EP2089493A2 - Method and plant for converting solid biomass into electricity - Google Patents

Method and plant for converting solid biomass into electricity

Info

Publication number
EP2089493A2
EP2089493A2 EP07856169A EP07856169A EP2089493A2 EP 2089493 A2 EP2089493 A2 EP 2089493A2 EP 07856169 A EP07856169 A EP 07856169A EP 07856169 A EP07856169 A EP 07856169A EP 2089493 A2 EP2089493 A2 EP 2089493A2
Authority
EP
European Patent Office
Prior art keywords
product gas
particle
fuel cell
gas
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07856169A
Other languages
German (de)
French (fr)
Inventor
Serge Biollaz
Markus Jenne
Florian Nagel
Tilman J. Schildhauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scherrer Paul Institut
Original Assignee
Scherrer Paul Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scherrer Paul Institut filed Critical Scherrer Paul Institut
Priority to EP07856169A priority Critical patent/EP2089493A2/en
Publication of EP2089493A2 publication Critical patent/EP2089493A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1825Tubular reactors in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/045Purification by catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0455Purification by non-catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1646Conversion of synthesis gas to energy integrated with a fuel cell
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity

Definitions

  • the invention relates to a method and a plant for highly efficient power generation from biomass according to claim 1 and the claim.
  • the plant concept combines the technologies of «biomass gasification» and «solid-ceramic fuel cells», revealing new solutions especially in the areas of heat integration, controllability and system simplicity.
  • Gasification is a relatively old technology that was initially explored for coal as a fuel. Depending on the desired plant size and intended use as well as the desired purity of the product gas produced, many different types of gasifier were developed.
  • the gasification is usually introduced from above into the carburetor.
  • the gasification medium usually air
  • the product gas is led out of the upper part of the gasification space.
  • the advantage of this reactor type is that the process works even with very humid gasified material.
  • the reactor design is very simple and easy to scale. captively.
  • the temperature of the product gas is in the range between 150 0 C to 650 ° C.
  • these carburetors have the disadvantage that the product gas is very heavily tar-charged, these being primarily tar primary species. Typical values for this are 50 to 200 g / m.sup.n 3 . These are usually oxygenated.
  • Sulfur compounds are also contained in the product gas in organic form, which is why conventional sulfur absorbers do not show the desired cleaning effect.
  • the gasification is usually introduced from above into the carburetor.
  • the gasification medium mostly air, we also injected from above into the gasification room.
  • the product gas is led out of this in the lower part of the gasification space.
  • the advantage of this type of reactor the product gas is almost free from tar with Teerbeladungen to 0:05 to 0:25 g / m n. 3
  • the process is very sensitive to the moisture of the gasification product and its geometry. This is because the gasification material can not rest on a supporting grate but rather is held by controlled bridging. This is due to the high temperatures in the lower part of the gasification chamber, which make the use of a grate impossible.
  • the reactor design is not easily scalable.
  • the temperature of the product gas is in the range between 650 ° C. and 1050 ° C.
  • Sulfur compounds are generally present in the product gas in an inorganic form, which is why conventional sulfur absorbers can be used.
  • problems can occur in the fixed-bed gasification of heavily ash-containing gasification material.
  • Fluidized bed gasifiers have been developed to avoid these problems. They are almost unlimited in terms of plant size. At the moment, fluidised bed gasifiers are the most widely used types of gas generators for power generation from biomass. They have moderate Teerbeladitch to 15 g / m 3 n and are relatively insensitive to variations in feed moisture. adversely is that the reactors and the process control are relatively complex.
  • the product gas from the biomass gasification contains numerous impurities such as sulfur compounds and tarry compounds and particles. In general, these substances are removed in process steps at relatively low temperatures up to a maximum of 200 0 C from the product gas. This makes sense, since the working machines used in the prior art (gas engines and gas turbines) require low gas inlet temperatures to achieve high efficiencies.
  • washing in appropriate scrubbers various washing liquids can be used, such as water or diesel.
  • Sulfur species are less of a problem for gas turbines and gas engines.
  • Sulfur absorber materials that can be used at temperatures between room temperature and 200 0 C are known from steam reforming processes. Publications are known with regard to the product gas purification of organic sulfur compounds: WO 2005/007780 A2 [16] discloses a two-stage desulfurization unit in which the main portion of organic sulfur compounds can be absorbed in the first desulfurization stage by means of a zeolite (available from Südchemie). The absorber materials used initially crack organic sulfur compounds and also absorb some of them. The absorber materials used can be regenerated. In the second desulfurization step, the residual organic sulfur compounds are removed by a non-regenerable sulfur absorber. Between the two desulfurization stages, a gas-liquid separation takes place, as a result of which organic sulfur compounds are concentrated in the liquid phase. - A -
  • WO 02/22763 A1 [17] describes a fluidized bed desulphurisation unit for the adsorption of organic sulfur compounds from common fuels, such as e.g. Diesel.
  • the composition of the raw gas as well as the type and design of the fuel cell charged with it determine the required degree of product gas conditioning. Particular attention must be paid to the longevity and efficiency of the fuel cell.
  • Hydrogen is the preferred fuel for fuel cells.
  • the production of hydrogen of sufficient purity as fuel is laborious and costly.
  • centrally produced hydrogen is difficult to store and transport. This involves dangers such as high risk of explosion [I].
  • R & D therefore goes in the direction of system-integrated hydrogen production from fossil and renewable hydrocarbon sources.
  • Hydrogen can be obtained from hydrocarbons through the following processes:
  • the poisoning of STR catalysts is a problem because the gases to be reformed usually have small amounts of sulfur. Sulfur chemisorbs at appropriate temperatures on any metallic surface, thus blocking active sites of metallic catalysts. The form in which the sulfur is present is secondary. Therefore, the STR process is usually preceded by a desulfurization stage.
  • Non-Catalytic PO and Catalytic Partial Oxidation CPO The PO or CPO is an alternative to STR. Hydrocarbons, which may also contain oxygen, are degraded to a mixture of hydrogen and carbon monoxide. The reaction follows the given stoichiometry: C x H y O z + (0.5xz) O 2 ⁇ xCO + 0.5y H 2 ( ⁇ H R > 0) The generated carbon monoxide is converted to hydrogen via the likewise exothermic WGS.
  • PO reactors are preferably used for hydrogen production from liquid hydrocarbon mixtures (gasoline, diesel etc.), since the process heat in the reactor can be used for evaporation.
  • the reactors are also characterized by their compactness, which is why they are also suitable for mobile applications.
  • a very important advantage of the PO is that no de-ionized water is needed. Thus it can be dispensed with the appropriate apparatus or exhaust gas recirculation.
  • EP 0 576 096 A2 discloses a process for preparing a catalyst which catalyzes the partial oxidation of hydrocarbons.
  • ATR Autothermal reforming ATR
  • STR and CPO The combination of STR and CPO is called ATR.
  • ATR uses molecular oxygen and water vapor as the source of oxygen.
  • the reaction follows the stoichiometry: C x H y O z + 0.5 * (0.5xz) O 2 + 0.5 * (xz) H 2 O ⁇ x CO + 0.5 * (x + yz) H 2 (- ⁇ H> 0)
  • the ATR requires less steam than the conventional STR.
  • the required process heat is generated by the exothermic partial oxidation, which makes the heat management of the ATR much easier than with the STR [8].
  • Solid oxide fuel cells produce electricity through spatially separated chemical reactions in which, similar to batteries, there is an electron flow between the reaction spaces.
  • the core of the fuel cell is the electrolyte, which is the two
  • the conversion of the fuel to electricity is thus without any rotating parts or generators.
  • ZrO 2 Zirconium oxide
  • the efficiency of fuel cells is basically not limited by the Carnot efficiency.
  • SOFCs have the highest efficiencies in the conversion of fuel gas to electricity [9].
  • SOFCs can be operated in a wide temperature range between 500 0 C to 1000 0 C [10].
  • the high operating temperatures of SOFCs and the typically incomplete fuel utilization of SOFCs offer high potential for use in hybrid systems [9].
  • the waste heat generated in the SOFC at a high temperature level allows the use of gas and steam circuits as a "bottoming" cycle. As a result, otherwise lost waste heat can be harnessed.
  • Thermodynamic calculations have shown that pressurized systems are likely to increase efficiency even further.
  • the pollutant emissions of such hybrid systems are expected to be low because the main fuel conversion is done electrochemically. The same applies to the carbon dioxide emissions, which correlate directly inversely proportional to the system efficiency.
  • the high operating temperatures of SOFCs allow the use of cheap catalyst materials compared to low and medium temperature fuel cells.
  • SOFCs use nickel as the anode catalyst.
  • platinum is used in polymer electrolyte membrane fuel cells [10].
  • SOFCs have a high degree of flexibility with regard to the composition of the fuel gas, because in addition to hydrogen they can also electrochemically convert carbon monoxide and even hydrocarbons [10].
  • the high operating temperatures and the catalyst materials used allow thermally integrated STR and WGS of fuel gases.
  • the conversion of the fuel gases can either be done outside of the fuel cell in a separate reactor, which receives the required process heat from the fuel cell, or within the fuel cell.
  • the endothermic character of the STR can be used to chemically cool the fuel cell, thus reducing the amount of waste heat and subsequently increasing efficiency [2].
  • the steam required for the STR is continuously produced by the exothermic electrochemical reactions. The efficiency-optimal proportion of internal reforming depends on numerous factors.
  • the SOFC technology is relatively easy to adapt in systems in the power range from a few watts to several megawatts [9].
  • the SOFC technology is not mature yet.
  • the current status of technology development ranges from basic research mainly in the field of materials science to the operation of pre-commercial systems and the development of market entry strategies.
  • the heat integration between the high-temperature fuel cell used is carried out via a catalytic combustion of the anode exhaust gas, which is passed directly from the fuel cell in the coal gasifier.
  • the catalytic combustion takes place in a reactor housing located within the coal gasifier.
  • the released combustion heat is used directly to support the endothermic gasification reactions.
  • the patent does not elaborate on controllability of the system and gas purification steps.
  • US 2002/0194782 Al is directed to heat integration between a high temperature fuel cell and a biomass fluidized bed gasifier.
  • This has a special feature that the combustion part, in which unreacted carbon is burned and thus an inert bed material is heated, is located inside the gasification part.
  • the heat exchange between the combustion and gasification part is thus carried out by convection and heat radiation between the reactor walls and on the inert circulating bed material.
  • the heat integration of the high-temperature fuel cell via the combustion of unreacted anode gas in the combustion part of the carburetor.
  • the combustion gas from the Combustion part is supplied to the cathode of the high-temperature fuel cell.
  • the object of the present invention is to provide a method and a plant for the generation of solid biomass via a gasification fuel cell coupling, which combines several process units in a holistic manner.
  • Figure 1 Schematic representation of the system
  • Figure 2 Schematic representation of the particle filtration unit with integrated catalyst monoliths for the realization of a variably adjustable proportion of catalytically reacted product gas.
  • FIG. 1 The plant for the thermal and control integration of high-temperature fuel cells and biomass gasification is shown in FIG. 1:
  • the biomass 61 is introduced from above into the carburetor 1. There, the biomass 61 with preheated air 82 into a mixture of particles, steam, hydrogen, carbon monoxide,
  • the proportion of condensable species in crude product gas 62 is high and accounts for approximately 25% of its calorific value.
  • the existing tar compounds in the crude product gas 62 are usually oxygenated and are due to the temperature of the product gas of about 600 0 C in the gas phase. At this temperature, alkalis and heavy metals usually condense on larger particles. If the temperature of the product rises above the evaporation temperature of heavy metals and alkalis, it can be cooled by adding water. Sulfur compounds are usually organic in nature.
  • the product gas contains almost no (higher) hydrocarbons, so chemical cooling of the downstream fuel cell by internal steam reforming is limited.
  • the crude product gas 62 is then passed in an apparatus 2 for removing particles, see also FIG. 2.
  • the apparatus 2-also called particle separator 2 in this document- consists essentially of the two separate chambers 201 and 202: raw gas chamber 201 and clean gas chamber 202.
  • the particles with the alkalis and heavy metals condensed on them are prevented from passing from the raw gas chamber 201 into the clean gas chamber 202 by high-temperature resistant filter elements 203 and deposited as filter cakes on the filter elements.
  • the filter cake is cyclically depending on the resulting pressure loss across the filter elements by pressure surges with particle-free product gas of the
  • Filter elements detached and discharged from the apparatus Within the filter elements 203 catalytically coated monoliths 205 are housed fixed or movable.
  • the monoliths 205 correspond to catalytic reactors in which condensable species can be post-gasified and / or the abovementioned reversible reactions steam reforming, water gas conversion and methanation can proceed.
  • the position of the monolith By the position of the monolith, the proportion of the raw particle-free product gas that can flow through the monolith can be adjusted. This is made possible in particular by the homogeneous pressure distribution within the filter elements.
  • FIG. 2 shows by way of example 3 different positions of the catalyst monolith. In case A, the monolith 205 is in the idle position.
  • the raw particle-free product gas is passed together with its high load of oxygen-containing tar compounds and organic sulfur compounds in the clean gas chamber 202 and then leaves the particle 2 as clean gas 63.
  • case B is the monolith 205, see. Figure 2, in full load position.
  • the crude particle-free product gas is passed completely over the catalytically coated or active monoliths. There, almost all aromatic and oxygen-containing tar compounds are degraded to hydrogen and carbon monoxide. Furthermore, own measurements have shown that almost all organic sulfur compounds are converted to hydrogen sulphide.
  • the pure product gas 63 leaves the apparatus 2 as stream 63.
  • case C about half of the crude product gas is passed over the monolith. The catalytically reacted product gas then mixes with the crude product gas.
  • the mixture has a lower loading of hydrocarbon compounds than the crude product gas and leaves the apparatus 2 as clean gas 63.
  • the methane content may have increased, allowing for chemical cooling of the downstream fuel cell by internal steam reforming.
  • the amount of air, hydrogen and / or water vapor required for the catalytic conversion is adjusted on the basis of the temperature in the monolith and thus always enables optimum conditions for the catalytic conversion.
  • the pre-heated amount of air, hydrogen and / or water vapor 83 is introduced into the interior of the filter elements via a lance 204, which is passed through the monolith, where it mixes with the crude product gas. The mixture is then passed through the catalytic monolith.
  • the filter elements prevent backmixing with the crude product gas outside the filter elements.
  • the particle-free and completely, partially or not catalytically reacted product gas 63 is then passed into a heat exchanger where it is cooled down to temperatures of about 650 0 C to 850 ° C to 400 0 C: cooled product gas 64.
  • cooled product gas 64 After cooling, flows through the gas is a zinc oxide bed with upstream dechlorination (second sulfur absorber 3). Measurements have shown that at this temperature, the hydrogen sulfide concentration in the gas can be lowered below 1 ppm, without exceeding the thermal stability of the absorber material used.
  • the low-sulfur product gas 66 contains more or less organic sulfur compounds depending on the proportion of catalytic conversion. In the standard case, the entire product gas is fed to the catalytic conversion. Require
  • the low-hydrogen sulfide product gas 66 still contains a certain amount of organic sulfur compounds.
  • the product gas 66 is passed into the first sulfur absorber 4, where the organic
  • Sulfur compounds are absorbed at temperatures between 600 0 C and 800 0 C of a (eg perovskitischer) absorber material.
  • the now particle-free, completely, partially or non-catalytically reacted and completely desulfurized product gas 67 is then passed into a second heat exchanger 12, in which the heated desulfurized product gas 68 is heated by the hot anode exhaust gas 69 to almost the operating temperature of the anode 5.
  • the anode exhaust gas 69 is used to heat the desulfurized product gas 67 and is then passed into a burner 7 where it is burned with the already cooled cathode exhaust gas 80.
  • the hot flue gases 71 are expanded in a turbine 8, which drives a generator 16 and a compressor 9 via a common shaft.
  • the expanded flue gases 72 are used in a further heat exchanger for preheating the air compressed in the compressor 9 76 before they are used in a steam cycle to generate additional electricity 92 (electrical energy) and useful heat 93.
  • the air 75 sucked in by the compressor 9 is divided into two parts after compression and preheating.
  • the stream 77 is passed into a third heat exchanger 13, where it is brought by the cathode exhaust gas 79 almost to the operating temperature of the cathode 6. This corresponds to the temperature of the anode 5.
  • the second portion of the compressed preheated air 81 is again divided into two parts.
  • Stream 82 is introduced as gasification medium 82 in the carburetor 1. Air can be introduced into the particulate filter system 2 with integrated catalytic conversion in which it serves as part of the reaction medium 83 at most.
  • the proposed invention combines several process units known per se into an overall system whose properties are superior to the sum of all individual process units.
  • the hydrocarbon compounds contained in the product gas and partially oxygen-containing can be used for internal reforming with low carbon deposition risk in the SOFC. This chemically cools the SOFC, resulting in lower amounts of waste heat.
  • the hydrocarbon compounds can be hydrogenated and carbon monoxide as needed at the desired high operating temperatures be implemented.
  • the chemical cooling of the SOFC is hardly possible, which has a negative effect on the overall efficiency of the system.
  • the production of hydrocarbon compounds (eg methane) from hydrogen and carbon monoxide is possible at appropriate operating temperatures by means of catalytic methanation.
  • the condensable tar compounds contained in the product gas from biomass gasification are converted to hydrogen and carbon monoxide by catalytic conversion (e.g., autothermal reforming).
  • catalytic conversion e.g., autothermal reforming
  • the integration of the corresponding monoliths in the filter elements of the particle filtration system makes it possible to make the proportion of oxygen-containing hydrocarbon compounds variable.
  • the ATR corresponds in the broader sense of a second gasification stage, which can be switched on continuously. This makes it possible, the respective optimal proportion of internal
  • Biomass gasification and SOFC are thermally integrated via air preheating.
  • reaction medium 83 preheated air; reaction medium

