EP2091689B1 - Device for determining the position and/or transverse dimension of a drill hole in a lens for the presentation of spectacles with a rimless frame - Google Patents

Device for determining the position and/or transverse dimension of a drill hole in a lens for the presentation of spectacles with a rimless frame Download PDF

Info

Publication number
EP2091689B1
EP2091689B1 EP07872397A EP07872397A EP2091689B1 EP 2091689 B1 EP2091689 B1 EP 2091689B1 EP 07872397 A EP07872397 A EP 07872397A EP 07872397 A EP07872397 A EP 07872397A EP 2091689 B1 EP2091689 B1 EP 2091689B1
Authority
EP
European Patent Office
Prior art keywords
image
drill hole
lens
center
transverse dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07872397A
Other languages
German (de)
French (fr)
Other versions
EP2091689A2 (en
Inventor
Philippe Pinault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EssilorLuxottica SA
Original Assignee
Essilor International Compagnie Generale dOptique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International Compagnie Generale dOptique SA filed Critical Essilor International Compagnie Generale dOptique SA
Publication of EP2091689A2 publication Critical patent/EP2091689A2/en
Application granted granted Critical
Publication of EP2091689B1 publication Critical patent/EP2091689B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/146Accessories, e.g. lens mounting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/005Blocking means, chucks or the like; Alignment devices
    • B24B13/0055Positioning of lenses; Marking of lenses

Definitions

  • the present invention generally relates to the mounting of ophthalmic lenses of a pair of spectacles on a mount of the type without a circle and more particularly to a device for determining the position and / or a transverse dimension of a drilling hole.
  • a presentation lens serving as a model for drilling, at said position and / or at said transverse dimension, a mounting lens that is to be assembled to a spectacle frame of the type without a circle.
  • the following drilling method is implemented.
  • the frame equipped with presentation lenses, that he wishes.
  • the optician places the presentation lenses one after the other in a device for determining the position of the drilling holes.
  • Each presentation lens is already pierced on its temporal and nasal parts and then serves as a model for the trimming and proper drilling of the corresponding left or right correction lens intended to equip the future wearer with the mount he has chosen.
  • the presentation lens is thus placed in a support between projected vision lighting means and image capture means, the front face of the lens being directed towards the lighting means.
  • a frosted glass plate makes it possible to form the image of the shadow of the lens, in projected vision, on the capture means.
  • the image of the shadow of the presentation lens is acquired.
  • This overall image is displayed on a screen.
  • a virtual registration ring that the operator visualizes and moves on the screen to superimpose, sizing and centering on the overall image of the drilling hole of the presentation lens.
  • the operator validates this positioning and this dimensioning and the processing system stores the position of the center and the transverse dimension (ie its diameter if the hole is round) of the registration ring as being the position of the center and the transverse dimension of the drilling hole to be made on the correction lens.
  • a drill bit having a suitable diameter is brought, vis-à-vis the correction lens, to the stored position of the hole to be drilled.
  • the correction lens is then pierced by means of a relative advance movement of the drill bit relative to the lens along the axis of rotation of the drill bit. If the diameter of the drill bit is smaller than the desired diameter, the hole obtained is widened to the right diameter by means of a suitable transverse displacement of the drill bit.
  • the object of the present invention is to determine accurately the position and / or a transverse dimension of a drilling hole to be made on a lens that is to be assembled to a bezel mount of the type without a circle.
  • the drill pierces the corrective lens at a point on the face of the lens which becomes the center of the front mouth of the drilling hole in progress of realization.
  • the drill is brought opposite the front face of the lens to the position associated with the center of the overall figure of the drilling hole of the presentation lens which corresponds generally to the position of the center of the overall image drilling hole of the presentation lens projected on a plane perpendicular to the direction of illumination or image capture.
  • the position of the center of the mouth of the piercing hole opening on one of the faces of the lens is calculated from the acquired overall image. as well as its transverse dimension, which then makes it possible to correctly position the drill opposite this determined position of the center of the mouth on the front face and / or to size and control this drill to obtain a hole whose transverse dimension corresponds precisely to to that of the hole of the presentation lens.
  • the drilling hole obtained on the corrective lens is then correctly positioned and / or dimensioned.
  • said first correction means operate further according to the index and / or the thickness of the presentation lens. This corrects the image capture errors resulting from the prismatic deviations generated by the presentation lens on its own image.
  • said means for defining the position of the center of the mouth of the drilling hole opening on said face operate a calculation of the first correction as a function of the index and / or the thickness of the presentation lens. This corrects the image capture errors resulting from the prismatic deviations generated by the presentation lens on its own images.
  • said first correction means operate further depending on the index and / or the thickness of the presentation lens. This corrects the image capture errors resulting from the prismatic deviations generated by the presentation lens on its own image.
  • the processing means are able to determine, from said overall image of the drilling hole, a relative distance in projection, between the center of said mouth of the drilling hole of the presentation lens and the edge of the presentation lens, projected in said direction of illumination or image capture in an acquisition plane substantially perpendicular to said direction d lighting or image capture.
  • the processing means comprise second correction means capable of calculating, from this relative distance in projection and as a function of at least one datum representative of the angle of inclination of the drilling hole formed between the direction for illuminating or capturing images and the axis of the drilling hole, a real relative distance between the center of said mouth and the edge of the presentation lens, considered in the plane perpendicular to the axis of the drilling hole .
  • FIG. 1 there is shown a device for acquiring the position of the drilling holes of a spectacle lens.
  • This acquisition device comprises lighting means 51, 52, a support 55 of the presentation lens 100 and capture means 53 of an image.
  • the lighting means 51, 52 comprise a collimation lens 52 of axis A52 and a light source 51 placed at the focus of the collimation lens 52. After passing through the collimation lens 52, the light rays are thus directed in parallel. to the axis A52 of the collimation lens 52.
  • the illumination direction D51 is thus parallel to the direction of the axis A52.
  • the capture means 53 comprise a camera 53 provided with a lens having an optical axis A53.
  • the device for acquiring the position of the drilling holes comprises an optical axis defined as the axis A52 of the collimation lens 52 and the axis A53 of the objective of the acquisition means 53. image by the acquisition means 53 is confused with the direction of illumination. D51.
  • the support 55 of the presentation lens 100 is designed such that the presentation lens 100 extends in the plane transverse to the direction of illumination D51. The lens 100 is then illuminated in front.
  • the support 55 of the lens 100 is here in the form of a transparent glass plate perpendicular to the direction of illumination D51, so that neither the front face 98 nor the rear face 99 are visually masked by the support 55 .
  • This presentation lens 100 has two piercing holes, a first piercing hole 110 located on the side of the temporal area and another piercing hole (not shown) located on the side of the nasal area of the lens.
  • the following description only details the acquisition of the drilling hole 110, but this description also applies to the acquisition of the other drilling hole.
  • the drilling hole 110 comprises, on the one hand, a mouthpiece 111 which opens on the front face 98 of the lens 100 and, secondly, a mouth 112 which opens on the rear face 99 of the lens 100. It also defines the center C2 of the drilling hole 110 itself which is also the average of the positions of the centers C1, C3 of the front mouthpieces 111 and rear 112.
  • the image capture means 53 are also connected with processing means 54 of this image.
  • the processing means 54 of this image are designed to deduce from the acquired image the position of the center C1 of the mouth 111 of the drilling hole 110 in the front face 98.
  • the processing means 54 may also be designed to deduce from the acquired image, the position of the center of the mouth 112 of the drilling hole 110 on the rear face 99.
  • the drilling hole position acquisition device is designed such that the camera 53 sees the lens in projected vision.
  • the lighting means 51, 52 and the camera 53 are distributed on either side of the support of the lens.
  • the frosted glass plate 50 is centered on the axis A52 of the collimating lens 52 and extends in the plane transverse to this axis A52.
  • the frosted glass plate 50 makes it possible to form the shadow of the lens 100 and in particular the shadow of the drilling hole 110 of the lens.
  • the image of the shadow of the drilling hole 110 of the lens is acquired by the acquisition device 53.
  • This image represented on the lower part of the figure 2 shows an overall figure 90 of the drilling hole.
  • the overall figure 90 of the piercing hole comprises two rings 40, 41 of substantially oval shape which intersect each other.
  • the first ring 40 is the projected shadow of the mouthpiece 111 on the front face of the drilling hole 110
  • the second ring 41 is the projected shadow of the mouth 112 on the rear face.
  • the portion constituted by the superposition of the two rings 40, 41 is clear. Indeed, this portion is the result of the projection of a portion of the piercing hole which is traversed by the light rays without meeting the material of the lens. Conversely, the non-superposed portions of the two rings are dark due to the reflection or diffusion of these rays by the side wall of the drilling hole.
  • the point 102 of the drilling hole 110 results from the intersection between, on the one hand, a cutting plane of the lens passing through an axis parallel to the illumination direction D51 and the axis A110 of the drilling hole 110 and on the other hand, the part of the contour of the mouth 111 in the front face 98 of the lens, located towards the outside of the lens.
  • point 101 is defined as the point of intersection of the cutting plane of the lens with the portion of the contour of the mouth 111 of the front face 98 of the lens, located towards the inside of the lens.
  • the points 105 and 104 are defined as the points of intersection of the cutting plane of the lens with the portion of the mouth 99 on the rear face 99 of the lens, located respectively outwardly and inwardly of the lens. lens.
  • a line D1 which is the straight line passing through the center of the two rings 40, 41.
  • This line D1 corresponds approximately to the trace on the screen 50 of the plane passing through the axis A52 of the lens 100 and the center C2 of hole 110.
  • the points M1 and M2 are the points of intersection of the straight line D1 with respectively the right and left parts of the ring 40 as shown in FIG. Figure 2B . These points M1 and M2 are the image points of the points 101 and 102. Similarly, the points M4 and M5 are the points of intersection of the line D1 with respectively the right and left parts of the second ring 41 as represented on FIG. Figure 2B . These points M4 and M5 are the image points of the points 104 and 105.
  • XM1, XM2, XM4, XM5 denote the positions of the points M1, M2, M4, M5 on the line D1.
  • the point MC1 is the image point on the line D1 of the center C1, in projection in the image capture plane, whose position XMC1 is to be calculated. Once the position XMC1 of the center C1 is determined we calculate its distance from a reference point of the edge of the lens.
  • a first method of execution of the main embodiment illustrated by the figure 2 , it is intended to determine the position XM90 of the center M90 of the overall figure 90 of the drilling hole and to deduce the position of the center C1 of the mouthpiece 111 on the front face 98 of this drilling hole 110.
  • the processing system 54 includes a user interface and a display screen (not shown) which displays the overall image 90 of the drilling hole 110.
  • the processing system 54 is also designed to allow display on the display. 60.
  • This ring has dimensions that can be modified by the operator.
  • the treatment system 54 is also designed such that this locating ring 60 is movable by the operator on the display screen. The displacement of the registration ring 60 as well as the adjustments of its dimensions can be obtained using control tools integrated in the user interface of the processing system 54.
  • the operator sizes and centers the registration ring 60 on the overall image 90 of the drilling hole 110.
  • the operator can, by example as illustrated by the figure 2 , superimpose the registration ring 60 in the overall figure 90 so that the locating ring 60 passes through the middle of the segments M1 M4 and M2M5.
  • the optician may alternatively provide for adjusting the position and the dimension of the registration ring 60 to make it pass through the points M1 and M5 bordering the clear part of the overall figure 90. It can further adjust the position and the dimension of the registration ring 60 to make it pass through the points M2 and M4 bordering the dark part of the overall figure 90.
  • the processing system 54 automatically detects and stores the position of the center M60 of the registration ring 60.
  • the position of the center M60 is associated by the processing means 54 at the XM90 position of the center M90 of the overall figure 90.
  • the operator points on the screen, with a tool integrated in the user interface such as a mouse or a stylus, the center M60 of the registration ring 60 which is then stored:
  • the processing system 54 calculates the position of the center C1 of the mouth of the drilling hole 110 opening on said face from the position of the center M90 of said overall figure 90 and as a function of the angle of inclination ALPHA the drilling hole 110 and the thickness E of the lens.
  • the angle of inclination ALPHA is the angle formed between the average direction of illumination D51 and the axis A110 of the drilling hole.
  • the angle ALPHA and the thickness E of the lens can be measured by probing the lens, for example, or manually entered by the operator using an on-screen input interface provided for this purpose. .
  • the considered thickness of the lens may be the local thickness of the lens around the piercing hole or the average thickness of the lens.
  • XMC ⁇ 1 XM ⁇ 90 - E / 2. ⁇ sin ALPHA .
  • the processing system 54 then associates said calculated position with the desired position of the center C1 of the mouth of the drilling hole 110 opening on the front face 98 of the lens 100.
  • XMC ⁇ 3 XM ⁇ 90 + E / 2. ⁇ sin ALPHA .
  • the calculation of the value of the diameter D of the hole 110 depends on the method of superposition of the registration ring 60 in the overall figure 90 used.
  • the detection of the center M60 of the registration ring 60 is performed automatically by the processing system 54, which is then designed to superimpose (with proper centering and sizing) automatically the register ring 60 on the overall image 90 of the drilling hole 110 and thus deduce the position and the diameter of the center M60 of this ring.
  • the figure 3 of the first method it is planned to improve the accuracy of the calculation of the position XMC1 of the projection MC1 of the center C1, from the position XM90 of the center M90 of the overall figure 90, taking into account the prismatic deviations induced by the presentation lens 100 and therefore the index of this lens.
  • the index of the presentation lens is then different from 1, and is worth, for example, 1.5.
  • the accuracy of the calculation of the diameter D of the hole in taking into account the index of this lens depends on the method of superposition of the registration ring 60 in the overall figure 90 used.
  • the position of the center of the overall figure of the drilling hole is not determined, but the positions of points M1 and M2 are acquired.
  • the points M1, M2, as recalled above, are the intersections of the line D1 with the right and left parts of the ring 40.
  • the acquisition of the positions of the points M1 and M2 can be performed by an algorithm for automatically detecting the position of these points.
  • This algorithm can be designed so as to take, on the one hand, the leftmost position of the darkest point of the overall figure 90 to obtain the position XM2 of the point M2 and, on the other hand, the position of the rightmost point of the clear portion of the overall figure 90 to obtain the position XM1 of the point M1. It is also possible, alternatively, that the overall figure is displayed on a screen and that the operator points on the screen the positions of the points M1 and M2.
  • the center X12 of the segment M1, M2 is then determined.
  • the processing means 54 then associate the position of the center X12 of the segment M1, M2 to the position XMC1 of the center C1 of the mouth of the drilling hole 110 opening on the front face. It is understood that, in this example, the offset of the point M2 due to the prismatic effects of the lens 110 is not taken into account, which is an approximation.
  • the second method it is planned to improve the accuracy of the calculation of the position XMC1 of the center C1, from the position of the points M1 and M2 of the figure 90, as well as the precision of the calculation of the diameter D of the hole 110, taking into account the index n of the presentation lens 100.
  • the points M1, M4 and M5 were not shifted during the projection of the points 101, 104 and 105 in the image capture plane, the rays emerging from these points having not been deviated by the lens of
  • a ray passes through point 102, it then passes through the lens and is then deviated by a certain distance which depends on the angle ALPHA, the index n of the lens and the the average thickness E of the lens.
  • the ray ends at the point M2. So, as represented on the figure 3 , the projected distance on the line D1 between the point 102 and the point 105 is actually equal to the distance between a point M3 and the point M5.
  • the position of the point M3 corresponds to the theoretical position of the projection on the line D1 of the point 102 along the optical axis of the optical device, without prismatic deflection by the presentation lens 100.
  • the position X13 of the center of the segment defined by the two points M1, M3 corresponds to the corrected position, in view of the prismatic deviations, from the center C1 of the mouthpiece 111 of the drilling hole 110.
  • XMC ⁇ 1 XMC ⁇ 3 - E . sin ALPHA .
  • D abs ⁇ XM ⁇ 4 - XM ⁇ 5 / cos ALPHA
  • the presentation lens 100 is seen by the camera 53 in direct vision.
  • the camera 53 is arranged in such a way that the optical axis of its objective is parallel with the direction of illumination and that the optical center of its lens is located at the focus 51 of the collimation lens 52.
  • a backlight assembly consisting of a matrix of light sources such as LEDs 56 and a plate of diffusion 57, is disposed on the side of the support plate 55 opposite to the lens 100.
  • the camera 53 then sees directly, that is to say without intermediate projection screen, the presentation lens 100 on the front face.
  • the lens of the camera acquires the image of the lens.
  • the overall image of the piercing hole that the lens is acquired is schematically represented on the figure 7 .
  • the ring 41 resulting from the projection view of the rear mouth of the drilling hole, flattens due to the optical deviation of the light rays from the portions of the contour of the mouth on the rear face located on the inner side of the hole.
  • the lens
  • This deformation can be corrected in a manner similar to that described above. But it is more convenient to directly read the diameter D40 of the ring 40 and to apply to it the geometric projection correction under the angle ALPHA.
  • XMC3 XM ⁇ 2 + XM ⁇ 1 / 2 + abs ⁇ XM ⁇ 5 - XM ⁇ 2
  • it is intended to further improve the accuracy of the calculation of the position of the center of the mouth of the front face of the drilling hole by taking into account at least one characteristic of corrective lens to pierce.
  • This embodiment can also be applied to the rear face.
  • the position of the center of the mouthpiece on the front face of the drilling hole is calculated according to one of the preceding embodiments which takes into account, in the calculation of the position of the drilling hole, the angle ALPHA formed between the mean direction D51 and the A110 axis of the drilling hole.
  • the angle formed between an axis of the corrective lens and the normal to the face of the corrective lens is also acquired at the determined position of the drilling hole to be produced. Then the position of the drilling hole to be made on the corrective lens is corrected according to the difference in value between said angle and the angle ALPHA between the average illumination direction D51 and the axis A110 of the drilling hole.
  • the measurement of this distance along the surface of the lens is carried out, in a manner known per se, from the position of the center of the mouth of the drilling hole determined according to one of the embodiments described above, of the XMB position of the reference point of the edge of the lens in the image plane and from the value of the base of the lens.
  • R is the distance, projected on the line D1, from the center C1 to the geometric center of the contour of the lens (obtained by image processing), B being the base of the lens, and n being the index of the lens.
  • the base of the lens can be entered manually by the operator using an on-screen input interface, or obtained, for example, by a spherometer.
  • the angle ALPHA can also be calculated from the positions XM1 and XM4 of the points M1 and M4 with the following equation, in the measurement configuration previously defined in projected vision ( Figures 3 to 5 ):
  • the thickness E of the lens can be measured for example by probing or be fixed at an average value of about 2 millimeters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Drilling And Boring (AREA)
  • Eyeglasses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The device has an acquisition device (53) e.g. camera, for capturing an image set of an extraction opening (110) of an ophthalmic lens (100) along a lighting direction (D51, A52) or capturing an image (A53). A processing system (54) processes the image when the lens is carried by a support (55), and determines a center position of a mouth of the opening from the image set of the opening and/or transversal dimension of the mouth of the opening corresponding to a required transversal dimension, where the mouth emerges on front surface (98) of the lens.

