B. vom Leitrechner 25 - die sog. Set-up-Banddaten, insbesondere die gewünschte Banddicke d und Bandbreite b. Ferner erhält sie die Werte, welche die aktuellen Bandeigenschaften widerspiegeln, also z.B. Messwerte für die Temperaturen T0, T1, T2, T3 oder von der Modellberechnungseinheit 30 berechnete oder simulierte Werte für die Materialeigenschaften oder für die aktuelle Mikrostruktur des Bandes 2. Die Daten und Werte gelangen in ein Drehmomentberechnungsmodul 61, welches den Drehmomentsollwert MH berechnet.The control unit 10 receives - for example from the master computer 25 - the so-called set-up tape data, in particular the desired tape thickness d and bandwidth b. Furthermore, it receives the values which reflect the current band properties, ie, for example, measured values for the temperatures T 0 , T 1 , T 2 , T 3 or values calculated or simulated by the model calculation unit 30 for the material properties or for the current microstructure of the band 2. The data and values enter a torque calculation module 61, which calculates the torque setpoint M H.

Ferner berechnet ein Drehzahlberechnungsmodul 62 der Steuereinheit 10 in Abhängigkeit von der vom Leitrechner 25 vorgegebenen Wickelphase die Haspelsolldrehzahl fH. Wickelphasen für eine zu erzeugende Bandrolle (coil) sind insbesondere "Anwickeln" (Startphase), "eingespannter Zustand" (Betriebsphase) und "Ausfädeln" (Endphase). Die Haspelsolldrehzahl fH für den Haspelmotor M2 wird über die Leitung 12 einem Drehzahlregelkreis zugeführt. Typische Werte liegen im Bereich von 500 bis 1000 Umdrehungen pro Minute. Zur Bildung des Regelkreises ist dem Haspelmotor M2 ein Drehzahlmesser 63 zugeordnet, dessen gemessene aktuelle Drehzahl fact als Regelgröße zur Berechnung der Regeldifferenz "fact - fH" für einen in der Antriebsregeleinrichtung 16 gebildeten Drehzahlregler 64 dient. Der Ausgangswert des Drehzahlreglers 64 ist ein Drehmomentwert, der nach Umrechnung über den Motorfluss ΦE zu einem Haspelsollmotorstrom iH wird. Der Haspelsollmotorstrom iH dient als Eingangsgröße für einen Stromregler 65, der ebenfalls in der Antriebsregeleinrichtung 16 gebildet ist. Dem Stromregler 65 ist als Regelgröße ein von einem Strommesser 66 gemessener aktueller Motorstrom iact eingangsseitig zugeführt. Der Stromregler 65 regelt den Antriebsstrom des Haspelmotors M2.Furthermore, a speed calculation module 62 of the control unit 10 calculates the desired reel speed f H as a function of the winding phase predetermined by the master computer 25. Winding phases for a coil to be produced (coil) are in particular "winding" (start phase), "clamped state" (operating phase) and "unthreading" (final phase). The reel setpoint speed f H for the reel motor M 2 is fed via line 12 to a speed control loop. Typical values are in the range of 500 to 1000 revolutions per minute. To form the control loop, the reel motor M 2 is assigned a tachometer 63 whose measured actual speed f act serves as a controlled variable for calculating the control difference "f act -f H " for a speed controller 64 formed in the drive control device 16. The output value of the speed controller 64 is a torque value which, after conversion via the motor flux Φ E, becomes a reel target motor current i H. The reel target motor current i H serves as input for a current regulator 65, which is likewise formed in the drive control device 16. The current controller 65 is supplied as a control variable measured by an ammeter 66 current motor current i act on the input side. The current controller 65 controls the drive current of the reel motor M 2 .

