EP2063201B1 - Method of operating a refrigeration system - Google Patents

Method of operating a refrigeration system Download PDF

Info

Publication number
EP2063201B1
EP2063201B1 EP09003503A EP09003503A EP2063201B1 EP 2063201 B1 EP2063201 B1 EP 2063201B1 EP 09003503 A EP09003503 A EP 09003503A EP 09003503 A EP09003503 A EP 09003503A EP 2063201 B1 EP2063201 B1 EP 2063201B1
Authority
EP
European Patent Office
Prior art keywords
injection valve
refrigerant
heat exchanger
temperature
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP09003503A
Other languages
German (de)
French (fr)
Other versions
EP2063201A3 (en
EP2063201A2 (en
Inventor
Remo Meister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meister Remo
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2063201A2 publication Critical patent/EP2063201A2/en
Publication of EP2063201A3 publication Critical patent/EP2063201A3/en
Application granted granted Critical
Publication of EP2063201B1 publication Critical patent/EP2063201B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Definitions

  • Dry expansion systems have the advantage of simple design and small refrigerant contents.
  • the evaporator efficiency is essentially influenced by the smallest possible overheating of the evaporator.
  • Our innovation relates first to the dry expansion system (6) (1), to the dry expansion system (6) (1) with downstream IWT (2) (internal heat exchanger, ie with a heat exchange between the refrigerant liquid line before the expansion valve on the one hand and the suction steam after the evaporator on the other hand), to the two-stage evaporation system (6) (1 + 2) (a combination of dry expansion system and thermosyphon system, evaporator with IWT) and other refrigerators constructed on this basis.
  • IWT internal heat exchanger, ie with a heat exchange between the refrigerant liquid line before the expansion valve on the one hand and the suction steam after the evaporator on the other hand
  • the changed x-value (x-value) with the changed temperature of the refrigerant (A) is the value that indicates the proportion of the already evaporated refrigerant at the beginning of the evaporation process) of the refrigerant state in the injection valve (6) and the evaporator start (1), which affects the injection valve (6) and evaporator performance (1) and the control behavior of the injector (6) and its performance, respectively, has the promoted refrigerant mass flow and on the other hand in the suction steam at the inlet to the compressor (5), where the changed temperature (B), because of the respective temperature (and pressure) associated specific volume, an influence on the Delivery volume of the compressor (5), in turn, the funded mass flow, has.
  • the aim of the invention is to achieve a stable operation of the system in refrigeration / freezing systems, refrigerators for cooling and heating operation, refrigeration systems, refrigeration sets, heat pumps and all systems with the use of refrigerants and refrigerants, characterized in that the temperature of the refrigerant upstream of the injection valve (6) (A) is kept constant at a defined temperature value (A).
  • the refrigerant liquid temperature maintenance before the injection valve and possibly the pressure difference / level control of the injection valve lead to a stable operation of the refrigeration systems (even with large changes in performance).
  • this temperature difference can be smaller than when the refrigerant leaves the evaporator (1) "overheated" (P8 / T22) during dry expansion operation.
  • the medium used for keeping the refrigerant liquid temperature constant can be arbitrary in nature (gaseous, liquid, etc.).
  • the flow (D) of the medium to be cooled for example water, brine, etc., passed through a heat exchanger (4), in which on the second side of the heat exchanger, the refrigerant either in DC, cross or countercurrent, etc. is performed.
  • the refrigerant liquid temperature upstream of the injection valve (A) can also be regulated by the IWT (2) by means of mass flow control of the refrigerant liquid (9) by the IWT (2) (depending on the conditions, in some cases only partial mass flows flow through the IWT (2)).
  • New in the invention is that the refrigerant liquid temperature, especially in the two-stage evaporation process (1 + 2) before the injection valve (6) (A) at a very low value, near or on the left limit curve of the log (p), h diagram for refrigerant, (The refrigerant thus occurs liquid as in a thermosyphone system or with a minimum vapor content in the evaporator (1)) is kept constant.
  • the invention is based on the fact that the refrigerant liquid temperature upstream of the injection valve (A) is kept constant at an arbitrary value by appropriate measures (within the physically possible, however, as far as possible up to the physical limits).
  • the invention is based on the fact that by means of suitable measures a stable operation of cooling systems is achieved with small temperature differences of the media to be cooled and thus higher efficiencies (and thereby highly efficient evaporation in refrigeration systems).
  • the process of cooling is supplemented or changed to the effect that in addition to the controlled suction and high pressures in refrigeration systems, the temperature of the liquid refrigerant before the injection valve (A) is controlled, controlled and kept constant.
  • Controlling the refrigerant temperature upstream of the injection valve (A) results in defined states in the refrigerant mixture (liquid / vapor). These defined conditions in the refrigerant lead to stable conditions in the refrigeration cycle.
  • the temperature (A) and the associated refrigerant conditions can be controlled and stabilized in many possible ways.
  • the innovation is controlling the described refrigerant condition (A). It is thus possible to achieve the desired result only with the temperature control of the liquid refrigerant upstream of the injection valve (A).
  • the temperature in front of the injection valve is kept constant by means of suitable measures (as described above). This temperature maintenance of the liquid refrigerant before the injector is carried out with a built-in between the liquid line and the medium flow heat exchanger (4).
  • the medium can be passed through the exchanger at a regulated or uncontrolled temperature.
  • the proportion of already evaporated refrigerant in the evaporator can be optimized and adjusted with a corresponding temperature of the liquid refrigerant upstream of the injection valve (A) to the Verdampferbauart (1) and thus the efficiency for starting the evaporation process.
  • the refrigerant liquid inlet temperature in the second evaporator stage (IWT) (2) (F), for example by means of an external subcooler (3) be limited at high Kondensatioostemperaturen.
  • this embodiment does not fall within the scope of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)
  • Greenhouses (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The method involves holding the temperature of the coolant liquid upstream of the injection valve (A) constant in order to achieve stable conditions in the regulation and refrigeration circuit and hence highly efficient evaporation. Stable conditions in the regulation and refrigeration circuit are achieved by holding the suction steam temperature upstream of the compressor (B) constant.

