EP2094960A2 - Verfahren und vorrichtung zur steuerung der betriebsweise einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zur steuerung der betriebsweise einer brennkraftmaschine

Info

Publication number
EP2094960A2
EP2094960A2 EP07856040A EP07856040A EP2094960A2 EP 2094960 A2 EP2094960 A2 EP 2094960A2 EP 07856040 A EP07856040 A EP 07856040A EP 07856040 A EP07856040 A EP 07856040A EP 2094960 A2 EP2094960 A2 EP 2094960A2
Authority
EP
European Patent Office
Prior art keywords
measurement signal
evaluation
transformed
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07856040A
Other languages
English (en)
French (fr)
Inventor
Reinhold Hagel
Mehmet Tuna
Emmanuel Routier
Kayhan Goeney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Original Assignee
Conti Temic Microelectronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conti Temic Microelectronic GmbH filed Critical Conti Temic Microelectronic GmbH
Publication of EP2094960A2 publication Critical patent/EP2094960A2/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the invention relates to a method and a device for controlling the operation of an internal combustion engine according to the independent claims.
  • the injection system comprises a plurality of injection units, each associated with a cylinder.
  • the injection units are given an injection duration by a control unit, during which an injection of fuel into the cylinders takes place, wherein the control unit can also completely switch off individual injection units.
  • DE 199 62 799 A1 discloses a system and a method for detecting misfires in internal combustion engines.
  • a characteristic of the combustion measurement signal is detected and then subjected to the evaluation of a frequency analysis.
  • this is an exclusive misfire detection with the aim of reducing memory losses of a computer onboard a vehicle and reducing the time to
  • the invention has for its object to provide a method of the type mentioned, which allows easy, fast and reliable operation of an internal combustion engine misfire detection and subsequent cylinder identification.
  • the essence of the invention is that a digital measurement signal characterizing the combustion of fuel in a cylinder is determined, which subsequently transforms digital measurement signal into a frequency range for evaluation is detected and by means of the amplitude information of the evaluated transformed measurement signal, a general suspension of the ignition. For downstream cylinder identification, the injection of each cylinder is sequentially switched off for a predetermined period of time. In this period, the corresponding, the combustion characterizing, digital measurement signal is determined and transformed into the frequency domain for evaluation.
  • the cylinder under investigation can not be an intermittent cylinder.
  • the injection unit of the cylinder examined is switched on again. The steps are repeated for all cylinders. If there is no change in the amplitude information of n / 2th order, the cylinder under investigation is an interposing cylinder to be identified.
  • the method is applicable to both self-igniting and non-self-igniting internal combustion engines.
  • Determining the measurement signal according to claim 2 is simple and inexpensive.
  • a transmitter wheel for determining a speed measurement signal is at an internal combustion engine usually present, so that no additional measuring units are required to carry out the method according to the invention.
  • Transforming the digital measurement signal according to claim 3 enables a particularly simple and reliable evaluation of the measurement signal.
  • the discrete Hartley transformation is calculable only through real operations.
  • the measurement signal is split into individual angular frequencies, which are also called orders.
  • the discrete Hartley transformation automatically eliminates higher-frequency interference components in the measurement signal, since their calculation can be dispensed with in principle when using the discrete Hartley transformation.
  • An evaluation of the transformed measurement signal according to claim 4 is less computationally intensive.
  • the spectral analysis of low-frequency spectral components allows a simple evaluation without having to consider higher-frequency spectral components superimposed with interference components.
  • An evaluation of the transformed measurement signal according to claim 5 is particularly simple.
  • the amplitude of the spectral component of 0.5th order is usually sufficient to detect a suspension of the ignition can.
  • Evaluating the transformed measurement signal according to claim 6 increases the reliability of the method.
  • An evaluation of the transformed measurement signal according to claim 7 enables a simple and reliable detection of the stable combustion, the reliability being adjustable by means of the predetermined threshold value.
  • An averaging of the digital measurement signal according to claim 8 makes it possible to eliminate cyclical fluctuations of the measurement signal which uniform combustion are caused.
  • an arithmetic mean value of the digital measurement signal is formed over at least two operating cycles of the internal combustion engine.
  • a drag correction according to claim 9 allows the correction of errors due to parasitic effects, such as due to mass moments of the internal combustion engine.
  • the internal combustion engine is advantageously towed on a test stand, d. H. operated without injection, wherein the measurement signal is determined without the influence of combustion, transformed and evaluated.
  • the evaluation of the measurement signal supplies at least one correction value, which is stored in a control unit and taken into account when evaluating the transformed measurement signal.
  • a method according to claim 10 allows a simple correction of measurement errors of the encoder wheel.
  • the correction could also be done after transforming the speed measurement signal.
  • An apparatus for carrying out the method for controlling the operation of an internal combustion engine according to claim 11 enables a simple, fast and reliable misfire detection and a subsequent identification of the at least one suspending cylinder.
  • the advantages of the device correspond to those which have been carried out above in connection with the method according to the invention.
  • the device comprises at least one control unit for controlling at least one injection unit assigned to a cylinder, wherein the control unit can also switch it off completely even for a predetermined period of time. Furthermore, the device comprises at least one measuring unit for determining a digital measurement signal characterizing the combustion of fuel in at least one cylinder, preferably the speed signal detected by a sensor wheel mounted on the crankshaft of the internal combustion engine. In the at least one transformation unit of the device, the transformation of the digital measurement signal into a frequency range takes place. The evaluation of the amplitude information of the transformed measurement signal takes place in the at least one evaluation unit of the device. If an exposure of the ignition in the internal combustion engine is detected in the evaluation unit, the control unit is instructed via an interface to switch off injection in succession in each individual cylinder for a specific time.
  • the control unit receives the instruction to reactivate the injection unit of the cylinder and to switch off the injection unit of the next cylinder. These steps are repeated for all cylinders. As soon as no deviation from the transformed measuring signal without disconnection of the injection is detected in the evaluation unit, the cylinder whose injection unit is currently switched off is identified as a suspending cylinder. It can also happen that in more than one cylinder, the combustion stops. In particular, the injection of the suspending cylinders is shut off to avoid unburned fuel being expelled.
  • 1 is a schematic diagram of an internal combustion engine with a device for controlling the operation of the internal combustion engine
  • Fig. 2 is a schematic representation of a method for detecting the exposure of the ignition
  • Fig. 3 is a schematic representation of a method for cylinder identification, after a suspension of the ignition has been detected.
  • the internal combustion engine 1 in FIG. 1 has an engine block 2 with a plurality of cylinders 3 and an injection system 4.
  • the injection system 4 comprises a number of injection units 5 corresponding to the number of cylinders 3, each cylinder 3 being assigned an injection unit 5 for injecting fuel 6.
  • a crankshaft 7 is disposed within the engine block 2 and led out therefrom. To convert the energy released in the cylinders 3 of the fuel 6 into a rotational movement, the crankshaft 7 is connected to cylinder pistons, not shown.
  • the injection system 4 further comprises a device 8 for controlling the operation of the internal combustion engine 1.
  • the device 8 comprises a control unit 9 for activating the injection units 5 by means of a predefinable injection duration value, a measuring unit 10 for measuring a digital measurement signal characterizing the combustion of the fuel 6 in the cylinders 3, a transformation unit 11 for transforming the measurement signal into a frequency range, and Evaluation unit 12 for evaluating the transformed measurement signal.
