EP2107859B1 - Switch and method for exciting an LED light - Google Patents

Switch and method for exciting an LED light Download PDF

Info

Publication number
EP2107859B1
EP2107859B1 EP09405060A EP09405060A EP2107859B1 EP 2107859 B1 EP2107859 B1 EP 2107859B1 EP 09405060 A EP09405060 A EP 09405060A EP 09405060 A EP09405060 A EP 09405060A EP 2107859 B1 EP2107859 B1 EP 2107859B1
Authority
EP
European Patent Office
Prior art keywords
current
voltage
control
led
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09405060A
Other languages
German (de)
French (fr)
Other versions
EP2107859A1 (en
Inventor
Michel Noe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sander Elektronik AG
Original Assignee
Sander Elektronik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sander Elektronik AG filed Critical Sander Elektronik AG
Publication of EP2107859A1 publication Critical patent/EP2107859A1/en
Application granted granted Critical
Publication of EP2107859B1 publication Critical patent/EP2107859B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output

Definitions

  • the invention relates to the field of electronic circuit technology, and in particular to a circuit and a method for powering a luminaire, in which light-emitting diodes (LED) are used as lighting means, according to the preamble of the corresponding independent claims.
  • LED light-emitting diodes
  • the converter In a so-called LED lamp (i.e., a lamp in which light-emitting diodes are used as lighting), the converter is usually built as a flyback converter since the light output of the LED lamp is usually less than 24W.
  • a second problem is the fulfillment of the standard defining the electromagnetic compatibility of the electronic control.
  • the clock frequency With conventional integrated circuits, the clock frequency remains constant. Consequently the disturbances in the clock frequency and their harmonic harmonics are high. Accordingly, their filtering is complicated or expensive to implement.
  • Such transducers can operate at very low voltages. This eliminates the need to use a high-value capacitor. Such capacitors are also cheaply available as film capacitors. Consequently, the standard which limits the harmonic content of the mains current is also easy to meet.
  • WO 99/07188 and WO 01/05193 show single-ended flyback converter for powering LED lights. In it, however, no purely free-swinging single-ended flyback converters are described. In addition, there is no output voltage limitation (in the case of a light-emitting diode failure).
  • the light-emitting diode forward current is regulated by modulation of the current in the main or primary winding, wherein safety functions such as a collector current limitation and a limitation of the output voltage can be implemented in a simple manner in this circuit.
  • the limitation of the output voltage is due to the auxiliary winding through a circuit which is galvanically coupled to the primary side, but is galvanically isolated from the secondary side.
  • the limitation of the auxiliary voltage by the voltage limiter automatically also drives the limitation of the secondary voltage. If the bulbs are not connected or faulty, otherwise the secondary voltage or the output voltage could rise to too high values.
  • the auxiliary voltage is preferably limited by a Zener diode, which is connected in parallel with or independent of an amplifier circuit for current regulation.
  • At least a portion of the control current (that is, a portion of the control current or the entire control current) is preferably generated when the auxiliary voltage exceeds a predetermined value. At least one further proportion of the control current is generated by the lighting means from a predetermined desired value in accordance with the control deviation of the secondary current.
  • the flyback converter is described below as being fed by a DC voltage, but it is understood that this DC voltage can indeed have a certain ripple, depending on the quality of any input filters.
  • the control current when the control current is superposed with the collector current, the summation current flows through a shunt resistor, thus generating a voltage across the shunt resistor.
  • a turn-off circuit turns off the switching element when this voltage reaches a predetermined value. This happens, for example, when the summation current at least partially flows off via a zener diode when this predetermined value is reached, thereby triggering the switching element to be switched off.
  • the circuit is designed to generate at a control node a switching voltage for switching off the switching element in accordance with the collector current and the control current.
  • the control node is connected via a reference voltage element to the base of a control transistor, said control transistor in the on state, the switching element off.
  • the reference voltage element stabilizes the temperature dependence of the base-emitter voltage of the control transistor.
  • the reference voltage element may be a single Zener diode or another element or a reference voltage circuit, only the property is important that independent of the current flow through the element a predetermined voltage drops across the element, and that the temperature drift of the base-emitter voltage of the control transistor is compensated as possible.
  • FIG. 1 shows a summary of a circuit according to the invention.
  • a group of LEDs is summarized as a light source 1 and is powered by a secondary voltage 16 of a secondary winding 7C of a flyback transformer 7.
  • a primary winding or main winding 7A of the transformer 7 is fed by an optional rectifier and / or input filter circuit 4 from a voltage source 9.
  • a current I c through the main winding 7A is controllable by a switching element 8.
  • This current I c flows through a shunt resistor 15, whereby a corresponding voltage is produced, by means of which the switching element 8 can be controlled to control the flyback converter.
  • a zero voltage of the primary side is designated 0VP
  • a zero voltage of the galvanically isolated secondary side is OVS.
  • a start-up circuit 5 is used in a known manner for starting the circuit, and can also be used for network monitoring and as over- resp. Undervoltage protection may be formed.
  • the base circuit is to be adapted depending on the type of a transistor used as switching element 8.
  • An auxiliary circuit 6 can also be provided, depending on the type of switching element 8, in a known manner for commutating the transistor.
  • An auxiliary winding 7D of the transformer 7 is arranged to supply an auxiliary voltage source and to generate an auxiliary voltage 17 for supplying the current control.
  • the auxiliary winding 7D is oriented in the same direction as the secondary winding 7C, so that therefore the auxiliary voltage 17 is parallel, ie, proportional to the secondary voltage 16.
  • a control current I s from the auxiliary voltage source flows through a diode 22, an optocoupler 13, which controls the control current I s , and a resistor 12 to a control circuit 10, 11, 15, 23, 24 for driving the switching transistor 8.
  • An input of the optocoupler 13 is fed via a resistor 21 to a control voltage 20 of an amplifier circuit 2.
  • the amplifier circuit 2 generates the control voltage 20 in accordance with a desired value 19 and an actual value of the LED current I LED , corresponding to a voltage measured at a measuring resistor 18.
  • a voltage limiter 14 limits the auxiliary voltage 17, for example, by being connected in parallel with the output of the optocoupler 13. The voltage limitation is done by the voltage limiter 14 is conductive at a predetermined value of the auxiliary voltage 17 and thereby leads to the switching off of the switching transistor 8. As a result, the auxiliary voltage 17 no longer increases, and consequently not the same direction extending secondary voltage 16. Since the auxiliary voltage 17 is generated by a separate winding 7D on the transformer 7, this voltage limit can be galvanically connected to the primary-side control circuit of the switching transistor 8, and nevertheless be galvanically isolated from the secondary side.
  • FIG. 2 shows a detailed circuit according to the invention.
  • a supply voltage Vac is rectified via the diodes D1 to D4 and smoothed with the capacitor C1.
  • a DC voltage HV is formed.
  • This voltage can include a very large harmonic content (eg 100Hz at an input frequency of 50Hz).
  • a battery is also possible to supply the subsequent converter directly with DC voltage from eg a battery.
  • the controller supplies any LED array (in series or in parallel, or a combination of both) with DC power.
  • the LEDs LED1 to LEDX are shown as a series connection.
  • the light-emitting diode current I LED which must be regulated, is dependent on the type of light-emitting diode or its arrangement.
  • the voltage VN which is above the LED array is created, is not regulated. Their value depends on the LED arrangement.
  • the insulation between the supply voltage and the LED voltage should meet the requirements of the relevant safety standard. That that the primary side (with the zero voltage 0VP) is separated from the secondary side (with the zero voltage 0VS).
  • the circuit may be implemented without isolation, e.g. without the optocoupler described below.
  • a clock transistor T1 is shown as a bipolar transistor. Of course, it is also possible to use MOSFET or IGBT transistors. With resistor R2, a current flows into the base of T1. As soon as T1 turns on, its collector current flows into the W1 winding of the transformer of the flyback converter. Magnetic coupling also causes a current to flow in the W2 winding. This winding generates the base current. (A current flowing over R2 is only for starting). As long as the base current flows into the transistor, T1 remains on.
  • the diodes D6 and D7 prevent current flow in these windings.
  • the main current T1 collector current
  • the energy is thus stored in this inductance.
  • the transistor T1 does not switch off until the magnetic coupling between W1 and W2 is no longer present (ie when the magnetic circuit is saturated) or when the transistor T2 turns on or when this transistor T2 short-circuits the base of the transistor T1.
  • the transistor T2 turns on as soon as the resulting voltage on the shunt resistor R6 (which reflects the collector current) is greater than the sum of the Zener voltage of the Zener diode DZ2 and the base voltage of the transistor T2. As a result, therefore, the current flowing in the switching transistor current is limited and thus controls the output power of the single-ended flyback converter.
  • the collector current can be additionally limited or the output power controlled, since the energy stored in the W1 inductance depends on the maximum value of the collector current.
  • CP1 It is also possible to use a circuit (shown as CP1) to optimize the operation of the transistor T1 and to protect the transistor T1 and to support the commutation.
  • Such conventional circuits are built as combinations of diodes, capacitors and resistors and may be connected to the voltage HV and the voltage 0VP. By connecting (with resistor R3) to the base of transistor T2, it is also possible to speed up the shutdown.
  • the current flowing into the light-emitting diode array LED1 ... LEDX current I LED should be a certain value, which depends on the arrangement and the light-emitting diodes used.
  • the current I LED is measured. Shown is a measurement by a shunt resistor R14. Of course, other measuring methods are also possible.
  • the voltage on R14 reflects the current I LED . This voltage can be amplified by the amplifier A2 with the circuit resistors R12 and R11.
  • the amplified voltage representing the current I LED is compared to a reference voltage (VREF in the figure).
  • VREF acts as the setpoint
  • the output voltage of the amplifier A2 acts as the actual value in accordance with the LED current I LED .
  • the comparison between the setpoint and the actual value is implemented with the integrating amplifier A1. According to the components R10 and C5, the difference between the setpoint and the actual value is integrated with the amplifier A1.
  • a control loop with I control is shown.
  • Other types of control such as P, PI or PID control are of course possible.
  • the diode current of an opto-coupler OC1 is regulated, and thereby its output current, which flows in the resistor R7.
  • the winding W4 of the transformer W is magnetically coupled to the winding W1 similar to the winding W3 and supplies an auxiliary source.
  • An auxiliary voltage VAUX which arises on a capacitor C4 of the auxiliary source, changes like the voltage VN on the capacitor C3 (neglecting the ohmic voltage drops in the windings W3 and W4).
  • a current can flow through R7. As explained above, this current is controlled by the amplifier A1. This current continues to flow into resistor R6 (through R4) and / or into zener diode DZ2. Thus, this current adds up to the collector current of transistor T1, ie the main current of the single-ended flyback converter. Since the single ended flyback power depends on this current (main current + current in R7) and its peak value, respectively, it is possible to control the power of the converter by the current in R7. The larger the current flowing into the resistor R7, the smaller the peak value of the T1 collector current and thus also the output power of the converter. Overall, therefore, this scheme changes the performance of the single-ended flyback converter until the current flowing into the LED array has reached the desired set point in accordance with VREF.
  • the diode D8 which prevents current flow into the capacitor C4 at startup, as well as the optocoupler OC1, the Zener diode DZ1, and the resistor R7, may be connected in a different order.
  • the control loop through the amplifier A1 would require the maximum power because no current would flow through the optocoupler OC1. In this case, the voltages VN and VAUX could become too high.
  • the voltage VAUX can be limited. With DZ1, if the VAUX is too high, the current can flow into the resistor R7, even if no current flows through the optocoupler OC1 output transistor. Thus, the output power can be controlled.
  • VN and VAUX are parallel to each other, the limitation of VAUX also limits VN, thus protecting the circuit.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)
  • Led Devices (AREA)