Bestandteil der Antriebsregeleinrichtung 16 ist außerdem ein Drehmomentbegrenzungsmodul 68, welches den vom Drehzahlregler 64 ermittelten Drehmomentwert begrenzt. Im dargestellten Ausführungsbeispiel ist durch die beiden Pfeile M- und M+ angedeutet, dass dem Drehmomentbegrenzungsmodul 68 sowohl eine obere Grenze als auch eine untere Grenze, beide dann als Drehmomentsollwert MH bezeichnet, vom Drehmomentberechnungsmodul 61 übermittelt werden kann (über die Leitung 12). Die obere Grenze wird bevorzugt für den Haspel 5 und die Treibrolle 7, die untere Grenze vorzugsweise nur für die Treibrolle 7 verwendet, deren Ansteuerung und Regelung im Übrigen analog zum Haspel 5 erfolgen kann. Die obere Grenze kommt vorzugsweise im "eingespannten Zustand" zur Vermeidung einer Überschreitung der Streckgrenze des Bandes 2 zur Anwendung, die untere Grenze in den anderen Wickelphasen.Part of the drive control device 16 is also a torque limiting module 68, which limits the torque value determined by the speed controller 64. In the illustrated embodiment is indicated by the two arrows M and M + that the torque limiting module 68 both an upper limit and a lower limit, both then referred to as torque reference M H , can be transmitted from the torque calculation module 61 (via the line 12). The upper limit is preferably used for the reel 5 and the drive roller 7, the lower limit preferably only for the drive roller 7, the control and regulation can otherwise be done analogous to the reel 5. The upper limit is preferably used in the "clamped state" to avoid exceeding the yield strength of the belt 2, the lower limit in the other winding phases.

Die obere Grenze des Drehmomentsollwertes MH wird im Drehmomentberechnungsmodul 61 aus vier Teilmomenten durch Addition gebildet: M H = M H , Z + M H , B + M H , A + M H , R

Figure imgb0001
The upper limit of the torque setpoint M H is formed in the torque calculation module 61 from four partial moments by addition: M H = M H . Z + M H . B + M H . A + M H . R
Figure imgb0001

Die vier rechnerisch ermittelten Teilmomente am Beispiel des Haspeldorns sind:

  1. a) ein Zug(dreh)moment MH,Z um das Band 2 straff zu halten: M H , Z = Z D / 2
    Figure imgb0002

    mit Z = S spec b d kt
    Figure imgb0003
    Z:
    Haspelzug
    D:
    (Aktueller) Rollendurchmesser, Bunddurchmesser
    d:
    Banddicke
    b:
    Bandbreite
    kt:
    Korrekturfaktor Haspelzug
    Sspec:
    Spezifischer Haspelzug
  2. b) ein Biege(dreh)moment MH, B um das Band 2 auf dem Haspel 5 zu wickeln: M H , B = b d 2 / 4 S spec f corr
    Figure imgb0004

    fcorr: Korrekturfaktor
  3. c) ein Beschleunigungsmoment MH, A zur Überwindung von Trägheitskräften: M H , A = 2 i J Fix 1 D + b π ρ 16 i D 3 - D 0 4 D dV / dt
    Figure imgb0005
    i:
    Getriebeverhältnis
    JFix:
    Trägheitsmoment (Motorseite)
    D0:
    Haspeldurchmesser
    ρ:
    Spezifische Dichte (von Stahl)
    π:
    3,14..
    dV/dt:
    Beschleunigung
  4. d) ein Reibungsmoment MH, R zur Überwindung von Reibungseinflüssen. Dieses hängt von der Konstruktion der Lager, der Schmierung und der Geschwindigkeit ab und kann während der Inbetriebsetzung ermittelt und später ggf. aktualisiert werden.
The four computationally determined partial moments on the example of the coiler mandrel are:
  1. a) a train (rotating) moment M H, Z to keep the band 2 taut: M H . Z = Z D / 2
    Figure imgb0002

    With Z = S spec b d kt
    Figure imgb0003
    Z:
    coiler
    D:
    (Current) roll diameter, collar diameter
    d:
    strip thickness
    b:
    bandwidth
    kt:
    Correction factor for reel draw
    S spec :
    Specific reel pull
  2. b) a bending (rotating) moment M H, B to wrap the band 2 on the reel 5: M H . B = b d 2 / 4 S spec f corr
    Figure imgb0004

    f corr : correction factor
  3. c) an acceleration moment M H, A for overcoming inertial forces: M H . A = 2 i J fix 1 D + b π ρ 16 i D 3 - D 0 4 D dV / dt
    Figure imgb0005
    i:
    gear ratio
    J Fix :
    Moment of inertia (motor side)
    D 0 :
    Reel diameter
    ρ:
    Specific gravity (of steel)
    π:
    3.14 ..
    dV / dt:
    acceleration
  4. d) a friction torque M H, R to overcome the effects of friction. This depends on the design of the bearings, the lubrication and the speed and can be determined during commissioning and later updated if necessary.