Abstract

Method and plant for converting solid biomass into electricity by means of a gasifier/fuel cell combination comprising the following method steps and elements: A1 introduction of solid biomass into a gasifier; A2 introduction of a gasification medium (82) to the gasifier (1); B introduction of product gas from the gasifier to a particle separator/filter (2); C introduction of product gas with low particulate content from the particle separator / filter (2) into a reactor (2) for catalytic reaction, wherein the composition fo the product gas can be adjusted by means of positioning the catalyst monolith (205) within the filter elements (203), D introduction of product gas with low particulate content from the reformer into one or two sulphur absorbers (3, 4),- E introduction fo the product gas which has had sulphur removed in the sulphur absorber into a solid-oxide fuel cell (SOFC) (17) to generate electricity (92).

Description

Verfahren und Anlage zur Verstromung fester Biomasse Process and plant for the generation of solid biomass
Technisches GebietTechnical area
Die Erfindung bezieht sich auf ein Verfahren und eine Anlage zur hocheffizienten Stromerzeugung aus Biomasse gemäss dem Patentanspruches 1 und dem Patentanspruches. Das Anlagenkonzept verbindet die Technologien der «Biomassevergasung» und der «Festkeramikbrennstoffzelle», wobei insbesondere in den Bereichen der Wärmeintegration, der Regelbarkeit und Systemeinfachheit neue Lösungen offenbart werden. Stand der TechnikThe invention relates to a method and a plant for highly efficient power generation from biomass according to claim 1 and the claim. The plant concept combines the technologies of «biomass gasification» and «solid-ceramic fuel cells», revealing new solutions especially in the areas of heat integration, controllability and system simplicity. State of the art
Im den folgenden Abschnitten wird der momentan bekannte Stand der Technik von biomassebetriebenen BrennstoffZeilenanlagen erläutert. Dabei werden die gängigsten Prozesseinheiten und entsprechenden Reaktoren vorgestellt. Vergasung von BiomasseThe following sections explain the currently known state of the art of biomass-fueled fuel cell systems. The most common process units and corresponding reactors are presented. Gasification of biomass
Vergasung ist eine relativ alte Technologie, die anfangs im Hinblick auf Kohle als Brennstoff erforscht worden ist. In Abhängigkeit der gewünschten Anlagengrösse und dem Verwendungszweck sowie der gewünschten Reinheit des produzierten Produktgases wurden viele verschiedene Vergasertypen entwickelt .Gasification is a relatively old technology that was initially explored for coal as a fuel. Depending on the desired plant size and intended use as well as the desired purity of the product gas produced, many different types of gasifier were developed.
Festbettvergaser sind prädestiniert für Anwendungen bis 10 MWth- Die entwickelten Reaktortypen sind relativ simpel und lassen sich in Gegen-, Gleich- und Kreuzstromvergaser einteilen. Dabei ist das Hauptunterscheidungsmerkmal die Strömungsrichtung des Vergasungsmediums gegenüber dem Vergasungsgut .Fixed bed gasifiers are predestined for applications up to 10 MW th - The developed reactor types are relatively simple and can be divided into counter, DC and cross flow gasifiers. In this case, the main distinguishing feature is the flow direction of the gasification medium relative to the gasification material.
Bei Gegenstromvergasern wird das Vergasungsgut meist von oben in den Vergaser eingebracht. Das Vergasungsmedium, meist Luft, wir von unten durch einen Rost in den Vergasungsraum eingeblasen. Das Produktgas wird im oberen Teil des Vergasungsraums aus diesem hinausgeleitet. Der Vorteil dieses Reaktortyps ist, dass der Prozess auch bei sehr feuchtem Vergasungsgut funktioniert. Das Reaktordesign ist sehr simpel und leicht ska- lierbar. Die Temperatur des Produktgases liegt im Bereich zwischen 1500C bis 650°C. Allerdings weisen diese Vergaser den Nachteil auf, dass das Produktgas sehr stark teerbeladen ist, wobei es sich dabei in erster Linie um primäre Teerspezies handelt. Typische Werte dafür sind 50 bis 200 g/mn 3. Diese sind in der Regel sauerstoffhaltig. Schwefelverbindungen sind ebenfalls im Produktgas in organischer Form enthalten, weshalb konventionelle Schwefelabsorber nicht den gewünschten Reinigungseffekt zeigen.In countercurrent gasifiers, the gasification is usually introduced from above into the carburetor. The gasification medium, usually air, we injected from below through a grate in the gasification room. The product gas is led out of the upper part of the gasification space. The advantage of this reactor type is that the process works even with very humid gasified material. The reactor design is very simple and easy to scale. captively. The temperature of the product gas is in the range between 150 0 C to 650 ° C. However, these carburetors have the disadvantage that the product gas is very heavily tar-charged, these being primarily tar primary species. Typical values for this are 50 to 200 g / m.sup.n 3 . These are usually oxygenated. Sulfur compounds are also contained in the product gas in organic form, which is why conventional sulfur absorbers do not show the desired cleaning effect.
Bei Gleichstromvergasern wird das Vergasungsgut meist von oben in den Vergaser eingebracht. Das Vergasungsmedium, meist Luft, wir ebenfalls von oben in den Vergasungsraum eingeblasen. Das Produktgas wird im unteren Teil des Vergasungsraums aus diesem hinausgeleitet. Der Vorteil dieses Reaktortyps ist, dass das Produktgas nahezu teerfrei ist mit Teerbeladungen um 0.05 bis 0.25 g/mn 3. Allerdings ist der Prozess sehr empfindlich gegenüber der Feuchte des Vergasungsguts sowie dessen Geometrie. Dies liegt daran, dass das Vergasungsgut nicht auf einem stützenden Rost liegen kann sondern vielmehr durch eine kontrollierte Brückenbildung gehalten wird. Grund dafür sind die hohen Temperaturen im unteren Bereich des Vergasungsraumes, die den Einsatz eines Rostes unmöglich machen. Des Weiteren ist das Reaktordesign nicht leicht skalierbar. Die Temperatur des Produktgases liegt in Bereich zwischen 6500C bis 10500C. Schwefelverbindungen sind im Produktgas in der Regel in anorganischer Form enthalten, weshalb konventionelle Schwefelabsorber eingesetzt werden können. Zusätzlich kann es bei der Festbettvergasung von stark aschehaltigem Vergasungsgut zu Problemen kommen.In DC carburetors, the gasification is usually introduced from above into the carburetor. The gasification medium, mostly air, we also injected from above into the gasification room. The product gas is led out of this in the lower part of the gasification space. The advantage of this type of reactor, the product gas is almost free from tar with Teerbeladungen to 0:05 to 0:25 g / m n. 3 However, the process is very sensitive to the moisture of the gasification product and its geometry. This is because the gasification material can not rest on a supporting grate but rather is held by controlled bridging. This is due to the high temperatures in the lower part of the gasification chamber, which make the use of a grate impossible. Furthermore, the reactor design is not easily scalable. The temperature of the product gas is in the range between 650 ° C. and 1050 ° C. Sulfur compounds are generally present in the product gas in an inorganic form, which is why conventional sulfur absorbers can be used. In addition, problems can occur in the fixed-bed gasification of heavily ash-containing gasification material.
Wirbelschichtvergaser wurden entwickelt, um diesen Problemen zu entgehen. Sie sind nahezu unlimitiert in der Anlagengrösse. Im Moment sind Wirbelschichtvergaser die am meisten einge- setzten Vergasertypen zur Stromerzeugung aus Biomasse. Sie weisen moderate Teerbeladungen um 15 g/mn 3 auf und sind relativ unempfindlich gegen Variationen der Feedfeuchte. Nachteilig ist, dass die Reaktoren sowie die Prozessführung relativ komplex sind.Fluidized bed gasifiers have been developed to avoid these problems. They are almost unlimited in terms of plant size. At the moment, fluidised bed gasifiers are the most widely used types of gas generators for power generation from biomass. They have moderate Teerbeladungen to 15 g / m 3 n and are relatively insensitive to variations in feed moisture. adversely is that the reactors and the process control are relatively complex.
ProduktgasreinigungProduct gas cleaning
Das Produktgas aus der Biomassevergasung enthält zahlreiche Verunreinigungen wie z.B. Schwefelverbindungen und teerartige Verbindungen sowie Partikel. Im Allgemeinen werden diese Stoffe in Prozessschritten bei relativ tiefen Temperaturen bis maximal 2000C aus dem Produktgas entfernt. Dies ist sinnvoll, da die im Rahmen des Standes der Technik eingesetzten Arbeits- maschinen (Gasmotoren und Gasturbinen) zum Erreichen hoher Wirkungsgrade geringe Gaseintrittstemperaturen benötigen.The product gas from the biomass gasification contains numerous impurities such as sulfur compounds and tarry compounds and particles. In general, these substances are removed in process steps at relatively low temperatures up to a maximum of 200 0 C from the product gas. This makes sense, since the working machines used in the prior art (gas engines and gas turbines) require low gas inlet temperatures to achieve high efficiencies.
Das Problem der Kondensation von Teeren bei Temperaturen unterhalb von 4000C sowie das Verstopfen durch Partikel werden durch Auswaschen in entsprechenden Gaswäschern gelöst. Dabei können verschiedene Waschflüssigkeiten zum Einsatz kommen, wie z.B. Wasser oder Diesel.The problem of condensation of tars at temperatures below 400 0 C and the clogging by particles are solved by washing in appropriate scrubbers. In this case, various washing liquids can be used, such as water or diesel.
Schwefelspezies sind für Gasturbinen und Gasmotoren weniger problematisch. Schwefelabsorbermaterialien die bei Temperaturen zwischen Raumtemperatur und 2000C eingesetzt werden können sind aus Dampfreformierungs-Prozessen bekannt. Im Hinblick auf die Produktgasreinigung von organischen Schwefelverbindungen sind Veröffentlichungen bekannt: WO 2005/007780 A2 [16] offenbart eine zweistufige Entschwefelungseinheit, bei der in der ersten Entschwefelungsstufe der Hauptanteil organischer Schwefelverbindungen mittels eines Zeoliths (bei Südchemie zu beziehen) absorbiert werden können. Die eingesetzten Absorbermaterialien knacken organische Schwefelverbindungen zunächst und absorbieren auch einen Teil. Die eingesetzten Absorbermaterialien sind regenerierbar. In der zweiten Entschwefelungsstufe werden die restlichen organischen Schwefelverbindungen durch einen nicht-regenerierbaren Schwefelabsorber entfernt. Zwischen den zwei Entschwefelungs- stufen findet eine Gas-Flüssig-Separation statt, wodurch organische Schwefelverbindungen in der Flüssigphase aufkonzen- - A -Sulfur species are less of a problem for gas turbines and gas engines. Sulfur absorber materials that can be used at temperatures between room temperature and 200 0 C are known from steam reforming processes. Publications are known with regard to the product gas purification of organic sulfur compounds: WO 2005/007780 A2 [16] discloses a two-stage desulfurization unit in which the main portion of organic sulfur compounds can be absorbed in the first desulfurization stage by means of a zeolite (available from Südchemie). The absorber materials used initially crack organic sulfur compounds and also absorb some of them. The absorber materials used can be regenerated. In the second desulfurization step, the residual organic sulfur compounds are removed by a non-regenerable sulfur absorber. Between the two desulfurization stages, a gas-liquid separation takes place, as a result of which organic sulfur compounds are concentrated in the liquid phase. - A -
triert werden. Diese wird dann verbrannt oder anderweitig entsorgt .be trated. This is then burned or otherwise disposed of.
WO 02/22763 Al [17] beschreibt eine Wirbelschichtentschwe- felungseinheit zur Adsorption von organischen Schwefelverbindungen aus gängigen Treibstoffen wie z.B. Diesel.WO 02/22763 A1 [17] describes a fluidized bed desulphurisation unit for the adsorption of organic sulfur compounds from common fuels, such as e.g. Diesel.
US 5.157.201 [18] beschreibt die direkte Adsorption von organischen Schwefelverbindungen bei Temperaturen unter 1750C in Absorberschüttungen.US 5,157,201 [18] describes the direct adsorption of organic sulfur compounds at temperatures below 175 0 C in Absorberschüttungen.
ProduktgaskonditionierungProduct gas conditioning
Die Zusammensetzung des Rohgases sowie der Typ und das Design der damit beschickten Brennstoffzelle bestimmen den benötigten Grad an Produktgaskonditionierung. Dabei muss insbesondere auf die Langlebigkeit und den Wirkungsgrad der Brennstoffzelle geachtet werden. Wasserstoff ist der bevorzugte Brennstoff für Brennstoffzellen. Die Produktion von Wasserstoff von ausreichender Reinheit als Brennstoff ist jedoch aufwändig und kostspielig. Zudem ist der zentral produzierte Wasserstoff schwierig zu speichern und zu transportieren. Dies birgt Gefahren wie z.B. hohe Explosionsgefahr [I].The composition of the raw gas as well as the type and design of the fuel cell charged with it determine the required degree of product gas conditioning. Particular attention must be paid to the longevity and efficiency of the fuel cell. Hydrogen is the preferred fuel for fuel cells. However, the production of hydrogen of sufficient purity as fuel is laborious and costly. In addition, centrally produced hydrogen is difficult to store and transport. This involves dangers such as high risk of explosion [I].
Die Forschung und Entwicklung geht daher in die Richtung systemintegrierter Wasserstoffherstellung aus fossilen und erneuerbaren Kohlenwasserstoffquellen. Wasserstoff kann über folgende Prozesse aus Kohlenwasserstoffen gewonnen werden:R & D therefore goes in the direction of system-integrated hydrogen production from fossil and renewable hydrocarbon sources. Hydrogen can be obtained from hydrocarbons through the following processes:
Dampfreformierung STRSteam reforming STR