Abstract

The electronic circuit has a free-running single ended-switching regulator for supplying light emitting diode with an output voltage. The circuit has a control circuit for controlling a current flow (I-led) through the lamp. The current is controlled for detecting the current flow through the lamp and for modulation of the current flow through the main coil (7A). An independent claim is included for a method for supplying a lamp built with light emitting diodes as an illuminant.

Description

Die Erfindung bezieht sich auf das Gebiet der elektronischen Schaltungstechnik, und insbesondere auf eine Schaltung und ein Verfahren zur Speisung einer Leuchte, bei welcher Leuchtdioden (LED) als Leuchtmittel verwendet sind, gemäss dem Oberbegriff der entsprechenden unabhängigen Patentansprüche.The invention relates to the field of electronic circuit technology, and in particular to a circuit and a method for powering a luminaire, in which light-emitting diodes (LED) are used as lighting means, according to the preamble of the corresponding independent claims.

STAND DER TECHNIKSTATE OF THE ART

In einer so genannten LED-Leuchte (d.h. einer Leuchte, bei welcher Leuchtdioden als Leuchtmittel verwendet sind) wird der Konverter gewöhnlich als Eintakt-Sperrwandler (Flyback converter) gebaut, da die Licht-Leistung der LED-Leuchte meistens unter 24W liegt.In a so-called LED lamp (i.e., a lamp in which light-emitting diodes are used as lighting), the converter is usually built as a flyback converter since the light output of the LED lamp is usually less than 24W.

Für solche Leistungen werden heutzutage Eintakt-Sperrwandler mit gewöhnlichen integrierten Schaltungen und Hochspannung-MOSFET-Transistoren günstig entwickelt und produziert. In solchen Wandlern wird die Wechselspannung des Versorgungsnetzes zuerst gleichgerichtet. Die dadurch entstehende Gleichspannung wird in eine vom Netz getrennte niedrigere Gleichspannung umgewandelt. Die Leuchtdioden werden direkt von dieser niedrigeren Gleichspannung oder indirekt über einen zusätzlichen Wandler versorgt.For such services, today single-ended flyback converters with ordinary integrated circuits and high voltage MOSFET transistors are being favorably developed and produced. In such converters, the AC voltage of the supply network is first rectified. The resulting DC voltage is converted into a separate from the grid lower DC voltage. The LEDs are powered directly from this lower DC voltage or indirectly via an additional converter.

Problematik: Das erste Problem liegt bei der Wahl des Kondensators, welcher bei der Filterung der gleichgerichteten Versorgungsnetz-Spannung verwendet wird. Es ist schwierig, einen guten Kompromiss zu finden, bei welchem alle folgende Bedingungen erfüllt sind:

  • Der Wert dieses Kondensators ist begrenzt durch die technischen Norm, deren Anforderungen die Leuchten erfüllen müssen. Bei kleinen Leistungen sind zwar keine so genannten PFC-Konverter (power factor correction converter) nötig, jedoch werden die Oberwellen des Netzstromes begrenzt. Der maximale Kondensator-Wert beträgt dadurch ca. 3 Microfarad.
  • Bei der Gleichrichtung einer 50Hz-Versorgungsnetz-Wechselspannung entsteht eine 100Hz-Oberwelle. Der minimale Wert der gleichgerichteten Spannung hängt somit vom Kondensatorwert ab. Bei den gewöhnlichen integrierten Schaltungen funktioniert der Eintakt-Sperrwandler schlecht oder gar nicht mehr, sobald die gleichgerichtete Spannung unter einem bestimmten Wert liegt. Dadurch gibt es einen minimalen Wert für den Kondensator, welcher gegeben für einen einwandfreien Betrieb des Eintakt-Sperrwandlers erforderlich ist. Meistens ist der oben angegebene Wert von 3 Microfarad zu gering.
  • Bei der Wahl des Kondensators ist auch zu beachten, dass elektrolytische Kondensatoren (so genannte Elkos) relativ kurzlebig sind, weil sie abtrocknen. Um eine Lebenserwartung von ca. acht Jahren zu erreichen, müssen hochqualitative Elkos mit einem Wert von mindenstens 10 Microfarad verwendet werden. Andere Technologien wie Folien-Kondensatoren sind viel teurer.
Problem: The first problem lies in the choice of the capacitor, which is used in the filtering of the rectified supply network voltage. It is difficult to find a good compromise where all of the following conditions are met:
  • The value of this capacitor is limited by the technical standard whose requirements the luminaires must meet. Although at low power levels, so-called PFC (power factor correction converter) converters are not required, the harmonics of the mains current are limited. The maximum capacitor value is about 3 microfarads.
  • The rectification of a 50Hz AC supply voltage creates a 100Hz harmonic. The minimum value of the rectified voltage thus depends on the capacitor value. In the conventional integrated circuits, the one-shot flyback converter will function poorly or not at all once the rectified voltage is below a certain value. Thereby, there is a minimum value for the capacitor required for proper operation of the single ended flyback converter. Mostly the value of 3 microfarads given above is too small.
  • When choosing the capacitor, it should also be noted that electrolytic capacitors (so-called electrolytic capacitors) are relatively short lived because they dry out. In order to achieve a life expectancy of about eight years, high-quality elkos with a value of at least 10 microfarads must be used. Other technologies like film capacitors are much more expensive.