Der spezifische Haspelzug Sspec ändert sich als Funktion der aktuellen Bandeigenschaften. Im Prinzip geht hier die Steifigkeit/Härte des Bandes ein, welche von der Mikrostruktur und auch von der Bandtemperatur abhängig ist.The specific reel pull S spec changes as a function of the current tape properties. In principle, the stiffness / hardness of the strip is used, which depends on the microstructure and also on the strip temperature.

Insbesondere das Zugdrehmoment MH,Z und das Biegemoment MH,B sind außer von der Banddicke d und der Bandbreite b somit stark vom HYP abhängig, somit also von der aktuellen Bandtemperatur T. Je nach Anforderungsfall kann für die in die Berechnung Eingang findende aktuelle Bandtemperatur T genau einer oder mehrere, z.B. gemittelte, der Temperaturwerte T0, T1, T2, T3 verwendet werden.In particular, the tensile torque M H, Z and the bending moment M H, B are therefore strongly dependent on the HYP, apart from the strip thickness d and the bandwidth b, thus thus the actual strip temperature T. Depending on the case of requirement can for the input current in the calculation Band temperature T exactly one or more, for example, averaged, the temperature values T 0 , T 1 , T 2 , T 3 are used.

Damit kann die erfindungsgemäße Steuereinrichtung 10 dynamisch auf sich verändernde Bandtemperaturen reagieren und somit bei variierendem Motordrehmoment eine weitgehend konstantes Wickelmoment im Band 2 gewährleisten, also ungewünschte Zugschwankungen und Bandqualitätsverluste vermindern. Es können nicht nur periodische Zugkraftschwankungen etwa durch Unrundheiten im gewickelten Band korrigiert werden, wie wenn ausschließlich auf band-externe Parameter wie dem aktuellen Verstellwinkel korrigiert würde, sondern auch auf unperiodisch auftretende Veränderungen. Vielmehr ist bei dem erfindungsgemäßen Haspelverfahren eine Messung des aktuellen Haspel- und/oder Treibrollen-Verdrehwinkels sowie eine Messung der aktuellen Zugkraft zur Ermittlung des Zug-/Momentensollwertes nicht zwingend erforderlich, weil der Sollwert aus Temperatur und/oder Mikrostruktureigenschaft des Bandes abgeleitet wird. Die dynamische Anpassung der Drehmomentgrenzen unter Berücksichtigung von aktueller Temperatur bzw. Mikrostruktur gewährleistet, dass z.B. die Streckgrenze nicht überschritten und ein gutes Wickelergebnis bei straff gewickeltem Band (Coil) erzielt wird.Thus, the control device 10 according to the invention can react dynamically to changing belt temperatures and thus ensure a largely constant winding torque in the belt 2 with varying engine torque, thus reducing undesirable tension fluctuations and belt quality losses. It is not only possible to correct periodic fluctuations in tension, for example due to out-of-roundness in the wound strip, as if it were corrected exclusively for band-external parameters such as the current adjustment angle, but also for changes that occur unperiodically. Rather, in the coiling method according to the invention, a measurement of the current reel and / or driving roller torsion angle and a measurement of the current tensile force to determine the train / torque setpoint is not mandatory, because the desired value is derived from the temperature and / or microstructure property of the tape. The dynamic adaptation of the torque limits taking into account the current temperature or microstructure ensures that e.g. the yield strength is not exceeded and a good winding result is achieved with tightly wound band (coil).