Die Dampfreformierung (englisch: steara reforming, STR) ist der dominierende Prozess zur Erzeugung von Synthesegas aus Kohlenwasserstoffen. Synthesegas ist ein Gemisch aus Wasserstoff und Kohlenmonoxid. Der STR Prozess ist heute technisch ausgereift und deshalb billiger [2] und effizienter [3] [4] als alle anderen bekannten Prozesse zur Wasserstoffgewinnung aus Kohlenwasserstoffen, wie z.B. die nicht-katalytische partielle Oxidation. Die stark endotherme STR Reaktion von Kohlenwasserstoffen, die auch Sauerstoffanteile aufweisen können, mit Wasserdampf zu einem Gemisch aus Kohlenmonoxid und Wasserstoff folgt der Stöchiometrie : CxHyOz + (x-z) H2O « x C0 + (x+0.5y-z) H2 (-ΔHR « 0) Für Methan ergibt sich daraus: CH4 + H2O <→ CO + 3 H2 Steam reforming (STR) is the dominant process for producing synthesis gas from hydrocarbons. Synthesis gas is a mixture of hydrogen and carbon monoxide. The STR process is today technically mature and therefore cheaper [2] and more efficient [3] [4] than all other known processes for hydrogen production from hydrocarbons, such as non-catalytic partial oxidation. The strongly endothermic STR reaction of hydrocarbons, which may also contain oxygen, with water vapor to give a mixture of carbon monoxide and hydrogen follows the stoichiometry: C x H y O z + (xz) H 2 O «x C0 + (x + 0.5yz) H 2 (-ΔH R «0) For methane this results in: CH 4 + H 2 O <→ CO + 3 H 2
Der hohe Bedarf an Prozesswärme auf hohem Temperaturniveau um 8000C erklärt, warum das Reaktordesign typischerweise wärmeübertragungslimitiert sind. Die eingesetzten Katalysatoren sind typischerweise Metalle der Gruppe 8 [4], von denen Nickel das günstigste und trotzdem sehr aktive Metall darstellt. Das durch die STR erzeugte Kohlenmonoxid wird über die exotherme Wassergas-Konvertierung (englisch: water gas shift, WGS) zu Wasserstoff umgesetzt: CO + H2O *→ CO2 + H2 (-ΔHR > 0) Läuft die Dampfreformierung bei entsprechend tiefen Temperaturen ab, kann auch die exotherme Methanisierung eine Rolle spielen, bei der Kohlenmonoxid, das aus abreagierten Kohlenwasserstoffen entstanden ist, zu Methan umgesetzt wird:The high demand for process heat at high temperature around 800 ° C explains why the reactor design is typically limited in heat transfer. The catalysts used are typically Group 8 metals [4], of which nickel is the cheapest yet very active metal. The carbon monoxide generated by the STR is converted to hydrogen via the exothermic water gas shift (WGS): CO + H 2 O * → CO 2 + H 2 (-ΔH R > 0) Does steam reforming proceed accordingly? At low temperatures, the exothermic methanation can play a role, in which carbon monoxide, which is formed from reacted hydrocarbons, is converted to methane:
2 CO + 2 H2 <→ CH4 + CO2 (-ΔHR > 0)2 CO + 2 H 2 <→ CH 4 + CO 2 (-ΔH R > 0)
Die Vergiftung von STR Katalysatoren ist ein Problem, da die zu reformierenden Gase meist geringe Mengen an Schwefel aufweisen. Schwefel chemisorbiert bei entsprechenden Temperaturen an jeder metallischen Oberfläche und blockiert somit aktive Zentren metallischer Katalysatoren. Die Form, in der der Schwefel vorliegt, ist dabei zweitrangig. Daher wird dem STR Prozess in der Regel eine Entschwefelungsstufe vorgeschaltet .The poisoning of STR catalysts is a problem because the gases to be reformed usually have small amounts of sulfur. Sulfur chemisorbs at appropriate temperatures on any metallic surface, thus blocking active sites of metallic catalysts. The form in which the sulfur is present is secondary. Therefore, the STR process is usually preceded by a desulfurization stage.
Das zweite Hauptproblem bei STR Prozessen ist das Auftreten von Kohlenstoffablagerungen. Hohe Dampfpartialdrücke sind geeignet, diese unerwünschten Reaktionen zu vermeiden. Bei Nickel als STR- Katalysator wird das «Darπpf-zu-Kohlenstoff- verhältnis» SC typischerweise auf Werte um zwei und höher eingestellt [5] . Nicht-katalytische PO und katalytische partielle Oxidation CPO Die PO bzw. CPO ist eine Alternative zum STR. Dabei werden Kohlenwasserstoffe, die auch Sauerstoffanteile aufweisen können, zu einer Mischung aus Wasserstoff und Kohlenmonoxid abgebaut. Die Reaktion folgt gegebener Stöchiometrie : CxHyOz + (0.5x-z) O2 «→ x CO + 0.5y H2 (~ΔHR > 0) Das erzeugte Kohlenmonoxid wird über die ebenfalls exotherme WGS zu Wasserstoff umgesetzt. Bei der PO reagieren die Kohlenwasserstoffmoleküle mit Sauerstoff bei Tempera- turen zwischen 1100 und 1900K [6]. Der zugegebene Sauerstoff reicht dabei aber nicht für eine vollständige Verbrennung aus. PO Reaktoren werden vorzugsweise zur Wasserstofferzeugung aus flüssigen Kohlenwasserstoffgemischen (Benzin, Diesel etc.) eingesetzt, da die Prozesswärme im Reaktor zur Verdampfung genutzt werden kann. Die Reaktoren zeichnen sich auch durch ihre Kompaktheit aus, weshalb sie auch für mobile Anwendungen geeignet sind. Ein sehr wichtiger Vorteil der PO ist, dass kein de-ionisiertes Wasser benötigt wird. Somit kann auf die entsprechenden Apparate oder auf eine Abgasrückführung verzichtet werden. DerThe second major problem with STR processes is the occurrence of carbon deposits. High vapor partial pressures are suitable to avoid these unwanted reactions. For nickel as a STR catalyst, the "tilt-to-carbon ratio" SC is typically set to values of two or more [5]. Non-Catalytic PO and Catalytic Partial Oxidation CPO The PO or CPO is an alternative to STR. Hydrocarbons, which may also contain oxygen, are degraded to a mixture of hydrogen and carbon monoxide. The reaction follows the given stoichiometry: C x H y O z + (0.5xz) O 2 →xCO + 0.5y H 2 (~ΔH R > 0) The generated carbon monoxide is converted to hydrogen via the likewise exothermic WGS. In the PO, the hydrocarbon molecules react with oxygen at temperatures between 1100 and 1900K [6]. The added oxygen is not sufficient for a complete combustion. PO reactors are preferably used for hydrogen production from liquid hydrocarbon mixtures (gasoline, diesel etc.), since the process heat in the reactor can be used for evaporation. The reactors are also characterized by their compactness, which is why they are also suitable for mobile applications. A very important advantage of the PO is that no de-ionized water is needed. Thus it can be dispensed with the appropriate apparatus or exhaust gas recirculation. Of the
Hauptnachteil der PO ist, dass Brennstoff zur Aufrechterhaltung der benötigten hohen Temperaturen verbrannt werden muss. Daher ist der chemische Wirkungsgrad geringer als der bei STR von Kohlenwasserstoffen [3] . Diesbezüglich wurden in letzter Zeit zunehmend Katalysatoren entwickelt, die es erlauben, die Prozesstemperatur zu senken. Diese sog. katalytische partielle Oxidation (englisch catalytic partial oxodation, CPO) läuft bei Temperaturen um 8000C und darunter ab.The main disadvantage of the PO is that fuel must be burned to maintain the required high temperatures. Therefore, the chemical efficiency is lower than that of STR of hydrocarbons [3]. In this regard, catalysts have recently been increasingly developed which make it possible to lower the process temperature. These so-called. Catalytic partial oxidation (English catalytic partial oxodation, CPO) runs at temperatures of about 800 0 C and under from.
Zum Thema katalytische partielle Oxidation offenbart EP 0 576 096 A2 [19] ein Verfahren zur Herstellung eine Katalysators, der die partielle Oxidation von Kohlenwasserstoffen katalysiert .On the subject of catalytic partial oxidation, EP 0 576 096 A2 [19] discloses a process for preparing a catalyst which catalyzes the partial oxidation of hydrocarbons.
In US 2003/0180215 Al [20] wird das Verfahren zur Herstellung eines Katalysators, der die partielle Oxidation von Methan bereits bei Temperaturen um 5000C katalysiert, beschrieben. Dabei wir besonders auf die Porenstruktur des Katalysators abgestellt .US 2003/0180215 A1 [20] describes the process for preparing a catalyst which already catalyzes the partial oxidation of methane at temperatures around 500 ° C. Here we focus on the pore structure of the catalyst.
Autotherme Reformierung ATR Die Kombination von STR und CPO wird als ATR bezeichnet. Im Gegensatz zur PO und CPO, bei denen nur molekularer Sauerstoff als Sauerstoffquelle genutzt wird, werden bei der ATR molekularer Sauerstoff und Wasserdampf als Sauerstoffquelle eingesetzt. Die Reaktion folgt der Stöchiometrie : CxHyOz + 0.5*(0.5x-z) O2 + 0.5*(x-z) H2O »→ x CO + 0.5*(x+y-z) H2 (-ΔH > 0)Autothermal reforming ATR The combination of STR and CPO is called ATR. In contrast to PO and CPO, where only molecular oxygen is used as the source of oxygen, ATR uses molecular oxygen and water vapor as the source of oxygen. The reaction follows the stoichiometry: C x H y O z + 0.5 * (0.5xz) O 2 + 0.5 * (xz) H 2 O → x CO + 0.5 * (x + yz) H 2 (-ΔH> 0)
Die ATR benötigt weniger Dampf als das konventionelle STR. Die benötigte Prozesswärme wird durch die exotherme partielle Oxidation erzeugt, wodurch das Wärmemanagement der ATR deutlich einfacher ist als bei der STR [8] .The ATR requires less steam than the conventional STR. The required process heat is generated by the exothermic partial oxidation, which makes the heat management of the ATR much easier than with the STR [8].
In-situ Messungen von Temperaturprofilen in ATR Monolithen haben gezeigt, dass sich darin zwei Reaktionszonen ausbilden. In einem Hotspot wird der molekulare Sauerstoff bei Temperaturen um 10000C vollständig verbraucht und ein Teil des Brenngases verbrannt. Die verbleibenden KohlenwasserstoffVerbindungen werden dann durch STR umgesetzt. Dabei werden die im Hotspot freigesetzte Wärme sowie das gebildete Reaktionswasser verbraucht. Genauere Informationen finden sich in [7] . FestkeramikbrennstoffzelleIn-situ measurements of temperature profiles in ATR monoliths have shown that two reaction zones are formed therein. In a hotspot, the molecular oxygen at temperatures around 1000 0 C completely consumed and burned a portion of the fuel gas. The remaining hydrocarbon compounds are then reacted by STR. The heat released in the hotspot and the formed water of reaction are consumed. More detailed information can be found in [7]. SOFC will
Festkeramikbrennstoffzellen (englisch: solid oxide fuel cells, SOFC) produzieren Strom durch räumlich getrennt ablaufende chemische Reaktionen, bei denen es ähnlich wie in Batterien zu einem Elektronenfluss zwischen den Reaktionsräumen kommt. Kern der Brennstoffzelle ist der Elektrolyt, der die beidenSolid oxide fuel cells (SOFCs) produce electricity through spatially separated chemical reactions in which, similar to batteries, there is an electron flow between the reaction spaces. The core of the fuel cell is the electrolyte, which is the two
Reaktionsräume voneinander trennt und die direkte Vermischung der Reaktionspartner verhindert. Auf dem Elektrolyten sind Elektroden aufgebracht. Auf der Anodenseite strömt das Brenngas entlang und wird unter Abgabe von Elektronen oxidiert. Der dazu nötige Sauerstoff kommt von der Kathodenseite in ionisierter Form durch den Elektrolyten. Die an der Anode freigesetzten Elektronen werden der Kathode über einen externen Stromkreislauf zu geführt. Die an Anode und Kathode ablaufenden Teilreaktionen und die Gesamtreaktion lassen sich folgendermaßen formulieren: Anodenreaktion H2+O2" -> H2O +2e" Kathodenreaktion 0.5 O2 + 2e~ -> O2" Gesamtreaktion H2+0.5 O2 -> H2OSeparate reaction spaces from each other and prevents the direct mixing of the reactants. On the electrolyte electrodes are applied. On the anode side, the fuel gas flows along and is oxidized with release of electrons. The necessary oxygen comes from the cathode side in ionized form through the electrolyte. The electrons released at the anode become the cathode via an external Electric circuit to led. The proceeding at the anode and cathode partial reactions and the overall reaction can be formulated as follows: anode reaction H 2 + O 2 "-> H 2 O + 2e" cathode reaction 0.5 O 2 + 2e ~ -> O 2 "overall reaction H 2 + 0.5 O 2 - > H 2 O
Die Umwandlung des Brennstoffs zu Strom erfolgt demnach ohne jegliche drehenden Teile bzw. Generatoren.The conversion of the fuel to electricity is thus without any rotating parts or generators.
Walter Hermann Nernsts Entdeckung aus dem Jahre 1899, dassWalter Hermann Nernst's discovery in 1899 that
Zirkonoxid (ZrO2) bei entsprechend hohen Temperaturen leitend ist für Sauerstoffionen, war der Ausgangspunkt für die Entwicklung der SOFC Technologie [12]. Die wichtigsten Eigenschaften dieser Technologie sind im Folgenden kurz zusammen- gefasst:Zirconium oxide (ZrO 2 ), which is conductive at high temperatures for oxygen ions, was the starting point for the development of SOFC technology [12]. The most important features of this technology are briefly summarized below:
Der Wirkungsgrad von Brennstoffzellen ist grundsätzlich nicht durch den Carnot-Wirkungsgrad limitiert. SOFCs weisen die höchsten Wirkungsgrade bei der Umsetzung von Brenngas zu Strom auf [9].The efficiency of fuel cells is basically not limited by the Carnot efficiency. SOFCs have the highest efficiencies in the conversion of fuel gas to electricity [9].
SOFCs können in einem großen Temperaturbereich zwischen 5000C bis 10000C betrieben werden [10] .SOFCs can be operated in a wide temperature range between 500 0 C to 1000 0 C [10].
Die hohen Betriebstemperaturen von SOFCs und die typischerweise unvollständige Brennstoffausnutzung von SOFCs bieten ein hohes Potenzial für den Einsatz in Hybridsystemen [9]. Die in der SOFC erzeugte Abwärme auf hohem Temperaturniveau erlaubt den Einsatz von Gas- und Dampfkreisläufen als «Bottoming»- Kreislauf. Dadurch kann ansonsten verlorene Abwärme nutzbar gemacht werden. Thermodynamische Berechnungen haben gezeigt, dass unter Druck betriebene Systeme nochmals eine Wirkungsgradsteigerung zulassen dürften. Die Schadstoffemissionen von solchen Hybridsystemen werden als gering erwartet, da die Haupt-Brennstoffumsetzung auf elektrochemischem Weg erfolgt. Gleiches gilt für die Kohlendioxidemissionen, die direkt umgekehrt proportional mit dem Systemwirkungsgrad korrelieren. Die hohen Betriebstemperaturen von SOFCs erlauben den Einsatz billiger Katalysatormaterialien im Vergleich zu Tief- und Mitteltemperaturbrennstoffzellen. Typischerweise wird bei SOFCs Nickel als Anodenkatalysator eingesetzt. Im Vergleich dazu kommt in Polymerelektrolytmembran-Brennstoffzellen Platin zum Einsatz [10] .The high operating temperatures of SOFCs and the typically incomplete fuel utilization of SOFCs offer high potential for use in hybrid systems [9]. The waste heat generated in the SOFC at a high temperature level allows the use of gas and steam circuits as a "bottoming" cycle. As a result, otherwise lost waste heat can be harnessed. Thermodynamic calculations have shown that pressurized systems are likely to increase efficiency even further. The pollutant emissions of such hybrid systems are expected to be low because the main fuel conversion is done electrochemically. The same applies to the carbon dioxide emissions, which correlate directly inversely proportional to the system efficiency. The high operating temperatures of SOFCs allow the use of cheap catalyst materials compared to low and medium temperature fuel cells. Typically, SOFCs use nickel as the anode catalyst. By comparison, platinum is used in polymer electrolyte membrane fuel cells [10].