Aus diesen Gründen sind die meisten elektronischen Steuerungen für LED-Leuchten mit zu grossen Elkos bestückt und dadurch nicht Normkonform.For these reasons, most electronic controls for LED lights are equipped with too large electrolytic capacitors and thus not compliant with the standards.

Ein zweites Problem liegt bei der Erfüllung der Norm, welche die elektromagnetische Kompatilität der elektronischen Steuerung definiert. Mit herkömmlichen integrierten Schaltungen bleibt die Taktfrequenz konstant. Somit sind die Störungen bei der Taktfrequenz und deren harmonischen Oberwellen einen hoch. Dementsprechend ist deren Filterung aufwendig bzw. teuer zu implementieren.A second problem is the fulfillment of the standard defining the electromagnetic compatibility of the electronic control. With conventional integrated circuits, the clock frequency remains constant. Consequently the disturbances in the clock frequency and their harmonic harmonics are high. Accordingly, their filtering is complicated or expensive to implement.

Mit einem freischwingenden Eintakt-Sperrwandler sind beide Probleme einfacher zu lösen.With a free-swinging single-ended flyback converter, both problems are easier to solve.

Solche Wandler können mit sehr niedrigen Spannungen arbeiten. Dadurch ist es nicht nötig, einen Kondensator mit hohem Wert zu verwenden. Solche Kondensatoren sind auch als Folien-Kondensatoren günstig erhältlich. Demzufolge ist auch die Norm, welche den Oberwellen-Inhalt des Netzstromes begrenzt, einfach zu erfüllen.Such transducers can operate at very low voltages. This eliminates the need to use a high-value capacitor. Such capacitors are also cheaply available as film capacitors. Consequently, the standard which limits the harmonic content of the mains current is also easy to meet.

Gerade weil solche Wandler freischwingen können bzw. müssen, ist es schwierig, solche freischwingenden Eintakt-Sperrwandler zu steuern. Die folgenden Funktionen müssen implementiert werden:

  • Transistorstrom-Begrenzung.
  • Leuchtdiode-Durchlass-Strom-Regelung
  • Ausgangsspannungsbegrenzung (im Fall eines Leuchtdioden-Ausfalls)
Precisely because such transducers can or must free-swing, it is difficult to control such free-swinging single-ended flyback converter. The following functions must be implemented:
  • Current limiting transistor.
  • Light emitting diode forward current control
  • Output voltage limitation (in the case of a light-emitting diode failure)

WO 99/07188 und WO 01/05193 zeigen Eintakt-Sperrwandler zur Speisung von LED-Leuchten. Darin sind jedoch keine rein freischwingenden Eintakt-Sperrwandler beschrieben. Zudem liegt keine Ausgangsspannungsbegrenzung (im Fall eines Leuchtdioden-Ausfalls). WO 99/07188 and WO 01/05193 show single-ended flyback converter for powering LED lights. In it, however, no purely free-swinging single-ended flyback converters are described. In addition, there is no output voltage limitation (in the case of a light-emitting diode failure).

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist deshalb Aufgabe der Erfindung, eine Schaltung und ein Verfahren zur Speisung einer LED-Leuchte der eingangs genannten Art zu schaffen, welche die oben genannten Nachteile behebt.It is therefore an object of the invention to provide a circuit and a method for powering an LED lamp of the type mentioned, which overcomes the disadvantages mentioned above.

Diese Aufgabe lösen eine Schaltung und ein Verfahren zur Speisung einer LED-Leuchte, mit den Merkmalen der entsprechenden unabhängigen Patentansprüche.This object is achieved by a circuit and a method for feeding an LED lamp, with the features of the corresponding independent claims.

Die elektronische Schaltung zur Speisung einer mit Leuchtdioden als Leuchtmittel gebauten Leuchte, weist also einen freischwingenden Eintakt-Sperrwandler zur Speisung der Leuchtmittel anhand einer Gleichspannung. Der Eintakt-Sperrwandler weist dabei die folgenden Elemente auf:

  • einen Transformator mit einer Hauptwicklung und einer Sekundär-Wicklung, welche mit der Hauptwicklung magnetisch gekoppelt ist; und
  • ein Schaltelement zur Steuerung eines Stromflusses durch die Hauptwicklung.
Dabei weist die Schaltung einen Regelkreis zur Regelung eines Stromflusses durch das Leuchtmittel auf, wobei diese Stromregelung
  • zum Erfassen des Stromflusses durch das Leuchtmittel; und
  • zur Modulation des Stromflusses durch die Hauptwicklung, auch Kollektorstrom genannt, mittels des Schaltelements; und
  • zur Regelung des Stromflusses durch das Leuchtmittel auf einen vorgegebenen Sollwert
ausgebildet ist. Zur Begrenzung der Ausgangsspannung
  • weist der Transformator eine Hilfs-Wicklung auf, welche mit der Hauptwicklung magnetisch gekoppelt ist;
  • ist diese Hilfs-Wicklung zum Erzeugen einer Hilfsspannung, welche parallel zur Ausgangsspannung verläuft, angeordnet; und
  • ist die Schaltung zur Begrenzung der Hilfsspannung durch Reduktion des Kollektorstroms und dadurch auch zur Begrenzung der Ausgangsspannung ausgebildet.
The electronic circuit for powering a built with light-emitting diodes as a lamp, so has a free-swinging single-ended flyback converter for feeding the light source based on a DC voltage. The single-ended flyback converter has the following elements:
  • a transformer having a main winding and a secondary winding magnetically coupled to the main winding; and
  • a switching element for controlling a current flow through the main winding.
In this case, the circuit has a control circuit for controlling a current flow through the lighting means, said current control
  • for detecting the flow of current through the lamp; and
  • for modulating the current flow through the main winding, also called collector current, by means of the switching element; and
  • for controlling the current flow through the lamp to a predetermined desired value
is trained. To limit the output voltage
  • the transformer has an auxiliary winding which is magnetically coupled to the main winding;
  • this auxiliary winding is arranged to generate an auxiliary voltage which is parallel to the output voltage; and
  • is the circuit for limiting the auxiliary voltage by reducing the collector current and thereby also designed to limit the output voltage.

Es wird also in vorteilhafter Weise ein freischwingender Eintakt-Sperrwandler für die Steuerung einer LED-Leuchte verwendet. Dabei wird der Leuchtdioden-Durchlass-Strom durch Modulation des Stromes in der Haupt- oder Primärwicklung geregelt, wobei in dieser Schaltung in einfacher Wiese auch Sicherheitsfunktionen wie eine Kollektorstrom-Begrenzung und eine Begrenzung der Ausgangsspannung implementiert werden können.It is thus advantageously used a free-swinging single-ended flyback converter for the control of an LED light. In this case, the light-emitting diode forward current is regulated by modulation of the current in the main or primary winding, wherein safety functions such as a collector current limitation and a limitation of the output voltage can be implemented in a simple manner in this circuit.