  • the measuring unit 10 is arranged at an outgoing end of the crankshaft 7 and is in signal communication with the control unit 9.
  • the measuring unit 10 is designed as a sender wheel and has 7 equidistant angle markings for determining a rotational speed measuring signal of the crankshaft.
  • the evaluation unit 12 is designed such that a misfire in the internal combustion engine 1 is detectable.
  • the control unit 9 is in signal communication with the injection units 5.
  • misfires leads to torque changes, which are reflected for example in the current crankshaft speed or in the instantaneous crankshaft acceleration.
  • n cylinders 3 By means of the method according to the invention described below in FIG. 2, it is possible, in an internal combustion engine having n cylinders 3, to detect an exposure of the ignition starting from a rotational speed signal. Furthermore, as described in FIG. 3, it is possible to detect which cylinders 3 have misfires. For this purpose, the speed signal is transformed into the angular frequency range. Since the adjustment of individual cylinders has an effect above all on the low-frequency spectral components, these are mainly used for the detection of misfiring.
  • the rotational speed measuring signal of the crankshaft 7 is determined.
  • the times between the individual angle marks of the rotating encoder wheel 10 are detected by a sensor and passed to the control unit 9.
  • the control unit 9 converts the measured times into the digital speed measurement signal.
  • the rotational speed measuring signal is first supplied to the first correction element 13, which performs a encoder wheel adaptation for the correction of measurement errors of the encoder wheel.
  • the sender wheel in particular the distances of the angle markings, was measured on a test stand and correction values for non-equidistantly arranged angle markings were determined.
  • the corrected rotational speed measurement signal is then fed to the averaging element 14, which preferably forms an arithmetic mean value over two operating cycles of the internal combustion engine 1 of the rotational speed measurement signal. For this purpose, corresponding rotational speed measurement signal values in the working cycles are averaged. As a working cycle, a speed segment of 720 ° of the crankshaft 7 is designated.
  • the averaging serves to eliminate cyclical fluctuations caused by uneven combustion.
  • the averaged speed measurement signal is supplied to the transformation element 15 of the transformation unit 11, which transforms the speed measurement signal by means of a discrete Hartley transformation in an angular frequency range.
  • the discrete Hartley transformation can only be calculated by means of real operations, so that the transformation is quick and easy to carry out.
  • the speed measurement signal is split into individual angular frequencies, which are called spectral components of a certain order. Due to the fact that the combustion of fuel 6 in the cylinders 3 mainly affects the low-frequency spectral components of the rotational speed measurement signal, the calculation and evaluation of higher-frequency spectral components of the rotational speed measurement signal can be dispensed with.
  • the individual spectral components are characterized by an amplitude and a phase, wherein in particular the amplitude of the spectral component of the 0.5th order is sufficient for the evaluation of the rotational speed measurement signal.
  • the amplitude of the spectral component of 0.5th order is referred to below as Ao ; 5 .
  • the speed measuring signal transformed into spectral components is then supplied to the second correction element 16, which performs a drag correction for the correction of errors due to parasitic effects, such as, for example, mass moments of the internal combustion engine 1.
  • the internal combustion engine 1 was advantageously operated towed on a test stand, d. H. without injecting fuel 6, and the associated speed measurement signal determined.
  • Speed-dependent correction values for correcting the spectral components were determined by means of the discrete Hartley transformation and stored in the control unit 9. These correction values are used in the second correction element 16 for correcting the transformed speed measurement signal.
  • the transformed and corrected speed measurement signal is then supplied to the evaluation element 17 of the evaluation unit 12.
  • the evaluation of the rotational speed measuring signal in particular the detection of the exposure of the ignition, preferably takes place by means of the amplitude of the spectral component of the 0.5th order. If the ignition is suspended in one of the n cylinders 3 of the internal combustion engine 1, a clear increase in the amplitude A 0.5 of the spectral component of the 0.5 th order takes place in comparison with normal operation without misfiring.
  • a o, 5 with a threshold value (S) stored, in particular, in the evaluation element 17, upon the exceeding of this threshold value (S), the ignition of at least one of the n cylinders 3 of the internal combustion engine 1 is closed. If the threshold value (S) is not exceeded, a signal is forwarded to the stop element 18. The procedure for detecting the ignition can then be repeated with the previous steps at certain time intervals.
  • the procedure for identifying the at least one intermittent cylinder is as shown in FIG. Successively, starting with the first cylinder, the following steps are performed in a loop n times. From the evaluation element 17 of FIG. 2, an initialization signal is sent to the control unit 9. If the test in the interrogation element 19, in particular a part of the control unit 9, shows that the number of loops performed so far is ⁇ n, the control unit 9 sends a signal to the injection unit 5 of the first cylinder 3 and switches it for a predetermined period of time from. The duration of the shutdown is at least one working cycle.
  • the steps from the preceding method for detecting the firing of the ignition starting from the determination of the rotational speed measurement signal by means of the measuring unit 10 via the encoder wheel adaptation in the first correction element 13 to the evaluation of the transformed and corrected rotational speed measurement signal in the evaluation element 17 are performed. If the amplitude of the spectral component n / 2th order determined deviates from the amplitude of the n / 2th-order spectral component from the preceding method without switching off the injection for detecting the ignition, it is concluded that the one under investigation Cylinder not the least one intermittent Cylinder is and it is transmitted a corresponding signal to the control unit 9.
  • the examined cylinder 3 is identified as a suspending cylinder. A corresponding signal is transmitted to the control unit 9.
  • Vehicle to alert the ignition for example, by a corresponding message on the instrument panel, alerted. If the vehicle has a corresponding device, a message can also be sent to a workshop. The method can also be used as a diagnostic method in a workshop.
  • the encoder wheel adaptation in the correction element 13 and the averaging over a plurality of cycles in the averaging element 14 were carried out before the transformation of the rotational speed measurement signal in the transformation element 15.
  • both the encoder wheel adaptation and the averaging could also take place especially after the transformation.
  • the above exemplary embodiments of the invention were described by means of the Hartley transformation. However, the invention may also be applied with the aid of another transformation, for example a Fast Fourier Transformation (FFT), a Discrete Fourier Transformation (DFT) or the like, although the invention is most advantageous in the case of a Hartley transformation and thus on most suitable.
  • FFT Fast Fourier Transformation
  • DFT Discrete Fourier Transformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Steuerung der Betriebsweise einer Brennkraftmaschine (1) mit mehreren Zylindern (3) und einem Einspritzsystem (4) mit einer Einspritzeinheit (5) pro Zylinder (3), bei dem zunächst ein das Verbrennen von Kraftstoff (6) in der Brennkraftmaschine (1) charakterisierendes, digitales Messsignals ermittelt, anschließend das digitale Messsignal in einen Frequenzbereich transformiert, mittels der Amplitudeninformation des transformierten Messsignals ein Aussetzen der Zündung detektiert wird, und sofern ein Aussetzen der Zündung vorliegt, die Einspritzung der einzelnen Zylinder (3) sequentiell für eine vorgegebene Zeitdauer abgeschaltet wird, und für jeden Zylinder das entsprechende charakterisierende, digitale Messsignal ermittelt und in den Frequenzbereich transformiert wird und wobei bei der Auswertung des transformierten Messsignals mittels der Amplitudeninformation ein aussetzender Zylinder (3) identifiziert wird. Die Erfindung betrifft weiterhin eine Vorrichtung zur Steuerung der Betriebsweise einer Brennkraftmaschine (1) mittels eines solchen Verfahrens.