SOFCs weisen eine hohe Flexibilität in Bezug auf die Zusammensetzung des Brenngases auf, da sie neben Wasserstoff auch Kohlenmonoxid und sogar Kohlenwasserstoffe elektrochemisch umsetzen können [10]. Zusätzlich erlauben die hohen Betriebstemperaturen und die eingesetzten Katalysatormaterialien thermisch integrierte STR und WGS von Brenngasen. Die Umsetzung der Brenngase kann entweder außerhalb der Brenn- stoffzelle in einem separaten Reaktor erfolgen, der die benötigte Prozesswärme von der Brennstoffzelle erhält, oder innerhalb der Brennstoffzelle erfolgen. Bei internen STR kann der endotherme Charakter der STR genutzt werden um die Brennstoffzelle auf chemischem Wege zu kühlen, um somit die Menge an Abwärme zu verringern und in der Folge den Wirkungsgrad zu steigern [2] . Der zur STR benötigte Dampf wird kontinuierlich durch die exothermen elektrochemischen Reaktionen produziert. Der wirkungsgrad-optimale Anteil an interner Reformierung ist abhängig von zahlreichen Faktoren. In [11] wurde gezeigt, dass für das dort betrachtete System ein Anteil an interner Reformierung von 30% den besten Wirkungsgrad ergibt. Neben der möglichen Steigerung des Wirkungsgrades wird die Komplexität des Gesamtsystems, im Falle interner Reformierung, durch den Wegfall eines separaten STR-Reaktors vereinfacht [2].SOFCs have a high degree of flexibility with regard to the composition of the fuel gas, because in addition to hydrogen they can also electrochemically convert carbon monoxide and even hydrocarbons [10]. In addition, the high operating temperatures and the catalyst materials used allow thermally integrated STR and WGS of fuel gases. The conversion of the fuel gases can either be done outside of the fuel cell in a separate reactor, which receives the required process heat from the fuel cell, or within the fuel cell. With internal STR, the endothermic character of the STR can be used to chemically cool the fuel cell, thus reducing the amount of waste heat and subsequently increasing efficiency [2]. The steam required for the STR is continuously produced by the exothermic electrochemical reactions. The efficiency-optimal proportion of internal reforming depends on numerous factors. In [11] it was shown that for the system considered there a share of internal reforming of 30% gives the best efficiency. In addition to the possible increase in efficiency, the complexity of the overall system, in the case of internal reforming, simplified by the elimination of a separate STR reactor simplifies [2].
Trotz der Vorteile hat sich die direkte interne Reformierung noch nicht auf breiter Basis durchgesetzt. Dies ist auf die damit verbundenen technischen Probleme zurückzuführen. Kohlenstoffablagerungen innerhalb der SOFC aufgrund des Zerfalls der KohlenwasserstoffVerbindungen anstatt deren Reformierung können zum Verstopfen führen. Diesbezüglich ist insbesondere Nickel als Katalysator anfällig. Außerdem kann es beim Einsatz hochaktiver STR Katalysatoren zu einer sehr konzentrierten STR Zone kommen. Dadurch könnte es zu hohen thermischen Gradienten in den Zellen kommen, die zu hohen mechanischen Belastungen und schlussendlich zum Defekt der SOFC führen können [2]. Neben dem eingesetzten Katalysator spielt auch die anliegende elektrische Last eine Rolle für den optimalen Anteil interner STR. Insbesondere bei Lastwechseln zu geringeren Lasten hin kann es zum geschilderten Versagen kommen.Despite the benefits, direct internal reform has not yet become widely accepted. This is due to the related technical issues. Carbon deposits within the SOFC due to disintegration of the hydrocarbon compounds rather than their reforming can cause clogging. In this regard, nickel is especially susceptible as a catalyst. Additionally, when using highly active STR catalysts, it can be a very concentrated STR Zone come. This could lead to high thermal gradients in the cells, which can lead to high mechanical loads and ultimately to the defect of the SOFC [2]. In addition to the catalyst used, the applied electrical load also plays a role for the optimum proportion of internal STR. Especially with load changes to lower loads out there may come to the described failure.
Die SOFC Technologie ist relativ einfach in Systemen im Leistungsbereich von einigen Watt bis zu mehreren Megawatt adaptierbar [9] .The SOFC technology is relatively easy to adapt in systems in the power range from a few watts to several megawatts [9].
Die SOFC Technologie ist noch nicht ausgereift. Der aktuelle Status der Technologieentwicklung reicht von Grundlagen- forschung hauptsächlich auf dem Gebiet der Materialwissenschaften bis hin zum Betrieb von pre-kommerziellen Systemen und der Entwicklung von Markteintrittsstrategien.The SOFC technology is not mature yet. The current status of technology development ranges from basic research mainly in the field of materials science to the operation of pre-commercial systems and the development of market entry strategies.
Gesamtsysteme zur Erzeugung von Strom aus Biomasse mittels Vergasung Stand der Technik bei der Stromerzeugung in mittelgrossen bis grossen Biomasseanlagen über 5 MWe ist die Kombination von druckbetriebenen Wirbelschichtvergasern mit Gasturbinen und zusätzlichem Dampfkreislauf, so genannten combined cycles (CC). Diese Systeme erreichen Wirkungsgrade bis zu 40%. Bei Anlagen mit Leistungen unter 5 MWe kommen in der Regel anstelle von Gasturbinen Gasmotoren zum Einsatz. Diese sind in dem entsprechenden Leistungsbereich effizienter und kostengünstiger. Typischerweise werden mit solchen Systemen Wirkungsgrade um 25 % erreicht.Total systems for the generation of electricity from biomass by means of gasification The state of the art in power generation in medium to large biomass plants above 5 MW e is the combination of pressure-driven fluidized bed gasifiers with gas turbines and additional steam cycle, so-called combined cycles (CC). These systems achieve efficiencies of up to 40%. For systems with capacities below 5 MW e gas engines are usually used instead of gas turbines. These are more efficient and less expensive in the corresponding performance range. Typically, efficiencies of 25% are achieved with such systems.
Bisher wurden noch keine Anlagen zur Erzeugung von Strom aus Biomasse gebaut, die eine Festkeramikbrennstoffzelle einsetzen. Allerdings sind einige Patente angemeldet worden, die in der Regel auf die geschickte thermische Integration zwischen der Vergasereinheit (Biomasse oder Kohle) und der Brennstoffzelle abzielen. US 5.554.453 [21] offenbart:So far, no plants have been built to generate electricity from biomass using a solid ceramic fuel cell. However, some patents have been filed, which are usually aimed at the skillful thermal integration between the carburetor unit (biomass or coal) and the fuel cell. US 5,554,453 [21] discloses:
Die Wärmeintegration zwischen der eingesetzten Hochtemperaturbrennstoffzelle erfolgt über eine katalytische Verbrennung des Anodenabgases, welches direkt aus der Brennstoffzelle in den Kohlevergaser geleitet wird. Die katalytische Verbrennung findet in einem Reaktorgehäuse statt, welches sich innerhalb des Kohlevergasers befindet. Dadurch wird die freigesetzte Verbrennungswärme direkt zur Unterstützung der endothermen Vergasungsreaktionen verwendet. Im Patent wird nicht näher auf Regelbarkeit des Systems und Gasreinigungsschritte eingegangen .The heat integration between the high-temperature fuel cell used is carried out via a catalytic combustion of the anode exhaust gas, which is passed directly from the fuel cell in the coal gasifier. The catalytic combustion takes place in a reactor housing located within the coal gasifier. As a result, the released combustion heat is used directly to support the endothermic gasification reactions. The patent does not elaborate on controllability of the system and gas purification steps.
US 4.921.765 [22] beschreibt:US 4,921,765 [22] describes:
Die Wärmeintegration zwischen der eingesetzten Hochtemperatur- brennstoffzelle und dem katalytisch unterstützten Kohlevergaser erfolgt über die Rezirkulierung des innerhalb der Hochtemperaturbrennstoffzelle vollständig umgesetzten Anodenabgases. Dieses besteht somit nur noch aus Kohlendioxid und Wasserdampf. Das im Feedgas aus dem Vergaser enthaltene Kohlendioxid wird vor der Brennstoffzelle entfernt und in den Kathodenstrom geleitet. Dort wird es für die elektrochemischen Reaktionen benötigt. Es wird in sehr genereller Art und Weise auf die Notwendigkeit einer Entschwefelung sowie der Partikelentfernung eingegangen. Regelungstechnische Aspekte werden nicht angesprochen.The heat integration between the high-temperature fuel cell used and the catalytically assisted coal gasifier via the recirculation of the fully reacted within the high-temperature fuel cell anode exhaust gas. This therefore only consists of carbon dioxide and water vapor. The carbon dioxide contained in the feed gas from the gasifier is removed in front of the fuel cell and passed into the cathode stream. There it is needed for the electrochemical reactions. It is addressed in a very general manner on the need for desulfurization and particle removal. Regulatory aspects are not addressed.
US 2002/0194782 Al [23] zielt auf die Wärmeintegration zwischen einer Hochtemperaturbrennstoffzelle und einem Biomasse-Wirbelschichtvergaser. Dieser weist als Besonderheit auf, dass der Verbrennungsteil, in dem unreagierter Kohlenstoff verbrannt wird und somit ein inertes Bettmaterial aufgeheizt wird, sich innerhalb des Vergasungsteils befindet. Der Wärmeaustausch zwischen Verbrennungs- und Vergasungsteil erfolgt somit über Konvektion und Wärmestrahlung zwischen den Reaktorwänden sowie über das inerte zirkulierende Bettmaterial. Die Wärmeintegration der Hochtemperaturbrennstoffzelle erfolgt über die Verbrennung von unreagiertem Anodengas im Verbrennungsteil des Vergasers. Das Verbrennungsgas aus dem Verbrennungsteil wird der Kathode der Hochtemperaturbrennstoffzelle zugeführt. Auf regelungstechnische Aspekte sowie notwendige Gasreinigungsschritte wird nicht eingegangen.US 2002/0194782 Al [23] is directed to heat integration between a high temperature fuel cell and a biomass fluidized bed gasifier. This has a special feature that the combustion part, in which unreacted carbon is burned and thus an inert bed material is heated, is located inside the gasification part. The heat exchange between the combustion and gasification part is thus carried out by convection and heat radiation between the reactor walls and on the inert circulating bed material. The heat integration of the high-temperature fuel cell via the combustion of unreacted anode gas in the combustion part of the carburetor. The combustion gas from the Combustion part is supplied to the cathode of the high-temperature fuel cell. On control engineering aspects and necessary gas purification steps will not be discussed.
Aufgabe der vorliegenden Erfindung ist, ein Verfahren und eine Anlage zur Verstromung fester Biomasse über eine Vergaserbrennstoffzellenkopplung anzugeben, die mehrere Prozesseinheiten in einer gesamtheitlichen Weise kombiniert.The object of the present invention is to provide a method and a plant for the generation of solid biomass via a gasification fuel cell coupling, which combines several process units in a holistic manner.
Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Merkmale gelöst.This object is achieved by the features specified in the independent claims.
Vorteilhafte Weiterbildungen der vorliegenden Erfindungen sind in den abhängigen Ansprüchen angegeben.Advantageous developments of the present invention are specified in the dependent claims.
Die Erfindung wird anhand der Figuren beispielsweise näher erläutert. Es zeigen:The invention will be explained in more detail with reference to the figures, for example. Show it:
Figur 1 Schematische Darstellung der Anlage; Figur 2 Schematische Darstellung der Partikelfiltrationseinheit mit integrierten Katalysatormonolithen zur Realisierung eines variabel einstellbaren Anteils an katalytisch umgesetzten Produktgas.Figure 1 Schematic representation of the system; Figure 2 Schematic representation of the particle filtration unit with integrated catalyst monoliths for the realization of a variably adjustable proportion of catalytically reacted product gas.
Die Anlage zur thermischen und regelungstechnischen Integration von Hochtemperaturhebrennstoffzellen und Biomassevergasung ergibt sich aus Figur 1:The plant for the thermal and control integration of high-temperature fuel cells and biomass gasification is shown in FIG. 1:
Die Biomasse 61 wird von oben in den Vergaser 1 eingebracht. Dort wird die Biomasse 61 mit vorgewärmter Luft 82 in ein Gemisch aus Partikeln, Dampf, Wasserstoff, Kohlenmonoxid,The biomass 61 is introduced from above into the carburetor 1. There, the biomass 61 with preheated air 82 into a mixture of particles, steam, hydrogen, carbon monoxide,
Kohlendioxid, Methan, Stickstoff, höherer CH-Spezies, Teerverbindungen, Schwefelwasserstoff, organischer Schwefelspezies sowie andere Spurenstoffe umgewandelt.Carbon dioxide, methane, nitrogen, higher CH species, tar compounds, hydrogen sulfide, organic sulfur species and other trace substances converted.