Die Begrenzung der Ausgangsspannung (auf der Sekundärseite) erfolgt dank der Hilfswicklung durch eine Schaltung, welche mit der der Primärseite galvanisch gekoppelt, aber von der Sekundärseite galvanisch getrennt ist. Die Begrenzung der Hilfsspannung durch den Spannungsbegrenzer fahrt automatisch auch zur Begrenzung der Sekundärspannung. Falls die Leuchtmittel nicht oder fehlerhaft angeschlossen sind, könnten sonst die Sekundärspannung respektive die Ausgangsspannung auf zu hohe Werte ansteigen. Die Hilfsspannung ist vorzugsweise durch eine Zener-Diode begrenzt, welche parallel zu bzw. unabhängig von einer Verstärkerschaltung zur Stromregelung geschaltet ist.The limitation of the output voltage (on the secondary side) is due to the auxiliary winding through a circuit which is galvanically coupled to the primary side, but is galvanically isolated from the secondary side. The limitation of the auxiliary voltage by the voltage limiter automatically also drives the limitation of the secondary voltage. If the bulbs are not connected or faulty, otherwise the secondary voltage or the output voltage could rise to too high values. The auxiliary voltage is preferably limited by a Zener diode, which is connected in parallel with or independent of an amplifier circuit for current regulation.

Mindestens ein Anteil des Steuerstroms (also ein Anteil des Steuerstroms oder der gesamte Steuerstrom) wird vorzugsweise erzeugt, wenn die Hilfsspannung einen vorgegebenen Wert überschreitet. Mindestens ein weiterer Anteil des Steuerstroms wird entsprechend der Regelabweichung des Sekundärstroms durch die Leuchtmittel von einem vorgegebenen Sollwert erzeugt.At least a portion of the control current (that is, a portion of the control current or the entire control current) is preferably generated when the auxiliary voltage exceeds a predetermined value. At least one further proportion of the control current is generated by the lighting means from a predetermined desired value in accordance with the control deviation of the secondary current.

Der Sperrwandler wird im Folgenden als durch eine Gleichspannung gespeist beschrieben, wobei sich aber versteht, dass diese Gleichspannung ja nach Güte allfälliger Eingangsfilter eine gewisse Welligkeit aufweisen kann.The flyback converter is described below as being fed by a DC voltage, but it is understood that this DC voltage can indeed have a certain ripple, depending on the quality of any input filters.

In einer bevorzugten Ausführungsform der Erfindung ist der Regelkreis

  • zum Erzeugen eines Steuerstromes nach Massgabe des Stromflusses durch das Leuchtmittel;
  • und zum Ãœberlagern des Steuerstromes mit dem durch das Schaltelement fliessenden Kollektorstrom zu einem Summenstrom; und
  • zum Aussschalten des Schaltelementes nach Massgabe dieses Summenstromes
ausgebildet. Damit realisiert die Schaltung auch die genannte Kollektorstrom-Begrenzung.In a preferred embodiment of the invention, the control loop
  • for generating a control current in accordance with the current flow through the lighting means;
  • and for superimposing the control current with the collector current flowing through the switching element to a summation current; and
  • for switching off the switching element in accordance with this sum current
educated. Thus, the circuit also implements the aforementioned collector current limitation.

In einer weiteren bevorzugten Ausführungsform der Erfindung fliesst beim Überlagern des Steuerstromes mit dem Kollektorstrom der Summenstrom durch einen Shuntwiderstand und erzeugt so eine Spannung über dem Shuntwiderstand. Eine Ausschalt-Schaltung schaltet das Schaltelement aus, wenn diese Spannung einen vorgegebenen Wert erreicht. Dies geschieht beispielsweise, indem beim Erreichen dieses vorgegebenen Wertes der Summenstrom zumindest teilweise über eine Zenerdiode abfliesst und dadurch das Ausschalten des Schaltelemenes auslöst.In a further preferred embodiment of the invention, when the control current is superposed with the collector current, the summation current flows through a shunt resistor, thus generating a voltage across the shunt resistor. A turn-off circuit turns off the switching element when this voltage reaches a predetermined value. This happens, for example, when the summation current at least partially flows off via a zener diode when this predetermined value is reached, thereby triggering the switching element to be switched off.

In einer weiteren bevorzugten Ausführungsform der Erfindung ist die Schaltung zum Erzeugen eines Steuerstromes zur Modulation des Stromflusses durch die Hauptwicklung mittels

  • einer Verstärkerschaltung, welche den Stromfluss durch das Leuchtmittel erfasst und eine Regelabweichung vom vorgegebenen Sollwert bildet; und
  • eines Optokopplers, welcher den Steuerstrom entsprechend der Regelabweichung steuert
ausgebildet. Vorzugsweise ist dabei der Steuerstrom durch eine Hilfsspannung einer Hilfsquelle gespeist, und ist die Hilfsquelle wiederum durch eine Hilfswicklung des Transformators gespeist.In a further preferred embodiment of the invention, the circuit for generating a control current for modulating the current flow through the main winding by means of
  • an amplifier circuit which detects the current flow through the lighting means and forms a control deviation from the predetermined desired value; and
  • an opto-coupler, which controls the control current according to the control deviation
educated. Preferably, the control current is fed by an auxiliary voltage of an auxiliary source, and the auxiliary source is in turn fed by an auxiliary winding of the transformer.

In einer weiteren bevorzugten Ausführungsform der Erfindung ist die Schaltung dazu ausgebildet, an einem Steuerknoten eine Schaltspannung zum Ausschalten des Schaltelements nach Massgabe des Kollektorstroms und des Steuerstromes zu erzeugen. Der Steuerknoten ist über ein Referenzspannungselement mit der Basis eines Steuertransistors verbunden, wobei dieser Steuertransistor im eingeschalteten Zustand das Schaltelement ausschaltet. Das Referenzspannungselement stabilisiert insbesondere die Temperaturabhängigkeit der Basis-Emitterspannung des Steuertransistors. Das Referenzspannungselement kann eine einzelne Zenerdiode oder ein anderes Element oder eine Referenzspannungsschaltung sein, wichtig ist lediglich die Eigenschaft, dass unabhängig vom Stromfluss durch das Element eine vorgegebene Spannung am Element abfällt, und dass die Temperaturdrift der Basis-Emitterspannung des Steuertranstistors möglichst kompensiert wird.In a further preferred embodiment of the invention, the circuit is designed to generate at a control node a switching voltage for switching off the switching element in accordance with the collector current and the control current. The control node is connected via a reference voltage element to the base of a control transistor, said control transistor in the on state, the switching element off. In particular, the reference voltage element stabilizes the temperature dependence of the base-emitter voltage of the control transistor. The reference voltage element may be a single Zener diode or another element or a reference voltage circuit, only the property is important that independent of the current flow through the element a predetermined voltage drops across the element, and that the temperature drift of the base-emitter voltage of the control transistor is compensated as possible.

Weitere bevorzugte Ausführungsformen gehen aus den abhängigen Patentansprüchen hervor. Dabei sind Merkmale der Verfahrensansprüche sinngemäss mit den Vorrichtungsansprüchen kombinierbar und umgekehrt.Further preferred embodiments emerge from the dependent claims. Characteristics of the method claims are analogously combined with the device claims and vice versa.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Im folgenden wird der Erfindungsgegenstand anhand von bevorzugten Ausführungsbeispielen, welche in den beiliegenden Zeichnungen dargestellt sind, näher erläutert. Es zeigen jeweils schematisch:

Figur 1
eine zusammengefasste Darstellung einer Schaltung gemäss der Erfindung; und
Figur 2
eine Schaltung gemäss der Erfindung.
In the following, the subject invention will be explained in more detail with reference to preferred embodiments, which are illustrated in the accompanying drawings. Each show schematically:
FIG. 1
a summary of a circuit according to the invention; and
FIG. 2
a circuit according to the invention.