Description

DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTIONTECHNICAL FIELD TO WHICH THE INVENTION REFERS

La présente invention concerne de manière générale le montage de lentilles ophtalmiques d'une paire de lunettes sur une monture du type sans cercle et vise plus particulièrement un dispositif de détermination de la position et/ou d'une dimension transversale d'un trou de perçage d'une lentille de présentation (servant de modèle) en vue du perçage, à ladite position et/ou à ladite dimension transversale, d'une lentille à monter que l'on souhaite assembler à une monture de lunettes du type sans cercle.The present invention generally relates to the mounting of ophthalmic lenses of a pair of spectacles on a mount of the type without a circle and more particularly to a device for determining the position and / or a transverse dimension of a drilling hole. a presentation lens (serving as a model) for drilling, at said position and / or at said transverse dimension, a mounting lens that is to be assembled to a spectacle frame of the type without a circle.

ARRIÈRE-PLAN TECHNOLOGIQUETECHNOLOGICAL BACKGROUND

Lorsqu'une monture de lunettes est du type sans cercle, le détourage de chacune des lentilles destinées à équiper cette monture est suivi du perçage approprié de chaque lentille pour permettre la fixation des branches et du pontet nasal de la monture sans cercle. Le perçage peut être effectué sur une meuleuse ou sur une machine de perçage distincte au moyen d'un foret de perçage.When an eyeglass frame is of the type without a circle, the clipping of each of the lenses intended to equip this frame is followed by the appropriate drilling of each lens to allow the fixation of the branches and the nasal bridge of the frame without a circle. Drilling can be performed on a grinder or on a separate drilling machine by means of a drill bit.

Le plus souvent, la méthode de perçage suivante est mise en oeuvre. Tout d'abord le futur porteur choisit la monture, équipée de lentilles de présentation, qu'il souhaite. L'opticien place alors l'une après l'autre les lentilles de présentation dans un dispositif de détermination de la position de trous de perçage. Chaque lentille de présentation est déjà percée sur ses parties temporale et nasale et sert alors de modèle pour le détourage et le perçage convenable de la lentille correctrice gauche ou droite correspondante destinée à équiper le futur porteur avec la monture qu'il a choisie.Most often, the following drilling method is implemented. First of all the future carrier chooses the frame, equipped with presentation lenses, that he wishes. The optician then places the presentation lenses one after the other in a device for determining the position of the drilling holes. Each presentation lens is already pierced on its temporal and nasal parts and then serves as a model for the trimming and proper drilling of the corresponding left or right correction lens intended to equip the future wearer with the mount he has chosen.

La lentille de présentation est ainsi placée dans un support entre des moyens d'éclairage en vision projetée et des moyens de capture d'image, la face avant de la lentille étant orientée vers les moyens d'éclairage. Une plaque en verre dépoli permet de former l'image de l'ombre de la lentille, en vision projetée, sur les moyens de capture.The presentation lens is thus placed in a support between projected vision lighting means and image capture means, the front face of the lens being directed towards the lighting means. A frosted glass plate makes it possible to form the image of the shadow of the lens, in projected vision, on the capture means.

L'image de l'ombre de la lentille de présentation est acquise. On obtient ainsi une image d'ensemble du trou de perçage qui présente une forme géométrique complexe. Cette image d'ensemble est affichée sur un écran. Il est prévu un anneau de repérage virtuel que l'opérateur visualise et déplace à l'écran pour le superposer, en le dimensionnant et le centrant, sur l'image d'ensemble du trou de perçage de la lentille de présentation. L'opérateur valide ce positionnement et ce dimensionnement et le système de traitement mémorise la position du centre et la dimension transversale (i.e. son diamètre si le trou est rond) de l'anneau de repérage comme étant la position du centre et la dimension transversale du trou de perçage à réaliser sur la lentille de correction.The image of the shadow of the presentation lens is acquired. This gives an overall image of the drilling hole which has a complex geometric shape. This overall image is displayed on a screen. There is provided a virtual registration ring that the operator visualizes and moves on the screen to superimpose, sizing and centering on the overall image of the drilling hole of the presentation lens. The operator validates this positioning and this dimensioning and the processing system stores the position of the center and the transverse dimension (ie its diameter if the hole is round) of the registration ring as being the position of the center and the transverse dimension of the drilling hole to be made on the correction lens.

Après détourage de la lentille de correction suivant le contour de la lentille de présentation, un foret de perçage ayant un diamètre adapté est amené, en vis-à-vis de la lentille de correction, à la position mémorisée du trou à percer. La lentille de correction est alors percée au moyen d'une mobilité d'avance relative du foret de perçage par rapport à la lentille suivant l'axe de rotation du foret. Si le diamètre du foret est inférieur au diamètre voulu, le trou obtenu est élargi au bon diamètre à la faveur d'un déplacement transversal approprié du foret.After trimming of the correction lens along the contour of the presentation lens, a drill bit having a suitable diameter is brought, vis-à-vis the correction lens, to the stored position of the hole to be drilled. The correction lens is then pierced by means of a relative advance movement of the drill bit relative to the lens along the axis of rotation of the drill bit. If the diameter of the drill bit is smaller than the desired diameter, the hole obtained is widened to the right diameter by means of a suitable transverse displacement of the drill bit.

Cependant, on observe, en particulier pour les lentilles fortement galbées, qu'il existe une erreur souvent importante entre les position et dimension du trou de perçage réalisé sur la lentille de correction et les position et dimension réelles du trou de perçage de la lentille de présentation. Cette erreur de position et dimension du trou induit des difficultés de montage de la lentille sur les branches et le pontet nasal et aboutit même dans certains cas à un montage impossible ou de mauvaise qualité, ou encore oblige l'opticien à effectuer une opération de reprise consommatrice de temps et exigeant un savoir-faire élevé. Il peut aussi en résulter un mauvais positionnement de la lentille en regard de l'oeil du porteur, ce qui dégrade la performance de correction optique.However, it is observed, in particular for highly curved lenses, that there is often a large error between the position and size of the piercing hole made on the correction lens and the actual position and dimension of the piercing hole of the lens. presentation. This error of position and size of the hole induces difficulties of mounting the lens on the branches and the nasal bridge and even leads in some cases to an impossible assembly or poor quality, or forces the optician to perform a recovery operation time consuming and demanding a high level of expertise. It can also result in a poor positioning of the lens facing the eye of the wearer, which degrades the optical correction performance.