Im Fall eines Gegenstromvergasers ist der Anteil an kondensierbaren Spezies in rohen Produktgas 62 hoch und macht ca. 25% von dessen Heizwert aus. Die vorhandenen Teerverbindungen im rohen Produktgas 62 sind in der Regel sauerstoffhaltig und befinden sich aufgrund der Temperatur des Produktgases von etwa 6000C in der Gasphase. Alkalien und Schwermetalle kondensieren bei diesem Temperaturen in der Regel auf grosseren Partikeln. Sollte die Temperatur des Produkts über die Verdampfungstemperatur von Schwermetallen und Alkalien steigen, kann dieses mittels Wasserzugabe abgekühlt werden. Schwefelverbindungen sind in der Regel organischer Natur.In the case of a countercurrent gasifier, the proportion of condensable species in crude product gas 62 is high and accounts for approximately 25% of its calorific value. The existing tar compounds in the crude product gas 62 are usually oxygenated and are due to the temperature of the product gas of about 600 0 C in the gas phase. At this temperature, alkalis and heavy metals usually condense on larger particles. If the temperature of the product rises above the evaporation temperature of heavy metals and alkalis, it can be cooled by adding water. Sulfur compounds are usually organic in nature.
Im Fall eines Gleichstromvergasers enthält das Produktgas fast keine (höheren) Kohlenwasserstoffe, eine chemische Kühlung der nachgeschalteten Brennstoffzelle durch interne Dampfrefor- mierung ist also limitiert.In the case of a DC gasifier, the product gas contains almost no (higher) hydrocarbons, so chemical cooling of the downstream fuel cell by internal steam reforming is limited.
Das rohe Produktgas 62 wird dann in einem Apparat 2 zur Ent- fernung von Partikeln geleitet, siehe dazu auch Figur 2. Der Apparat 2 - in dieser Schrift auch Partikelabscheider 2 genannt - besteht im Wesentlichen aus den zwei getrennten Kammern 201 und 202: Rohgaskammer 201 und Reingaskammer 202. Die Partikel mit den auf ihnen kondensierten Alkalien und Schwermetallen werden durch hochtemperaturfeste Filterelemente 203 am Übertritt von Rohgaskammer 201 in Reingaskammer 202 gehindert und als Filterkuchen auf den Filterelementen abgelagert. Der Filterkuchen wird zyklisch in Abhängigkeit des dadurch entstehenden Druckverlusts über die Filterelemente durch Druckstösse mit partikelfreiem Produktgas von denThe crude product gas 62 is then passed in an apparatus 2 for removing particles, see also FIG. 2. The apparatus 2-also called particle separator 2 in this document-consists essentially of the two separate chambers 201 and 202: raw gas chamber 201 and clean gas chamber 202. The particles with the alkalis and heavy metals condensed on them are prevented from passing from the raw gas chamber 201 into the clean gas chamber 202 by high-temperature resistant filter elements 203 and deposited as filter cakes on the filter elements. The filter cake is cyclically depending on the resulting pressure loss across the filter elements by pressure surges with particle-free product gas of the
Filterelementen abgelöst und aus dem Apparat ausgetragen. Innerhalb der Filterelemente 203 sind katalytisch beschichtete Monolithen 205 fest oder verschiebbar untergebracht. Die Monolithen 205 entsprechen katalytischen Reaktoren, in denen kondensierbare Spezies nachvergast werden und/oder die oben genannten reversiblen Reaktionen Dampfreformierung, Wassergaskonvertierung und Methanisierung ablaufen können. Durch die Position des Monolithen kann der Anteil des rohen partikelfreien Produktgases, der durch den Monolithen strömen kann, eingestellt werden. Dies wird insbesondere durch die homogene Druckverteilung innerhalb der Filterelemente ermöglicht. Figur 2 zeigt exemplarisch 3 verschiedene Positionen des Katalysatormonolithen. Im Fall A befindet sich der Monolith 205 in Leerlaufposition. Das rohe partikelfreie Produktgas wird mitsamt seiner hohen Beladung an auch sauerstoffhaltigen Teerverbindungen und organischen Schwefelverbindungen in die Reingaskammer 202 geleitet und verlässt dann den Partikelabscheider 2 als Reingas 63. Im Fall B befindet sich der Monolith 205, vgl. Figur 2, in Volllastposition. Das rohe partikelfreie Produktgas wird komplett über der katalytisch beschichteten bzw. aktiven Monolithen geleitet. Dort werden nahezu alle aromatischen und sauerstoffhaltigen Teerverbindungen zu Wasserstoff und Kohlenmonoxid abgebaut. Weiterhin haben eigene Messungen gezeigt, dass nahezu alle organischen Schwefelverbindungen zu Schwefelwasserstoff umgewandelt werden. Das reine Produktgas 63 verlässt den Apparat 2 als Strom 63. Im Fall C wird etwa die Hälfte des rohen Produktgases über den Monolithen geleitet. Das katalytisch umgesetzte Produktgas vermischt sich anschliessend mit dem rohen Produktgas .Filter elements detached and discharged from the apparatus. Within the filter elements 203 catalytically coated monoliths 205 are housed fixed or movable. The monoliths 205 correspond to catalytic reactors in which condensable species can be post-gasified and / or the abovementioned reversible reactions steam reforming, water gas conversion and methanation can proceed. By the position of the monolith, the proportion of the raw particle-free product gas that can flow through the monolith can be adjusted. This is made possible in particular by the homogeneous pressure distribution within the filter elements. FIG. 2 shows by way of example 3 different positions of the catalyst monolith. In case A, the monolith 205 is in the idle position. The raw particle-free product gas is passed together with its high load of oxygen-containing tar compounds and organic sulfur compounds in the clean gas chamber 202 and then leaves the particle 2 as clean gas 63. In case B is the monolith 205, see. Figure 2, in full load position. The crude particle-free product gas is passed completely over the catalytically coated or active monoliths. There, almost all aromatic and oxygen-containing tar compounds are degraded to hydrogen and carbon monoxide. Furthermore, own measurements have shown that almost all organic sulfur compounds are converted to hydrogen sulphide. The pure product gas 63 leaves the apparatus 2 as stream 63. In case C, about half of the crude product gas is passed over the monolith. The catalytically reacted product gas then mixes with the crude product gas.
Im Fall eines Gegenstromvergasers hat die Mischung eine geringere Beladung an Kohlenwasserstoffverbindungen als das rohe Produktgas und verlässt den Apparat 2 als Reingas 63.In the case of a countercurrent gasifier, the mixture has a lower loading of hydrocarbon compounds than the crude product gas and leaves the apparatus 2 as clean gas 63.
Im Fall eines Gleichstromvergasers kann sich der Methangehalt erhöht haben, was eine chemische Kühlung der nachgeschalteten Brennstoffzelle durch interne Dampfreformierung ermöglicht. Die zur katalytischen Umsetzung benötigte Luft-, Wasserstoff- und/oder Wasserdampfmenge wird anhand der Temperatur im Mono- lithen eingestellt und ermöglicht somit immer optimale Bedingungen für die katalytische Umsetzung. Die vorgeheizte Luft-, Wasserstoff und/oder Wasserdampfmenge 83 wird über eine Lanze 204, die durch den Monolithen durchgeführt ist in das Innere der Filterelemente eingebracht, wo sie sich mit dem rohen Produktgas vermischt. Das Gemisch wird dann durch den katalytischen Monolithen geleitet. Die Filterelemente verhindern die Rückvermischung mit dem rohen Produktgas ausserhalb der Filterelemente. Das partikelfreie und vollständig, teilweise oder nicht kata- lytisch umgesetzte Produktgas 63 wird dann in einen Wärmetauscher geleitet, wo es von Temperaturen von ca. 6500C bis 850°C auf 4000C runtergekühlt wird: gekühltes Produktgas 64. Nach der Abkühlung durchströmt das Gas ein Zinkoxidbett mit vorgeschalteter Entchlorung (zweiter Schwefelabsorber 3). Messungen haben ergeben, dass bei dieser Temperatur die Schwefelwasserstoffkonzentration im Gas auf unter 1 ppm abgesenkt werden kann, ohne die thermische Stabilität des eingesetzten Absorbermaterials zu überschreiten. Das Produktgas 65 mit tiefem Schwefelwasserstoffgehalt verlässt den zweiten Schwefelabsorber 3 und wird im Wärmetauscher in dem es vorgängig abgekühlt wurde wieder auf 6000C bis 8000C aufgeheizt: aufgeheiztes Produktgas mit tiefem Schwefelwasserstoff- gehalt 66.In the case of a DC gasifier, the methane content may have increased, allowing for chemical cooling of the downstream fuel cell by internal steam reforming. The amount of air, hydrogen and / or water vapor required for the catalytic conversion is adjusted on the basis of the temperature in the monolith and thus always enables optimum conditions for the catalytic conversion. The pre-heated amount of air, hydrogen and / or water vapor 83 is introduced into the interior of the filter elements via a lance 204, which is passed through the monolith, where it mixes with the crude product gas. The mixture is then passed through the catalytic monolith. The filter elements prevent backmixing with the crude product gas outside the filter elements. The particle-free and completely, partially or not catalytically reacted product gas 63 is then passed into a heat exchanger where it is cooled down to temperatures of about 650 0 C to 850 ° C to 400 0 C: cooled product gas 64. After cooling, flows through the gas is a zinc oxide bed with upstream dechlorination (second sulfur absorber 3). Measurements have shown that at this temperature, the hydrogen sulfide concentration in the gas can be lowered below 1 ppm, without exceeding the thermal stability of the absorber material used. The product gas 65 with a low hydrogen sulphide content leaving the second sulfur absorber 3 and is in the heat exchanger in which it was previously cooled reheated to 600 0 C to 800 0 C: has been heated product gas with a low hydrogen sulphide content 66th
Das schwefelwasserstoffarme Produktgas 66 beinhaltet je nach Anteil an katalytischer Umsetzung mehr oder weniger organische Schwefelverbindungen. Im Standardfall wird das gesamte Produktgas der katalytischen Umsetzung zugeführt. ErfordernThe low-sulfur product gas 66 contains more or less organic sulfur compounds depending on the proportion of catalytic conversion. In the standard case, the entire product gas is fed to the catalytic conversion. Require
Schwankungen in der Biomassezusammensetzung oder -feuchte eine nur teilweise katalytische Umsetzung, so enthält das Schwefelwasserstoffarme Produktgas 66 noch eine gewisse Menge an organischen Schwefelverbindungen. Das Produktgas 66 wird in den ersten Schwefelabsorber 4 geleitet, wo die organischenFluctuations in the biomass composition or moisture only partially catalytic reaction, so the low-hydrogen sulfide product gas 66 still contains a certain amount of organic sulfur compounds. The product gas 66 is passed into the first sulfur absorber 4, where the organic
Schwefelverbindungen bei Temperaturen zwischen 6000C und 8000C von einem (z.B. perovskitischem) Absorbermaterial absorbiert werden.Sulfur compounds are absorbed at temperatures between 600 0 C and 800 0 C of a (eg perovskitischer) absorber material.
Das nun partikelfreie, vollständig, teilweise oder nicht katalytisch umgesetzte und vollständig entschwefelte Produktgas 67 wird anschliessend in einen zweiten Wärmetauscher 12 geleitet, in dem das aufgeheizte entschwefelte Produktgas 68 durch das heisse Anodenabgas 69 auf nahezu die Betriebs- temperatur der Anode 5 aufgeheizt wird.The now particle-free, completely, partially or non-catalytically reacted and completely desulfurized product gas 67 is then passed into a second heat exchanger 12, in which the heated desulfurized product gas 68 is heated by the hot anode exhaust gas 69 to almost the operating temperature of the anode 5.
An der Anode 5 der Brennstoffzelle 17 wird je nach angelegter Last mehr oder weniger des Produktgases 68 elektrochemisch umgesetzt. Das Anodenabgas 69 wird genutzt, um das entschwefelte Produktgas 67 aufzuheizen und wird dann in einen Brenner 7 geleitet, wo es mit dem bereits abgekühlten Kathodenabgas 80 verbrannt wird.At the anode 5 of the fuel cell 17, more or less of the product gas 68 is electrochemically depending on the applied load implemented. The anode exhaust gas 69 is used to heat the desulfurized product gas 67 and is then passed into a burner 7 where it is burned with the already cooled cathode exhaust gas 80.
Die heissen Rauchgase 71 werden in einer Turbine 8 entspannt, die über eine gemeinsame Welle einen Generator 16 und einen Verdichter 9 antreibt. Die entspannten Rauchgase 72 werden in einem weiteren Wärmetauscher zur Vorheizung der im Verdichter 9 verdichteten Luft 76 genutzt, bevor sie im einem Dampfkreislauf zur Erzeugung weiteren Stroms 92 (genau elektrischer Energie) und Nutzwärme 93 eingesetzt werden.The hot flue gases 71 are expanded in a turbine 8, which drives a generator 16 and a compressor 9 via a common shaft. The expanded flue gases 72 are used in a further heat exchanger for preheating the air compressed in the compressor 9 76 before they are used in a steam cycle to generate additional electricity 92 (electrical energy) and useful heat 93.
Die vom Verdichter 9 angesaugte Luft 75 wird nach der Kom- pression und Vorwärmung in zwei Anteile aufgeteilt. Der Strom 77 wird in einen dritten Wärmetauscher 13 geleitet, wo er auf durch das Kathodenabgas 79 nahezu auf die Betriebstemperatur der Kathode 6 gebracht wird. Diese entspricht der Temperatur der Anode 5. Der zweite Anteil der verdichteten vorgewärmten Luft 81 wird wiederum in zwei Anteile aufgeteilt. Strom 82 wird als Vergasungsmedium 82 in den Vergaser 1 eingebracht. Luft kann in das Partikelfiltersystem 2 mit integrierter katalytischer Umsetzung eingebracht werden, in dem sie allenfalls als Teil des Reaktionsmedium 83 dient.The air 75 sucked in by the compressor 9 is divided into two parts after compression and preheating. The stream 77 is passed into a third heat exchanger 13, where it is brought by the cathode exhaust gas 79 almost to the operating temperature of the cathode 6. This corresponds to the temperature of the anode 5. The second portion of the compressed preheated air 81 is again divided into two parts. Stream 82 is introduced as gasification medium 82 in the carburetor 1. Air can be introduced into the particulate filter system 2 with integrated catalytic conversion in which it serves as part of the reaction medium 83 at most.