Description

Verfahren und Vorrichtung zur Steuerung der Betriebsweise einer Brennkraftmaschine
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung der Be- triebsweise einer Brennkraftmaschine gemäß den unabhängigen Ansprüchen.
Brennkraftmaschinen in Kraftfahrzeugen weisen zur Einspritzung von Kraftstoff in die Zylinder ein Einspritzsystem auf. Das Einspritzsystem umfasst mehrere Einspritzeinheiten, die jeweils einem Zylinder zugeordnet sind. Den Einspritzein- heiten wird von einer Steuereinheit eine Einspritzdauer vorgegeben, während der eine Einspritzung von Kraftstoff in die Zylinder erfolgt, wobei die Steuereinheit einzelne Einspritzeinheiten auch ganz abschalten kann.
Aufgrund des bei einer Brennkraftmaschine unvermeidlichen Auftretens von Zündaussetzern, wobei in dem jeweiligen Zylinder keine Verbrennung des eingespritzten Kraftstoff-Luft-Gemisches stattfindet, kann unerwünschterweise unverbrannter Kraftstoff in die Umwelt gelangen. Zudem kann dadurch auch eine dauerhafte Schädigung von bei modernen Kraftfahrzeugen vorhandenen Abgasnachbehandlungssystemen, beispielsweise des Katalysators, auftreten. Beides hat zur Folge, dass die Abgasbelastung der Umwelt erhöht wird. Um dies weitestgehend zu vermeiden existieren nationale und internationale Vorschriften und Gesetze (z. B. OBD II, E-OBD), die unter anderem eine Einrichtung zur Erkennung von Zündaussetzern bei Kraftfahrzeugen vorschreiben.
Aus der DE 199 62 799 Al ist ein System und ein Verfahren zum Detektieren von Fehlzündungen in Brennkraftmaschinen bekannt. Dabei wird ein für die Verbrennung charakteristisches Messsignal detektiert und anschließend zur Auswertung einer Frequenzanalyse unterzogen. Es handelt sich jedoch um eine ausschließliche Fehlzündungserkennung, mit dem Ziel, Speicherverluste eines an Bord eines Fahrzeugs befindlichen Computers zu verringern und die Zeit zur
Verarbeitung von Routinen zum detektieren von Fehlzündungen zu verkürzen. Es wird nicht ein System offenbart, das es ermöglicht, nach der Erkennung eines Zündaussetzers den oder die aussetzenden Zylinder zu identifizieren.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, das einfach, schnell und zuverlässig beim Betrieb einer Brennkraftmaschine eine Zündaussetzererkennung und eine anschließende Zylinderidentifikation ermöglicht.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merk- malen des Anspruchs 1. Der Kern der Erfindung besteht darin, dass ein die Verbrennung von Kraftstoff in einem Zylinder charakterisierendes, digitales Messsignal ermittelt wird, das digitale Messsignal zur Auswertung anschließend in einen Frequenzbereich transformiert wird und mittels der Amplitudeninformation des ausgewerteten transformierten Messsignals ein generelles Aussetzen der Zündung detektiert wird. Zur nachgeschalteten Zylinderidentifikation wird sequentiell die Einspritzung jedes Zylinders für ein vorgegebene Zeitdauer abgeschaltet. In dieser Zeitdauer wird das entsprechende, die Verbrennung charakterisierende, digitale Messsignal ermittelt und zur Auswertung in den Frequenzbereichbereich transformiert. Ergibt die Auswertung des transformierten Messsig- nals, dass im Vergleich mit der Amplitudeninformation n/2-ter Ordnung aus der vorangegangenen generellen Aussetzererkennung ohne Abschalten einer Einspritzeinheit eine Änderung vorliegt, so kann es sich bei dem untersuchten Zylinder nicht um einen aussetzenden Zylinder handeln. Die Einspritzeinheit des untersuchten Zylinders wird wieder zugeschaltet. Die Schritte werden für alle Zylinder wiederholt. Liegt keine Änderung in der Amplitudeninformation n/2-ter Ordnung vor, so handelt es sich bei dem untersuchten Zylinder um einen zu identifizierenden, aussetzenden Zylinder. Das Verfahren ist sowohl bei selbstzündenden als auch bei nicht selbstzündenden Brennkraftmaschinen anwendbar.
Ein Ermitteln des Messsignals gemäß Anspruch 2 ist einfach und kostengünstig. Ein Geberrad zum Ermitteln eines Drehzahlmesssignals ist bei einer Brennkraft- maschine in der Regel vorhanden, so dass zur Durchführung des erfindungsge- mäßen Verfahrens keine zusätzlichen Messeinheiten erforderlich sind.
Ein Transformieren des digitalen Messsignals gemäß Anspruch 3 ermöglicht eine besonders einfache und zuverlässige Auswertung des Messsignals.
Die diskrete Hartley-Transformation ist ausschließlich durch reelle Operationen berechenbar. Das Messsignal wird in einzelne Winkel-Frequenzen zerlegt, die auch als Ordnungen bezeichnet werden. Im Gegensatz zu einer Auswertung des Messsignals im Zeitbereich werden bei der diskreten Hartley-Transformation höherfrequente Störanteile im Messsignal automatisch eliminiert, da auf deren Berechnung bei der Anwendung der diskreten Hartley-Transformation prinzipiell verzichtet werden kann.
Ein Auswerten des transformierten Messsignals gemäß Anspruch 4 ist wenig rechenintensiv. Die Spektralanalyse von niederfrequenten Spektralanteilen ermöglicht eine einfache Auswertung, ohne dass höherfrequente und mit Störanteilen überlagerte Spektralanteile berücksichtigt werden müssen.
Ein Auswerten des transformierten Messsignals gemäß Anspruch 5 ist besonders einfach. Die Amplitude des Spektralanteils 0,5-ter Ordnung ist in der Regel ausreichend, um ein Aussetzen der Zündung detektieren zu können.
Ein Auswerten des transformierten Messsignals gemäß Anspruch 6 erhöht die Zuverlässigkeit des Verfahrens.
Ein Auswerten des transformierten Messsignals gemäß Anspruch 7 ermöglicht ein einfaches und zuverlässiges Detektieren der stabilen Verbrennung, wobei die Zuverlässigkeit mittels des vorgegebenen Schwellwertes einstellbar ist.
Eine Mittelung des digitalen Messsignals gemäß Anspruch 8 ermöglicht das Eliminieren von zyklischen Schwankungen des Messsignals, die von einer un- gleichmäßigen Verbrennung verursacht werden. Vorzugsweise wird ein arithmetischer Mittelwert des digitalen Messsignals über mindestens zwei Arbeitsspiele der Brennkraftmaschine gebildet.
Eine Schleppkorrektur gemäß Anspruch 9 ermöglicht die Korrektur von Fehlern aufgrund parasitärer Effekte, wie beispielsweise aufgrund von Massenmomenten der Brennkraftmaschine. Hierzu wird die Brennkraftmaschine vorteilhafterweise an einem Prüfstand geschleppt, d. h. ohne Einspritzung betrieben, wobei das Messsignal ohne den Einfiuss einer Verbrennung ermittelt, transformiert und ausgewertet wird. Die Auswertung des Messsignals liefert mindestens einen Korrekturwert, der in einer Steuereinheit abgespeichert und beim Auswerten des transformierten Messsignals berücksichtigt wird.
Ein Verfahren gemäß Anspruch 10 ermöglicht eine einfache Korrektur von Mess- fehlem des Geberrades. Die Korrektur könnte auch nach dem Transformieren des Drehzahlmesssignals erfolgen.
Eine Vorrichtung zur Durchführung des Verfahrens zur Steuerung der Betriebsweise einer Brennkraftmaschine gemäß Anspruch 11 ermöglicht eine einfache, schnelle und zuverlässige Aussetzerdetektion und eine anschließende Identifikation des wenigstens einen aussetzenden Zylinders. Die Vorteile der Vorrichtung entsprechen denen, die oben im Zusammenhang mit dem erfindungsgemäßen Verfahren ausgeführt wurden.