Description

Technisches Gebiet:Technical area:

Kälteerzeugungsanlagen in Kühl- und Tiefkühlanlagen, Kältetechnik, Kältemaschine für Kühl- und Heizbetrieb, Kälteanlagen, Kältesätze, Wärmepumpen, Klimaanlagen und weitere.Refrigeration systems in refrigeration and freezing systems, refrigeration, chiller for cooling and heating operation, refrigeration systems, refrigeration units, heat pumps, air conditioners and others.

Stand der Technik:State of the art:

Bekannt in der Kältetechnik ist erstens der Trockenexpansionsbetrieb, bei dem das Kältemittel über ein Einspritzventil eine Druckreduktion erfährt und vom flüssigen Zustand in ein Flüssig/Dampfgemisch übergeht, um im Verdampfer vollständig zu verdampfen, um dann mit leicht überhitztem Dampf den Verdampfer zu verlassen und so durch Wärmeaufnahme ein zweites Medium herunterkühlt und zweitens, der Thermosyphonbetrieb, bei dem das Kältemittel über ein Ausgleichs- und Abscheidegefäss dem Verdampfer entweder mittels Schwerkraft oder mit Hilfe einer Pumpe flüssig zugeführt wird und wo beim Verdampferaustritt durchaus noch Flüssigkeitsanteile im Dampf enthalten sein können und so in der Regel keine Überhitzung des Kältemittels am Verdamoferaustritt entsteht.
Das Dokument US 6 293 123 B1 offenbart ein Verfahren zum Betreiben einer Kälteanlage gemäß dem Oberbegriff des Anspruchs 1 bzw. eine Kälteanlage gemäß dem Oberbegriff des Anspruchs 4.
Known in refrigeration, first, the dry expansion operation, in which the refrigerant undergoes a pressure reduction via an injection valve and the liquid state in a liquid / vapor mixture to completely evaporate in the evaporator, and then leave the evaporator with slightly superheated steam and so on Heat absorption a second medium cools down and secondly, the Thermosyphonbetrieb in which the refrigerant is fed via a balancing and separation vessel to the evaporator either by gravity or by means of a pump liquid and where at the evaporator outlet may still contain liquid fractions in the steam and so in the Generally there is no overheating of the refrigerant at the evaporator outlet.
The document US 6,293,123 B1 discloses a method for operating a refrigeration system according to the preamble of claim 1 or a refrigeration system according to the preamble of claim 4.

Allen diesen Systemen haften unter Praxisbedingungen mehr oder weniger grosse Nachteile an, welche wir durch unsere Erfindung eliminieren und somit beträchtlich Energie- und Kosteneinsparungen erzielen.All of these systems, under practical conditions, adhere to more or less serious disadvantages, which we eliminate by our invention and thus achieve considerable energy and cost savings.