OBJET DE L'INVENTIONOBJECT OF THE INVENTION

Le but de la présente invention est de déterminer avec précision la position et/ou une dimension transversale d'un trou de perçage à réaliser sur une lentille que l'on souhaite assembler à une monture de lunette du type sans cercle.The object of the present invention is to determine accurately the position and / or a transverse dimension of a drilling hole to be made on a lens that is to be assembled to a bezel mount of the type without a circle.

A cet effet, l'invention propose un dispositif de détermination de la position et/ou d'une dimension transversale d'un trou de perçage d'une lentille de présentation de lunettes à monture sans cercle, comportant :

  • des moyens de support de la lentille,
  • des moyens de capture d'une image d'ensemble du trou de perçage de la lentille suivant une direction d'éclairage ou de capture d'image,
  • des moyens de traitement de ladite image lorsque la lentille est portée par les moyens support,
dispositif dans lequel les moyens de traitement sont aptes à déterminer, à partir de ladite image d'ensemble du trou de perçage, la position du centre de l'embouchure du trou de perçage débouchant sur l'une des faces de la lentille et/ou la dimension transversale de ladite embouchure du trou de perçage correspondant à la dimension transversale recherchée.For this purpose, the invention proposes a device for determining the position and / or a transverse dimension of a drilling hole of a spectacle lens with rims without a circle, comprising:
  • means for supporting the lens,
  • means for capturing an overall image of the drilling hole of the lens in a direction of illumination or image capture,
  • means for processing said image when the lens is carried by the support means,
device in which the processing means are able to determine, from said overall image of the drilling hole, the position of the center of the mouth of the piercing hole opening on one of the faces of the lens and / or the transverse dimension of said mouth of the drilling hole corresponding to the desired transverse dimension.

Lors du perçage de la lentille correctrice, par exemple du côté de la face avant de la lentille, le foret perce la lentille correctrice en un point de la face de la lentille qui devient le centre de l'embouchure avant du trou de perçage en cours de réalisation. Dans l'état de la technique, tel que connu du document EP-B1-1053 075 , le foret est amené en regard de la face avant de la lentille à la position associée au centre de la figure d'ensemble du trou de perçage de la lentille de présentation qui correspond globalement à la position du centre de l'image d'ensemble du trou de perçage de la lentille de présentation projeté sur un plan perpendiculaire à la direction d'éclairage ou de capture d'image.During the drilling of the corrective lens, for example on the side of the front face of the lens, the drill pierces the corrective lens at a point on the face of the lens which becomes the center of the front mouth of the drilling hole in progress of realization. In the state of the art, as known from the document EP-B1-1053 075 , the drill is brought opposite the front face of the lens to the position associated with the center of the overall figure of the drilling hole of the presentation lens which corresponds generally to the position of the center of the overall image drilling hole of the presentation lens projected on a plane perpendicular to the direction of illumination or image capture.

Du fait de la courbure de la lentille de présentation, l'axe du trou de perçage de cette lentille est incliné par rapport à la direction de capture d'image, si bien que, vu suivant la direction d'éclairage ou de capture d'image, il existe :

  • d'une part, un décalage entre le centre du volume projeté du trou de perçage et le centre dé l'embouchure en face avant, ou arrière, de ce trou de perçage et,
  • d'autre part, une différence entre la dimension transversale du trou de perçage (i.e. la dimension transversale de ses embouchures) de la lentille de présentation et la dimension transversale de l'image d'ensemble du trou de perçage acquise suivant la direction d'éclairage ou de capture d'image.
Due to the curvature of the presentation lens, the axis of the piercing hole of this lens is inclined with respect to the image capture direction, so that, viewed in the direction of illumination or capture of image, there are:
  • on the one hand, an offset between the center of the projected volume of the drilling hole and the center of the mouth on the front face, or rear, of this drilling hole and,
  • on the other hand, a difference between the transverse dimension of the piercing hole (ie the transverse dimension of its mouths) of the presentation lens and the transverse dimension of the overall image of the pierced hole acquired in the direction of lighting or image capture.

Il se produit donc une erreur initiale dans l'acquisition même de la position ou dimension du trou de perçage. Ceci explique que la position et la dimension transversale du trou de perçage obtenu sur la lentille correctrice percée s'avèrent en pratique erronées.There is therefore an initial error in the acquisition even of the position or size of the drilling hole. This explains that the position and the transverse dimension of the drilling hole obtained on the pierced corrective lens are in practice erroneous.

Grâce au dispositif selon l'invention, on calcule, à partir de l'image d'ensemble acquise, la position du centre de l'embouchure du trou de perçage débouchant sur l'une des faces de la lentille, par exemple la face avant, ainsi que sa dimension transversale, ce qui permet alors de positionner correctement le foret en regard de cette position déterminée du centre de l'embouchure en face avant et/ou de dimensionner et piloter ce foret pour obtenir un trou dont la dimension transversale corresponde précisément à celle du trou de la lentille de présentation. Le trou de perçage obtenu sur la lentille correctrice est alors correctement positionné et/ou dimensionné.With the device according to the invention, the position of the center of the mouth of the piercing hole opening on one of the faces of the lens, for example the front face, is calculated from the acquired overall image. as well as its transverse dimension, which then makes it possible to correctly position the drill opposite this determined position of the center of the mouth on the front face and / or to size and control this drill to obtain a hole whose transverse dimension corresponds precisely to to that of the hole of the presentation lens. The drilling hole obtained on the corrective lens is then correctly positioned and / or dimensioned.

Selon un premier mode d'exécution de l'invention, les moyens de traitement comportent :

  • des moyens d'acquisition de la position du centre de l'image d'ensemble du trou de perçage et
  • des moyens de première correction aptes à calculer la position du
centre de l'embouchure du trou de perçage sur ladite face, à partir de la position dudit centre de ladite image d'ensemble et en fonction d'au moins une donnée représentative de l'angle d'inclinaison du trou de perçage formé entre la direction d'éclairage ou de capture d'image et l'axe du trou de perçage.According to a first embodiment of the invention, the processing means comprise:
  • means for acquiring the position of the center of the overall image of the piercing hole and
  • first correction means capable of calculating the position of the
center of the mouth of the drilling hole on said face, from the position of said center of said overall image and according to at least one data representative of the angle of inclination of the drilling hole formed between the direction of illumination or image capture and the axis of the piercing hole.

Avantageusement alors, l'image d'ensemble comprenant un premier et un deuxième anneaux images qui sont formés par les images, sur les moyens de capture, des embouchures du trou de perçage et qui sont superposés en partie l'un sur l'autre, lesdits moyens d'acquisition comportent :

  • des moyens pour générer un anneau de repérage,
  • des moyens de superposition de cet anneau de repérage sur l'image d'ensemble,
  • des moyens de mémorisation de la position du centre de cet anneau de repérage et
  • des moyens d'association de la position mémorisée du centre de cet anneau de repérage à la position du centre de l'image d'ensemble du trou de perçage.
Advantageously then, the overall image comprising a first and a second image rings which are formed by the images, on the capture means, of the mouths of the piercing hole and which are superimposed partially on one another, said acquisition means comprise:
  • means for generating a registration ring,
  • means for superimposing this registration ring on the overall image,
  • means for memorizing the position of the center of this locating ring and
  • means for associating the memorized position of the center of this registration ring with the position of the center of the overall image of the drilling hole.

Selon un autre aspect de ce premier mode d'exécution de l'invention, les moyens de traitement comportent :

  • des moyens d'acquisition de la dimension transversale de l'image d'ensemble acquise du trou de perçage et
  • des moyens de première correction aptes à calculer la dimension transversale de l'embouchure du trou de perçage sur ladite face, à partir de la dimension transversale de ladite image d'ensemble et en fonction d'au moins une donnée représentative de l'angle d'inclinaison du trou de perçage formé entre la direction d'éclairage ou de capture d'image et l'axe du trou de perçage.
According to another aspect of this first embodiment of the invention, the processing means comprise:
  • means for acquiring the transverse dimension of the acquired overall image of the drilling hole and
  • first correction means capable of calculating the transverse dimension of the mouth of the drilling hole on said face, from the transverse dimension of said overall image and as a function of at least one datum representative of the angle d tilting of the drilling hole formed between the illumination or image-capturing direction and the axis of the piercing hole.

Avantageusement alors, l'image d'ensemble comprenant un premier et un deuxième anneaux images qui sont formés par les images, sur les moyens de capture, des embouchures du trou de perçage et qui sont superposés en partie l'un sur l'autre, lesdits moyens d'acquisition comportent :

  • des moyens pour générer un anneau de repérage,
  • des moyens de superposition, avec dimensionnement, de cet anneau de repérage sur l'image d'ensemble,
  • des moyens de mémorisation de la dimension transversale de cet anneau de repérage, et
  • des moyens d'association de la dimension transversale mémorisée de cet anneau de repérage à la dimension transversale de l'image d'ensemble du trou de perçage.
Advantageously then, the overall image comprising a first and a second image rings which are formed by the images, on the capture means, of the mouths of the piercing hole and which are superimposed partially on one another, said acquisition means comprise:
  • means for generating a registration ring,
  • means for superimposing, with dimensioning, this registration ring on the overall image,
  • means for memorizing the transverse dimension of this locating ring, and
  • means for associating the stored transverse dimension of said registration ring with the transverse dimension of the overall image of the drilling hole.

Selon une autre caractéristique avantageuse, lesdits moyens de première correction opèrent de plus en fonction de l'indice et/ou de l'épaisseur de la lentille de présentation. On corrige ainsi les erreurs de capture d'image résultant des déviations prismatiques générées par la lentille de présentation sur sa propre image.According to another advantageous characteristic, said first correction means operate further according to the index and / or the thickness of the presentation lens. This corrects the image capture errors resulting from the prismatic deviations generated by the presentation lens on its own image.

Selon un deuxième mode d'exécution de l'invention, l'image d'ensemble comprenant un premier et un deuxième anneaux images qui sont formés par les images, sur les moyens de capture, des embouchures du trou de perçage, et qui sont superposés en partie l'un sur l'autre, les moyens de traitement comportent :

  • des moyens d'acquisition du centre de l'anneau image formé par l'image de l'embouchure du trou de perçage débouchant sur ladite face,
  • des moyens pour définir, avec ou sans correction, la position du centre de l'embouchure du trou de perçage débouchant sur ladite face, en fonction de la position dudit centre de cet anneau image.
According to a second embodiment of the invention, the overall image comprising a first and a second image rings which are formed by the images, on the capture means, the mouths of the drilling hole, and which are superimposed in part one over the other, the processing means comprise:
  • means for acquiring the center of the image ring formed by the image of the mouth of the piercing hole opening on said face,
  • means for defining, with or without correction, the position of the center of the mouth of the piercing hole opening on said face, as a function of the position of said center of this image ring.

Avantageusement alors, lesdits moyens pour définir la position du centre de l'embouchure du trou de perçage débouchant sur ladite face opèrent un calcul de première correction en fonction de l'indice et/ou de l'épaisseur de la lentille de présentation. On corrige ainsi les erreurs de capture d'image résultant des déviations prismatiques générées par la lentille de présentation sur sa propre images.Advantageously then, said means for defining the position of the center of the mouth of the drilling hole opening on said face operate a calculation of the first correction as a function of the index and / or the thickness of the presentation lens. This corrects the image capture errors resulting from the prismatic deviations generated by the presentation lens on its own images.

Selon un autre aspect de ce deuxième mode d'exécution de l'invention, l'image d'ensemble comprenant un premier et un deuxième anneaux images qui sont formés par les images, sur les moyens de capture, des embouchures du trou de perçage, et qui sont superposés l'un sur l'autre, les moyens de traitement comportent :

  • des moyens d'acquisition de la dimension transversale de l'anneau image formé par l'image de l'embouchure du trou de perçage débouchant sur lad ite face et
  • des moyens de première correction aptes à calculer la dimension transversale de l'embouchure du trou de perçage débouchant sur ladite face, à partir de la dimension transversale dudit anneau image et en fonction d'au moins une donnée représentative de l'angle d'inclinaison du trou de perçage formé entre la direction d'éclairage ou de capture d'image et l'axe du trou de perçage.
According to another aspect of this second embodiment of the invention, the overall image comprising a first and a second image rings which are formed by the images, on the capture means, of the mouths of the piercing hole, and which are superimposed on each other, the processing means comprise:
  • means for acquiring the transverse dimension of the image ring formed by the image of the mouth of the piercing hole opening on the opposite side and
  • first correction means adapted to calculate the transverse dimension of the mouth of the drilling hole opening on said face, from the transverse dimension of said image ring and according to at least one data representative of the angle of inclination a piercing hole formed between the illumination or image-capturing direction and the axis of the piercing hole.