Die Vorrichtung umfasst mindestens eine Steuereinheit zum Ansteuern mindestens einer einem Zylinder zugeordneten Einspritzeinheit, wobei die Steuereinheit diese auch für eine vorgegebene Zeitdauer auch gänzlich abschalten kann. Weiterhin umfasst die Vorrichtung mindestens eine Messeinheit zum Ermitteln eines das Verbrennen von Kraftstoff in wenigstens einem Zylinder charakterisieren- den, digitalen Messsignals, vorzugsweise des von einem an der Kurbelwelle der Brennkraftmaschine angebrachten Geberrads erfassten Drehzahlsignals. In der mindestens einen Transformationseinheit der Vorrichtung findet das Transformieren des digitalen Messsignals in einen Frequenzbereich statt. Die Auswertung der Amplitudeninformation des transformierten Messsignal geschieht in der mindestens einen Auswerteeinheit der Vorrichtung. Falls in der Auswerteeinheit ein Aussetzen der Zündung in der Brennkraftmaschine detektiert wird, wird die Steuereinheit über eine Schnittstelle angewiesen, nacheinander in jedem einzelnen Zylinder für eine bestimmte Zeit die Einspritzung abzuschalten. Falls in der Auswerteeinheit eine Abweichung vom transformierten Messsignal ohne Abschaltung der Einspritzung festgestellt wird, erhält die Steuereinheit die Anweisung, die Einspritzeinheit des Zylinders wieder zu aktivieren und die Einspritzeinheit des nächsten Zylinders abzuschalten. Diese Schritte werden für alle Zylinder wiederholt. Sobald in der Auswerteeinheit keine Abweichung vom transformierten Messsignal ohne Abschaltung der Einspritzung festgestellt wird, ist der Zylinder, dessen Einspritzeinheit momentan abgeschaltet ist, als ein aus- setzender Zylinder identifiziert. Es kann auch vorkommen, dass in mehr als einem Zylinder die Verbrennung aussetzt. Insbesondere wird die Einspritzung der aussetzenden Zylinder abgeschaltet, um zu vermeiden, dass unverbrannter Kraftstoff ausgestoßen wird.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausfuhrungsbeispiels der Erfindung anhand der Zeichnung. Es zeigt:
Fig. 1 eine Prinzipdarstellung einer Brennkraftmaschine mit einer Vorrichtung zum Steuern der Betriebsweise der Brennkraftmaschine ,
Fig. 2 eine schematische Darstellung eines Verfahrens zur Erkennung des Aussetzens der Zündung, und
Fig. 3 eine schematische Darstellung eines Verfahrens zur Zylinderidentifikation, nachdem ein Aussetzen der Zündung erkannt wurde. Die Brennkraftmaschine 1 in Fig. 1 weist einen Motorblock 2 mit mehreren Zylindern 3 und ein Einspritzsystem 4 auf. Das Einspritzsystem 4 umfasst eine der Anzahl an Zylindern 3 entsprechende Anzahl an Einspritzeinheiten 5, wobei je- dem Zylinder 3 eine Einspritzeinheit 5 zum Einspritzen von Kraftstoff 6 zugeordnet ist. Eine Kurbelwelle 7 ist innerhalb des Motorblocks 2 angeordnet und aus diesem herausgeführt. Zur Umwandlung der in den Zylindern 3 freigesetzten Energie des Kraftstoffs 6 in eine Rotationsbewegung ist die Kurbelwelle 7 mit nicht näher dargestellten Zylinderkolben verbunden.
Das Einspritzsystem 4 weist weiterhin eine Vorrichtung 8 zum Steuern der Betriebsweise der Brennkraftmaschine 1 auf. Die Vorrichtung 8 umfasst eine Steuereinheit 9 zum Ansteuern der Einspritzeinheiten 5 mittels eines vorgebbaren Einspritzdauerwertes, eine Messeinheit 10 zum Messen eines das Verbrennen des Kraftstoffs 6 in den Zylindern 3 charakterisierenden, digitalen Messsignals, eine Transformationseinheit 11 zum Transformieren des Messsignals in einen Frequenzbereich, und eine Auswerteeinheit 12 zum Auswerten des transformierten Messsignals. Die Messeinheit 10 ist an einem herausgeführten Ende der Kurbelwelle 7 angeordnet und steht in Signalverbindung mit der Steuereinheit 9. Die Messeinheit 10 ist als Geberrad ausgebildet und weist zur Ermittelung eines Drehzahlmesssignals der Kurbelwelle 7 äquidistante Winkelmarkierungen auf. Die Auswerteeinheit 12 ist derart ausgestaltet, dass ein Zündaussetzer in der Brennkraftmaschine 1 detektierbar ist. . Zum Vorgeben von Einspritzdauerwerten bzw. zum Aktivieren und Deaktivieren der Einspritzung steht die Steuereinheit 9 in Signalverbindung mit den Einspritzeinheiten 5.
Das Auftreten von Zündaussetzern führt zu Drehmomentänderungen, welche sich beispielsweise in der momentanen Kurbelwellendrehzahl bzw. in der momentanen Kurbelwellenbeschleunigung widerspiegeln. Mittels des nachfolgend in Fig. 2 beschriebenen erfindungsgemäßen Verfahrens ist es möglich, bei einer Brennkraftmaschine mit n Zylindern 3 ausgehend von einem Drehzahlsignal ein Aussetzen der Zündung zu detektieren. Ferner ist es, wie in Fig. 3 beschrieben, möglich, zu erkennen, bei welchen Zylindern 3 Zünd- aussetzer auftreten. Hierzu wird das Drehzahlsignal in den Winkel-Frequenzbereich transformiert. Da die Verstellung einzelner Zylinder sich vor allem auf die niederfrequenten Spektralanteile auswirken, werden vor allem diese zur De- tektion von Zündaussetzern herangezogen.
Mittels der als Geberrad ausgebildeten Messeinheit 10 wird das Drehzahlmesssignal der Kurbelwelle 7 ermittelt. Die Zeiten zwischen den einzelnen Winkelmarkierungen des rotierenden Geberrades 10 werden von einem Sensor erfasst und an die Steuereinheit 9 geleitet. Die Steuereinheit 9 rechnet die gemessenen Zeiten in das digitale Drehzahlmesssignal um.
Zu Beginn des Verfahrens nach Fig. 2 wird das Drehzahlmesssignal zunächst dem ersten Korrekturelement 13 zugeführt, das eine Geberradadaption zur Korrektur von Messfehlern des Geberrades durchführt. Hierzu wurde das Geberrad, insbesondere die Abstände der Winkelmarkierungen, an einem Prüfstand vermes- sen und Korrekturwerte für nichtäquidistant angeordnete Winkelmarkierungen ermittelt.
Das korrigierte Drehzahlmesssignal wird anschließend dem Mittelungselement 14 zugeführt, das vorzugsweise einen arithmetischen Mittelwert über zwei Ar- beitsspiele der Brennkraftmaschine 1 des Drehzahlmesssignals bildet. Hierzu werden einander entsprechende Drehzahlmesssignalwerte in den Arbeitsspielen gemittelt. Als Arbeitsspiel wird ein Drehzahlsegment von 720° der Kurbelwelle 7 bezeichnet. Die Mittelung dient dazu, zyklische Schwankungen, die von einer ungleichmäßigen Verbrennung verursacht werden, zu eliminieren. Das gemittelte Drehzahlmesssignal wird dem Transformationselement 15 der Transformationseinheit 11 zugeführt, das das Drehzahlmesssignal mittels einer diskreten Hartley-Transformation in einen Winkelfrequenzbereich transformiert. Die diskrete Hartley-Transformation ist ausschließlich mittels reellen Operatio- nen berechenbar, so dass die Transformation schnell und einfach durchführbar ist. Mittels der diskreten Hartley-Transformation wird das Drehzahlmesssignal in einzelne Winkelfrequenzen zerlegt, die als Spektralanteile einer bestimmten Ordnung bezeichnet werden. Dadurch, dass sich das Verbrennen von Kraftstoff 6 in den Zylindern 3 hauptsächlich in den niederfrequenten Spektralanteilen des Dreh- zahlmesssignals auswirkt, kann auf die Berechnung und Auswertung von höherfrequenten Spektralanteilen des Drehzahlmesssignals verzichtet werden. Die einzelnen Spektralanteile sind durch eine Amplitude und eine Phase gekennzeichnet, wobei zur Auswertung des Drehzahlmesssignals insbesondere die Amplitude des Spektralanteils 0,5-ter Ordnung ausreichend ist. Die Amplitude des Spektralanteils 0,5-ter Ordnung wird im Folgenden als Ao;5 bezeichnet.