WEGE ZUR AUSFÃœHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

Figur 1 zeigt eine zusammengefasste Darstellung einer Schaltung gemäss der Erfindung. Eine Gruppe von LED's ist zusammengefasst als Leuchtmittel 1 dargestellt und wird von einer Sekundärspannung 16 einer Sekundär-Wicklung 7C eines Sperrwandler-Transformators 7 gespeist. Eine Primärwicklung oder Hauptwicklung 7A des Transformators 7 wird durch eine optionale Gleichrichter- und/oder Eingangsfilter-Schaltung 4 aus einer Spannungsquelle 9 gespeist. Ein Strom Ic durch die Hauptwicklung 7A ist durch ein Schaltelement 8 steuerbar. Dieser Strom Ic fliesst auch durch einen Shuntwiderstand 15, wodurch eine entsprechende Spannung entsteht, mittels welcher das Schaltelement 8 zur Regelung des Sperrwandlers ansteuerbar ist. Eine Nullspannung der Primärseite ist mit 0VP bezeichnet, eine Nullspannung der galvanisch getrennten Sekundärseite ist OVS. FIG. 1 shows a summary of a circuit according to the invention. A group of LEDs is summarized as a light source 1 and is powered by a secondary voltage 16 of a secondary winding 7C of a flyback transformer 7. A primary winding or main winding 7A of the transformer 7 is fed by an optional rectifier and / or input filter circuit 4 from a voltage source 9. A current I c through the main winding 7A is controllable by a switching element 8. This current I c flows through a shunt resistor 15, whereby a corresponding voltage is produced, by means of which the switching element 8 can be controlled to control the flyback converter. A zero voltage of the primary side is designated 0VP, a zero voltage of the galvanically isolated secondary side is OVS.

Eine Startschaltung 5 dient in bekannter Weise zum Starten der Schaltung, und kann auch zur Netzüberwachung und als Über- resp. Unterspannungsschutz ausgebildet sein. Eine Nachfolgeschaltung 3, gespeist durch eine Spannung 18 einer Steuerwicklung 7B, dient ebenfalls in bekannter Weise als Basisschaltung. Die Basisschaltung ist je nach Typ eines als Schaltelement 8 verwendeten Transistors anzupassen. Eine Hilfsschaltung 6 kann, ebenfalls in Abhängigkeit des Typs des Schaltelementes 8, in bekannter Weise zur Kommutierung des Transistors vorgesehen sein.A start-up circuit 5 is used in a known manner for starting the circuit, and can also be used for network monitoring and as over- resp. Undervoltage protection may be formed. A follow-up circuit 3, fed by a voltage 18 of a control winding 7B, also serves in a known manner as a base circuit. The base circuit is to be adapted depending on the type of a transistor used as switching element 8. An auxiliary circuit 6 can also be provided, depending on the type of switching element 8, in a known manner for commutating the transistor.

Eine Hilfs-Wicklung 7D des Transformators 7 ist zur Speisung einer Hilfsspannungsquelle und zur Erzeugung einer Hilfsspannung 17 zur Versorgung der Stromregelung angeordnet. Die Hilfs-Wicklung 7D ist gleichsinnig zur Sekundär-Wicklung 7C orientiert, so dass also die Hilfsspannung 17 parallel, d.h. proportional zur Sekundärspannung 16 verläuft. Ein Steuerstrom Is aus der Hilfsspannungsquelle fliesst durch eine Diode 22, einen Optokoppler 13, welcher den Steuerstrom Is steuert, und einen Widerstand 12 zu einer Steuerschaltung 10, 11, 15, 23, 24 zur Ansteuerung des Schalttransistors 8. Ein Eingang des Optokopplers 13 wird über einen Widerstand 21 mit einer Steuerspannung 20 einer Verstärkerschaltung 2 gespeist. Die Verstärkerschaltung 2 erzeugt die Steuerspannung 20 nach Massgabe eines Sollwertes 19 und eines Istwertes des LED-Stromes ILED, entsprechend einer an einem Messwiderstand 18 gemessenen Spannung. Ein Spannungsbegrenzer 14 begrenzt die Hilfsspannung 17, beispielsweise, indem er parallel zum Ausgang des Optokopplers 13 geschaltet ist. Die Spannungsbegrenzung geschieht, indem der Spannungsbegrenzer 14 bei einem vorgegebenen Wert der Hilfsspannung 17 leitend wird und dadurch zum Ausschalten des Schalttransistors 8 führt. Dadurch steigt die Hilfsspannung 17 nicht mehr an, und folglich auch nicht die gleichsinnig verlaufende Sekundärspannung 16. Da die Hilfsspannung 17 durch eine eigene Wicklung 7D am Transformator 7 erzeugt wird, kann diese Spannungsbegrenzung galvanisch mit der primärseitigen Steuerschaltung des Schalttransistors 8 verbunden sein, und gleichwohl von der Sekundärseite galvanisch getrennt sein.An auxiliary winding 7D of the transformer 7 is arranged to supply an auxiliary voltage source and to generate an auxiliary voltage 17 for supplying the current control. The auxiliary winding 7D is oriented in the same direction as the secondary winding 7C, so that therefore the auxiliary voltage 17 is parallel, ie, proportional to the secondary voltage 16. A control current I s from the auxiliary voltage source flows through a diode 22, an optocoupler 13, which controls the control current I s , and a resistor 12 to a control circuit 10, 11, 15, 23, 24 for driving the switching transistor 8. An input of the optocoupler 13 is fed via a resistor 21 to a control voltage 20 of an amplifier circuit 2. The amplifier circuit 2 generates the control voltage 20 in accordance with a desired value 19 and an actual value of the LED current I LED , corresponding to a voltage measured at a measuring resistor 18. A voltage limiter 14 limits the auxiliary voltage 17, for example, by being connected in parallel with the output of the optocoupler 13. The voltage limitation is done by the voltage limiter 14 is conductive at a predetermined value of the auxiliary voltage 17 and thereby leads to the switching off of the switching transistor 8. As a result, the auxiliary voltage 17 no longer increases, and consequently not the same direction extending secondary voltage 16. Since the auxiliary voltage 17 is generated by a separate winding 7D on the transformer 7, this voltage limit can be galvanically connected to the primary-side control circuit of the switching transistor 8, and nevertheless be galvanically isolated from the secondary side.

Figur 2 zeigt eine detaillierte Schaltung gemäss der Erfindung. Nach einem Eingangsfilter HF-F wird eine Versorgungsspannung Vac über die Dioden D1 bis D4 gleichgerichtet und mit dem Kondensator C1 geglättet. Damit wird eine Gleichspannung HV gebildet. Diese Spannung kann einen sehr grossen Oberwellen-Anteil (z.B. 100Hz bei einer Eingangsfrequenz von 50Hz) beinhalten. Natürlich ist es auch möglich, den anschliessenden Wandler direkt mit Gleichspannung aus z.B. einer Batterie zu versorgen. FIG. 2 shows a detailed circuit according to the invention. After an input filter HF-F, a supply voltage Vac is rectified via the diodes D1 to D4 and smoothed with the capacitor C1. Thus, a DC voltage HV is formed. This voltage can include a very large harmonic content (eg 100Hz at an input frequency of 50Hz). Of course, it is also possible to supply the subsequent converter directly with DC voltage from eg a battery.

Mit der Steuerung wird eine beliebige LED-Anordnung (in Reihe oder parallel geschaltet, oder eine Kombination von beiden) mit Gleichstrom versorgt. Auf der Skizze sind die Leuchtdioden LED1 bis LEDX als Reihenschaltung abgebildet. Der Leuchtdiodenstrom ILED, welcher geregelt werden muss, ist von den Leuchtdioden-Typen bzw. deren Anordnung abhängig. Die Spannung VN, welche über der LED-Anordnung entsteht, ist nicht geregelt. Ihr Wert ergibt sich in Abhängigkeit der LED-Anordnung.The controller supplies any LED array (in series or in parallel, or a combination of both) with DC power. On the sketch, the LEDs LED1 to LEDX are shown as a series connection. The light-emitting diode current I LED , which must be regulated, is dependent on the type of light-emitting diode or its arrangement. The voltage VN, which is above the LED array is created, is not regulated. Their value depends on the LED arrangement.

Die Isolation zwischen der Versorgungsspannung und der LED-Spannung sollte die Anforderungen der zuständigen Sicherheitsnorm erfüllen. D.h. dass die Primär-Seite (mit der Null-Spannung 0VP) von der Sekundär-Seite (mit der Null-Spannung 0VS) getrennt ist. Wenn diese Anforderung nicht nötig ist, kann natürlich die Schaltung ohne Isolation implementiert sein, z.B. ohne den weiter unten beschriebenen Optokoppler.The insulation between the supply voltage and the LED voltage should meet the requirements of the relevant safety standard. That that the primary side (with the zero voltage 0VP) is separated from the secondary side (with the zero voltage 0VS). Of course, if this requirement is not required, the circuit may be implemented without isolation, e.g. without the optocoupler described below.