Avantageusement alors lesdits moyens de première correction opèrent de plus en fonction de l'indice et/ou de l'épaisseur de la lentille de présentation. On corrige ainsi les erreurs de capture d'image résultant des déviations prismatiques générées par la lentille de présentation sur sa propre image.Advantageously then said first correction means operate further depending on the index and / or the thickness of the presentation lens. This corrects the image capture errors resulting from the prismatic deviations generated by the presentation lens on its own image.

Selon une autre caractéristique avantageuse de l'invention, applicable à l'ensemble des modes de réalisation définis précédemment, les moyens de traitement sont aptes à déterminer, à partir de ladite image d'ensemble du trou de perçage, une distance relative en projection, entre le centre de ladite embouchure du trou de perçage de la lentille de présentation et le bord de la lentille de présentation, en projection suivant ladite direction d'éclairage ou de capture d'image dans un plan d'acquisition sensiblement perpendiculaire à ladite direction d'éclairage ou de capture d'image.According to another advantageous characteristic of the invention, applicable to all the embodiments defined above, the processing means are able to determine, from said overall image of the drilling hole, a relative distance in projection, between the center of said mouth of the drilling hole of the presentation lens and the edge of the presentation lens, projected in said direction of illumination or image capture in an acquisition plane substantially perpendicular to said direction d lighting or image capture.

Avantageusement alors, les moyens de traitement comportent des moyens de seconde correction aptes à calculer, à partir de cette distance relative en projection et en fonction d'au moins une donnée représentative de l'angle d'inclinaison du trou de perçage formé entre la direction d'éclairage ou de capture d'image et l'axe du trou de perçage, une distance relative réelle entre le centre de ladite embouchure et le bord de la lentille de présentation, considérée dans le plan perpendiculaire à l'axe du trou de perçage.Advantageously then, the processing means comprise second correction means capable of calculating, from this relative distance in projection and as a function of at least one datum representative of the angle of inclination of the drilling hole formed between the direction for illuminating or capturing images and the axis of the drilling hole, a real relative distance between the center of said mouth and the edge of the presentation lens, considered in the plane perpendicular to the axis of the drilling hole .

DESCRIPTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATIONDETAILED DESCRIPTION OF AN EXEMPLARY EMBODIMENT

La description qui va suivre, en regard des dessins annexés, donnée à titre d'exemple non limitatif, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.The description which follows, with reference to the accompanying drawings, given by way of non-limiting example, will make it clear what the invention consists of and how it can be achieved.

Dans les dessins annexés :

  • la figure 1 est une vue schématique en coupe axiale d'un dispositif d'acquisition de la position des trous de perçage d'une lentille de présentation selon un premier mode d'exécution conforme à l'invention ;
  • la figure 2 est une vue mixte, avec une partie supérieure montrant en coupe axiale le trou de perçage de la lentille de présentation de la figure 1 et une partie inférieure montrant, dans un plan transversal, l'image d'ensemble en ombre projetée de ce trou de perçage sur les moyens d'acquisition, dont certains points sont utilisés pour le calcul de la position de ce trou de perçage selon une première méthode ;
  • la figure 3 est une vue mixte analogue à la figure 2 sur laquelle on a rajouté la position d'un point supplémentaire pour le calcul de la position de ce trou de perçage selon une variante de la première méthode ;
  • la figure 4 est une vue en plan transversal analogue à la partie inférieure des figures 2 et 3 de l'image d'ensemble projetée du trou de perçage, montrant les points utiles au calcul de la position du trou de centrage selon une deuxième méthode ;
  • la figure 5 est une vue analogue à la figure 4, montrant les points utiles
In the accompanying drawings:
  • the figure 1 is a schematic view in axial section of a device for acquiring the position of the drilling holes of a presentation lens according to a first embodiment according to the invention;
  • the figure 2 is a mixed view, with an upper part showing in axial section the drilling hole of the presentation lens of the figure 1 and a lower portion showing, in a transverse plane, the projected shadow overall image of this piercing hole on the acquisition means, some points of which are used to calculate the position of this piercing hole according to a first method;
  • the figure 3 is a mixed view analogous to the figure 2 on which was added the position of an additional point for the calculation of the position of this drilling hole according to a variant of the first method;
  • the figure 4 is a transverse plane view similar to the lower part of the Figures 2 and 3 the projected overall image of the drilling hole, showing the points useful for calculating the position of the centering hole according to a second method;
  • the figure 5 is a view similar to the figure 4 , showing useful points

au calcul de la position du trou de centrage selon une variante de la deuxième méthode ;

  • la figure 6 est une vue schématique en coupe axiale d'un dispositif d'acquisition de la position des trous de perçage d'une lentille de lunettes de présentation selon un deuxième mode d'exécution ;
  • la figure 7 est une vue montrant, dans un plan transversal, l'image d'ensemble du trou de perçage de la lentille de présentation de la figure 6 perçue par les moyens d'acquisition du dispositif de la figure 6, dont certains points sont utilisés pour le calcul de la position de ce trou de perçage.
calculating the position of the centering hole according to a variant of the second method;
  • the figure 6 is a schematic view in axial section of a device for acquiring the position of the drilling holes of a spectacle lens according to a second embodiment;
  • the figure 7 is a view showing, in a transverse plane, the overall image of the drilling hole of the presentation lens of the figure 6 perceived by the means of acquisition of the device of the figure 6 , some points of which are used for calculating the position of this drilling hole.

Sur la figure 1, on a représenté un dispositif d'acquisition de la position des trous de perçage d'une lentille de lunettes de présentation. Ce dispositif d'acquisition comporte des moyens d'éclairage 51, 52, un support 55 de la lentille de présentation 100 et des moyens de capture 53 d'une image.On the figure 1 there is shown a device for acquiring the position of the drilling holes of a spectacle lens. This acquisition device comprises lighting means 51, 52, a support 55 of the presentation lens 100 and capture means 53 of an image.

Les moyens d'éclairage 51, 52 comportent une lentille de collimation 52 d'axe A52 et une source lumineuse 51 placée au foyer de la lentille de collimation 52. Après leur passage par la lentille de collimation 52, les rayons lumineux sont ainsi dirigés parallèlement à l'axe A52 de la lentille de collimation 52. La direction d'éclairement D51 est ainsi parallèle à la direction de l'axe A52.The lighting means 51, 52 comprise a collimation lens 52 of axis A52 and a light source 51 placed at the focus of the collimation lens 52. After passing through the collimation lens 52, the light rays are thus directed in parallel. to the axis A52 of the collimation lens 52. The illumination direction D51 is thus parallel to the direction of the axis A52.

Les moyens de capture 53 comportent une caméra 53 pourvue d'un objectif ayant un axe optique A53. Le dispositif d'acquisition de la position des trous de perçage comporte un axe optique défini comme étant l'axe A52 de la lentille de collimation 52 et l'axe A53 de l'objectif des moyens d'acquisition 53. La direction de capture d'image par les moyens d'acquisition 53 est confondue avec la direction d'éclairement. D51.The capture means 53 comprise a camera 53 provided with a lens having an optical axis A53. The device for acquiring the position of the drilling holes comprises an optical axis defined as the axis A52 of the collimation lens 52 and the axis A53 of the objective of the acquisition means 53. image by the acquisition means 53 is confused with the direction of illumination. D51.

Le support 55 de la lentille 100 de présentation est conçu de telle sorte que la lentille de présentation 100 s'étend dans le plan transversal à la direction d'éclairement D51. La lentille 100 est alors éclairée de front. Le support 55 de la lentille 100 se présente ici sous la forme d'un plateau transparent en verre perpendiculaire à la direction d'éclairement D51, de sorte que ni la face avant 98 ni la face arrière 99 ne soient masquées visuellement par le support 55.The support 55 of the presentation lens 100 is designed such that the presentation lens 100 extends in the plane transverse to the direction of illumination D51. The lens 100 is then illuminated in front. The support 55 of the lens 100 is here in the form of a transparent glass plate perpendicular to the direction of illumination D51, so that neither the front face 98 nor the rear face 99 are visually masked by the support 55 .

Cette lentille 100 de présentation comporte deux trous de perçage, un premier trou de perçage 110 situé du côté de la zone temporale et un autre trou de perçage (non représenté) situé du côté de la zone nasale de la lentille. La suite de la description détaille seulement l'acquisition du trou de perçage 110, mais cette description s'applique également à l'acquisition de l'autre trou de perçage. Comme représenté sur la partie supérieure de la figure 2, le trou de perçage 110 comporte, d'une part, une embouchure 111 qui débouche sur la face avant 98 de la lentille 100 et, d'autre part, une embouchure 112 qui débouche sur la face arrière 99 de la lentille 100. On définit également le centre C2 du trou de perçage 110 lui-même qui est également la moyenne des positions des centres C1, C3 des embouchures avant 111 et arrière 112.This presentation lens 100 has two piercing holes, a first piercing hole 110 located on the side of the temporal area and another piercing hole (not shown) located on the side of the nasal area of the lens. The following description only details the acquisition of the drilling hole 110, but this description also applies to the acquisition of the other drilling hole. As shown on the upper part of the figure 2 , the drilling hole 110 comprises, on the one hand, a mouthpiece 111 which opens on the front face 98 of the lens 100 and, secondly, a mouth 112 which opens on the rear face 99 of the lens 100. It also defines the center C2 of the drilling hole 110 itself which is also the average of the positions of the centers C1, C3 of the front mouthpieces 111 and rear 112.

Les moyens de capture 53 d'image sont également en liaison avec des moyens de traitement 54 de cette image. Comme expliqué ci-après, les moyens de traitement 54 de cette image sont conçus pour déduire de l'image acquise la position du centre C1 de l'embouchure 111 du trou de perçage 110 en face avant 98. Bien entendu, en variante comme expliqué ci-après, les moyens de traitement 54 peuvent également être conçus pour déduire de l'image acquise, la position du centre de l'embouchure 112 du trou de perçage 110 en face arrière 99.The image capture means 53 are also connected with processing means 54 of this image. As explained below, the processing means 54 of this image are designed to deduce from the acquired image the position of the center C1 of the mouth 111 of the drilling hole 110 in the front face 98. Of course, alternatively as explained hereinafter, the processing means 54 may also be designed to deduce from the acquired image, the position of the center of the mouth 112 of the drilling hole 110 on the rear face 99.

Selon un mode d'exécution principal de l'invention représenté sur les figures 1 à 5, le dispositif d'acquisition de la position des trous de perçage est conçu de telle sorte que la caméra 53 voit la lentille en vision projetée. Dans ce mode d'exécution principal les moyens d'éclairage 51, 52 et la caméra 53 sont répartis de part et d'autre du support de la lentille.According to a main embodiment of the invention shown in the Figures 1 to 5 , the drilling hole position acquisition device is designed such that the camera 53 sees the lens in projected vision. In this main embodiment, the lighting means 51, 52 and the camera 53 are distributed on either side of the support of the lens.

Comme représenté sur la figure 1, il est prévu de disposer une plaque en verre dépoli 50 entre la caméra 53 et le support 55 de la lentille. La plaque en verre dépoli 50 est centrée sur l'axe A52 de la lentille de collimation 52 et s'étend dans le plan transversal à cet axe A52. La plaque en verre dépoli 50 permet de former l'ombre de la lentille 100 et en particulier l'ombre du trou de perçage 110 de la lentille.As shown on the figure 1 , it is intended to have a frosted glass plate 50 between the camera 53 and the support 55 of the lens. The frosted glass plate 50 is centered on the axis A52 of the collimating lens 52 and extends in the plane transverse to this axis A52. The frosted glass plate 50 makes it possible to form the shadow of the lens 100 and in particular the shadow of the drilling hole 110 of the lens.

L'image de l'ombre du trou de perçage 110 de la lentille est acquise par le dispositif d'acquisition 53. Cette image représentée sur la partie inférieure de la figure 2 fait apparaître une figure d'ensemble 90 du trou de perçage.The image of the shadow of the drilling hole 110 of the lens is acquired by the acquisition device 53. This image represented on the lower part of the figure 2 shows an overall figure 90 of the drilling hole.