Das in Spektralanteile transformierte Drehzahlmesssignal wird anschließend dem zweiten Korrekturelement 16 zugeführt, das eine Schleppkorrektur zur Korrektur von Fehlern aufgrund von parasitären Effekten, wie beispielsweise von Massen- momenten der Brennkraftmaschine 1, durchführt. Hierzu wurde die Brennkraftmaschine 1 vorteilhafterweise an einem Prüfstand geschleppt betrieben, d. h. ohne Einspritzen von Kraftstoff 6, und das zugehörige Drehzahlmesssignal ermittelt. Mittels der diskreten Hartley-Transformation wurden drehzahlabhängige Korrekturwerte zur Korrektur der Spektralanteile ermittelt und in der Steuerein- heit 9 abgespeichert. Diese Korrekturwerte werden in dem zweiten Korrekturelement 16 zur Korrektur des transformierten Drehzahlmesssignals verwendet.
Das transformierte und korrigierte Drehzahlmesssignal wird anschließend dem Auswerteelement 17 der Auswerteeinheit 12 zugeführt. Die Auswertung des Drehzahlmesssignals, insbesondere die Detektion des Aussetzens der Zündung, erfolgt vorzugsweise mittels der Amplitude des Spektralanteils 0,5-ter Ordnung. Liegt ein Aussetzen der Zündung in einem der n Zylinder 3 der Brennkraftmaschine 1 vor, erfolgt im Vergleich zum Normalbetrieb ohne Zündaussetzer ein deutlicher Anstieg der Amplitude A 0,5 des Spektralanteils der 0,5-ten Ordnung. Durch Vergleichen von A o,5 mit einem insbesondere im Auswerteelement 17 abgespeicherten Schwellwert (S) wird beim Überschreiten dieses Schwellwertes (S) auf das Aussetzen der Zündung in mindestens einem der n Zylinder 3 der Brennkraftmaschine 1 geschlossen. Wird der Schwellwert (S) nicht überschritten, wird ein Signal an das Stopelement 18 weitergeleitet. Das Verfahren zur Erkennung eines Aussetzens der Zündung kann anschließend mit den bisherigen Schritten in bestimmten zeitlichen Abständen wiederholt werden.
Wird auf Grund der Amplitudenauswertung ein Aussetzen der Zündung detek- tiert, so wird zur Identifikation des wenigstens einen aussetzenden Zylinders wie in Fig. 3 gezeigt, verfahren. Aufeinanderfolgend werden, beginnend mit dem ers- ten Zylinder, in einer Schleife die folgenden Schritte n-mal durchgeführt. Vom Auswerteelement 17 aus Fig. 2 wird ein Initialisierungssignal an die Steuereinheit 9 gesendet. Wenn die Prüfung im Abfrageelement 19, insbesondere ein Teil der Steuereinheit 9, ergibt, dass die Anzahl der bisher durchgeführten Schleifen < n ist, sendet die Steuereinheit 9 ein Signal an die Einspritzeinheit 5 des ersten Zy- linders 3 und schaltet diese für eine vorgegebene Zeitdauer ab. Die Zeitdauer des Abschaltens beträgt mindestens ein Arbeitsspiel. Während dieser Zeitdauer werden die Schritte aus dem vorangegangenen Verfahren zur Erkennung des Aussetzens der Zündung, angefangen von der Ermittlung des Drehzahlmesssignals mittels der Messeinheit 10 über die Geberradadaption im ersten Korrekturelement 13 bis hin zur Auswertung des transformierten und korrigierten Drehzahlmesssignals im Auswerteelement 17 durchgeführt. Weicht die dabei ermittelte Amplitude des Spektralanteils n/2-ter Ordnung von der Amplitude des Spektralanteils n/2-ter Ordnung aus dem vorangegangenen Verfahren ohne Abschalten der Einspritzung zur Erkennung des Aussetzens der Zündung ab, so wird daraus ge- schlössen, dass der untersuchte Zylinder nicht der wenigstens eine aussetzende Zylinder ist und es wird ein entsprechendes Signal an die Steuereinheit 9 übermittelt.
Weicht die ermittelte Amplitude des Spektralanteils n/2-ter Ordnung von der Amplitude des Spektralanteils n/2-ter Ordnung aus dem vorangegangenen Verfahren zur Erkennung des Aussetzens der Zündung nicht ab, wird also keine Veränderung in der Verbrennung festgestellt, unabhängig davon, ob die Einspritzeinheit 5 des untersuchten Zylinders 3 an- oder abgeschaltet ist, so ist der untersuchte Zylinder 3 als aussetzender Zylinder identifiziert. Ein entsprechendes Signal wird an die Steuereinheit 9 übermittelt.
Sobald im Abfrageelement 19 festegestellt wird, dass alle n Zylinder untersucht worden sind, ergeht ein Signal an das Stopelement 18. Die Einspritzeinheiten der betroffenen Zylinder bleiben abgeschaltet, um zu verhindern, dass unverbrannter Kraftstoff in das Abgassystem gelangt. Vorzugsweise wird der Bediener das
Fahrzeugs auf das Aussetzen der Zündung, zum Beispiel durch eine entsprechende Mitteilung auf der Instrumententafel, aufmerksam gemacht. Wenn das Fahrzeug über eine entsprechende Vorrichtung verfügt, kann auch eine Nachricht an eine Werkstatt gesendet werden. Das Verfahren kann auch als Diagnoseverfahren in einer Werkstatt eingesetzt werden.
Um Rechnerzeit und Rechnerkapazität zu sparen, wäre es auch denkbar, in den in Fig. 2 und Fig. 3 beschriebenen Verfahren die Korrekturelemente 13, 16 und das Mittelungselement 14 einzeln oder auch gesamt wegzulassen. Das Verfahren würde dann aber ungenauer werden.
In den vorstehenden Ausführungsbeispielen wurden die Geberradadaption im Korrekturelement 13 und die Mittelung über mehrere Arbeitsspiele im Mittelungselement 14 vor der Transformation des Drehzahlmesssignals im Transfor- mationselement 15 durchgeführt. Sowohl die Geberradadaption als auch die Mittelung könnten aber auch insbesondere nach der Transformation stattfinden. Die vorstehenden Ausfuhrungsbeispiele der Erfindung wurden anhand der Hart- ley-Transformation beschrieben. Die Erfindung kann jedoch bei geeigneter Abwandlung auch unter Zuhilfenahme einer anderen Transformation, zum Beispiel einer Fast Fourier Transformation (FFT), einer Diskreten Fourier Transformation (DFT) oder dergleichen angewendet werden, wenngleich die Erfindung im Falle einer Hartley-Transformation am vorteilhaftesten und damit am geeignetsten ist.
In den vorstehenden Ausfuhrungsbeispielen wurde jeweils eine arithmetische Mittelwertbildung vorgenommen. Die Erfindung sei jedoch nicht ausschließlich darauf beschränkt, sondern lässt sich sehr vorteilhaft auch bei einer geometrischen Mittelwertsbildung oder dergleichen einsetzen.
Zusammenfassend kann festgestellt werden, dass durch das beschriebene Verfah- ren in völliger Abkehr von bisher bekannten Lösungen auf sehr elegante Weise jedoch nichts desto weniger sehr einfache Weise eine zuverlässige Steuerung der Betriebsweise der Brennkraftmaschine realisierbar ist.
Die vorliegende Erfindung wurde anhand der vorstehenden Beschreibung so dar- gestellt, um das Prinzip der Erfindung und dessen praktische Anwendung bestmöglichst zu erklären. Jedoch lässt sich die Erfindung bei geeigneter Abwandlung selbstverständlich in zahlreichen anderen Ausfuhrungsformen realisieren.
Bezugszeichenliste:
1 Brennkraftmaschine
2 Motorblock
3 Zylinder
4 Einspritzsystem
5 Einspritzeinheit
6 Kraftstoff
7 Kurbelwelle
8 Vorrichtung
9 Steuereinheit
10 Messeinheit
11 Transformationseinheit
12 Auswerteeinheit
13 Korrekturelement, erstes
14 Mittelungselement
15 Transformationselement
16 Korrekturelement, zweites
17 Auswertelement
18 Stopelement
19 Abfrageelement