Beschreibung des freischwingenden Eintakt-Sperrwandlers:Description of the free-swinging single-ended flyback converter:

Ein Takt-Transistor T1 ist als Bipolar-Transistor abgebildet. Natürlich ist es auch möglich, MOSFET- bzw. IGBT-Transistoren zu verwenden. Mit dem Widerstand R2 fliesst ein Strom in die Basis von T1. Sobald T1 einschaltet, fliesst sein Kollektor-Strom in die W1-Wicklung des Transformators des Sperrwandlers. Durch magnetische Kopplung fliesst auch ein Strom in der W2-Wicklung. Über diese Wicklung wird der Basis-Strom erzeugt. (Ein Strom, welcher über R2 fliesst, dient nur zum Starten). Solange der Basis-Strom in den Transistor fliesst, bleibt T1 eingeschaltet.A clock transistor T1 is shown as a bipolar transistor. Of course, it is also possible to use MOSFET or IGBT transistors. With resistor R2, a current flows into the base of T1. As soon as T1 turns on, its collector current flows into the W1 winding of the transformer of the flyback converter. Magnetic coupling also causes a current to flow in the W2 winding. This winding generates the base current. (A current flowing over R2 is only for starting). As long as the base current flows into the transistor, T1 remains on.

Da die Wicklungen W3 und W4 negativ gekoppelt sind, verhindern die Dioden D6 und D7 den Stromfluss in diese Wicklungen. Somit fliesst der Hauptstrom (T1 Kollektor-Strom) in die Wicklung W1 bzw. in deren Induktivität. Die Energie ist somit in dieser Induktivität gespeichert.Since the windings W3 and W4 are negatively coupled, the diodes D6 and D7 prevent current flow in these windings. Thus, the main current (T1 collector current) flows into the winding W1 or in their inductance. The energy is thus stored in this inductance.

Der Transistor T1 schaltet erst dann ab, wenn die magnetische Kopplung zwischen W1 und W2 nicht mehr vorhanden ist (d.h. bei der Sättigung der magnetischen Schaltung) oder aber wenn der Transistor T2 einschaltet bzw. wenn dieser Transistor T2 die Basis des Transistors T1 kurzschliesst. Der Transistor T2 schaltet ein, sobald die auf dem Shuntwiderstand R6 entstehende Spannung (welche den Kollektor-Strom abbildet) grösser wird als die Summe der Zener-Spannung der Zener-Diode DZ2 und der Basis-Spannung des Transistors T2. Dadurch wird also der in den Schalttransistor fliessenden Strom begrenzt und somit auch die Ausgangsleistung des Eintakt-Sperrwandlers kontrolliert.The transistor T1 does not switch off until the magnetic coupling between W1 and W2 is no longer present (ie when the magnetic circuit is saturated) or when the transistor T2 turns on or when this transistor T2 short-circuits the base of the transistor T1. The transistor T2 turns on as soon as the resulting voltage on the shunt resistor R6 (which reflects the collector current) is greater than the sum of the Zener voltage of the Zener diode DZ2 and the base voltage of the transistor T2. As a result, therefore, the current flowing in the switching transistor current is limited and thus controls the output power of the single-ended flyback converter.

Mit den Widerständen R6 und R4, der Zener-Diode DZ2 und dem Transistor T2 kann der Kollektor-Strom zusätzlich begrenzt bzw. die Ausgangsleistung kontrolliert werden, da die in der W1-Induktivität gespeicherte Energie vom maximalen Wert des Kollektor-Stromes abhängig ist.With the resistors R6 and R4, the Zener diode DZ2 and the transistor T2, the collector current can be additionally limited or the output power controlled, since the energy stored in the W1 inductance depends on the maximum value of the collector current.

Es ist auch möglich, eine Schaltung (abgebildet als CP1) zu verwenden, um den Betrieb des Transistors T1 zu optimieren bzw. um den Transistor T1 zu schützen und die Kommutierung zu unterstützen. Solche herkömmliche Schaltungen werden als Kombinationen von Dioden, Kondensatoren und Widerständen gebaut und können mit der Spannung HV und der Spannung 0VP verbunden sein. Durch eine Verbindung (mit dem Widerstand R3) zum Basis vom Transistor T2 ist es auch möglich, die Abschaltung zu beschleunigen.It is also possible to use a circuit (shown as CP1) to optimize the operation of the transistor T1 and to protect the transistor T1 and to support the commutation. Such conventional circuits are built as combinations of diodes, capacitors and resistors and may be connected to the voltage HV and the voltage 0VP. By connecting (with resistor R3) to the base of transistor T2, it is also possible to speed up the shutdown.

Sobald der Transistor T1 abschaltet, wird die in der magnetischen Schaltung (des Transformators W) gespeicherte Energie durch die Diode D6 auf die Sekundär-Seite übertragen. Der Kondensator C3 wird somit geladen bzw. die Sekundär-Spannung VN erzeugt. Dieses herkömmliche Verfahren ist bei allen Typen von Eintakt-Sperrwandlern gleich.As soon as the transistor T1 turns off, the energy stored in the magnetic circuit (of the transformer W) is transmitted through the diode D6 to the secondary side. The capacitor C3 is thus charged or the secondary voltage VN generated. This conventional method is the same for all types of single-ended flyback converters.

Beschreibung der Stromregelung:Description of current regulation:

Der in die Leuchtdioden-Anordnung LED1 ... LEDX fliessende Strom ILED soll einen bestimmten Wert betragen, welcher von der Anordnung und den verwendeten Leuchtdioden abhängig ist.The current flowing into the light-emitting diode array LED1 ... LEDX current I LED should be a certain value, which depends on the arrangement and the light-emitting diodes used.

Der Strom ILED wird gemessen. Abgebildet ist eine Messung durch einen ShuntWiderstand R14. Andere Messverfahren sind natürlich auch möglich. Die Spannung auf R14 spiegelt den Strom ILED wider. Diese Spannung kann durch den Verstärker A2 mit den Beschaltungswiderständen R12 und R11 verstärkt werden.The current I LED is measured. Shown is a measurement by a shunt resistor R14. Of course, other measuring methods are also possible. The voltage on R14 reflects the current I LED . This voltage can be amplified by the amplifier A2 with the circuit resistors R12 and R11.

Die verstärkte Spannung, welche den Strom ILED repräsentiert, wird mit einer Referenz-Spannung (VREF auf der Abbildung) verglichen. Im Regelkreis wirkt die Referenz-Spannung VREF als Sollwert und die Ausgangsspannung des Verstärkers A2 als Istwert entsprechend dem LED-Strom ILED. Der Vergleich zwischen dem Soll- und dem Istwert wird mit dem integrierenden Verstärker A1 implementiert. Entsprechend den Komponenten R10 und C5 wird der Unterschied zwischen Soll- und Istwert mit dem Verstärker A1 integriert. Somit ist ein Regelkreis mit I-Regelung abgebildet. Andere Typen von Regelung so wie P-, PI- oder PID-Regelung sind natürlich möglich.The amplified voltage representing the current I LED is compared to a reference voltage (VREF in the figure). In the control loop, the reference voltage VREF acts as the setpoint and the output voltage of the amplifier A2 acts as the actual value in accordance with the LED current I LED . The comparison between the setpoint and the actual value is implemented with the integrating amplifier A1. According to the components R10 and C5, the difference between the setpoint and the actual value is integrated with the amplifier A1. Thus, a control loop with I control is shown. Other types of control such as P, PI or PID control are of course possible.

Über die Ausgangsspannung des Verstärker A1 und den Widerstand R9 wird der Diodenstrom eines Optokopplers OC1 geregelt, und dadurch dessen Ausgangsstrom, welcher in den Widerstand R7 fliesst.Via the output voltage of the amplifier A1 and the resistor R9, the diode current of an opto-coupler OC1 is regulated, and thereby its output current, which flows in the resistor R7.