Trockenexpansionssysteme haben den Vorteil einfacher Bauart und kleinen Kältemittelinhalten.Dry expansion systems have the advantage of simple design and small refrigerant contents.

Der Verdampferwirkungsgrad wird im Wesentlichen beeinflusst durch eine möglichst kleine Verdampferüberhitzung.The evaporator efficiency is essentially influenced by the smallest possible overheating of the evaporator.

Für den Verdichter ist dies aber von Nachteil und er verlangt eine entsprechend hohe Überhitzung (Liefergradverbesserung, Schmierung, etc.).But this is disadvantageous for the compressor and it requires a correspondingly high overheating (improved delivery, lubrication, etc.).

Der Schnittpunkt dieser beiden Forderungen (optimale Überhitzung für den Verdampfer und Verdichter, welche gegensätzlich optimal sind) gibt die maximale Anlagenkennlinie (wirtschaftlichster Betrieb).The intersection of these two requirements (optimal overheating for the evaporator and compressor, which are optimally opposite) gives the maximum system characteristic (most economical operation).

Durch unsere Erfindung gelingt es erstmals, diese Abhängigkeit zwischen kleinster Überhitzung für den Verdampfer und grosser Überhitzung für den Verdichter zu durchbrechen.Through our invention it is possible for the first time to break this dependency between the smallest overheating for the evaporator and a great overheating for the compressor.

Dabei wird erreicht, den Prozess für eine gegebene Kälteleistung Qo mit dem dafür benötigten kleinsten physikalisch möglichen Massenstrom zu fahren, was zu erheblichen wirtschaftlichen und energetischen Vorteilen führt.It is achieved to drive the process for a given cooling capacity Qo with the required smallest physically possible mass flow, which leads to significant economic and energy advantages.

Unsere Innovation bezieht sich erstens auf das Trockenexpansionssystem (6) (1), auf das Trockenexpansionssystem (6) (1) mit nachgeschaltetem IWT (2) (Interner Wärmeaustauscher, also mit einem Wärmeaustausch zwischen Kältemittelflüssigkeitsleitung vor dem Expansionsventil einerseits und dem Saugdampf nach dem Verdampfer andererseits), auf das Zweistufenverdampfungssystem (6) (1 + 2) (einer Kombination von Trockenexpansionsystem und Thermosyphonsystem, Verdampfer mit IWT) und weitere auf dieser Basis aufgebauter Kälteanlagen.Our innovation relates first to the dry expansion system (6) (1), to the dry expansion system (6) (1) with downstream IWT (2) (internal heat exchanger, ie with a heat exchange between the refrigerant liquid line before the expansion valve on the one hand and the suction steam after the evaporator on the other hand), to the two-stage evaporation system (6) (1 + 2) (a combination of dry expansion system and thermosyphon system, evaporator with IWT) and other refrigerators constructed on this basis.

Allen diesen Systemen sind je nach Betriebsbedingungen relativ grosse Temperaturschwankungen kältemittelseitig vor dem Einspritzventil (6) (A) und vor dem Verdichter (5) (B) eigen.Depending on the operating conditions, all of these systems are subject to relatively large temperature fluctuations upstream of the injection valve (6) (A) and upstream of the compressor (5) (B).

Diese Temperaturen des Kältemittels (vor dem Einspritzventil (A) und vor dem Verdichter (B)) werden heute nicht konstant gehalten oder exakt geregelt.These temperatures of the refrigerant (before the injection valve (A) and before the compressor (B)) are not kept constant today or precisely regulated.

Oft wird, wenn überhaupt, nur der Hoch- oder Saugdruck (Pc/Po) geregelt und/oder konstant gehalten.Often, if any, only the high or suction pressure (Pc / Po) is regulated and / or kept constant.

Dies führt zu mehr oder weniger grossen Schwankungen und Rückkoppelungen (Aufschaukeln) des Kältesystems und somit zu Verlusten im Wirkungsgrad und unstabilen Regelkreisen.This leads to more or less large fluctuations and feedback (rocking) of the refrigeration system and thus to losses in efficiency and unstable control circuits.