Claims

Patentansprüche:
1. Verfahren zur Steuerung der Betriebsweise einer Brennkraftmaschine (1) mit n Zylindern (3) und einem Einspritzsystem (4) mit einer Einspritzeinheit (5) pro Zylinder (3), mit den Schritten: a) Ermitteln eines das Verbrennen von Kraftstoff (6) in der Brennkraftmaschine (1) charakterisierenden, digitalen Messsignals, b) Transformieren des digitalen Messsignals in einen Frequenzbereich, c) Auswerten des transformierten Messsignals, wobei mittels der Amplitu- deninformation des transformierten Messsignals ein Aussetzen der Zündung detektiert wird, und sofern ein Aussetzen der Zündung detektiert wird, e) sequentielles Abschalten der Einspritzung jedes einzelnen der n Zylinder (3) für eine vorgegebene Zeitdauer, und für jeden der n Zylinder (3) wie- derholen der Schritte a) bis c),
wobei mittels der Amplitudeninformation n/2-ter Ordnung des transformierten Messsignals ein aussetzender Zylinder (3) identifiziert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das digitale
Messsignal ein mittels eines Geberrades (10) ermitteltes Drehzahlmesssignal ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Transformieren des digitalen Messsignals mittels einer diskreten Hartley-
Transformation erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Auswerten des transformierten Messsignals gemäß Schritt c) mittels einer Spektralanalyse von niederfrequenten Spektralanteilen des transformierten Messsignals erfolgt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Auswerten des transformierten Messsignals gemäß Schritt c) mittels der Amplitude des Spektralanteils 0,5-ter Ordnung erfolgt.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Auswerten des transformierten Messsignals gemäß Schritt c) mittels einer Linearkombination von Amplituden von niederfrequenten Spektralanteilen des transformierten Messsignals erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Auswerten des transformierten Messsignals gemäß Schritt c) mindestens einen Vergleich eines Spektralanteils mit einem einen Zündaussetzer charakterisierenden Schwellwert (S) umfasst.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das digitale Messsignal vor dem Auswerten gemäß Schritt c) oder e) über mindestens zwei Arbeitsspiele der Brennkraftmaschine (1) gemittelt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass vor dem Auswerten des transformierten Messsignals gemäß Schritt c) oder e) eine Schleppkorrektur zur Korrektur von Fehlern vorgesehen ist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass vor dem Auswerten des Drehzahlmesssignals gemäß Schritt c) oder e) eine Geberradadaption zur Korrektur von Messsfehlern des Geberrades (10) vorgesehen ist.
11. Vorrichtung zur Steuerung der Betriebsweise einer Brennkraftmaschine (1) mittels eines Verfahrens nach einem der vorangehenden Ansprüche, wenigstens umfassend: eine Steuereinheit (9), - eine Messeinheit (10), eine Transformationseinheit (11), und eine Auswerteeinheit (12).
EP07856040A 2006-12-01 2007-11-28 Verfahren und vorrichtung zur steuerung der betriebsweise einer brennkraftmaschine Ceased EP2094960A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006056860A DE102006056860A1 (de) 2006-12-01 2006-12-01 Verfahren und Vorrichtung zur Steuerung der Betriebsweise einer Brennkraftmaschine
PCT/DE2007/002147 WO2008064659A2 (de) 2006-12-01 2007-11-28 Verfahren und vorrichtung zur steuerung der betriebsweise einer brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP2094960A2 true EP2094960A2 (de) 2009-09-02