Die vorgeschlagene Erfindung kombiniert mehrere an sich bekannte Prozesseinheiten zu einem Gesamtsystem dessen Eigenschaften der Summe aller Einzelprozesseinheiten überlegen sind.The proposed invention combines several process units known per se into an overall system whose properties are superior to the sum of all individual process units.
Durch die Kopplung der Biomassevergasung mit SOFCs können die im Produktgas enthaltenen und zum Teil sauerstoffhaltigen KohlenwasserstoffVerbindungen zur internen Reformierung bei geringem Kohlenstoffablagerungsrisiko in der SOFC genutzt werden. Dadurch wird die SOFC chemisch gekühlt was zu geringeren Mengen an Abwärme führt. Ausserdem können die Kohlen- wasserstoffverbindungen je nach Bedarf bei den angestrebten hohen Betriebstemperaturen zu Wasserstoff und Kohlenmonoxid umgesetzt werden. Im Falle eines Produktgases welches nur geringe Mengen an Kohlenwasserstoffen enthält, wie es z.B. bei der autothermen Gleichstrombiomassevergasung der Fall ist, ist die chemische Kühlung der SOFC kaum möglich, was sich negativ auf den Gesamtwirkungsgrad des Systems auswirkt. Die Erzeugung von KohlenwasserstoffVerbindungen (z.B. Methan) aus Wasserstoff und Kohlenmonoxid ist jedoch bei entsprechenden Betriebstemperaturen mittels katalytischer Methanisierung möglich.By coupling biomass gasification with SOFCs, the hydrocarbon compounds contained in the product gas and partially oxygen-containing can be used for internal reforming with low carbon deposition risk in the SOFC. This chemically cools the SOFC, resulting in lower amounts of waste heat. In addition, the hydrocarbon compounds can be hydrogenated and carbon monoxide as needed at the desired high operating temperatures be implemented. In the case of a product gas which contains only small amounts of hydrocarbons, as is the case, for example, in the autothermal DC biomass gasification, the chemical cooling of the SOFC is hardly possible, which has a negative effect on the overall efficiency of the system. However, the production of hydrocarbon compounds (eg methane) from hydrogen and carbon monoxide is possible at appropriate operating temperatures by means of catalytic methanation.
Die im Produktgas aus der Biomassevergasung enthaltenen kondensierbaren Teerverbindungen werden mittels katalytischer Umsetzung (z.B. autothermer Reformierung) zu Wasserstoff und Kohlenmonoxid umgesetzt. Die Integration der entsprechenden Monolithen in die Filterelemente des Partikelfiltrationssystems erlaubt es, den Anteil an sauerstoffhaltigen Kohlen- wasserstoffverbindungen variabel zu gestalten. Die ATR entspricht im weiteren Sinne einer zweiten Vergasungsstufe, die stufenlos zugeschaltet werden kann. Dadurch ist es möglich, den jeweils wirkungsgradoptimalen Anteil an internerThe condensable tar compounds contained in the product gas from biomass gasification are converted to hydrogen and carbon monoxide by catalytic conversion (e.g., autothermal reforming). The integration of the corresponding monoliths in the filter elements of the particle filtration system makes it possible to make the proportion of oxygen-containing hydrocarbon compounds variable. The ATR corresponds in the broader sense of a second gasification stage, which can be switched on continuously. This makes it possible, the respective optimal proportion of internal
Reformierung innerhalb der SOFC einzustellen. Der Einfluss der internen Reformierung auf den Wirkungsgrad von SOFCs wurde in [11, 14] gezeigt. Im dem untersuchten System und bei gegebenen Betriebsbedingungen lag die Differenz bei 2.5% Wirkungsgrad- punkten. Der Grad an interner Reformierung ist also ein Parameter, der optimal auf die jeweiligen Betriebsbedingungen eingestellt werden muss, um jederzeit den optimalen Wirkungsgrad der SOFC zu gewährleisten. Dies bedeutet eine zusätzliche Regelgrösse für produktgasbetriebene Brennstoffzellenanlagen neben der Kühlluftmasse, womit besser z.B. auf Transienten bei Last reagiert werden kann. Im Falle einer Lastverringerung kann der Kohlenwasserstoffanteil des Brenngases derart eingestellt werden, dass die Kühlluftmenge und Temperatur relativ konstant gehalten werden können, was einem angehängten GuD- Prozess zugute kommt. Weiterhin kann dadurch in Systemen, die mit heterogener Biomasse als Brennstoff betrieben werden, auf schwankende Brennstoffeigenschaften wie z.B. der Feuchte der Biomasse und deren chemische Zusammensetzung reagiert werden. Neben dem Umsatz von Teerverbindungen werden durch die kata- lytische Umsetzung des Produktgases auch organische Schwefelverbindungen zu Schwefelwasserstoff umgesetzt. Damit können gewöhnliche Absorbermaterialien zur Entschwefelung eingesetzt werden, die sehr tiefe Schwefelkonzentrationen ermöglichen und günstig sind.Reforming within the SOFC. The influence of internal reforming on the efficiency of SOFCs has been shown in [11, 14]. In the system under study and given operating conditions, the difference was 2.5% efficiency points. The degree of internal reforming is thus a parameter that must be optimally adjusted to the respective operating conditions in order to ensure the optimum efficiency of the SOFC at all times. This means an additional control variable for product gas fuel cell systems in addition to the cooling air mass, which can be better responded eg to transients under load. In the case of a load reduction, the hydrocarbon content of the fuel gas can be adjusted so that the cooling air quantity and temperature can be kept relatively constant, which benefits an attached gas and steam process. Furthermore, in systems that are operated with heterogeneous biomass as a fuel, reacting to fluctuating fuel properties such as the moisture content of the biomass and their chemical composition. In addition to the conversion of tar compounds, the catalytic conversion of the product gas also converts organic sulfur compounds into hydrogen sulphide. Thus, ordinary absorber materials can be used for desulfurization, which allow very low concentrations of sulfur and are favorable.
Thermisch integriert sind die Biomassevergasung sowie die SOFC über eine Luftvorwärmung.Biomass gasification and SOFC are thermally integrated via air preheating.
Liste der verwendeten BezugszeichenList of reference numbers used
1 Gegenstromfestbettvergaser1 counterflow fixed bed gasifier
2 Apparat, Partikelabscheider, Reaktor zur katalytischen Umsetzung2 Apparatus, particle separator, reactor for catalytic conversion
3 zweiter Schwefelabsorber 4 erster Schwefelabsorber3 second sulfur absorber 4 first sulfur absorber
5 Anode5 anodes
6 Kathode6 cathode
7 Brenner7 burners
8 Turbine 9 Verdichter, Kompressor8 turbine 9 compressor, compressor
10 Dampfkreislauf und Nutzwärme10 steam cycle and useful heat
11 erster Wärmetauscher11 first heat exchanger
12 zweiter Wärmetauscher12 second heat exchanger
13 dritter Wärmetauscher 14 vierter Wärmetauscher13 third heat exchanger 14 fourth heat exchanger
15 Elektrolyt15 electrolyte
16 Generator 17 Brennstoffzelle16 generator 17 fuel cell
61 Biomasse61 Biomass
62 rohes Produktgas62 raw product gas
63 ganz, teilweise oder nicht katalytisch umgesetztes Produktgas63 completely, partially or non-catalytically converted product gas
64 gekühltes Produktgas 6364 cooled product gas 63
65 Produktgas mit tiefem Schwefelwasserstoffgehalt65 product gas with low hydrogen sulfide content
66 aufgeheiztes Produktgas mit tiefem Schwefelwasserstoff- gehalt; schwefelwasserstoffarmes Produktgas 67 entschwefeltes Produktgas66 heated product gas with low hydrogen sulfide content; low-sulfur product gas 67 desulfurized product gas
68 aufgeheiztes entschwefeltes Produktgas68 heated desulfurized product gas
69 Anodenabgas69 anode exhaust gas
70 Produktgas70 product gas
71 heisses Rauchgas 72 entspannte Rauchgase71 hot flue gas 72 relaxed flue gases
73 gekühlte, entspannte Rauchgase73 cooled, relaxed flue gases
74 Abgase74 exhaust gases
75 Luft75 air
76 verdichtete Luft 77 verdichtete Luft76 compressed air 77 compressed air
78 Luft78 air
79 Kathodenabgas79 cathode exhaust gas
80 abgekühltes Kathodenabgas80 cooled cathode exhaust gas
81 vorgewärmte Luft 82 vorgewärmte Luft; Vergasungsmedium81 preheated air 82 preheated air; gasification medium
83 vorgewärmte Luft; Reaktionsmedium83 preheated air; reaction medium
91 Partikel91 particles
92 Strom, elektrische Energie92 electricity, electrical energy
93 Nutzwärme 94 As che93 useful heat 94 As che
201 Rohgaskämmer201 raw gas hammers
202 Reingaskammer202 clean gas chamber
203 hochtemperaturfeste Filterelemente203 high temperature resistant filter elements
204 Lanze204 lance
205 katalytisch beschichtete bzw. aktiven Monolithen205 catalytically coated or active monoliths
Zitierte LiteraturQuoted literature
[1] «Hopes for a flame-free future», K. Kendall, Nature, Volume 404, Pages 233-234, 2000[1] "Hopes for a flame-free future", K. Kendall, Nature, Volume 404, Pages 233-234, 2000
[2] «An updated assessment of the prospects for fuel cells in stationary power and chp», DTI Report, URN no. 05/705 [3] «Development Update on Delphi ' s Solid Oxide Fuel Cell System», S. Shaffer, 6th Annual SECA Workshop, Delphi/ Batteile, 2005[2] "Updated assessment of the prospects for fuel cells in stationary power and chp", DTI Report, URN no. 05/705 [3] "Development Update on Delphi's Solid Oxide Fuel Cell System", S. Shaffer, 6th Annual SECA Workshop, Delphi / Batteile, 2005
[4] «Fuel Cells -Fundamentals and Applications», L. Carrette et al., Fuel Cells, Volume l,Issue 1, Pages 5-39, 2001 [5] «Reaktionskinetische Untersuchungen zur Methan-Dampf- Reformierung und Shift-Reaktion an Anoden oxidkeramischer Brennstoffzellen», R. Leinfelder, Dissertation, Universität Erlangen-Nürnberg, 2004[4] "Fuel Cells Foundations and Applications," L. Carrette et al., Fuel Cells, Volume I, Issue 1, Pages 5-39, 2001 [5] "Reaction kinetic studies on methane-steam reforming and shift reaction Anodes of Oxide-Ceramic Fuel Cells », R. Leinfelder, Dissertation, University of Erlangen-Nuremberg, 2004
[6] «A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles», L. F.[6] "A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles", L.F.
Brown, International Journal of Hydrogen Energy, Volume 26, Issue 4, Pages 381-397, 2001Brown, International Journal of Hydrogen Energy, Volume 26, Issue 4, Pages 381-397, 2001
[7] «Reaktionstechnische Untersuchungen zur katalytischen partiellen Oxidation von Methan mit Sauerstoff zu Synthesegas in Festbettreaktoren», U. Bartmann, Dissertation, Ruhr-Universität Bochum, 1999 [8] «Fuel Cell Systems Explained», J. Larminie, A. Dicks, John Wiley & Sons, ISBN 0-471-49026-1[7] "Reaction Engineering Studies on the Catalytic Partial Oxidation of Methane with Oxygen to Synthesis Gas in Fixed Bed Reactors", U. Bartmann, Dissertation, Ruhr-Universität Bochum, 1999 [8] "Fuel Cell Systems Explained," J. Larminie, A. Dicks, John Wiley & Sons, ISBN 0-471-49026-1
[9] «Perspectives on Fuel Cells vs . Incumbent Technologies», R. Bosch, Delphi, Fuel Cell Seminar 2005, 2005 [10] «Solid Oxide Fuel Cells: Systems and Materials», L. J.[9] «Perspectives on Fuel Cells vs. Incumbent Technologies, R. Bosch, Delphi, Fuel Cell Seminar 2005, 2005 [10] Solid Oxide Fuel Cells: Systems and Materials, L.J.
Gauckler et al., Chimia, Volume 58, Issue 12, Pages 837- 850, 2004Gauckler et al., Chimia, Volume 58, Issue 12, Pages 837-850, 2004
[11] «Thermodynamic Modelling and Performance of Combined[11] Thermodynamic Modeling and Performance of Combined
Solid Oxide Fuel Cell and Gas Turbine Systems», J. Pälsson, Dissertation, Lund University, Schweden, 2002Solid Oxide Fuel Cell and Gas Turbine Systems ", J. Pälsson, Dissertation, Lund University, Sweden, 2002
[12] «The Birth of the Fuel Cell (1835-1845) . Complete[12] The Birth of the Fuel Cell (1835-1845). Complete
Correnspondence between Christian Friedrich Schoenbein and William Robert Grove», U. Bossel. European Fuel Cell Forum, ISBN 3-905-59206-1 [13] «Heissentteerung von Brenngas aus der Vergasung von Biomasse durch katalytische partielle Oxidation», M. Klemm, VDI Fortschrittsbericht Rehe 6, Nr. 525, 2005Correnspondence between Christian Friedrich Schoenbein and William Robert Grove », U. Bossel. European Fuel Cell Forum, ISBN 3-905-59206-1 [13] "Hot Tentation of Fuel Gas from the Gasification of Biomass by Catalytic Partial Oxidation", M. Klemm, VDI Progress Report Deer 6, No. 525, 2005
[14] «Thermally Integrated High Power Density SOFC[14] «Thermally Integrated High Power Density SOFC
Generator», FuelCell Energy, Inc. Versa Power Systems Inc., SECA Annual Meeting Pacific Grove, California April 18-21, 2005Generator », FuelCell Energy, Inc. Versa Power Systems Inc., SECA Annual Meeting Pacific Grove, California April 18-21, 2005
[15] «Diesel and Jet Fuel Processing for Portable Fuel Cell Applications», Z. Li, S. Kabachus, N. Ye, M. Fokema, Aspen Products Group, Inc., Fuel Cell Seminar, 2006 [16] WO 2005/007780 A2[15] "Diesel and Jet Fuel Processing for Portable Fuel Cell Applications", Z. Li, S. Kabachus, N. Ye, M. Fokema, Aspen Products Group, Inc., Fuel Cell Seminar, 2006 [16] WO 2005 / 007780 A2
«Methods and compositions for desulphurization of hydrocarbon fuels»"Methods and compositions for desulphurization of hydrocarbon fuels"
[17] WO 02/22763 Al[17] WO 02/22763 Al
«Process for desulphurizing hydrocarbon fuels and fuel components»«Process for desulphurizing hydrocarbon fuels and fuel components»
[18] US 5,157,201[18] US 5,157,201
«Process for adsorbing sulfur species from propylene/propane using regenerable adsorbent» [19] EP 0 576 096 A2«Process for adsorbing sulfur species from propylene / propane using regenerable adsorbent» [19] EP 0 576 096 A2
«Process for the catalytic partial oxidation of hydrocarbons»"Process for the catalytic partial oxidation of hydrocarbons"
[20] US 2003/0180215 Al «Controlled-pore catalyst structures and process for producing syngas»[20] US 2003/0180215 A1 "Controlled-pore catalyst structures and process for producing syngas"
[21] US 5.554.453[21] US 5,554,453
«Carbonate Fuel Cell System with thermally integrated gasification» [22] US 4.921.765"Carbonate Fuel Cell System with thermally integrated gasification" [22] US 4,921,765
«Combined coal gasifier and fuel cell system and method»Combined coal gasifier and fuel cell system and method
[23] US 2002/0194782 Al[23] US 2002/0194782 Al
«Integrated biomass gasification and fuel cell system» Integrated biomass gasification and fuel cell system