War es bislang üblich, den spezifischen Haspelzug im Setup, also bevor das Band gewickelt wird, vom Level 2 als starren, wenn auch von Bandeigenschaften (Stahlklasse und Temperatur) abhängigen Wert an die Automatisierung zu senden, so wird demgegenüber bei dem erfindungsgemäßen Beispiel davon ausgegangen, dass die Temperatur und/oder die Stahleigenschaften in der Mikrostruktur während des Wickelns nicht konstant ist/sind. Daher wird kein fixer Wert über die gesamte Bandlänge verwendet, sondern der (fixe) Anfangswert wird durch die gemessene Band-ist-Temperatur und/ oder die modellierten Mikrostrukturen während des Wickelns fortlaufend korrigiert. Dadurch lässt sich z.B. eine Profilkühlung, ein Modus, bei welchem der Bandkopf heißer gefahren wird als der Mittelteil des Bandes, besonders vorteilhaft durchführen. Dabei wird für den Mitteteil (= Hauptteil des Bandes) ein anderes Zugmoment und Biegemoment verwendet als für den Bandkopf.Whereas it has hitherto been customary to send the specific reel tension in the setup, that is to say before the tape is wound, from level 2 to the automation as rigid, although dependent on belt properties (steel grade and temperature), this is assumed in the example according to the invention in that the temperature and / or the steel properties in the microstructure are not constant during winding. Therefore, no fixed value is used over the entire tape length, but the (fixed) initial value is continuously corrected by the measured tape-temperature and / or the modeled microstructures during winding. As a result, for example, a profile cooling, a mode in which the tape head is driven hotter than the middle part of the tape, particularly advantageous. In this case, a different tensile torque and bending moment is used for the middle part (= main part of the band) as for the tape head.

In FIG 4 ist eine Weiterbildung der vorgenannten Ausführungsbeispiele dargestellt, bei der die Steuereinheit 10 mit einer Kraftregeleinrichtung oder Anstellungsregeleinrichtung 80 der Treibrolle(n) 7 zusammenwirkt:

  • Die Drehmomentgrenzen bestimmen das Motordrehmoment MR, MH und den Zug im Band. Der Haspel 5 hat mit seinem Dorn quasi eine formschlüssige Verbindung und das Band kann im Regelfall nicht "rutschen".
In FIG. 4 a development of the aforementioned embodiments is shown, in which the control unit 10 with a force control device or employment control device 80 of the drive roller (s) 7 cooperates:
  • The torque limits determine the engine torque M R , M H and the tension in the belt. The reel 5 has virtually a positive connection with its mandrel and the band can not "slip" in the rule.

Beim Treibrollenpaar 7, also zwei übereinander angeordnete Rollen, die mit einer Kraft F zusammengepresst werden, gibt es diesen Formschluss nicht und bei zu geringer Treiberkraft F bzw. zu hohem Drehmoment MR kann die Rolle den Kontakt zum Band 2 verlieren und "durchrutschen". Somit besteht ein Zusammenhang zwischen aufzubringendem Rollen-Drehmomentsollwert MR ("Treiberdrehmoment") und der Treibersollkraft FR.When the pair of driving rollers 7, so two superimposed rollers which are pressed together with a force F, there is this positive engagement and too low a driver force F or high torque M R , the role can lose contact with the belt 2 and "slip". Thus, there is a relationship between the roller torque command value M R to be applied ("driving torque") and the driver target force F R.

Es ist somit vorteilhaft mit der Größe des Drehmomentwertes MR den Kraftsollwert FR entsprechend anzupassen. Im dargestellten Ausführungsbeispiel ist hierzu in der Steuereinheit 10 ein Kraftberechnungsmodul 81 gebildet, welches aus dem Rollen-Drehmomentsollwert MR und ggf. weiteren Einflussgrößen die Treibersollkraft FR berechnet. Die Treibersollkraft FR ist der Anstellungsregeleinrichtung 80 des Treibers zugeführt, und zwar einem darin gebildeten Kraftregler 82. Zur Bildung des Kraftregelkreises ist eine auf das Rollenpaar 7 wirkende hydraulische Anstellung 83 vorhanden, auf welche der Regler 82 mittels eines angesteuerten Ventils 84 Einfluss nimmt. Die Anstellbewegung ist durch den Doppelpfeil 85 dargestellt. Ein nicht dargestellter Messaufnehmer misst den aktuellen hydraulischen Druck pact. Dieser wird nach Umrechnung in eine aktuelle Treiberkraft Fact dem Eingang des Kraftreglers 82 als Regelgröße zugeführt.It is thus advantageous to the size of the torque value M R to adjust the force command value F R accordingly. In the illustrated embodiment, a force calculation module 81 is formed for this purpose in the control unit 10, which calculates the driver setpoint force F R from the roller torque setpoint M R and possibly further influencing variables. The driver target force F R is fed to the employment controller 80 of the driver, namely a force regulator 82 formed therein. To form the force control circuit, there is a hydraulic adjustment 83 acting on the pair of rollers 7, to which the controller 82 influences by means of a controlled valve 84. The adjusting movement is represented by the double arrow 85. An unillustrated sensor measures the current hydraulic pressure p act . This is supplied after conversion into a current drive force F act the input of the force controller 82 as a controlled variable.