Die Wicklung W4 des Transformators W ist ähnlich wie die Wicklung W3 zur Wicklung W1 magnetisch gekoppelt und speist eine Hilfsquelle. Eine Hilfspannung VAUX, welche auf einem Kondensator C4 der Hilfsquelle entsteht, verändert sich wie die Spannung VN auf dem Kondensator C3 (unter Vernachlässigung der ohmschen Spannungsabfälle in den Wicklungen W3 und W4).The winding W4 of the transformer W is magnetically coupled to the winding W1 similar to the winding W3 and supplies an auxiliary source. An auxiliary voltage VAUX, which arises on a capacitor C4 of the auxiliary source, changes like the voltage VN on the capacitor C3 (neglecting the ohmic voltage drops in the windings W3 and W4).

Aus dem Kondensator C4 kann ein Strom durch R7 fliessen. Wie oben erklärt, wird dieser Strom vom Verstärker A1 gesteuert. Dieser Strom fliesst weiter in den Widerstand R6 (durch R4) und/oder in die Zener-Diode DZ2. Somit summiert sich dieser Strom mit dem Kollektor-Strom des Transistors T1, d.h. mit dem Hauptstrom des Eintakt-Sperrwandlers. Da die Eintakt-Sperrwandler-Leistung von diesem Strom (Hauptstrom + Strom in R7) bzw. dessen Scheitel-Wert abhängig ist, ist es möglich, die Leistung des Wandlers durch den Strom in R7 zu steuern. Je grösser der in den Widerstand R7 fliessende Strom ist, desto kleiner ist der Scheitel-Wert des T1-Kollektor-Stroms und damit auch die Ausgangsleistung des Wandlers. Insgesamt verändert also diese Regelung die Leistung des Eintakt-Sperrwandlers, bis der in die Leuchtdiode-Anordnung fliessende Strom den gewünschten Sollwert nach Massgabe von VREF erreicht hat.From the capacitor C4, a current can flow through R7. As explained above, this current is controlled by the amplifier A1. This current continues to flow into resistor R6 (through R4) and / or into zener diode DZ2. Thus, this current adds up to the collector current of transistor T1, ie the main current of the single-ended flyback converter. Since the single ended flyback power depends on this current (main current + current in R7) and its peak value, respectively, it is possible to control the power of the converter by the current in R7. The larger the current flowing into the resistor R7, the smaller the peak value of the T1 collector current and thus also the output power of the converter. Overall, therefore, this scheme changes the performance of the single-ended flyback converter until the current flowing into the LED array has reached the desired set point in accordance with VREF.

Natürlich können die Diode D8, welche den Stromfluss in den Kondensator C4 beim Starten verhindert, sowie der Optokoppler OC1, die Zenerdiode DZ1, und der Widerstand R7, in einer anderen Reihenfolge verbunden sein.Of course, the diode D8, which prevents current flow into the capacitor C4 at startup, as well as the optocoupler OC1, the Zener diode DZ1, and the resistor R7, may be connected in a different order.

Beschreibung der Ausgangsspannungsbegrenzung:Description of the output voltage limitation:

Wenn die Leuchtdioden fehlerhaft wären oder nicht angeschlossen würden, würde der Regelkreis durch den Verstärker A1 die maximale Leistung verlangen, da kein Strom durch den Optokoppler OC1 fliessen würde. In diesem Fall könnten die Spannungen VN bzw. VAUX zu hoch werden.If the light emitting diodes were faulty or would not be connected, the control loop through the amplifier A1 would require the maximum power because no current would flow through the optocoupler OC1. In this case, the voltages VN and VAUX could become too high.

Mit der Zener-Diode DZ1, welche parallel zum Ausgangstransistor des Optokopplers OC1 geschaltet ist, lässt sich die Spannung VAUX begrenzen. Durch DZ1 kann bei einem zu hohen VAUX der Strom in den Widerstand R7 fliessen, auch wenn kein Strom durch den Optokoppler OC1 Ausgangstransistor fliesst. Somit kann die Ausgangsleistung gesteuert werden.With the Zener diode DZ1, which is connected in parallel to the output transistor of the optocoupler OC1, the voltage VAUX can be limited. With DZ1, if the VAUX is too high, the current can flow into the resistor R7, even if no current flows through the optocoupler OC1 output transistor. Thus, the output power can be controlled.

Da beide Spannungen VN und VAUX parallel zueinander verlaufen, wird durch die Begrenzung von VAUX auch VN begrenzt, und damit die Schaltung geschützt.Since both voltages VN and VAUX are parallel to each other, the limitation of VAUX also limits VN, thus protecting the circuit.

Claims (12)

  1. Electronic circuit for supplying a light equipped with light emitting diodes as lighting means (1; LED) comprising
    a single phase blocking oscillator converter for supplying the lighting means (1; LED) with an output voltage (16; VN), wherein the single phase blocking oscillator converter comprises:
    • a transformer (7; W) with a main winding (7A; W1) and a secondary winding (7C; W3), which is magnetically coupled with the main winding (7A; W1);
    • a switching element (8; T1) for controlling a current flow through the main winding (7A; W1);
    wherein the circuit comprises a control circuit for controlling a current flow (ILED) through the lighting means (1; LED) and this current control is designed
    • for recording the current flow (ILED) through the lighting means (I; LED)
    and
    • for the modulation of the current flow through the main winding (7A; W1), also known as the collector current (Ic), by means of the switching element (8; T1);
    and with this
    • for controlling the current flow (ILED) through the lighting means (1; LED) to a predefined set-point value,
    and for limiting the output voltage (16; VN)
    • the transformer (7; W) comprises an auxiliary winding (7D; W4), which is magnetically coupled with the main winding (7A; W1);
    • this auxiliary winding (7D; W4) is arranged for producing an auxiliary voltage (VAUX), which extends parallel to the output voltage (16; VN)
    characterised in that
    • the single phase blocking oscillator converter is freely oscillating
    • the circuit is designed for limiting the auxiliary voltage (17; VAUX) by the reduction of the collector current (Ic) and thereby also for limiting the output voltage (16; VN).
  2. Electronic circuit in accordance with claim 1, wherein the auxiliary voltage (17; VAUX) drives a control current (Is), and the control circuit is designed
    • for superimposing the control current (Is) with the collector current (Ic) flowing through the switching element (8; T1) to a total current; and
    • for switching-off the switching element (8; T1) in accordance with this total current.
  3. Electronic circuit in accordance with claim 2, wherein during the superimposing of the control current (Is) with the collector current (Ic) the total current flows through a shunt resistor (15; R6) and thus a voltage is produced over the shunt resistor (15; R6), and a switching-off circuit (10, 11, 23; T2, DZ2, R8) switches-off the switching element (8; T1), when this voltage reaches a predefined value.
  4. Electronic circuit in accordance with claim 2 or 3, wherein the circuit is designed to produce at least a proportion of the control current (Is), when the auxiliary voltage (17; VAUX) exceeds a predefined value.
  5. Electronic circuit in accordance with claim 4, comprising a Zener (breakdown) diode (14; DZ1), which is arranged to produce the proportion off the control current (Is) by diverting the auxiliary current (17; VAUX).
  6. Electronic circuit in accordance with one of the preceding claims, wherein the circuit is designed to produce a control current (Is) for modulating the current flow through the main winding (7A; W1) by means of
    • an amplifier circuit (2; A1, A2, R19, R13, R14, C5), which records the current flow (ILED) through the lighting means (1; LED) and forms a control deviation (20) from the predefined set-point-value; and
    • an opto-electronic coupler (13; OC1), which controls the control current according to the control deviation.
  7. Electronic circuit in accordance with one of the preceding claims, wherein the circuit is designed to produce at a control node (25) a switching voltage (Us) for switching-off the switching element (8; T1) according to the collector current (Ic) and the control current (Is), and the control node (25) is connected with the basis of the control transistor (10: T2), and this control transistor (10; T2) in the switched-on condition switches-off the switching element (8; T1).
  8. Method for supplying a light constructed with light emitting diodes (LEDs) as lighting means (1; LED), in which
    a single phase blocking oscillator converter supplies the lighting means (1) on the basis of an output voltage (16; VN), in that
    • a transformer (7; W) with a main winding (7A; W1) and a secondary winding (7C; W3), which is magnetically coupled with the main winding (7A; W1), out of the supply voltage produces a secondary voltage (16; VN) for supplying the lighting means (1; LED);
    • a switching element (8; T1) controls a current flow through the main winding (7A; W1);
    wherein a controller of a current flow (ILED) through the lighting means (1; LED)
    • detects the current flow (ILED) through the lighting means (1; LED); and
    • modulates the current flow through the main winding (7A; W1), also called collector current (Ic), by means of the switching element (8; T1) and according to the recorded current flow (ILED) through the lighting means;
    and
    • by this controls the current flow (ILED) through the lighting means (1; LED) to a predefined set-point value);
    and, for limiting the output voltage (16; VN)
    • the transformer (7; W) by means of an auxiliary winding (7D; W4), which is magnetically coupled with the main winding (7A; W1),
    • produces an auxiliary voltage (17; VAUX), which extends parallel to the output voltage,
    characterised in that
    • the single-phase blocking converter is freely oscillating,
    • the auxiliary voltage (17; VAUX) is limited by the reduction of the collector current (Ic) and by this also the output voltage (16; VN) is limited.
  9. Method in accordance with claim 9, wherein the auxiliary voltage (17; VAUX) drives a control current (Is) and the control system
    • drives the switching element (8; T1) according to the sum of the control current (Is) and the collector current (Ic) flowing through the switching element (8; T1).
  10. Method in accordance with claim 9, wherein a first proportion of the control current (Is) is produced according to the current flow (ILED) through the lighting means (1; LED); and a second proportion of the control current (Is) is produced, when the auxiliary voltage (17; VAUX) exceeds a predefined value.
  11. Method in accordance with claim 9 or 10, wherein the control system forms the sum of the control current (Is) and the collector current (Ic) flowing through the switching element (8; T1) in a shunt resistor (15; R6) and the switching element (8; T1) is switched-off, when the voltage across the shunt resistor (15; R6) exceeds a predefined value.
  12. Method in accordance with one of the claims 8 to 11, wherein according to the collector current (Ic) and the control current (Is) a switching voltage (Us) is produced at a control node (25); and out of this switching voltage (Us) across a reference voltage element (11; DZ2) on the basis of a control transistor (10; T2) a basic voltage is produced, wherein this control transistor (10; T2) in the switched-on condition switches-off the switching element (8; T1).
EP09405060A 2008-04-03 2009-04-01 Switch and method for exciting an LED light Active EP2107859B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH5112008 2008-04-03