Claims

Patentansprüche claims
1. Verfahren zur Verstromung (8, 17, 92) fester Biomasse ( 61) über eine Vergaserbrennstoffzellenkopplung, mit den Verfahrensschritten:A method for power generation (8, 17, 92) solid biomass (61) via a carburetor fuel cell coupling, comprising the steps of:
Al Zufuhr von fester Biomasse (61) in einen Vergaser (1);Al supply of solid biomass (61) into a gasifier (1);
A2 Zufuhr eines Vergasungsmediums (82) in den Vergaser (1);A2 supplying a gasification medium (82) in the carburetor (1);
B Zufuhr von aus dem Vergaser (1) entstammendem ProduktgasB Supply of product gas from the gasifier (1)
(62) in einen Partikelabscheider (2); C Zufuhr von aus dem Partikelabscheider (2) austretendem partikelarmen Produktgas in einen Reaktor (201, 202, 203, 204, 205) ) zur katalytischen Umsetzung;(62) into a particle separator (2); C supply of particle-poor product gas leaving the particle separator (2) into a reactor (201, 202, 203, 204, 205) for catalytic conversion;
D Zufuhr von partikelarmen Produktgas (63, 64, 65, 66)) in einen Schwefelabsorber (3, 4); E Zufuhr des im Schwefelabsorber (3, 4) von Schwefel befreiten Produktgases (65, 67, 68) in eine Brennstoffzelle (17) zur Erzeugung elektrischer Energie (92).D supply of low-particle product gas (63, 64, 65, 66)) into a sulfur absorber (3, 4); E supply of the product in the sulfur absorber (3, 4) freed of sulfur product gas (65, 67, 68) in a fuel cell (17) for generating electrical energy (92).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass vorgängig dem Verfahrensschritt D das partikelarme Produktgas in einem Wärmetauscher (11) auf eine Temperatur entsprechend der Temperatur des Schwefelabsorbers (3, 4) gebracht wird.2. The method according to claim 1, characterized in that previously the process step D, the low-particle product gas in a heat exchanger (11) to a temperature corresponding to the temperature of the sulfur absorber (3, 4) is brought.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass vorgängig dem Verfahrensschritt E das vom Schwefel befreite Produktgas (67) in einem Wärmetauscher (11, 12) auf eine Temperatur entsprechend der Temperatur der Anode (5) der Brennstoffzelle (17) gebracht wird. 3. The method according to claim 2, characterized in that previously the process step E, the sulfur-free product gas (67) in a heat exchanger (11, 12) to a temperature corresponding to the temperature of the anode (5) of the fuel cell (17) is brought.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass dem Wärmetauscher (12) die Anodenabgase (69) aus der Brennstoffzelle (17) zugeführt werden.4. The method according to claim 3, characterized in that the heat exchanger (12), the anode exhaust gases (69) from the fuel cell (17) are supplied.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Verfahrensschrittes D das partikelarme Produktgas (63, 64) einem zweiten Schwefelabsorber (3) zugeführt wird.5. The method according to any one of claims 1 to 4, characterized in that in the method step D, the low-particle product gas (63, 64) is fed to a second sulfur absorber (3).
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verfahrensschritte B und C in einem einzigen Apparat (2) ausgeführt werden.6. The method according to any one of claims 1 to 5, characterized in that the method steps B and C in a single apparatus (2) are executed.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass für die vollständige oder teilweise katalytische Umsetzung im Apparat (2) ein Monolith (205) innerhalb eines Filterelementes (203) eingesetzt wird.7. The method according to claim 6, characterized in that for the complete or partial catalytic conversion in the apparatus (2) a monolith (205) within a filter element (203) is used.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass eine by-pass-Regelung vorgesehen ist für die Einstellung der katalytischen Umsetzung für das partikelarme Produktgas (63).8. The method according to claim 6 or 7, characterized in that a by-pass control is provided for the adjustment of the catalytic conversion for the low-particle product gas (63).
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass für die vollständige oder teilweise katalytische Umsetzung des partikelarmen Produktgas (63) ein weiteres Reaktionsmedium9. The method according to claim 7 or 8, characterized in that for the complete or partial catalytic reaction of the particle-poor product gas (63) another reaction medium
(83) wie Luft, Wasserstoff und/oder Wasserdampf mittels einer Lanze (204) zugeführt wird. (83) as air, hydrogen and / or water vapor is supplied by means of a lance (204).
10. Anlage zur Durchführung des Verfahrens zur Verstromung (8, 17, 92) fester Biomasse (61) über eine10. Plant for carrying out the process for power generation (8, 17, 92) solid biomass (61) via a
Vergaserbrennstoffzellenkopplung gemäss einem der Ansprüche 1 bis 9, welche Anlage umfasst: - Vergaser (1) in den feste Biomasse (61) und ein Vergasungsmediums (82) zuführbar sind;A gasoline fuel cell coupling according to any one of claims 1 to 9, comprising: - gasifier (1) feedable into the solid biomass (61) and a gasification medium (82);
- eine Verbindung vom Vergaser (1) mit einem Partikelabscheider (2) zur Zuführung von Produktgas (62);- A compound of the gasifier (1) with a particle separator (2) for supplying product gas (62);
- eine Verbindung des Partikelabscheiders (2) mit einem Reaktor (201, 202, 203, 204, 205) zur katalytischen- A compound of the Partikelabscheiders (2) with a reactor (201, 202, 203, 204, 205) for the catalytic
Umsetzung; eine Verbindung des Reaktors (201, 202, 203, 204, 205) mit einem Schwefelabsorber (3, 4) zur Zufuhr von teerärmeren, partikelarmen Produktgas (63); - eine Verbindung des Schwefelabsorbers (3, 4) mit einer Brennstoffzelle (17) zur Zufuhr von vom Schwefel befreitem Produktgas (67, 68); in welcher Brennstoffzelle (17) elektrische Energie (92) erzeugbar ist.Implementation; a connection of the reactor (201, 202, 203, 204, 205) with a sulfur absorber (3, 4) for the supply of lower-tarry, particle-poor product gas (63); - A compound of the sulfur absorber (3, 4) with a fuel cell (17) for supplying sulfur-free product gas (67, 68); in which fuel cell (17) electrical energy (92) can be generated.
11. Anlage nach Anspruch 10, dadurch gekennzeichnet, dass ein Apparat (2) vorgesehen ist, in dem die Partikelabscheidung und die vollständige oder teilweise katalytische Umsetzung des partikelarmen Gases (63) abläuft.11. Plant according to claim 10, characterized in that an apparatus (2) is provided, in which the particle separation and the complete or partial catalytic conversion of the particle-poor gas (63) takes place.
12. Anlage nach Anspruch 11, dadurch gekennzeichnet, dass die im Apparat (2) neben der Partikelabscheidung auf Filterelementen (203) vorgesehene vollständige oder teilweise katalytische Umsetzung des von Partikeln befreiten Gases auf katalytisch beschichteten bzw. aktiven Monolithen (205) abläuft . 12. Plant according to claim 11, characterized in that in the apparatus (2) in addition to the particle deposition on filter elements (203) provided complete or partially catalytic conversion of the freed of particles of gas on catalytically coated or active monoliths (205).
13. Anlage nach Anspruch 12, dadurch gekennzeichnet, dass durch eine Positionsverstellung der im Apparat (2) vorgesehenen katalytisch beschichteten bzw. aktiven Monolithen (205) eine Anpassung des Grades der katalytische Umsetzung des partikelarmen Gases (63) möglich ist.13. Plant according to claim 12, characterized in that by adjusting the position of the apparatus (2) provided catalytically coated or active monoliths (205) an adjustment of the degree of catalytic conversion of the particle-poor gas (63) is possible.
14. Anlage nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass durch eine Lanze (204) vor den im Apparat (2) vorgesehenen katalytisch beschichteten bzw. aktiven Monolithen (205) eine Zugabe eines Reaktionsmediums wie Luft, Wasserstoff und/oder Wasserdampf möglich ist. 14. Plant according to claim 12 or 13, characterized in that by a lance (204) in front of the in the apparatus (2) provided catalytically coated or active monoliths (205) addition of a reaction medium such as air, hydrogen and / or water vapor is possible ,
EP07856169A 2006-11-09 2007-10-24 Method and plant for converting solid biomass into electricity Withdrawn EP2089493A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07856169A EP2089493A2 (en) 2006-11-09 2007-10-24 Method and plant for converting solid biomass into electricity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06023301 2006-11-09
PCT/EP2007/009213 WO2008055591A2 (en) 2006-11-09 2007-10-24 Method and plant for converting solid biomass into electricity
EP07856169A EP2089493A2 (en) 2006-11-09 2007-10-24 Method and plant for converting solid biomass into electricity