Claims (20)

  1. Method for the operation of a coiling device (1) used for coiling or uncoiling a metallic strip (2), which has at least one coiler (5), optionally at least one driving roller (7) associated with the coiler (5) and a control device (10) for the coiler (5), and possibly for the driving roller (7), wherein
    a) a current microstructure property of the strip (2) is measured or determined by model calculation as the actual value,
    b) a current torque value (MH, MR), acting in and/or counter to the running direction of the strip, is determined by the control device (10) from the actual value or from a variable derived therefrom, and
    c) the control device (10) uses the current torque value (MH, MR) to operate the coiler (5) and/or possibly the driving roller (7).
  2. Operating method according to Claim 1, wherein the strip (2) is a steel strip or a nonferrous strip in a rolling mill, in particular a hot rolling mill, and/or in a downstream treatment line.
  3. Operating method according to Claim 1 or 2, wherein the control device (10) continually determines torque values (MH, MR) in such a way that a variation in the winding moment or strip tension acting in the strip (2) is reduced, the winding moment or the strip tension preferably being constant.
  4. Operating method according to one of Claims 1 to 3, wherein the determination of the actual value takes place in real time, online and/or continuously, in particular at a rate of at least 50 measurements per second.
  5. Operating method according to one of Claims 1 to 4, wherein the control device (10) operates the coiler (5) and/or possibly the driving roller (7) in a moment-limited manner.
  6. Operating method according to one of Claims 1 to 5, wherein the determination of the actual value takes place between the coiler (5) and the driving roller (7) and/or directly upstream of the driving roller (7), and/or between the coiling system, formed by the coiler (5) and the optional driving roller (7), and a rolling stand (3) arranged upstream of the coiling system, in particular directly downstream of the rolling stand (3).
  7. Operating method according to one of Claims 1 to 6, wherein a grain size, a grain structure, a phase proportion, a Gibbs' free enthalpy and/or a molecular or atomic distribution is measured or determined as the microstructure property.
  8. Operating method according to one of Claims 1 to 7, wherein a current material property of the strip (2) is determined from the actual value, in particular a stiffness, a tensile strength, a surface quality, a temperature, a geometric dimension, a yield point, a toughness or a ductility.
  9. Operating method according to one of Claims 1 to 8, wherein a static material property of the strip (2) is transferred to the control device (10), in particular a material type, an alloy code, information on a chemical analysis of the strip material and/or associated correction factors.
  10. Operating method according to one of Claims 1 to 9, wherein the control device (10) outputs a setpoint coiler speed (fH) to the coiler (5) and possibly a setpoint roller speed (fR) to the driving roller (7).
  11. Operating method according to Claim 10, wherein the control device (10) operates the coiler (5) and possibly the driving roller (7) in a speed-controlled manner.
  12. Operating method according to one of Claims 1 to 11, wherein the control device (10) operates the coiler (5) and possibly the driving roller in a speed-limited manner.
  13. Control device (10) for a coiling arrangement used for coiling or uncoiling a strip (2), wherein the coiling arrangement has a coiler (5) and optionally at least one driving roller (7) associated with the coiler (5), wherein the control device (10) is formed in such a way that it operates the coiler (5), and/or possibly the driving roller (7), according to an operating method according to one of Claims 1 to 12.
  14. Control device (10) according to Claim 13, which has a sensor for measuring the microstructure property of the strip (2).
  15. Control device (10) according to Claim 13 or 14, which has a model calculating unit (30) for the model-based calculation of a current property of the strip (2), characterizing the microstructure of the strip (2), and/or for the calculation of a current strip temperature (T0, T1, T2, T3).
  16. Control system (11) for a coiling arrangement used for coiling or uncoiling a metallic strip (2), wherein the coiling arrangement has a coiler (5) and optionally at least one driving roller (7) associated with the coiler (5), with
    a) a model calculating unit (30) for the model-based calculation of a current property of the strip (2), characterizing the microstructure of the strip (2),
    b) a control device (10), which has torque calculating means to calculate a torque value (MH, MR) from the current microstructure property of the strip (2), and
    c) at least one drive controlling device (16, 18) for the coiler (5) and/or possibly the driving roller (7), to which the torque value can be fed.
  17. Coiling device (1) used for coiling a metallic strip (2) which has a coiler (5), optionally a driving roller (7) associated with the coiler (5), and a control device (10) for the coiler, and possibly for the driving roller (7), characterized in that the control device (10) is formed according to one of Claims 13 to 15.
  18. Coiling device (1) used for coiling a metallic strip (2) which has a coiler (5), optionally a driving roller (7) associated with the coiler (5), and a control system (11) for the coiler, and possibly for the driving roller (7), characterized in that the control system (11) is formed according to Claim 16.
  19. Data carrier (40) with a computer program stored on it for carrying out the operating method according to one of Claims 1 to 12 when the operating method is loaded in the control device (10).
  20. Rolling mill (W) used for rolling a steel strip (2), in particular a hot rolling mill, with a coiling device (1) according to Claim 17 or 18.
EP08708447A 2007-02-02 2008-01-30 Method for the operation of a coiling device used for coiling or uncoiling a metallic strip, and control device and coiling device therefor Not-in-force EP2125260B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08708447T PL2125260T3 (en) 2007-02-02 2008-01-30 Method for the operation of a coiling device used for coiling or uncoiling a metallic strip, and control device and coiling device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007005378A DE102007005378A1 (en) 2007-02-02 2007-02-02 Operating method for a reel device for winding or unwinding a tape and control device and reel device for this purpose
PCT/EP2008/051132 WO2008092896A1 (en) 2007-02-02 2008-01-30 Method for the operation of a coiling device used for coiling or uncoiling a metallic strip, and control device and coiling device therefor