Publications (2)

Publication Number Publication Date
EP2107859A1 EP2107859A1 (en) 2009-10-07
EP2107859B1 true EP2107859B1 (en) 2011-03-23

Family

ID=39708718

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09405060A Active EP2107859B1 (en) 2008-04-03 2009-04-01 Switch and method for exciting an LED light

Country Status (2)

Country Link
EP (1) EP2107859B1 (en)
AT (1) ATE503367T1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005269C2 (en) * 2010-08-25 2012-02-28 Online Services B V High-frequency switching-mode power supply for a dimming circuit.
WO2014174159A1 (en) 2013-04-24 2014-10-30 Societe D'etudes Et D'economies En Eclairage, Se3 Device for supplying direct current for a set of led-based lighting devices used in industrial lighting and tertiary lighting
DE102014009567B4 (en) 2014-06-27 2016-01-14 Diehl Aerospace Gmbh Lighting device for an AC power supply and aircraft with the lighting device
DE102015208774A1 (en) * 2015-05-12 2016-12-01 Tridonic Gmbh & Co Kg Device with clocked converter for the operation of bulbs
DE102017109325B4 (en) * 2017-05-02 2020-01-16 Vossloh-Schwabe Deutschland Gmbh Operating circuit for operating a lamp arrangement
DE102018119017A1 (en) * 2018-08-06 2020-02-06 Tridonic Gmbh & Co Kg Synchronous flyback converter circuit for operating a lamp path

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517397A (en) * 1994-12-06 1996-05-14 Astec International, Ltd. Flyback power converter with spike compensator circuit
DE69816023T2 (en) 1997-08-01 2004-03-18 Koninklijke Philips Electronics N.V. CIRCUIT
EP1147686B1 (en) 1999-07-07 2004-01-07 Koninklijke Philips Electronics N.V. Flyback converter as led driver
US6577512B2 (en) * 2001-05-25 2003-06-10 Koninklijke Philips Electronics N.V. Power supply for LEDs
WO2007067932A2 (en) * 2005-12-06 2007-06-14 Dialight Corporation Method and apparatus for providing an led light for use in hazardous locations

Also Published As

Publication number Publication date
ATE503367T1 (en) 2011-04-15
EP2107859A1 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
DE112011101247B4 (en) Modular LED lighting system with emergency lighting function
EP2107859B1 (en) Switch and method for exciting an LED light
DE112011101246B4 (en) Modular LED lighting system with emergency lighting function
EP2888800B1 (en) Emergency lighting device
DE60120800T2 (en) Switching power supply unit
DE19545154C2 (en) Power supply facility
DE202007019413U1 (en) Primary power supply system with constant current output
DE69632439T2 (en) Uninterruptible switching regulator system
DE102010031242B4 (en) LED lighting system with operating data memory
EP2462686B1 (en) Charging device for charging a battery pack
WO2011113951A2 (en) Modular led-lighting system
DE10356515A1 (en) drive system
DE102017206121A1 (en) Switching power converter with efficient VCC charge
DE3101375C2 (en) Circuit arrangement for the regulated supply of a consumer
DE102004061341A1 (en) Current supply e.g. adapter, switch actuator or switching network part, with high adjuster, resonance converter and control unit, in which high adjuster is coupled to resonance converter
DE102016110427A1 (en) Switching Power Supply
WO2000017992A1 (en) Switched-mode power supply
DE2919905A1 (en) Power supply including feedback transformer - which couples output back to primary-side pulse-width modulator, and receives meander-shaped voltage waveform
DE112016001109B4 (en) RESONANCE CONVERTER WITH A CENTER-TAP TRANSFORMER
DE102014219787A1 (en) Switching power supply with at least one power section and at least one auxiliary power supply
DE102018100709A1 (en) Power converter control, power converter and corresponding method
LU101871B1 (en) Power supply with two power stages on the primary side
EP3231253B1 (en) Driver circuit with llc start-up control
EP0610539B1 (en) Converter with a control circuit fed from the input and from a feed-back loop
AT15822U1 (en) Circuit arrangement and method for operating a light source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20100406

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 33/08 20060101AFI20100525BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502009000464

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009000464

Country of ref document: DE

Effective date: 20110505

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: POLYNOM AG

Free format text: SANDER ELEKTRONIK AG#STAUSEESTRASSE 73#5314 KLEINDOETTINGEN (CH) -TRANSFER TO- POLYNOM AG#STAUSEESTRASSE 73#5314 KLEINDOETTINGEN (CH)

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20110708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009000464

Country of ref document: DE

Representative=s name: OSTERTAG & PARTNER PATENTANWAELTE, DE

Effective date: 20110727

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009000464

Country of ref document: DE

Owner name: POLYNOM AG, CH

Free format text: FORMER OWNER: SANDER ELEKTRONIK AG, KLEINDOETTINGEN, CH

Effective date: 20110727

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009000464

Country of ref document: DE

Representative=s name: OSTERTAG & PARTNER, PATENTANWAELTE MBB, DE

Effective date: 20110727

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: POLYNOM AG, CH

Effective date: 20110905

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110704

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

26N No opposition filed

Effective date: 20111227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009000464

Country of ref document: DE

Effective date: 20111227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 503367

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: POSTFACH, 8032 ZUERICH (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009000464

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 15

Ref country code: DE

Payment date: 20230420

Year of fee payment: 15

Ref country code: CH

Payment date: 20230502

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240418

Year of fee payment: 16