Publications (1)

Publication Number Publication Date
EP2089493A2 true EP2089493A2 (en) 2009-08-19

Family

ID=39247672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856169A Withdrawn EP2089493A2 (en) 2006-11-09 2007-10-24 Method and plant for converting solid biomass into electricity

Country Status (5)

Country Link
US (1) US8535840B2 (en)
EP (1) EP2089493A2 (en)
BR (1) BRPI0718697A2 (en)
CA (1) CA2668952C (en)
WO (1) WO2008055591A2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009086407A2 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US8652222B2 (en) 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
KR101290453B1 (en) 2008-12-30 2013-07-29 그레이트포인트 에너지, 인크. Processes for preparing a catalyzed carbonaceous particulate
KR101290423B1 (en) 2008-12-30 2013-07-29 그레이트포인트 에너지, 인크. Processes for preparing a catalyzed coal particulate
DE102009029912A1 (en) * 2009-06-19 2011-06-30 E.ON Anlagen Service GmbH, 45896 Method for extracting energy from gaseous or liquid fuel, involves providing gaseous or liquid fuel and discharging fuel in catalyst unit, where catalytic cleaning of fuel is performed into catalyst unit
DE102009058656A1 (en) * 2009-12-16 2011-06-22 Uhde GmbH, 44141 Process and installation for separating acidic components, dust and tar from hot gases from gasification plants
CN102639435A (en) 2009-12-17 2012-08-15 格雷特波因特能源公司 Integrated enhanced oil recovery process
WO2011106285A1 (en) 2010-02-23 2011-09-01 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) * 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
CN102261267B (en) * 2010-05-25 2014-06-25 阳碁动力节能科技股份有限公司 Integrated residential generation system
CA2793893A1 (en) 2010-05-28 2011-12-01 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
KR101543136B1 (en) 2010-11-01 2015-08-07 그레이트포인트 에너지, 인크. Hydromethanation of a carbonaceous feedstock
DE102011005938A1 (en) * 2011-03-23 2012-09-27 Mahle International Gmbh Fuel cell system mounted in vehicle, has anode side whose anode-side flow path is arranged in the particle separator along upstream direction for depositing anode gas flow particles
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013052553A1 (en) 2011-10-06 2013-04-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2014041645A1 (en) * 2012-09-12 2014-03-20 三菱重工業株式会社 Reforming device and devices for manufacturing chemical products comprising same
WO2014055353A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
KR101646890B1 (en) 2012-10-01 2016-08-12 그레이트포인트 에너지, 인크. Agglomerated particulate low-rank coal feedstock and uses thereof
KR101576781B1 (en) 2012-10-01 2015-12-10 그레이트포인트 에너지, 인크. Agglomerated particulate low-rank coal feedstock and uses thereof
WO2014055365A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
DE102013107556A1 (en) * 2012-10-08 2014-05-15 Torsten Nagel Method of utilizing biomass e.g. agricultural waste for generation of electric power and heat supply, involves performing combustion of biomass under reaction gas pressure, preheating compressed gas and utilizing heat energy externally
ITVI20130309A1 (en) * 2013-12-23 2015-06-24 Espe S R L PLANT FOR BIOMASS GASIFICATION AND GASIFICATION PROCESS USING THE ABOVE INSTALLATION
IT201600108933A1 (en) * 2016-10-27 2018-04-27 Sofc Syngas S R L A plant and a method to convert a carbonaceous raw material into electricity and a high purity carbon dioxide gas flow
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN113249142A (en) * 2021-05-21 2021-08-13 西北大学 Preparation method of biomass charcoal-metal oxide composite electrode material

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8511604D0 (en) 1985-05-08 1985-06-12 British Petroleum Co Plc Backwashable filter
US4921765A (en) 1989-06-26 1990-05-01 The United States Of America As Represented By The United States Department Of Energy Combined goal gasifier and fuel cell system and method
US5157201A (en) 1990-06-22 1992-10-20 Exxon Chemical Patents Inc. Process for adsorbing sulfur species from propylene/propane using regenerable adsorbent
SG93782A1 (en) 1992-06-24 2003-01-21 Shell Int Research Processes for the catalytic partial oxidation of hydrocarbons
US5554453A (en) 1995-01-04 1996-09-10 Energy Research Corporation Carbonate fuel cell system with thermally integrated gasification
DE19526886C1 (en) 1995-07-22 1996-09-12 Daimler Benz Ag Methanol reformation giving high methanol conversion and low amts. of carbon mono:oxide
JP2002528376A (en) * 1998-10-30 2002-09-03 シーメンス アクチエンゲゼルシヤフト Reformer with adjustable reaction surface area and method of operating the same
CN1249207C (en) 1998-11-05 2006-04-05 株式会社荏原制作所 Power generation system based on gasification of combustible material
CA2379709A1 (en) 1999-07-19 2001-01-25 Ebara Corporation Acid gas scrubbing apparatus and method
CA2382047A1 (en) * 1999-08-19 2001-02-22 Manufacturing And Technology Conversion International, Inc. System integration of a steam reformer and fuel cell
DE10002025C2 (en) * 2000-01-19 2003-11-13 Ballard Power Systems Method and device for treating a medium in a catalyst-containing reaction space
AU2001288327A1 (en) 2000-09-11 2002-03-26 Research Triangle Institute Process for desulfurizing hydrocarbon fuels and fuel components
US6863868B1 (en) 2000-09-29 2005-03-08 Siemens Westinghouse Power Corporation Catalytically enhanced filtration apparatus
US6680137B2 (en) 2000-11-17 2004-01-20 Future Energy Resources Corporation Integrated biomass gasification and fuel cell system
US6592641B2 (en) * 2001-09-19 2003-07-15 Siemens Westinghouse Power Corporation Integral porous filter/fail-safe/regenerator/gas separation membrane module
CA2461716A1 (en) 2001-09-28 2003-04-10 Ebara Corporation Combustible gas reforming method and combustible gas reforming apparatus and gasification apparatus
US7056488B2 (en) 2002-03-13 2006-06-06 Conocophillips Company Controlled-pore catalyst structures and process for producing synthesis gas
DE10329162A1 (en) * 2003-06-27 2005-01-13 Alstom Technology Ltd Catalytic reactor and associated operating method
US7309416B2 (en) 2003-07-11 2007-12-18 Aspen Products Group, Inc. Methods and compositions for desulfurization of hydrocarbon fuels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008055591A3 *

Also Published As

Publication number Publication date
CA2668952A1 (en) 2008-05-15
US20090305093A1 (en) 2009-12-10
WO2008055591A2 (en) 2008-05-15
US8535840B2 (en) 2013-09-17
WO2008055591A3 (en) 2008-07-17
BRPI0718697A2 (en) 2014-02-18
CA2668952C (en) 2012-05-15

Similar Documents

Publication Publication Date Title
WO2008055591A2 (en) Method and plant for converting solid biomass into electricity
Radenahmad et al. A review on biomass derived syngas for SOFC based combined heat and power application
Din et al. Biomass integrated gasification–SOFC systems: Technology overview
Bocci et al. Biomass to fuel cells state of the art: A review of the most innovative technology solutions
DE60024288T2 (en) A STEAM REFORMER AND A FUEL CELL CONTAINING INTEGRATED SYSTEM
US9631284B2 (en) Electrochemical device for syngas and liquid fuels production
Sharma et al. Solid oxide fuel cell operating with biomass derived producer gas: status and challenges
US7279655B2 (en) Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production
RU2539561C2 (en) Gas-generator for fuel conversion to oxygen-depleted gas and/or to hydrogen-enriched gas, its application and method of fuel conversion to oxygen-depleted gas and/or to hydrogen-enriched gas (versions)
Sucipta et al. Performance analysis of the SOFC–MGT hybrid system with gasified biomass fuel
Iaquaniello et al. Integration of biomass gasification with MCFC
EP2300567A2 (en) Device and method for the electrothermal-chemical gasification of biomass
JP2007302553A (en) Method for simultaneous production of hydrogen rich gas and electric power by steam reforming of hydrocarbon fraction through heat supply by on-site hydrogen combustion
WO2011101209A2 (en) Method and device for using emissions of a power station
EP1218290B1 (en) Method and device for producing a hydrogen or synthesis gas and use thereof
DE102011014824A1 (en) Multi-fuel pyrolysis system for generating electrical power for e.g. mobile device, has pyrolysis reactor which pyrolyzes liquid, gaseous hydrocarbon mixtures or gas mixtures, and diesel fuel by anaerobic catalytic reaction
Molino et al. Power production by biomass gasification technologies
DE102019005452B4 (en) Process for generating synthesis gas for the production of ammonia
Pieta et al. Fuel processing for solid oxide fuel cells
Nagel Electricity from wood through the combination of gasification and solid oxide fuel cells: systems analysis and Proof-of-concept
DE10143656A1 (en) Production of energy in fuel cell system comprises introducing hydrocarbon into cracking reactor, endothermically cracking, introducing water vapor, endothermically gasifying the obtained carbon and further treating
JP2011246525A (en) Gasification treatment system and method of gasification treatment by using the same
Brett et al. Fuels and fuel processing for low temperature fuel cells
US20230264950A1 (en) Device and method for hybrid production of synthetic dihydrogen and/or synthetic methan
Costa et al. Integration of Gasification and Solid Oxide Fuel Cells (SOFCs) for Combined Heat and Power (CHP). Processes 2021, 9, 254

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090429

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: NAGEL, FLORIAN

Inventor name: SCHILDHAUER, TILMAN J.

Inventor name: BIOLLAZ, SERGE

Inventor name: JENNE, MARKUS

17Q First examination report despatched

Effective date: 20110818

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10J 3/02 20060101ALI20141030BHEP

Ipc: C01B 3/38 20060101ALI20141030BHEP

Ipc: C10K 1/02 20060101ALI20141030BHEP

Ipc: B01J 19/24 20060101ALI20141030BHEP

Ipc: B01J 12/00 20060101ALI20141030BHEP

Ipc: C10J 3/84 20060101AFI20141030BHEP

Ipc: C10J 3/20 20060101ALI20141030BHEP

Ipc: C01B 3/32 20060101ALI20141030BHEP

Ipc: C10K 3/02 20060101ALI20141030BHEP

Ipc: B01J 19/18 20060101ALI20141030BHEP

INTG Intention to grant announced

Effective date: 20141114

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150325