Publications (2)

Publication Number Publication Date
EP2125260A1 EP2125260A1 (en) 2009-12-02
EP2125260B1 true EP2125260B1 (en) 2010-10-27

Family

ID=39469523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08708447A Not-in-force EP2125260B1 (en) 2007-02-02 2008-01-30 Method for the operation of a coiling device used for coiling or uncoiling a metallic strip, and control device and coiling device therefor

Country Status (9)

Country Link
US (1) US8713979B2 (en)
EP (1) EP2125260B1 (en)
CN (1) CN101600521B (en)
AT (1) ATE485899T1 (en)
BR (1) BRPI0807342A2 (en)
DE (2) DE102007005378A1 (en)
PL (1) PL2125260T3 (en)
RU (1) RU2459677C2 (en)
WO (1) WO2008092896A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031333A1 (en) * 2007-07-05 2009-01-15 Siemens Ag Rolling of a strip in a rolling train using the last stand of the rolling train as Zugverringerer
DE102008011303B4 (en) * 2008-02-27 2013-06-06 Siemens Aktiengesellschaft Operating method for a cooling line for cooling a rolling stock with temperature-separated cooling to a final enthalpy value
DE102009040781A1 (en) * 2009-09-09 2011-03-10 Siemens Aktiengesellschaft Method and device for compensation of tension disturbances in a belt of an accelerator-driven reel drive
CN101891077A (en) * 2010-07-09 2010-11-24 上海德重科技有限公司 Constant tension control method for winding device
EP2460597A1 (en) * 2010-12-01 2012-06-06 Siemens Aktiengesellschaft Method for controlling a tandem mill train, control and/or regulating device for a tandem mill train, machine-readable programming code, storage medium and tandem mill train
CN102615143A (en) * 2012-03-15 2012-08-01 山西太钢不锈钢股份有限公司 Method for dynamically judging precision exception of winding drum of reeling machine
DE102012224351A1 (en) 2012-12-21 2014-06-26 Sms Siemag Ag Method and device for winding a metal strip
CN103662934A (en) * 2013-12-05 2014-03-26 吴江市亨德利纺织厂 Temperature-control cloth rolling machine
CN104457669A (en) * 2014-09-30 2015-03-25 武汉钢铁(集团)公司 Steel coil diameter measuring and calculating method
NL2014488B1 (en) * 2015-03-19 2016-10-12 Landgoed Hoenderdaell B V Exercising and amusement system for animals
CN105603170B (en) * 2016-02-15 2017-08-11 东北大学 The ultrafast cold technique and method for coiling of a kind of ultra thick gauge hot-rolled coil
KR101940870B1 (en) * 2016-12-21 2019-01-21 주식회사 포스코 Strip coiling apparatus
KR102020442B1 (en) * 2017-08-18 2019-09-10 주식회사 포스코 Apparatus for coiling
JP6819541B2 (en) * 2017-10-25 2021-01-27 トヨタ自動車株式会社 Winding device and its control method
CN108772424A (en) * 2018-07-17 2018-11-09 桂林电子科技大学 The offline dynamic detection automatic control system of finished product aluminium foil plate shape and its application method
DE102018220382A1 (en) * 2018-11-28 2020-05-28 Sms Group Gmbh Process for the production of a metallic band
CN109622630B (en) * 2019-01-03 2020-04-24 包头铝业有限公司 On-line adjusting method for rolling technological parameters of heat-resistant aluminum alloy rod
JP7135991B2 (en) * 2019-04-25 2022-09-13 トヨタ自動車株式会社 Calibration judgment device and calibration judgment method