Die hauptsächlichen Faktoren für diese Schwankungen sind einerseits der sich mit der veränderten Temperatur des Kältemittels (A) veränderte x-Wert (x-Wert ist der Wert, welcher den Anteil des bereits verdampften Kältemittels am Anfang des Verdampfungsprozesses angibt) des Kältemittelzustandes im Einspritzventil (6) und im Verdampferanfang (1), was Auswirkungen auf die Einspritzventil- (6) und Verdampferleistung (1) sowie das Regelverhalten des Einspritzventils (6) und dessen Leistung, respektive den geförderten Kältemittelmassenstrom hat und andererseits beim Saugdampf am Eintritt in den Verdichter (5), wo die veränderte Temperatur (B), wegen dem der jeweiligen Temperatur (und Druck) zugeordneten spezifischen Volumen, einen Einfluss auf das Fördervolumen des Verdichters (5), also wiederum des geförderten Massenstroms, hat.The main factors for these fluctuations are, on the one hand, the changed x-value (x-value) with the changed temperature of the refrigerant (A) is the value that indicates the proportion of the already evaporated refrigerant at the beginning of the evaporation process) of the refrigerant state in the injection valve (6) and the evaporator start (1), which affects the injection valve (6) and evaporator performance (1) and the control behavior of the injector (6) and its performance, respectively, has the promoted refrigerant mass flow and on the other hand in the suction steam at the inlet to the compressor (5), where the changed temperature (B), because of the respective temperature (and pressure) associated specific volume, an influence on the Delivery volume of the compressor (5), in turn, the funded mass flow, has.

Diese sich infolge von Temperaturänderungen ständig verändernden Massenströme bringen mehr oder weniger grosse Störfaktoren in den Regelkreis der Kälteanlage ein, was zu Schwankungen im Prozess und somit zu Leistungsverminderungen führt.These mass flows, which constantly change as a result of temperature changes, introduce more or less large disturbing factors into the control circuit of the refrigeration system, which leads to fluctuations in the process and thus to power reductions.

Detaillierte Darstellung der Erfindung:Detailed description of the invention:

Ziel der Erfindung ist es, bei Kühl-/Tiefkühlanlagen, Kältemaschinen für Kühl-und Heizbetrieb, Kälteanlagen, Kältesätzen, Wärmepumpen und allen Anlagen mit Einsatz von Kältemitteln und Kälteträgern einen stabilen Betrieb der Anlage dadurch zu erreichen, dass die Temperatur des Kältemittels vor dem Einspritzventil (6) (A) auf einen definierten Temperaturwert (A) konstant gehalten wird.The aim of the invention is to achieve a stable operation of the system in refrigeration / freezing systems, refrigerators for cooling and heating operation, refrigeration systems, refrigeration sets, heat pumps and all systems with the use of refrigerants and refrigerants, characterized in that the temperature of the refrigerant upstream of the injection valve (6) (A) is kept constant at a defined temperature value (A).

Die Kältemittelflüssigkeitstemperaturkonstanthaltung vor dem Einspritzventil und ggf. die Druckdifferenz/Niveauregelung des Einspritzventils führen zu einem stabilen Betrieb der Kälteanlagen (auch mit grossen Leistungsänderungen).The refrigerant liquid temperature maintenance before the injection valve and possibly the pressure difference / level control of the injection valve lead to a stable operation of the refrigeration systems (even with large changes in performance).

Kommt dabei ein Zweistufenverdampfer (1 + 2) zum Einsatz, können zusätzlich kleinste Temperaturdifferenzen zwischen dem zu kühlenden Medium einerseits (C/D) und der Verdampfungstemperatur to (Saugdruck) andererseits erzielt werden.If a two-stage evaporator (1 + 2) is used, even the smallest temperature differences between the medium to be cooled (C / D) and the evaporation temperature to (suction pressure) can be achieved.

Diese Temperaturdifferenz kann in jedem Fall kleiner sein als wenn das Kältemittel bei Trockenexpansionsbetrieb den Verdampfer (1) "überhitzt" (P8/T22) verlässt.In any case, this temperature difference can be smaller than when the refrigerant leaves the evaporator (1) "overheated" (P8 / T22) during dry expansion operation.

Neu an unserer Erfindung ist, dass die Temperatur des flüssigen Kältemittels vor dem Einspritzventil auf einen vorgegebenen Wert (A) konstant gehalten wird.What is new about our invention is that the temperature of the liquid refrigerant in front of the injection valve is kept constant at a predetermined value (A).