La figure d'ensemble 90 du trou de perçage comporte deux anneaux 40, 41 de forme sensiblement ovale qui s'entrecroisent. Le premier anneau 40 est l'ombre projetée de l'embouchure 111 en face avant du trou de perçage 110, et le deuxième anneau 41 est l'ombre projetée de l'embouchure 112 en face arrière. La portion constituée par la superposition des deux anneaux 40, 41 est claire. En effet, cette portion est le résultat de la projection d'une portion du trou de perçage qui est traversée par les rayons lumineux sans rencontrer la matière de la lentille. A l'inverse les portions non superposées des deux anneaux sont sombres du fait de la réflexion ou de la diffusion de ces rayons par la paroi latérale du trou de perçage.The overall figure 90 of the piercing hole comprises two rings 40, 41 of substantially oval shape which intersect each other. The first ring 40 is the projected shadow of the mouthpiece 111 on the front face of the drilling hole 110, and the second ring 41 is the projected shadow of the mouth 112 on the rear face. The portion constituted by the superposition of the two rings 40, 41 is clear. Indeed, this portion is the result of the projection of a portion of the piercing hole which is traversed by the light rays without meeting the material of the lens. Conversely, the non-superposed portions of the two rings are dark due to the reflection or diffusion of these rays by the side wall of the drilling hole.

On définit plusieurs points de cette figure d'ensemble 90 du trou de perçage 110 ainsi que les points correspondants du trou de perçage de la lentille. Le point 102 du trou de perçage 110 résulte de l'intersection entre, d'une part, un plan de coupe de la lentille passant par un axe parallèle à la direction d'éclairage D51 et l'axe A110 du trou de perçage 110 et, d'autre part, la partie du contour de l'embouchure 111 en face avant 98 de la lentille, située vers l'extérieur de la lentille. De même le point 101 est défini comme étant le point d'intersection du plan de coupe de la lentille avec la partie du contour de l'embouchure 111 en face avant 98 de la lentille, située vers l'intérieur de la lentille. Les points 105 et 104 sont définis comme étant les points d'intersection du plan de coupe de la lentille avec la partie de l'embouchure 112 en face arrière 99 de la lentille, située respectivement vers l'extérieur et vers l'intérieur de la lentille.Several points of this overall figure 90 of the drilling hole 110 and the corresponding points of the piercing hole of the lens are defined. The point 102 of the drilling hole 110 results from the intersection between, on the one hand, a cutting plane of the lens passing through an axis parallel to the illumination direction D51 and the axis A110 of the drilling hole 110 and on the other hand, the part of the contour of the mouth 111 in the front face 98 of the lens, located towards the outside of the lens. Similarly point 101 is defined as the point of intersection of the cutting plane of the lens with the portion of the contour of the mouth 111 of the front face 98 of the lens, located towards the inside of the lens. The points 105 and 104 are defined as the points of intersection of the cutting plane of the lens with the portion of the mouth 99 on the rear face 99 of the lens, located respectively outwardly and inwardly of the lens. lens.

Comme illustré sur la partie inférieure de la figure 2, on définit également une droite D1 qui est la droite passant par le centre des deux anneaux 40, 41. Cette droite D1 correspond approximativement à la trace sur l'écran 50 du plan passant par l'axe A52 de la lentille 100 et le centre C2 du trou 110.As illustrated on the lower part of the figure 2 , we also define a line D1 which is the straight line passing through the center of the two rings 40, 41. This line D1 corresponds approximately to the trace on the screen 50 of the plane passing through the axis A52 of the lens 100 and the center C2 of hole 110.

Les points M1 et M2 sont les points d'intersection de la droite D1 avec respectivement les parties droite et gauche de l'anneau 40 tel que représenté sur la figure 2B. Ces points M1 et M2 sont les points image des points 101 et 102. De même, les points M4 et M5 sont les points d'intersection de la droite D1 avec respectivement les parties droite et gauche du deuxième anneau 41 tel que représenté sur la figure 2B. Ces points M4 et M5 sont les points image des points 104 et 105. On note XM1, XM2, XM4, XM5 les positions des points M1,M2,M4,M5 sur la droite D1.The points M1 and M2 are the points of intersection of the straight line D1 with respectively the right and left parts of the ring 40 as shown in FIG. Figure 2B . These points M1 and M2 are the image points of the points 101 and 102. Similarly, the points M4 and M5 are the points of intersection of the line D1 with respectively the right and left parts of the second ring 41 as represented on FIG. Figure 2B . These points M4 and M5 are the image points of the points 104 and 105. XM1, XM2, XM4, XM5 denote the positions of the points M1, M2, M4, M5 on the line D1.

Le point MC1 est le point image sur la droite D1 du centre C1, en projection dans le plan de capture d'image, dont on cherche à calculer la position XMC1. Une fois la position XMC1 du centre C1 déterminée on calcule sa distance par rapport à un point de référence du bord de la lentille.The point MC1 is the image point on the line D1 of the center C1, in projection in the image capture plane, whose position XMC1 is to be calculated. Once the position XMC1 of the center C1 is determined we calculate its distance from a reference point of the edge of the lens.

Selon une première méthode d'exécution du mode de réalisation principal, illustré par la figure 2, il est prévu de déterminer la position XM90 du centre M90 de la figure d'ensemble 90 du trou de perçage et d'en déduire la position du centre C1 de l'embouchure 111 en face avant 98 de ce trou de perçage 110.According to a first method of execution of the main embodiment, illustrated by the figure 2 , it is intended to determine the position XM90 of the center M90 of the overall figure 90 of the drilling hole and to deduce the position of the center C1 of the mouthpiece 111 on the front face 98 of this drilling hole 110.

Le système de traitement 54 comporte une interface utilisateur et un écran d'affichage (non représenté) qui affiche l'image d'ensemble 90 du trou de perçage 110. Le système de traitement 54 est également conçu pour permettre l'affichage sur l'écran d'un anneau de repérage 60. Cet anneau a des dimensions qui peuvent être modifiées par l'opérateur. Le système de traitement 54 est également conçu de telle sorte que cet anneau de repérage 60 soit déplaçable par l'opérateur sur l'écran d'affichage. Le déplacement de l'anneau de repérage 60 ainsi que les réglages de ses dimensions peuvent être obtenus à l'aide d'outils de commande intégrés dans l'interface-utilisateur du système de traitement 54.The processing system 54 includes a user interface and a display screen (not shown) which displays the overall image 90 of the drilling hole 110. The processing system 54 is also designed to allow display on the display. 60. This ring has dimensions that can be modified by the operator. The treatment system 54 is also designed such that this locating ring 60 is movable by the operator on the display screen. The displacement of the registration ring 60 as well as the adjustments of its dimensions can be obtained using control tools integrated in the user interface of the processing system 54.

L'opérateur dimensionne et centre l'anneau de repérage 60 sur l'image d'ensemble 90 du trou de perçage 110. Pour le centrage de l'anneau de repérage 60 sur la figure d'ensemble 90, l'opérateur peut, par exemple comme illustré par la figure 2, superposer l'anneau de repérage 60 sur la figure d'ensemble 90 de telle sorte que l'anneau de repérage 60 passe par les milieux des segments M1 M4 et M2M5. L'opticien peut alternativement prévoir d'ajuster la position et la dimension de l'anneau de repérage 60 pour le faire passer par les points M1 et M5 bordant la partie claire de la figure d'ensemble 90. Il peut encore ajuster la position et la dimension de l'anneau de repérage 60 pour le faire passer par les points M2 et M4 bordant la partie sombre de la figure d'ensemble 90.The operator sizes and centers the registration ring 60 on the overall image 90 of the drilling hole 110. For the centering of the registration ring 60 in the overall figure 90, the operator can, by example as illustrated by the figure 2 , superimpose the registration ring 60 in the overall figure 90 so that the locating ring 60 passes through the middle of the segments M1 M4 and M2M5. The optician may alternatively provide for adjusting the position and the dimension of the registration ring 60 to make it pass through the points M1 and M5 bordering the clear part of the overall figure 90. It can further adjust the position and the dimension of the registration ring 60 to make it pass through the points M2 and M4 bordering the dark part of the overall figure 90.

Une fois l'anneau centré sur l'image de l'ombre du trou de perçage, le système de traitement 54 détecte automatiquement et mémorise la position du centre M60 de l'anneau de repérage 60. La position du centre M60 est associée par les moyens de traitement 54 à la position XM90 du centre M90 de la figure d'ensemble 90.Once the ring is centered on the image of the shadow of the drilling hole, the processing system 54 automatically detects and stores the position of the center M60 of the registration ring 60. The position of the center M60 is associated by the processing means 54 at the XM90 position of the center M90 of the overall figure 90.

En variante, on peut prévoir que l'opérateur pointe sur l'écran, avec un outil intégré à l'interface utilisateur tel qu'une souris ou un stylet, le centre M60 de l'anneau de repérage 60 qui est alors mémorisé:Alternatively, it can be provided that the operator points on the screen, with a tool integrated in the user interface such as a mouse or a stylus, the center M60 of the registration ring 60 which is then stored:

Le système de traitement 54 calcule la position du centre C1 de l'embouchure du trou de perçage 110 débouchant sur ladite face à partir de la position du centre M90 de ladite figure d'ensemble 90 et en fonction de l'angle d'inclinaison ALPHA du trou de perçage 110 et de l'épaisseur E de la lentille. L'angle d'inclinaison ALPHA est l'angle formé entre la direction moyenne d'éclairage D51 et l'axe A110 du trou de perçage. L'angle ALPHA et l'épaisseur E de la lentille peuvent être mesurés par palpage de la lentille, par exemple, ou être saisis manuellement par l'opérateur à l'aide d'une interface de saisie à l'écran prévue à cet effet. L'épaisseur considérée de la lentille peut être l'épaisseur locale de la lentille autour du trou de perçage ou l'épaisseur moyenne de la lentille.The processing system 54 calculates the position of the center C1 of the mouth of the drilling hole 110 opening on said face from the position of the center M90 of said overall figure 90 and as a function of the angle of inclination ALPHA the drilling hole 110 and the thickness E of the lens. The angle of inclination ALPHA is the angle formed between the average direction of illumination D51 and the axis A110 of the drilling hole. The angle ALPHA and the thickness E of the lens can be measured by probing the lens, for example, or manually entered by the operator using an on-screen input interface provided for this purpose. . The considered thickness of the lens may be the local thickness of the lens around the piercing hole or the average thickness of the lens.

Le calcul de la position XMC1 du centre C1 est le suivant : XMC 1 = XM 90 - E / 2. sin ALPHA .

Figure imgb0001
The calculation of the position XMC1 of the center C1 is as follows: XMC 1 = XM 90 - E / 2. sin ALPHA .
Figure imgb0001

Le système de traitement 54 associe alors ladite position calculée à la position recherchée du centre C1 de l'embouchure du trou de perçage 110 débouchant sur la face avant 98 de la lentille 100.The processing system 54 then associates said calculated position with the desired position of the center C1 of the mouth of the drilling hole 110 opening on the front face 98 of the lens 100.

Bien entendu, si la position recherchée est la position XMC3 du centre C3 de l'embouchure en face arrière du trou de perçage, on a la relation : XMC 3 = XM 90 + E / 2. sin ALPHA .

Figure imgb0002
Of course, if the desired position is the XMC3 position of the center C3 of the mouth on the back of the drilling hole, we have the relation: XMC 3 = XM 90 + E / 2. sin ALPHA .
Figure imgb0002

Le calcul de la valeur du diamètre D du trou 110 dépend de la méthode de superposition de l'anneau de repérage 60 sur la figure d'ensemble 90 utilisée.The calculation of the value of the diameter D of the hole 110 depends on the method of superposition of the registration ring 60 in the overall figure 90 used.

Dans le cas où on superpose l'anneau de repérage 60 sur la figure d'ensemble 90 de telle sorte que l'anneau de repérage 60 passe par les milieux des segments M1M4 et M2M5, le diamètre D vaut : D = DA / cos ALPHA ,

Figure imgb0003
DA étant le diamètre de l'anneau de repérage 60.In the case where the registration ring 60 is superimposed on the overall figure 90 so that the registration ring 60 passes through the middle of the segments M1M4 and M2M5, the diameter D is: D = DA / cos ALPHA ,
Figure imgb0003
DA being the diameter of the registration ring 60.

Dans le cas où la position et la dimension de l'anneau de repérage 60 est ajustée pour le faire passer par les points M1 et M5 bordant la partie claire de la figure d'ensemble 90 : D = DA + E . sin ALPHA / cos ALPHA .