CN111069336B (en) * 2019-11-21 2021-05-11 中国船舶重工集团公司第七0五研究所 Electrical automatic control system of pipe body rolling equipment
CN111545594A (en) * 2020-05-14 2020-08-18 陈丰林 Thick stainless steel strip steel coiling device and coiling method
CN112705595A (en) * 2020-12-25 2021-04-27 中冶南方工程技术有限公司 Strap collection apparatus and method
CN114433633A (en) * 2021-12-31 2022-05-06 天津市新宇彩板有限公司 Tension torque control method and system for sheet coiling unit and electronic equipment
CN114700390B (en) * 2022-03-28 2023-12-29 北京首钢冷轧薄板有限公司 Control method and device for cold rolling treatment line band plate band head
WO2024105858A1 (en) * 2022-11-17 2024-05-23 東芝三菱電機産業システム株式会社 Tension control device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1513252A1 (en) * 1965-02-05 1969-07-10 Licentia Gmbh Electrical device for the operation of reels for metal strips
US4548063A (en) * 1984-06-25 1985-10-22 General Electric Company Tension control in a metal rolling mill
US4872923A (en) * 1987-08-03 1989-10-10 U.S. Automation Co. Die-less drawing method and apparatus
US4905491A (en) * 1988-04-11 1990-03-06 Aluminum Company Of America Unwind/rewind eccentricity control for rolling mills
JPH04145886A (en) * 1990-10-02 1992-05-19 Toshiba Corp Speed control method and apparatus for motor
US5787746A (en) * 1994-07-25 1998-08-04 Alcan Aluminum Corporation Multi-stand hot rolling mill tension and strip temperature multivariable controller
JP3403537B2 (en) * 1995-02-28 2003-05-06 三菱電機株式会社 Winding diameter calculation device for long material unwinding and winding device
MY118434A (en) 1996-02-14 2004-11-30 Schloemann Siemag Ag Reeling unit for strip
US6301946B1 (en) * 1998-03-27 2001-10-16 Kawasaki Steel Corporation Strip coiling method
DE19818207C2 (en) * 1998-04-23 2000-05-31 Schloemann Siemag Ag Steckel hot rolling mill
AT408526B (en) * 1998-05-14 2001-12-27 Voest Alpine Ind Anlagen Method of regulating the tensile force with simultaneous reduction of tensile force fluctuations during reeling
EP1163062B1 (en) * 1999-03-23 2002-11-13 Siemens Aktiengesellschaft Method and device for detecting the roll force in a rolling stand
US6263714B1 (en) * 1999-12-27 2001-07-24 Telepro, Inc. Periodic gauge deviation compensation system
GB0020160D0 (en) * 2000-08-17 2000-10-04 Vai Ind Uk Ltd Steckel furnace coiler and apparatus therefor
FR2815705B1 (en) * 2000-10-20 2003-04-18 Val Clecim PLANAR DETECTION METHOD AND DEVICE
DE10251716B3 (en) 2002-11-06 2004-08-26 Siemens Ag Modeling process for a metal
CN1780703A (en) * 2003-03-28 2006-05-31 达塔钢铁有限公司 A system and method for on-line property prediction for hot rolled coil in a hot strip mill
KR100988501B1 (en) 2003-10-30 2010-10-20 주식회사 포스코 Tension control method for steel plate coiler
DE102004005919A1 (en) 2004-02-06 2005-09-08 Siemens Ag Computer-aided modeling method for the behavior of a steel volume with a volume surface
AT502723B1 (en) 2004-07-07 2008-08-15 Voest Alpine Ind Anlagen METHOD AND DEVICE FOR REDUCING VIBRATIONS IN A SLIDING ROLLER
DE102005044339B4 (en) * 2005-09-16 2016-01-14 Siemens Aktiengesellschaft Method for operating a winder machine