Dieses Konstanthalten erfolgt mittels eines Wärmeaustauschers (4) in der Kältemittelflüssigkeitsleitung vor dem Einspritzventil, welcher durch ein zweites Medium die Austrittstemperatur des flüssigen Kältemittels konstant hält. Das zur Konstanthaltung der Kältemittelflüssigkeitstemperatur eingesetzte Medium kann dabei in seiner Art beliebig sein (gasförmig, flüssig, etc.).This keeping constant by means of a heat exchanger (4) in the refrigerant liquid line in front of the injection valve, which keeps the outlet temperature of the liquid refrigerant constant by a second medium. The medium used for keeping the refrigerant liquid temperature constant can be arbitrary in nature (gaseous, liquid, etc.).

Zur Konstanthaltung der Kältemittelflüssigkeitstemperatur vor dem Einspritzventil (A) wird der Vorlauf (D) des zu kühlenden Mediums, zum Beispiel Wasser, Sole, etc., durch einen Wärmeaustauscher (4) geleitet, bei dem auf der zweiten Seite des Wärmetauschers das Kältemittel entweder im Gleich-, Kreuz- oder Gegenstrom, etc. geführt wird.To keep constant the refrigerant liquid temperature before the injection valve (A), the flow (D) of the medium to be cooled, for example water, brine, etc., passed through a heat exchanger (4), in which on the second side of the heat exchanger, the refrigerant either in DC, cross or countercurrent, etc. is performed.

Die Kältemittelflüssigkeitstemperatur vor dem Einspritzventil (A) kann auch mittels Massenstromregelung der Kältemittelflüssigkeit (9) durch den IWT (2) oder des Saugdampfes (12) durch den IWT (2) geregelt werden (es fliessen je nach Bedingungen zum Teil nur Teilmassenströme durch den IWT (2)).The refrigerant liquid temperature upstream of the injection valve (A) can also be regulated by the IWT (2) by means of mass flow control of the refrigerant liquid (9) by the IWT (2) (depending on the conditions, in some cases only partial mass flows flow through the IWT (2)).

Neu bei der Erfindung ist, dass die Kältemittelflüssigkeitstemperatur speziell beim Zweistufenverdampfungsprozess (1 + 2) vor dem Einspritzventil (6) (A) auf einem sehr tiefen Wert, nahe oder auf der linken Grenzkurve des log (p), h-Diagramms für Kältemittel, (das Kältemittel tritt also flüssig wie bei einem Thermosyphonsystem oder mit minimalem Dampfgehalt in den Verdampfer (1)) konstant gehalten wird.New in the invention is that the refrigerant liquid temperature, especially in the two-stage evaporation process (1 + 2) before the injection valve (6) (A) at a very low value, near or on the left limit curve of the log (p), h diagram for refrigerant, (The refrigerant thus occurs liquid as in a thermosyphone system or with a minimum vapor content in the evaporator (1)) is kept constant.

Weiter gibt es Kältesysteme mit eingesetzten IWT's (2) (Zweistufenverdampfer, semigeflutete Systeme), welche das flüssige Kältemittel vor dem Einspritzventil (A) (und den Temperaturkonstanthaltungsmassnahmen) unterkühlen und den Saugdampf nach dem Verdampfer (1) (2) überhitzen (B).Furthermore, there are refrigeration systems with inserted IWT's (2) (two-stage evaporator, semi-flooded systems), which subcool the liquid refrigerant before the injection valve (A) (and the temperature maintenance measures) and overheat the suction steam after the evaporator (1) (2) (B).

Die Erfindung beruht darauf, dass durch geeignete Massnahmen die Kältemittelflüssigkeitstemperatur vor dem Einspritzventil (A) auf einem beliebigen Wert, (innerhalb des physikalisch Möglichen aber bei Bedarf bis an die physikalischen Grenzen gehend), konstant gehalten wird.The invention is based on the fact that the refrigerant liquid temperature upstream of the injection valve (A) is kept constant at an arbitrary value by appropriate measures (within the physically possible, however, as far as possible up to the physical limits).

Durch die konstante Temperatur der Kältemittelflüssigkeit vor dem Einspritzventil (A) wird ein stabiler Betrieb und wenn gewünscht, kleinste Temperaturdifferenzen zwischen den zu kühlenden Medien (Ein-/ Austrittstemperatur (C/D) einerseits und Eintritts- und/oder Austrittstemperatur zur Verdampfungstemperatur (C/D zu to) andererseits) erreicht.Due to the constant temperature of the refrigerant liquid upstream of the injection valve (A), a stable operation and, if desired, smallest temperature differences between the media to be cooled (inlet / outlet temperature (C / D) on the one hand and inlet and / or outlet temperature to the evaporation temperature (C / D to to) on the other hand.