Figure imgb0004
In the case where the position and the dimension of the registration ring 60 is adjusted to make it pass through the points M1 and M5 bordering the clear part of the overall figure 90: D = DA + E . sin ALPHA / cos ALPHA .
Figure imgb0004

Dans le cas où la position et la dimension de l'anneau de repérage 60 est ajustée pour le faire passer par les points M2 et M4 bordant la partie sombre de la figure d'ensemble 90 : D = DA - E . sin ALPHA / cos ALPHA .

Figure imgb0005
In the case where the position and the dimension of the registration ring 60 is adjusted to make it pass through the points M2 and M4 bordering the dark part of the overall figure 90: D = DA - E . sin ALPHA / cos ALPHA .
Figure imgb0005

Selon une variante de ce premier mode de réalisation, la détection du centre M60 de l'anneau de repérage 60 est effectuée de manière automatique par le système de traitement 54, qui est alors conçu pour superposer (avec centrage et dimensionnement adéquats) automatiquement l'anneau de repérage 60 sur l'image d'ensemble 90 du trou de perçage 110 et en déduire ainsi la position et le diamètre du centre M60 de cet anneau.According to a variant of this first embodiment, the detection of the center M60 of the registration ring 60 is performed automatically by the processing system 54, which is then designed to superimpose (with proper centering and sizing) automatically the register ring 60 on the overall image 90 of the drilling hole 110 and thus deduce the position and the diameter of the center M60 of this ring.

Selon une variante de réalisation, illustrée par la figure 3, de la première méthode (figure 2), il est prévu d'améliorer la précision du calcul de la position XMC1 de la projection MC1 du centre C1, à partir de la position XM90 du centre M90 de la figure d'ensemble 90, en tenant compte des déviations prismatiques induites par la lentille de présentation 100 et donc de l'indice de cette lentille. L'indice de la lentille de présentation est alors différent de 1, et vaut ici, par exemple, 1,5.According to an alternative embodiment, illustrated by the figure 3 of the first method ( figure 2 ), it is planned to improve the accuracy of the calculation of the position XMC1 of the projection MC1 of the center C1, from the position XM90 of the center M90 of the overall figure 90, taking into account the prismatic deviations induced by the presentation lens 100 and therefore the index of this lens. The index of the presentation lens is then different from 1, and is worth, for example, 1.5.

Dans le cas où on superpose l'anneau de repérage 60 sur la figure d'ensemble 90 de telle sorte que l'anneau de repérage 60 passe par les milieux des segments M1M4 et M2M5 (exemple envisagé sur la figure 3), la position du centre C1 est donnée par l'équation suivante : XMC 1 = XM 90 - E . sin ALPHA / 2 - DC / 4

Figure imgb0006
avec DC = E . sin ALPHA - arcsin sin ALPHA / n / cos arcsin sin ALPHA / n .
Figure imgb0007
In the case where the registration ring 60 is superimposed on the overall figure 90 so that the registration ring 60 passes through the middle of the segments M1M4 and M2M5 (example envisaged on FIG. figure 3 ), the position of the center C1 is given by the following equation: XMC 1 = XM 90 - E . sin ALPHA / 2 - DC / 4
Figure imgb0006
with DC = E . sin ALPHA - arcsin sin ALPHA / not / cos arcsin sin ALPHA / not .
Figure imgb0007

De même, on améliore la précision du calcul du diamètre D du trou en tenant compte de l'indice de cette lentille. Le calcul de la valeur du diamètre D'du trou 110 dépend de la méthode de superposition de l'anneau de repérage 60 sur la figure d'ensemble 90 utilisée.Similarly, the accuracy of the calculation of the diameter D of the hole in taking into account the index of this lens. The calculation of the diameter value of the hole 110 depends on the method of superposition of the registration ring 60 in the overall figure 90 used.

Dans le cas où on superpose l'anneau de repérage 60 sur la figure d'ensemble 90 de telle sorte que l'anneau de repérage 60 passe par les milieux des segments M1M4 et M2M5, le diamètre D vaut : D = DA + DC / 2 / cos ALPHA ,

Figure imgb0008
DA étant le diamètre de l'anneau de repérage 60 et avec DC = E . sin ALPHA - arcsin sin ALPHA / n / cos arcsin sin ALPHA / n .
Figure imgb0009
In the case where the registration ring 60 is superimposed on the overall figure 90 so that the registration ring 60 passes through the middle of the segments M1M4 and M2M5, the diameter D is: D = DA + DC / 2 / cos ALPHA ,
Figure imgb0008
DA being the diameter of the locating ring 60 and with DC = E . sin ALPHA - arcsin sin ALPHA / not / cos arcsin sin ALPHA / not .
Figure imgb0009

Selon une deuxième méthode d'exécution du mode de réalisation principal, illustré par la figure 4, on ne détermine pas la position du centre de la figure d'ensemble du trou de perçage, mais on acquiert les positions de points M1 et M2. Les points M1, M2, comme rappelé ci-dessus, sont les intersections de la droite D1 avec les parties droite et gauche de l'anneau 40.According to a second method of execution of the main embodiment, illustrated by the figure 4 the position of the center of the overall figure of the drilling hole is not determined, but the positions of points M1 and M2 are acquired. The points M1, M2, as recalled above, are the intersections of the line D1 with the right and left parts of the ring 40.

L'acquisition des positions des points M1 et M2 peut être réalisée par un algorithme de détection automatique de la position de ces points. Cet algorithme peut être conçu de manière à prendre, d'une part, la position la plus à gauche du point le plus sombre de la figure d'ensemble 90 pour obtenir la position XM2 du point M2 et, d'autre part la position du point le plus à droite de la portion claire de la figure d'ensemble 90 pour obtenir la position XM1 du point M1. On peut également prévoir, en variante, que la figure d'ensemble soit affichée sur un écran et que l'opérateur pointe sur l'écran les positions des points M1 et M2.The acquisition of the positions of the points M1 and M2 can be performed by an algorithm for automatically detecting the position of these points. This algorithm can be designed so as to take, on the one hand, the leftmost position of the darkest point of the overall figure 90 to obtain the position XM2 of the point M2 and, on the other hand, the position of the rightmost point of the clear portion of the overall figure 90 to obtain the position XM1 of the point M1. It is also possible, alternatively, that the overall figure is displayed on a screen and that the operator points on the screen the positions of the points M1 and M2.

On détermine alors le centre X12 du segment M1, M2. Les moyens de traitement 54 associent alors la position du centre X12 du segment M1, M2 à la position XMC1 du centre C1 de l'embouchure du trou de perçage 110 débouchant sur la face avant. On comprend que, dans cet exemple, il n'est pas tenu compte du décalage du point M2 dû aux effets prismatiques de la lentille 110, ce qui constitue une approximation.The center X12 of the segment M1, M2 is then determined. The processing means 54 then associate the position of the center X12 of the segment M1, M2 to the position XMC1 of the center C1 of the mouth of the drilling hole 110 opening on the front face. It is understood that, in this example, the offset of the point M2 due to the prismatic effects of the lens 110 is not taken into account, which is an approximation.

On calcule aussi le diamètre D corrigé du trou 110 à l'aide de la formule suivante : D = D 40 / cos ALPHA ,

Figure imgb0010
avec D40 = abs(XM1-XM2),
la fonction "abs" renvoyant la valeur absolue.The corrected diameter D of the hole 110 is also calculated using the following formula: D = D 40 / cos ALPHA ,
Figure imgb0010
with D40 = abs (XM1-XM2),
the "abs" function returning the absolute value.

Selon une variante de réalisation, illustrée par la figure 5, de la deuxième méthode (figure 4), il est prévu d'améliorer la précision du calcul de la position XMC1 du centre C1, à partir de la position des points M1 et M2 de la figure d'ensemble 90, ainsi que la précision du calcul du diamètre D du trou 110, en tenant compte de l'indice n de la lentille de présentation 100. L'indice n de la lentille de présentation est alors différent de 1, et vaut ici, par exemple n=1,5.According to an alternative embodiment, illustrated by the figure 5 , of the second method ( figure 4 ), it is planned to improve the accuracy of the calculation of the position XMC1 of the center C1, from the position of the points M1 and M2 of the figure 90, as well as the precision of the calculation of the diameter D of the hole 110, taking into account the index n of the presentation lens 100. The index n of the presentation lens is then different from 1, and here, for example n = 1.5.

Les points M1, M4 et M5 n'ont pas subi de décalage lors de la projection des points 101, 104 et 105 dans le plan de capture d'image, les rayons émergeant de ces points n'ayant pas été déviés par la lentille de présentation 100. À l'inverse, lorsqu'un rayon passe par le point 102, il traverse ensuite la lentille en étant alors dévié d'une certaine distance qui dépend de l'angle ALPHA, de l'indice n de la lentille et de l'épaisseur moyenne E de la lentille. Le rayon aboutit au point M2. Ainsi, comme représenté sur la figure 3, la distance projetée sur la droite D1 entre le point 102 et le point 105 est en réalité égale à la distance entre un point M3 et le point M5. La position du point M3 correspond à la position théorique de la projection sur la droite D1 du point 102 suivant l'axe optique du dispositif optique, sans déviation prismatique par la lentille de présentation 100.The points M1, M4 and M5 were not shifted during the projection of the points 101, 104 and 105 in the image capture plane, the rays emerging from these points having not been deviated by the lens of On the other hand, when a ray passes through point 102, it then passes through the lens and is then deviated by a certain distance which depends on the angle ALPHA, the index n of the lens and the the average thickness E of the lens. The ray ends at the point M2. So, as represented on the figure 3 , the projected distance on the line D1 between the point 102 and the point 105 is actually equal to the distance between a point M3 and the point M5. The position of the point M3 corresponds to the theoretical position of the projection on the line D1 of the point 102 along the optical axis of the optical device, without prismatic deflection by the presentation lens 100.

On considère ainsi dans cette variante de réalisation que, en projection sur la droite D1, la position X13 du centre du segment défini par les deux points M1,M3 correspond à la position corrigée, compte-tenu des déviations prismatiques, du centre C1 de l'embouchure 111 du trou de perçage 110.It is thus considered in this variant embodiment that, in projection on the straight line D1, the position X13 of the center of the segment defined by the two points M1, M3 corresponds to the corrected position, in view of the prismatic deviations, from the center C1 of the mouthpiece 111 of the drilling hole 110.

La distance DM2M3 entre les points M2 et M3 est la suivante : DM 2 M 3 = E . sin ALPHA - arcsin sin ALPHA / n / cos arcsin sin ALPHA / n

Figure imgb0011
The distance DM2M3 between points M2 and M3 is as follows: DM 2 M 3 = E . sin ALPHA - arcsin sin ALPHA / not / cos arcsin sin ALPHA / not
Figure imgb0011

On déduit alors de la position acquise XM2 du point M2 et de la distance DM2M3 calculée, la position XM3 de M3.We then deduce from the acquired position XM2 of the point M2 and the calculated distance DM2M3, the position XM3 of M3.

On obtient alors la position XMC1 du centre C1 souhaité par l'équation XMC 1 = XM 1 + XM 3 / 2

Figure imgb0012
We then obtain the position XMC1 of the center C1 desired by the equation XMC 1 = XM 1 + XM 3 / 2
Figure imgb0012

On calcule aussi le diamètre D corrigé du trou 110 à l'aide de la formule suivante : D = abs(XM1-XM3) / cos(ALPHA).The corrected diameter D of the hole 110 is also calculated using the following formula: D = abs (XM1-XM3) / cos (ALPHA).

En variante, on peut également déterminer aisément la position XMC3 de la projection MC3 du centre C3 de l'embouchure en face arrière à l'aide des points M4 et M5 de l'anneau 41 qui n'a pas été déformé par la lentille. On en déduit alors la position XMC1 de la projection MC1 du centre C1 et la valeur corrigée du diamètre D du trou 110 par les équations suivantes : XMC 1 = XMC 3 - E . sin ALPHA .

Figure imgb0013
D = abs XM 4 - XM 5 / cos ALPHA
Figure imgb0014
Alternatively, one can also easily determine the position XMC3 of the projection MC3 of the center C3 of the mouth on the back side with the points M4 and M5 of the ring 41 which has not been deformed by the lens. We then deduce the position XMC1 of the projection MC1 of the center C1 and the corrected value of the diameter D of the hole 110 by the following equations: XMC 1 = XMC 3 - E . sin ALPHA .
Figure imgb0013
D = abs XM 4 - XM 5 / cos ALPHA
Figure imgb0014

Selon un autre mode de réalisation illustré par les figures 6 et 7, la lentille de présentation 100 est vue par la caméra 53 en vision directe. La caméra 53 est agencée de telle sorte que l'axe optique de son objectif soit parallèle avec la direction d'éclairement et que le centre optique de son objectif soit situé au foyer 51 de la lentille de collimation 52. Un ensemble de rétro-éclairage, composé d'une matrice de sources lumineuses telles que des LEDs 56 et d'une plaque de diffusion 57, est disposé du côté de la plaque support 55 opposé à la lentille 100.According to another embodiment illustrated by the figures 6 and 7 , the presentation lens 100 is seen by the camera 53 in direct vision. The camera 53 is arranged in such a way that the optical axis of its objective is parallel with the direction of illumination and that the optical center of its lens is located at the focus 51 of the collimation lens 52. A backlight assembly, consisting of a matrix of light sources such as LEDs 56 and a plate of diffusion 57, is disposed on the side of the support plate 55 opposite to the lens 100.