Also Published As

Publication number Publication date
CN101600521A (en) 2009-12-09
RU2459677C2 (en) 2012-08-27
PL2125260T3 (en) 2011-04-29
ATE485899T1 (en) 2010-11-15
US20090314873A1 (en) 2009-12-24
EP2125260A1 (en) 2009-12-02
CN101600521B (en) 2016-01-06
BRPI0807342A2 (en) 2014-05-20
DE102007005378A1 (en) 2008-08-07
US8713979B2 (en) 2014-05-06
RU2009132970A (en) 2011-03-10
DE502008001650D1 (en) 2010-12-09
WO2008092896A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
EP2125260B1 (en) Method for the operation of a coiling device used for coiling or uncoiling a metallic strip, and control device and coiling device therefor
DE69002745T2 (en) Thickness control system for a rolling mill.
DE102010013387B4 (en) Control device and method for a rolling mill
EP2195127B1 (en) Operating method for introducing a product to be rolled into a roll stand of a roll mill, control device, data carrier, and roll mill for rolling a strip-type product to be rolled
EP2548665B1 (en) Method for determining the wear on a roller dependent on relative movement
EP2259882B1 (en) Operating method for a multi-stand rolling mill train comprising a strip thickness detection means that utilizes the continuity equation
EP2603337B1 (en) Method for producing rolling stock by means of a combined continuous casting and rolling system, control device for a combined continuous casting and rolling system, and combined continuous casting and rolling system
EP2094410A1 (en) Method of monitoring the physical state of a hot-rolled sheet or hot-rolled strip while controlling a plate rolling train for working a hot-rolled sheet or hot-rolled strip
EP2431104A1 (en) Method for determining the temperature and geometry of a hot rolled metal strip in a finishing train in real time
DE4243045C2 (en) Regulation for a cold strip rolling mill
EP2237902B1 (en) Method and bending device for progressively bending a metal strip in the inlet area of a mandrel-less band coiler
EP2790846B1 (en) Method for processing milled goods in a hot rolling mill
EP1488863B1 (en) System and method for optimizing the control of the quality of thickness in a rolling process
EP3437748B1 (en) Mass flow rate regulation in rolling mill plants
DE1427888B2 (en) Device for reducing the thickness of strip material
EP0734795B1 (en) Method for feedforward thickness control in rolling of foils
EP2934779B1 (en) Method and device for winding a metal strip
EP2268427B1 (en) Operating method for a cold-rolling line with improved dynamics
EP4061552B1 (en) Method, control device and rolling mill for the adjustment of an outlet temperature of a metal strip exiting a rolling train
EP2305393B1 (en) Method and device for regulating a drive
DE102018200166A1 (en) Control device, control method and control program of a rolling mill
EP2475471B1 (en) Method and apparatus for compensating abnormal tensile loads in a strip of an acceleration-guided coiler drive
EP3890900B1 (en) Method for operating a roll stand for stepped rolling
DE102005028333B4 (en) Dancer roller system
DE4141086C2 (en) Process for controlling continuous tube rolling mills

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008001650

Country of ref document: DE

Date of ref document: 20101209

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110207

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001650

Country of ref document: DE

Effective date: 20110728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120125

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20130111

Year of fee payment: 6

Ref country code: GB

Payment date: 20130109

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130104

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20131223

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 485899

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008001650

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20151105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170119

Year of fee payment: 10

Ref country code: FR

Payment date: 20170120

Year of fee payment: 10

Ref country code: DE

Payment date: 20170120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170117

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008001650

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180130