Aufzählung der Zeichnungen:List of drawings:

  • Fig. 1: Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter. Fig. 1 : Possible solutions to control the refrigerant temperatures upstream of the injector and compressor.
  • Fig. 2: Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter ohne Hilfspumpen im Sekundärkreislauf. Fig. 2 Possible solutions for checking the refrigerant temperatures upstream of the injection valve and compressor without auxiliary pumps in the secondary circuit.
  • Fig. 3: Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter bei Trockenexpansionsbetrieb ohne IWT Fig. 3 : Possible solutions for controlling the refrigerant temperatures upstream of the injection valve and compressor in dry expansion operation without IWT
  • Fig. 4: Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter bei Trockenexpansionsbetrieb mit IWT und oder Zweistufenverdampfung. Fig. 4 : Possible solutions to control the refrigerant temperatures upstream of the injector and compressor in dry expansion mode with IWT and or two-stage evaporation.
  • Fig. 5: Mögliche Lösungen zur Kontrolle der Kältemitteltemperaturen vor dem Einspritzventil und Verdichter bei Trockenexpansionsbetrieb mit IWT und oder Zweistufenverdampfung mit externem Unterkühler. Fig. 5 : Possible solutions for controlling the refrigerant temperatures upstream of the injector and compressor in dry expansion mode with IWT and or two-stage evaporation with external subcooler.
  • Fig. 6: log (p), h-Diagramm Fig. 6 : log (p), h-diagram

Die Zeichnungen erläutern den Sinn und erheben keinen Anspruch auf Vollständigkeit.The drawings explain the meaning and make no claim to completeness.

Ausführung der Erfindung:Embodiment of the invention:

Die Erfindung beruht darauf, dass mittels geeigneter Massnahmen ein stabiler Betrieb von Kühlanlagen bei kleinen Temperaturdifferenzen der zu kühlenden Medien und somit höheren Wirkungsgraden (und dadurch hocheffiziente Verdampfung in Kälteanlagen) erzielt wird.The invention is based on the fact that by means of suitable measures a stable operation of cooling systems is achieved with small temperature differences of the media to be cooled and thus higher efficiencies (and thereby highly efficient evaporation in refrigeration systems).

Das Verfahren der Kälteerzeugung wird dahingehend ergänzt oder geändert, dass neben den kontrollierten Saug- und Hochdrücken in Kältesystemen neu die Temperatur des flüssigen Kältemittels vor dem Einspritzventil (A) kontrolliert, geregelt und konstant gehalten wird.The process of cooling is supplemented or changed to the effect that in addition to the controlled suction and high pressures in refrigeration systems, the temperature of the liquid refrigerant before the injection valve (A) is controlled, controlled and kept constant.

Durch das Kontrollieren der Kältemitteltemperatur vor dem Einspritzventil (A) ergeben sich definierte Zustände im Kältemittelgemisch (Flüssig/Dampf). Diese definierten Zustände im Kältemittel führen zu stabilen Verhältnissen im Kältekreislauf.Controlling the refrigerant temperature upstream of the injection valve (A) results in defined states in the refrigerant mixture (liquid / vapor). These defined conditions in the refrigerant lead to stable conditions in the refrigeration cycle.

Durch das Stabilisieren dieser Temperatur und des damit verbundenen jeweiligen Zustandes des jeweiligen Kältemittels an diesem Punkt im Kältekreislauf erzielen wir stabile Verhältnisse und verhindern Rückkoppelungen in der Regeltechnik und ein Aufschaukeln des Systems und somit weniger Störgrössen, was zu einem stabilen Regelkreis und somit zu einem stabilen Betrieb der Kälteanlagen und somit zu einer hocheffizienten Verdampfung führt.By stabilizing this temperature and the associated respective state of the respective refrigerant at this point in the refrigeration cycle, we achieve stable conditions and prevent feedback in the control technology and a rocking of the system and thus fewer disturbances, resulting in a stable control loop and thus to a stable operation the refrigeration systems and thus leads to a highly efficient evaporation.

Durch den gewonnenen stabiten Betrieb ergeben sich Energie- und Kostenersparnisse und es wird möglich, speziell in Kombination mit der Zweistufenverdampfungstechnik (1 + 2), Prozesse mit wesentlich kleineren Temperaturdifferenzen der zu kühlenden Medien zu den jeweiligen Verdampfungstemperaturen zu fahren.Due to the stabilized operation resulting in energy and cost savings and it is possible, especially in combination with the two-stage evaporation technology (1 + 2) to drive processes with significantly smaller temperature differences of the media to be cooled to the respective evaporation temperatures.