Family

ID=39333104

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856040A Ceased EP2094960A2 (de) 2006-12-01 2007-11-28 Verfahren und vorrichtung zur steuerung der betriebsweise einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US8200415B2 (de)
EP (1) EP2094960A2 (de)
JP (1) JP2010511118A (de)
DE (2) DE102006056860A1 (de)
WO (1) WO2008064659A2 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008008384B4 (de) * 2008-02-09 2021-07-22 Vitesco Technologies Germany Gmbh Verfahren zur Identifikation von Zylindern einer Brennkraftmaschine bei Auftreten von zylinderindividuellen Ereignissen
DE102008021443B4 (de) * 2008-04-29 2022-08-04 Vitesco Technologies Germany Gmbh Verfahren zur Brennbeginngleichstellung bei Zylindern einer Brennkraftmaschine
DE102009045303A1 (de) * 2009-10-02 2011-04-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Aussetzererkennung für Brennkraftmaschinen
JP5712819B2 (ja) * 2011-07-01 2015-05-07 トヨタ自動車株式会社 内燃機関の制御装置
JP5554295B2 (ja) * 2011-07-28 2014-07-23 日立オートモティブシステムズ株式会社 内燃機関の燃焼騒音検出方法及び燃焼騒音検出装置並びに内燃機関の制御装置
DE102012020490B3 (de) * 2012-10-10 2014-03-13 Mtu Friedrichshafen Gmbh Verfahren zur Ausfallerkennung von Injektoren in einem Verbrennungsmotor, Motorsteuergerät und System zur Durchführung eines Verfahrens
DE102012020488B3 (de) * 2012-10-10 2014-03-20 Mtu Friedrichshafen Gmbh Verfahren zur Momentenregelung eines Verbrennungsmotors und Verbrennungsmotor
DE102012020489B4 (de) * 2012-10-10 2014-04-30 Mtu Friedrichshafen Gmbh Verfahren zur Angleichung eines Einspritzverhaltens von Injektoren in einem Verbrennungsmotor, Motorsteuergerät und System zur Angleichung eines Einspritzverhaltens
US9393947B2 (en) * 2013-03-07 2016-07-19 Ford Global Technologies, Llc Torsional damping using a torque convertor bypass clutch
DE102013222556A1 (de) * 2013-11-06 2015-05-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erkennung von defekten Einspritzdüsen eines Verbrennungsmotors
KR101755864B1 (ko) * 2015-10-21 2017-07-10 현대자동차주식회사 엔진 회전수 제어방법
US10208697B2 (en) 2016-10-26 2019-02-19 GM Global Technology Operations LLC Detection of irregularities in engine cylinder firing
JP7420053B2 (ja) * 2020-11-09 2024-01-23 トヨタ自動車株式会社 内燃機関の失火検出装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228640A (ja) * 1986-03-29 1987-10-07 Mitsubishi Motors Corp 多気筒エンジンにおける特定気筒の失火判別方法
DE3933826A1 (de) * 1988-10-12 1990-04-19 Mitsubishi Electric Corp Motorregler fuer brennkraftmaschinen
DE19840580A1 (de) * 1998-09-05 2000-03-09 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur kontrollierten Aussetzerkennung bei Verbrennungsmotoren