La caméra 53 voit alors directement, c'est-à-dire sans écran de projection intermédiaire, la lentille de présentation 100 en face avant.The camera 53 then sees directly, that is to say without intermediate projection screen, the presentation lens 100 on the front face.

Comme précédemment, l'objectif de la caméra acquiert l'image de la lentille. L'image d'ensemble du trou de perçage qu'acquière l'objectif est représentée schématiquement sur la figure 7.As before, the lens of the camera acquires the image of the lens. The overall image of the piercing hole that the lens is acquired is schematically represented on the figure 7 .

L'anneau 41, résultant de la vue en projection de l'embouchure arrière du trou de perçage, s'aplatit du fait de la déviation optique des rayons lumineux issus des parties du contour de l'embouchure en face arrière situées du côté intérieur de la lentille.The ring 41, resulting from the projection view of the rear mouth of the drilling hole, flattens due to the optical deviation of the light rays from the portions of the contour of the mouth on the rear face located on the inner side of the hole. The lens.

Les différents modes de réalisation décrits précédemment (figures 2 à 5) mis en oeuvre en vision projetée pour le calcul de la position de l'embouchure en face avant ou arrière du trou de perçage peuvent être mis en oeuvre en vision directe en étant adaptés au nouvel agencement des points M1, M2, M4 et M5 tels que représentés sur la figure 7.The various embodiments described above ( Figures 2 to 5 ) implemented in projected vision for calculating the position of the mouthpiece on the front or rear face of the drilling hole can be implemented in direct vision by being adapted to the new arrangement of the points M1, M2, M4 and M5 such that represented on the figure 7 .

De manière plus générale, la position exacte XMC1 du centre de l'embouchure en face avant est aisément obtenue puisqu'il n'y a pas de déviation des rayons lumineux par la lentille. XMC 1 = XM 2 + XM 1 / 2

Figure imgb0015
More generally, the exact position XMC1 of the center of the mouth on the front face is easily obtained since there is no deviation of light rays by the lens. XMC 1 = XM 2 + XM 1 / 2
Figure imgb0015

Le diamètre D41 = abs (XM4 - XM5) de l'anneau 41 suivant l'axe X est en revanche plus petit que le diamètre D40 = abs(XM1 - XM2) en raison de la déformation due aux déviations prismatiques générées par la lentille. Cette déformation peut être corrigée de manière analogue à ce qui a été décrit précédemment. Mais il est plus commode de lire directement le diamètre D40 de l'anneau 40 et de lui appliquer la correction géométrique de projection sous l'angle ALPHA. On calcule alors le diamètre corrigé du trou 110 : D = D 40 / cos ALPHA , avec D 40 = abs XM 1 - XM 2

Figure imgb0016
The diameter D41 = abs (XM4 - XM5) of the ring 41 along the X axis is, on the other hand, smaller than the diameter D40 = abs (XM1 - XM2) due to the deformation due to the prismatic deviations generated by the lens. This deformation can be corrected in a manner similar to that described above. But it is more convenient to directly read the diameter D40 of the ring 40 and to apply to it the geometric projection correction under the angle ALPHA. The corrected diameter of the hole 110 is then calculated: D = D 40 / cos ALPHA , with 40 = abs XM 1 - XM 2
Figure imgb0016

En face arrière, il faut par contre tenir compte de la déviation des rayons par la lentille 110. La position XMC3 du centre C3 de l'embouchure en face arrière est donnée par : XMC 3 = XM 2 + XM 1 / 2 + abs XM 5 - XM 2

Figure imgb0017
On the rear face, however, the deflection of the rays by the lens 110 must be taken into account. The position XMC3 of the center C3 of the mouth on the rear face is given by: XMC 3 = XM 2 + XM 1 / 2 + abs XM 5 - XM 2
Figure imgb0017

Selon un autre mode de réalisation (non illustré), il est prévu d'améliorer encore la précision du calcul de la position du centre de l'embouchure de la face avant du trou de perçage en prenant en compte au moins une caractéristique de la lentille correctrice à percer. Ce mode de réalisation peut également être appliqué à la face arrière.According to another embodiment (not illustrated), it is intended to further improve the accuracy of the calculation of the position of the center of the mouth of the front face of the drilling hole by taking into account at least one characteristic of corrective lens to pierce. This embodiment can also be applied to the rear face.

On calcule la position du centre de l'embouchure en face avant du trou de perçage selon l'un des modes de réalisation précédents qui tient compte dans le calcul de la position du trou de perçage, de l'angle ALPHA formé entre la direction moyenne d'éclairage D51 et l'axe A110 du trou de perçage.The position of the center of the mouthpiece on the front face of the drilling hole is calculated according to one of the preceding embodiments which takes into account, in the calculation of the position of the drilling hole, the angle ALPHA formed between the mean direction D51 and the A110 axis of the drilling hole.

On acquiert également l'angle formé entre un axe de la lentille correctrice et la normale à la face de la lentille correctrice à la position déterminée du trou de perçage à réaliser. Puis on corrige la position du trou de perçage à réaliser sur la lentille correctrice en fonction de la différence de valeur entre ledit angle et l'angle ALPHA entre la direction moyenne d'éclairage D51 et l'axe A110 du trou de perçage.The angle formed between an axis of the corrective lens and the normal to the face of the corrective lens is also acquired at the determined position of the drilling hole to be produced. Then the position of the drilling hole to be made on the corrective lens is corrected according to the difference in value between said angle and the angle ALPHA between the average illumination direction D51 and the axis A110 of the drilling hole.

Dans les modes de réalisation décrits ci-dessus pour lesquels il est prévu de calculer la position XMC1 du centre de l'embouchure en face avant de la lentille, il est possible d'appliquer une opération, qui consiste à calculer non pas la distance en projection sur la droite D1 entre le bord de la lentille et le centre C1, mais la distance entre le bord de la lentille et le centre du trou suivant la surface de la lentille. C'est en effet la détermination de la distance suivant la surface de la lentille qui permet de réaliser un perçage correct et donc un montage correct de la lentille sur la monture.In the embodiments described above for which it is intended to calculate the position XMC1 of the center of the mouth on the front face of the lens, it is possible to apply an operation, which consists in calculating not the distance in projection on the line D1 between the edge of the lens and the center C1, but the distance between the edge of the lens and the center of the hole following the surface of the lens. It is in fact the determination of the distance along the surface of the lens which makes it possible to perform a correct drilling and therefore a correct mounting of the lens on the frame.

La mesure de cette distance suivant la surface de la lentille est réalisée, de manière connue en soi, à partir de la position du centre de l'embouchure du trou de perçage déterminée suivant l'un des modes de réalisation décrits ci-dessus, de la position XMB du point de référence du bord de la lentille dans le plan image et à partir de la valeur de la base de la lentille.The measurement of this distance along the surface of the lens is carried out, in a manner known per se, from the position of the center of the mouth of the drilling hole determined according to one of the embodiments described above, of the XMB position of the reference point of the edge of the lens in the image plane and from the value of the base of the lens.

Le calcul, en première approximation, de la distance suivant la surface DSURFC1 du centre C1 par rapport au bord de la lentille, est le suivant : DSURFC 1 = abs XMC 1 - XMB / cos ALPHA ,

Figure imgb0018
avec
XMB étant la position en projection sur la droite D1 d'un point de référence du bord de la lentille, ALPHA = R . B / n - 1 ,
Figure imgb0019
The calculation, as a first approximation, of the distance following the surface DSURFC1 from the center C1 with respect to the edge of the lens, is as follows: DSURFC 1 = abs XMC 1 - XMB / cos ALPHA ,
Figure imgb0018
with
XMB being the position in projection on the line D1 of a point of reference of the edge of the lens, ALPHA = R . B / not - 1 ,
Figure imgb0019

R étant la distance, projetée sur la droite D1, du centre C1 au centre géométrique du contour de la lentille (obtenu par traitement d'image), B étant la base de la lentille, et n étant l'indice de la lentille.Where R is the distance, projected on the line D1, from the center C1 to the geometric center of the contour of the lens (obtained by image processing), B being the base of the lens, and n being the index of the lens.

La base de la lentille peut être saisie manuellement par l'opérateur à l'aide d'une interface de saisie à l'écran, ou obtenue, par exemple, par un sphéromètre.The base of the lens can be entered manually by the operator using an on-screen input interface, or obtained, for example, by a spherometer.

On peut également calculer l'angle ALPHA à partir des positions XM1 et XM4 des points M1 et M4 avec l'équation suivante, dans la configuration de mesure définie précédemment en vision projetée (figures 3 à 5) : ALPHA = arcsin abs XM 1 - XM 4 / E = arcsin abs XM 5 - XM 3 / E .

Figure imgb0020
The angle ALPHA can also be calculated from the positions XM1 and XM4 of the points M1 and M4 with the following equation, in the measurement configuration previously defined in projected vision ( Figures 3 to 5 ): ALPHA = arcsin abs XM 1 - XM 4 / E = arcsin abs XM 5 - XM 3 / E .
Figure imgb0020

Dans le cas d'une mesure en vision directe (figure 7), l'angle ALPHA est de manière analogue calculé avec l'équation : ALPHA = arcsin abs XM 5 - XM 2 / E .

Figure imgb0021
In the case of a direct vision measurement ( figure 7 ), the angle ALPHA is analogously calculated with the equation: ALPHA = arcsin abs XM 5 - XM 2 / E .
Figure imgb0021

L'épaisseur E de la lentille peut être mesurée par exemple par palpage ou être fixée à une valeur moyenne d'environ 2 millimètres.The thickness E of the lens can be measured for example by probing or be fixed at an average value of about 2 millimeters.

La présente invention n'est nullement limitée aux modes de réalisation décrits et représentés, mais l'homme du métier saura y apporter toute variante conforme à son esprit.The present invention is not limited to the embodiments described and shown, but the skilled person will be able to make any variant within his mind.

Quel que soit le mode de réalisation décrit ci-dessus, on peut prévoir une variante de réalisation selon laquelle on inverse l'orientation de la lentille. C'est alors la face arrière de la lentille qui est orientée vers les moyens d'éclairage 51, 52. Les calculs sont réalisés de manière similaire en tenant compte du fait que l'angle ALPHA est inversé. Il en résulte qu'en vision projetée, sur la figure d'ensemble 90, ce n'est plus le point issu de la projection du point de l'embouchure avant situé vers l'extérieur qui est dévié, mais le point de l'embouchure avant situé vers l'intérieur de la lentille. De même en vision directe, ce n'est plus le point issu de la projection du point de l'embouchure arrière situé vers l'intérieur qui est dévié, mais le point de l'embouchure avant situé vers l'extérieur de la lentille.Whatever the embodiment described above, it is possible to provide an alternative embodiment in which the orientation of the lens is reversed. It is then the rear face of the lens which is oriented towards the lighting means 51, 52. The calculations are made in a similar manner taking into account the fact that the angle ALPHA is reversed. It follows that in projected vision, in the overall figure 90, it is no longer the point from the projection of the point of the outward mouth to the outside which is deflected, but the point of the front mouth located towards the inside of the lens. Similarly in direct vision, it is no longer the point from the projection of the point of the rear mouth located inward which is deflected, but the point of the front mouth located towards the outside of the lens.