Dadurch können Prozesse auf einfache und kostengünstige Weise gefahren werden, welche heute in dieser Art nicht möglich sind.As a result, processes can be run in a simple and cost-effective manner, which are not possible in this way today.

Die Temperatur (A) und die dazugehörenden Kältemittelzustände können auf viele mögliche Arten kontrolliert und stabilisiert werden.The temperature (A) and the associated refrigerant conditions can be controlled and stabilized in many possible ways.

Die Aufzählung der Möglichkeiten beschränkt sich in dieser Patentschrift sinngemäss auf einige wenige.The list of possibilities is limited to a few in this patent.

Die Innovation ist das Kontrollieren des beschriebenen Kältemittelzustandes (A). Es ist somit möglich, nur mit der Temperaturkontrolle des flüssigen Kältemittels vor dem Einspritzventil (A) zum gewünschten Ergebnis zu kommen.The innovation is controlling the described refrigerant condition (A). It is thus possible to achieve the desired result only with the temperature control of the liquid refrigerant upstream of the injection valve (A).

Geeignete Massnahmen für die Temperaturkontrolle des Kältemittels vor dem Einspritzventil sind:

  1. 1. Die Temperatur des flüssigen Kältemittels vor dem Einspritzventil mit einem Sekundärmedium über einen Wärmeaustausch (4) konstant halten.
  2. 2. Die Temperatur des flüssigen Kältemittels vor dem Einspritzventil, speziell bei Verwendung eines IWT's oder der Anwendung des Zweistufenverdampfungsprozesses, mittels Einsatz eines Regelventils (9) konstant zu halten. Diese Regelung leitet nur einen bestimmten Massenstrom durch den IWT oder die zweite Stufe des Zweistufenverdampfers und den restlichen Massenstrom (E) direkt oder indirekt zum Einspritzventil, wobei der am IWT oder der zweiten Stufe des Zweistufenverdampfers vorbeigeleitete Massenstrom (E) gekühlt, erwärmt oder gleich gehalten werden kann.
Suitable measures for the temperature control of the refrigerant upstream of the injection valve are:
  1. 1. Keep the temperature of the liquid refrigerant in front of the injection valve constant with a secondary medium via a heat exchange (4).
  2. 2. To keep constant the temperature of the liquid refrigerant upstream of the injection valve, especially when using an IWT or the application of the two-stage evaporation process, by use of a control valve (9). This control directs only a certain mass flow through the IWT or the second stage of the two-stage evaporator and the rest of the mass flow (E) directly or indirectly to the injection valve, wherein the mass flow (E) bypassing the IWT or the second stage of the two-stage evaporator is cooled, heated or kept the same can be.

Die Temperatur vor dem Einspritzventil wird mittels geeigneter Massnahmen (wie oben beschrieben) konstant gehalten. Diese Temperaturkonstanthaltung des flüssigen Kältemittels vor dem Einspritzventil erfolgt mit einem zwischen der Flüssigkeitsleitung und dem Mediumvorlauf eingebauten Wärmeaustauscher (4).The temperature in front of the injection valve is kept constant by means of suitable measures (as described above). This temperature maintenance of the liquid refrigerant before the injector is carried out with a built-in between the liquid line and the medium flow heat exchanger (4).

Durch den Wärmetauscher (4) wird ein Teil- oder der ganze Massenstrom des gekühlten Mediums im Gleich-, Gegen- oder Kreuzstrom, etc. zur Kältemittelflüssigkeit geführt (10/11).Through the heat exchanger (4) is a partial or the entire mass flow of the cooled medium in cocurrent, countercurrent or cross flow, etc. to the refrigerant liquid out (10/11).

Das Medium kann dabei mit einer geregelten oder ungeregelten Temperatur durch den Tauscher geführt werden.The medium can be passed through the exchanger at a regulated or uncontrolled temperature.