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302219A1 (de) 1982-02-03 1983-08-11 Steyr-Daimler-Puch AG, 1010 Wien Verfahren und vorrichtung zur einstellung einer mehrzahl von je einem zylinder eines dieselmotors zugeordneten einspritzaggregaten
US4932379A (en) * 1989-05-01 1990-06-12 General Motors Corporation Method for detecting engine misfire and for fuel control
EP0437057B1 (de) 1990-01-08 1993-11-03 Hitachi, Ltd. Methode und Gerät um den Verbrennungszustand in einer mehrzylindrigen Brennkraftmaschine zu detektieren
US5239473A (en) * 1990-04-20 1993-08-24 Regents Of The University Of Michigan Method and system for detecting the misfire of an internal combustion engine utilizing angular velocity fluctuations
JP2843871B2 (ja) * 1990-05-14 1999-01-06 本田技研工業株式会社 内燃エンジンの燃焼異常検出装置
DE4116642C2 (de) * 1990-08-25 2000-05-11 Bosch Gmbh Robert Zündanlage einer Brennkraftmaschine mit einer Überwachungsschaltung zum Erkennen von Zündaussetzern
JPH04276153A (ja) * 1991-02-28 1992-10-01 Suzuki Motor Corp エンジンの燃料噴射量制御装置
DE4133679A1 (de) 1991-10-11 1993-04-22 Bosch Gmbh Robert Verfahren zur adaption von mechanischen toleranzen eines geberrades
DE4221891C2 (de) 1992-07-03 1995-10-19 Audi Ag Verfahren zur Korrektur von Winkelfehlern an einem Geberrad bei der Bestimmung der Momentandrehzahl eines rotierenden Körpers
ATE181401T1 (de) 1992-08-10 1999-07-15 Dow Deutschland Inc Vorrichtung zur verkrustungsdetektion eines axialverdichters.
US5392642A (en) * 1993-06-30 1995-02-28 Cummins Engine Company, Inc. System for detection of low power in at least one cylinder of a multi-cylinder engine
DE4413473A1 (de) 1994-04-19 1995-10-26 Stn Atlas Elektronik Gmbh Verfahren zur Überwachung von Brennkraftmaschinen
DE19531845B4 (de) 1995-08-29 2005-10-20 Bosch Gmbh Robert Verbrennungsaussetzererkennungsverfahren
JPH09264183A (ja) 1996-03-29 1997-10-07 Mazda Motor Corp エンジンの燃焼状態判別方法、エンジンの制御方法及び同装置
EP0799983B1 (de) 1996-04-05 2003-06-18 Toyota Jidosha Kabushiki Kaisha Verfahren zum Erfassen der Winkelgeschwindigkeit und des Drehmoments einer Brennkraftmaschine
DE19622042C2 (de) 1996-05-31 1999-05-20 Siemens Ag Verfahren zum Erkennen und Korrigieren von Fehlern bei der Zeitmessung an sich drehenden Wellen
AU4158097A (en) 1996-08-23 1998-03-06 Cummins Engine Company Inc. Premixed charge compression ignition engine with optimal combustion control
US5934256A (en) 1997-03-04 1999-08-10 Siemens Aktiengesellschaft Method for detecting irregular combustion processes in a multicylinder diesel internal combustion engine
DE19749817B4 (de) 1997-11-11 2008-03-20 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ermittlung des Spritzbeginns
US6021758A (en) 1997-11-26 2000-02-08 Cummins Engine Company, Inc. Method and apparatus for engine cylinder balancing using sensed engine speed
IT1298944B1 (it) 1998-02-24 2000-02-07 Automobili Lamborghini Spa Procedimento per rilevare il mancato scoppio in un motore a combustione interna e sistema che realizza tale procedimento
JP2000337207A (ja) 1999-05-24 2000-12-05 Mitsubishi Electric Corp 内燃機関の燃料性状判別装置
KR100305832B1 (ko) 1999-07-21 2001-09-13 이계안 주파수 분석을 이용한 엔진 실화 검출 시스템과 검출방법
DE10038339A1 (de) 2000-08-05 2002-02-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Sensors
DE10055192C2 (de) * 2000-11-07 2002-11-21 Mtu Friedrichshafen Gmbh Rundlaufregelung für Dieselmotoren
US6546912B2 (en) * 2001-03-02 2003-04-15 Cummins Engine Company, Inc. On-line individual fuel injector diagnostics from instantaneous engine speed measurements
JP3699372B2 (ja) * 2001-07-23 2005-09-28 三菱電機株式会社 車載エンジン制御装置
DE10235665A1 (de) * 2002-07-31 2004-02-12 Conti Temic Microelectronic Gmbh Regelung der Betriebsweise einer Brennkraftmaschine
DE102004005328A1 (de) * 2004-02-04 2005-09-01 Alfred Albiez Spezialschraube
DE102004005325A1 (de) 2004-02-04 2005-08-25 Conti Temic Microelectronic Gmbh Verfahren zur Detektion des Brennbeginns einer Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228640A (ja) * 1986-03-29 1987-10-07 Mitsubishi Motors Corp 多気筒エンジンにおける特定気筒の失火判別方法
DE3933826A1 (de) * 1988-10-12 1990-04-19 Mitsubishi Electric Corp Motorregler fuer brennkraftmaschinen
DE19840580A1 (de) * 1998-09-05 2000-03-09 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur kontrollierten Aussetzerkennung bei Verbrennungsmotoren

Also Published As

Publication number Publication date
US20100063711A1 (en) 2010-03-11
DE102006056860A1 (de) 2008-06-05
DE112007002418A5 (de) 2009-08-13
WO2008064659A3 (de) 2008-07-17
US8200415B2 (en) 2012-06-12
WO2008064659A2 (de) 2008-06-05
JP2010511118A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
EP2094960A2 (de) Verfahren und vorrichtung zur steuerung der betriebsweise einer brennkraftmaschine
EP1525382B1 (de) Regelung der betriebsweise einer brennkraftmaschine
DE102016117342B4 (de) Vorrichtung zum Detektieren einer Fehlzündung
DE69634187T2 (de) Verfahren und Vorrichtung zur Erkennung von Fehlzündungen
DE102010020766B4 (de) Verfahren und System zum Detektieren eines Verbrennungsfehlers in einem Verbrennungsmotor
WO1996041938A1 (de) Einrichtung zur zylindererkennung bei einer mehrzylindrigen brennkraftmaschine
EP1818528A2 (de) Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge
EP1039287A1 (de) Verfahren zur Erkennung von abgasverschlechternden und katalysatorschädigenden Aussetzern bei Verbrennungsmotoren
DE102014107151B4 (de) Verfahren und Vorrichtung zur Fehlzündung-Erfassung eines Motors
WO2016058775A1 (de) Verfahren zum überwachen des sekundärluftsystems in einer abgasreinigungsanlage einer brennkraftmaschine
EP2906802A1 (de) Verfahren zur ausfallerkennung von injektoren in einem verbrennungsmotor, motorsteuergerät und system zur durchführung eines verfahrens
DE19540826C2 (de) Verfahren zur zylinderindividuellen Fehlfunktionserkennung bei einer Brennkraftmaschine
DE102018204450B4 (de) Verfahren zum Prüfen einer variablen Ventilhubsteuerung eines Verbrennungsmotors
DE102010051370B4 (de) Bestimmung eines indizierten Moments einer Brennkraftmaschine
DE102007015654B4 (de) Verfahren und Vorrichtung zum Abgleichen eines Einspritzsystems einer Brennkraftmaschine
DE19526644C1 (de) Verfahren zur Erkennung von defekten Zünd- oder Einspritzvorrichtungen bei Verbrennungsmotoren
DE102008057508B4 (de) Verfahren zur Erkennung von Verbrennungsaussetzern bei einer Brennkraftmaschine
DE102006043679B4 (de) Verfahren zur Einzelzylinderregelung bei einer Brennkraftmaschine
DE102015226006B4 (de) Verfahren zur Prüfung der Zuordnung von Körperschallsensoren zu Zylindern einer Brennkraftmaschine
DE102018209253A1 (de) Fourier-Diagnose eines Ladungswechselverhaltens eines Verbrennungsmotors
DE102008044305B4 (de) Verfahren, Steuergerät und Computerprogrammprodukt zur Erfassung der Laufunruhe eines mehrzylindrigen Verbrennungsmotors
WO2009043737A1 (de) Verfahren zur ermittlung der dynamischen eigenschaften eines abgassensors einer brennkraftmaschine
DE102011005289B3 (de) Verfahren zur Auswertung eines Messsignals
DE102006015968B3 (de) Adaptionsverfahren und Adaptionsvorrichtung einer Einspritzanlage einer Brennkraftmaschine
DE102020215700B4 (de) Verfahren zum Erkennen von Aussetzern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090409

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TUNA, MEHMET

Inventor name: GOENEY, KAYHAN

Inventor name: ROUTIER, EMMANUEL

Inventor name: HAGEL, REINHOLD

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20170429