Claims (12)

  1. A device for determining the position and/or a transverse dimension (D) of a drill hole (110) in a presentation lens (100) for rimless eyeglasses, the device comprising:
    · support means (55) for supporting the lens (100);
    · capture means (53) for capturing an overall image (90) of the drill hole (110) of the lens (100) in a lighting or image capture direction (D51, A52; A53); and
    · processor means (54) for processing said image when the lens is carried by the support means (55);
    the device being characterized in that the processor means (54) are suitable for determining, using said overall image (90) of the drill hole (110), the position of the center (C1) of the orifice of the drill hole (110) opening into one of the faces (98) of the lens (100) and/or the transverse dimension of said orifice of the drill hole (110) corresponding to the looked-for transverse dimension (D).
  2. A device according to claim 1, wherein the processor means (54) comprise:
    • means for acquiring the position of center (M90) of the overall image (90) of the drill hole (110) and
    • first correction means that are suitable for calculating the position of center (C1) of the orifice of the drill hole (110) in said face, using the position of said center (M90) of the overall image (90) and data representative of the angle of inclination (ALPHA) of the drill hole (110) formed between the lighting or image capture direction (D51, A52; A53) and the axis (A110) of the drill hole (110).
  3. A device according to the preceding claim, wherein, for the overall image (90) comprising first and second image rings (40, 41) that are formed on the capture means (53) by the images of the orifices (111, 112) of the drill hole (110) and that are superposed in part, one upon the other, said acquisition means comprise:
    • means for generating an identification-marking ring (60);
    • means for superposing said identification-marking ring (60) onto the overall image(90);
    • means for storing the position of center (M60) of said identification-marking ring (60); and
    • means for associating the stored position of center (M60) of said identification-marking ring (60) with the position of center (M90) of the overall image (90) of the drill hole (110).
  4. A device according to any preceding claim, wherein the processor means (54) comprise:
    • means for acquiring the transverse dimension (DA) of the acquired overall image (90) of the drill hole (110); and
    • first correction means that are suitable for calculating the transverse dimension (D) of the orifice of the drill hole (110) in said face, using the transverse dimension (DA) of the overall image (90) and data representative of the angle of inclination (ALPHA) of the drill hole (110) formed between the lighting or image capture direction (D51, A52; A53) and the axis (A110) of the drill hole (110).
  5. A device according to the preceding claim, wherein, for the overall image (90) comprising first and second image rings (40, 41) that are formed on the capture means (53) by the images of the orifices (111, 112) of the drill hole (110) and that are superposed in part, one upon the other, said acquisition means comprise:
    • means for generating an identification-marking ring (60);
    • means for superposing and sizing said identification-marking ring (60) on the overall image (90);
    • means for storing the transverse dimension (DA) of said identification-marking ring (60); and
    • means for associating the stored transverse dimension (DA) of said identification-marking ring (60) with the transverse dimension (DA) of the overall image (90) of the drill hole (110).
  6. A device according to any one of claims 2 to 5, wherein said first correction means also operate as a function of the refractive index (n) and/or of the thickness (E) of the presentation lens (100).
  7. A device according to claim 1, wherein, for the overall image (90) comprising first and second image rings (40, 41) that are formed on the capture means (53) by the images of the orifices (111, 112) of the drill hole (110) and that are superposed in part, one upon the other, the processor means (54) comprise:
    • means for acquiring the center (MC1) of the image ring (40) formed by the image of the orifice of the drill hole (110) opening into said face (98); and
    • means for defining, with or without correction, the position of center (C1) of the orifice of the drill hole (110) opening into said face (98), as a function of the position of center (MC1) of said image ring (40).
  8. A device according to the preceding claim, wherein said means for defining the position of the center (C1) of the orifice of the drill hole (110) opening into said face (98) calculate the first correction as a function of the refractive index (n) and/or of the thickness (E) of the presentation lens (100).
  9. A device according to any one of claims 1, 7, and 8, wherein, for the overall image (90) comprising first and second image rings (40, 41) that are formed on the capture means (53) by the images of the orifices (111, 112) of the drill hole (110), and that are superposed, one upon the other, the processor means (54) comprise:
    • means for acquiring the transverse dimension (D40) of the image ring (40) formed by the image of the orifice of the drill hole (110) opening into said face (98); and
    • first correction means that are suitable for using the transverse dimension (D40) of said image ring (40) and data representative of the angle of inclination (ALPHA) of the drill hole (110) formed between the lighting or image capture direction (D51, A52; A53) and the axis (A110) of the drill hole (110) to calculate the transverse dimension (D) of the orifice of the drill hole (110) opening into said face.
  10. A device according to claim 9, wherein said first correction means operate in addition as a function of the refractive index (n) and/or of the thickness (E) of the presentation lens (100).
  11. A device according to any preceding claim, wherein the processor means (54) are suitable for using the overall image (90) of the drill hole (110) to determine a relative distance in projection, between the center (C1) of the orifice of the drill hole (110) of the presentation lens (100) and the edge of the presentation lens (100), in projection along said lighting or image capture direction in an acquisition plane substantially perpendicular to said lighting or image capture direction.
  12. A device according to the preceding claim, wherein the processor means (54) comprise second correction means that are suitable for using the relative distance in projection and data representative of the angle of inclination (ALPHA) of the drill hole (110) formed between the lighting or image capture direction (D51, A52; A53) and the axis (A110) of the drill hole (110), to calculate a real relative distance between the center (C1) of the orifice and the edge of the presentation lens (100), considered in the plane perpendicular to the axis (A110) of the drill hole (110).
EP07872397A 2006-12-20 2007-12-19 Device for determining the position and/or transverse dimension of a drill hole in a lens for the presentation of spectacles with a rimless frame Active EP2091689B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0611124A FR2910644B1 (en) 2006-12-20 2006-12-20 DEVICE FOR DETERMINING THE POSITION AND / OR A CROSS-SECTIONAL DIMENSION OF A DRILLING HOLE OF A PRESENTATION LENS OF CIRCLE-FREE MOUNTED GLASSES
PCT/FR2007/002110 WO2008093015A2 (en) 2006-12-20 2007-12-19 Device for determining the position and/or transverse dimension of a drill hole in a lens for the presentation of spectacles with a rimless frame

Publications (2)

Publication Number Publication Date
EP2091689A2 EP2091689A2 (en) 2009-08-26
EP2091689B1 true EP2091689B1 (en) 2010-01-27

Family

ID=38069214

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07872397A Active EP2091689B1 (en) 2006-12-20 2007-12-19 Device for determining the position and/or transverse dimension of a drill hole in a lens for the presentation of spectacles with a rimless frame

Country Status (6)

Country Link
US (1) US8320710B2 (en)
EP (1) EP2091689B1 (en)
AT (1) ATE456424T1 (en)
DE (1) DE602007004648D1 (en)
FR (1) FR2910644B1 (en)
WO (1) WO2008093015A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060590B4 (en) 2008-12-05 2014-09-04 Schneider Gmbh & Co. Kg Method and device for edge measurement of optical lenses
FR2983313B1 (en) * 2011-11-29 2014-06-27 Essilor Int OPHTHALMIC LENS HOLDER FOR CENTERING DEVICE
EP2991820B1 (en) * 2013-04-29 2017-01-25 Essilor International (Compagnie Générale D'Optique) Method of locally thickening an ophthalmic lens
FR3024246B1 (en) * 2014-07-25 2016-08-05 Essilor Int METHOD FOR PRODUCING A DETOURING SETTING OF AN OPTICAL LENS
FR3024247B1 (en) 2014-07-25 2018-02-09 Essilor International OPTICAL LENS IMAGE ACQUISITION MACHINE AND METHOD FOR OPTICAL LENS DETOURING
US9905026B1 (en) * 2016-09-14 2018-02-27 The Boeing Company Photogrammetric identification of locations for performing work
CN115540746B (en) * 2022-01-06 2023-06-20 深圳荣耀智能机器有限公司 Structural member side hole position detection method
CN115690383B (en) * 2022-11-02 2023-12-05 广州市市政工程试验检测有限公司 Calibration parameter acquisition method of image acquisition device and borehole imaging method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804428A1 (en) * 1998-02-05 1999-08-19 Wernicke & Co Gmbh Method for marking or drilling holes in spectacle lenses and device for carrying out the method
JP2000105356A (en) * 1998-04-28 2000-04-11 Vision Megane:Kk Lens mounting structure of spectacles
US6312126B1 (en) * 1999-04-28 2001-11-06 Vision Optic Co., Ltd. Eyeglasses having rimless spectacle frame with adjustable temples and lenses
JP3040995B1 (en) * 1999-06-14 2000-05-15 英明 橘 Eyeglass lens fastening mechanism
US6523952B1 (en) * 2002-05-03 2003-02-25 The Beta Group, Inc. Eyeglass frame assembly
DK176022B1 (en) * 2003-03-07 2005-12-19 Lindberg As Apparatus, fixture and method for fixing lenses for unoccupied glasses
FR2865046B1 (en) * 2004-01-08 2006-03-10 Frederic Dupuy DEVICE FOR DRILLING GLASSES AND FINISHING ASSEMBLING SCREWS AND ASSOCIATED METHOD
WO2006003939A1 (en) * 2004-06-30 2006-01-12 Hoya Corporation Method of manufacturing spectacle lens
US20060286902A1 (en) * 2004-07-13 2006-12-21 Ricardo Covarrubias Eyeglass component engraving device
JP2006189472A (en) * 2004-12-28 2006-07-20 Nidek Co Ltd Spectacle lens processing device
JP4708035B2 (en) * 2005-01-06 2011-06-22 株式会社ニデック Eyeglass lens processing equipment
JP5085898B2 (en) * 2006-07-31 2012-11-28 株式会社ニデック Eyeglass lens processing equipment

Also Published As

Publication number Publication date
DE602007004648D1 (en) 2010-03-18
WO2008093015A2 (en) 2008-08-07
US20100092068A1 (en) 2010-04-15
FR2910644A1 (en) 2008-06-27
EP2091689A2 (en) 2009-08-26
US8320710B2 (en) 2012-11-27
ATE456424T1 (en) 2010-02-15
WO2008093015A3 (en) 2008-09-18
FR2910644B1 (en) 2009-02-27

Similar Documents

Publication Publication Date Title
EP2091689B1 (en) Device for determining the position and/or transverse dimension of a drill hole in a lens for the presentation of spectacles with a rimless frame
EP1722924B1 (en) Device for centring/clamping an ophthalmic spectacle lens, associated manual centring methods and automatic detection method
EP3066521B1 (en) Method for determining at least one optical design parameter for a progressive ophthalmic lens
EP2008149B1 (en) Method for detecting an optical coordinate system for an ophthalmic lens
EP2027968B1 (en) Method of determining parameters for adding frames to an ophthalmic lens
EP1722923B1 (en) Method for manually centering an ophthalmic lens in a centering/locking device and associated centering/locking device
CA2956030C (en) Method for working out settings for edging an optical lens
EP2091690B9 (en) Method for determining the position of a drill hole to be formed in an ophthalmic lens
EP2196845B1 (en) Method for preparing an ophthalmic lens in order to mount it on a curved spectacle frame
FR2860888A1 (en) METHOD FOR CALIBRATING OPHTHALMIC GLASS DRILLING MACHINE, DEVICE FOR IMPLEMENTING SUCH A METHOD, AND APPARATUS FOR MACHINING OPTHALMIC GLASSES EQUIPPED WITH SUCH A DEVICE
EP3074178B1 (en) Method for bevelling an ophthalmic lens
EP3172011B1 (en) Machine for acquiring images of optical lenses and process for trimming optical lenses
FR2901031A1 (en) METHOD FOR CENTERING AN OPHTHALMIC LENS ON A CAMBREE EYEWEAR MOUNT
FR2829842A1 (en) Device for acquisition of the necessary parameters for optimum positioning of ophthalmic lenses in spectacle frames is based on measurement of reflections on the cornea and marking of reference points on spectacle frames
EP0021998A1 (en) Apparatus to determine the diameter of spectacle glasses
WO2006061475A1 (en) Method for locking an ophthalmic lens for the trimming thereof and device for automatic mounting preparation of an ophthalmic lens
FR2903504A1 (en) METHOD AND DIPOSITIVE FOR MEASURING THE GALBE OF A GLASSES FRAME
WO2005092571A1 (en) Method for manually centering an ophthalmic lens of spectacles with intermittent display of an opaque sign for correcting the prismatic deflection error induced by the lens
EP1882207B1 (en) Method for recording geometrical characteristics of a second lens by means of scanning a first lens both lenses being from the same batch
EP4116762A1 (en) Device for assisting with the preparation of a definitive corrective lens and associated method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090513

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007004648

Country of ref document: DE

Date of ref document: 20100318

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100127

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100527

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100508

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

BERE Be: lapsed

Owner name: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQ

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100127

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121207

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007004648

Country of ref document: DE

Representative=s name: 24IP LAW GROUP SONNENBERG FORTMANN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007004648

Country of ref document: DE

Owner name: ESSILOR INTERNATIONAL, FR

Free format text: FORMER OWNER: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE), CHARENTON-LE-PONT, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ESSILOR INTERNATIONAL, FR

Effective date: 20180601

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007004648

Country of ref document: DE

Representative=s name: SONNENBERG HARRISON PARTNERSCHAFT MBB PATENT- , DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 17