Durch die richtige Dimensionierung des Wärmetauschers (4) findet eine Unterkühlung respektive Konstanthaltung der Kältemittelflüssigkeit vor dem Einspritzventil (A) auf einem beliebigen aber auf Wunsch auch auf einem sehr tiefen Temperaturniveau statt, was bedeutet, dass der Verdampfer (1) mit flüssigem oder nur geringem Anteil von bereits verdampftem Kältemittel gespiesen wird.Due to the correct dimensioning of the heat exchanger (4) is a supercooling respectively keeping constant the refrigerant liquid before the injection valve (A) on any but also on request at a very low temperature level, which means that the evaporator (1) with liquid or low Share of already evaporated refrigerant is fed.

Der Anteil an bereits verdampftem Kältemittel in den Verdampfer kann mit einer entsprechenden Temperatur des flüssigen Kältemittels vor dem Einspritzventil (A) auf die Verdampferbauart (1) und somit den Wirkungsgrad zum Starten des Verdampfungsprozesses optimiert und eingestellt werden.The proportion of already evaporated refrigerant in the evaporator can be optimized and adjusted with a corresponding temperature of the liquid refrigerant upstream of the injection valve (A) to the Verdampferbauart (1) and thus the efficiency for starting the evaporation process.

Alternativ zur Übersteuerung der Einspritzventilregelung durch die Sauggastemperatur durch Überfluten der zweiten Stufe des Zweistufenverdampfers bei zu hohen Saugdampftemperaturen vor dem Verdichter (T23) kann die Kältemittelflüssigkeitseintrittstemperatur in die zweite Verdampferstufe (IWT) (2) (F) zum Beispiel mittels eines externen Unterkühlers (3) bei hohen Kondensatioostemperaturen begrenzt werden. Dieses Ausführungsbeispiel fällt jedoch nicht unter den Schutzbereich der Ansprüche.As an alternative to overriding the injection valve control by the suction gas temperature by flooding the second stage of the two-stage evaporator at high suction steam temperatures upstream of the compressor (T23), the refrigerant liquid inlet temperature in the second evaporator stage (IWT) (2) (F), for example by means of an external subcooler (3) be limited at high Kondensatioostemperaturen. However, this embodiment does not fall within the scope of the claims.

Alternativ zu dieser Begrenzung kann ein Teil des Kältemittelflüssigkeitsmassentroms (E), in Abhängigkeit der Saugdampftemperatur (B), an der zweiten Verdampferstufe (IWT) (2) vorbei geleitet werden.Alternatively to this limitation, a portion of the refrigerant liquid mass (E), depending on the Saugdampftemperatur (B), at the second evaporator stage (IWT) (2) are passed over.

Claims (4)

  1. Method for operating a refrigeration plant which, in a refrigerant circuit, comprises a compressor (5), a condenser, an injection valve (6) and an evaporator (1) through which at the secondary side a secondary medium to be cooled flows, characterized in that the refrigerant liquid temperature (A) upstream of the injection valve (6) is held constant by means of a heat exchanger (4) which operates between the refrigerant liquid line to the injection valve (6) and the feed line of the secondary medium, and stable conditions in the regulating and refrigerant circuit are attained as a result of the refrigerant liquid temperature (A) upstream of the injection valve (6) being held constant.
  2. Method according to Claim 1, characterized in that the mass flow of the cooled secondary medium is conducted entirely or partially through the heat exchanger (4) in a concurrent-flow, countercurrent-flow or cross-flow configuration with respect to the refrigerant liquid.
  3. Method according to Claim 1 or 2, characterized in that, through the use of a regulating valve (9) between the refrigerant liquid line to the injection valve (6) and an internal heat exchanger (2), which corresponds to the second evaporation stage, only a defined part of the mass flow of the refrigerant is conducted through the internal heat exchanger (2) and the remaining mass flow is conducted directly to the injection valve (6), and in this way the refrigerant liquid temperature (A) upstream of the injection valve (6) is additionally held constant.
  4. Refrigeration plant for carrying out the method according to one of Claims 1 to 3, which refrigeration plant, in a refrigerant circuit, comprises a compressor (5), a condenser, an injection valve (6) and an evaporator (1) through which at the secondary side a secondary medium to be cooled flows, characterized in that a heat exchanger (4) is arranged between the refrigerant liquid line to the injection valve (6) and the feed line of the secondary medium, through the primary side of which heat exchanger the refrigerant liquid flows and through the secondary side of which heat exchanger the cooled secondary medium flows.
EP09003503A 2004-01-28 2004-01-28 Method of operating a refrigeration system Expired - Lifetime EP2063201B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CH2004/000046 WO2005073645A1 (en) 2004-01-28 2004-01-28 Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature
EP04705750A EP1709372B1 (en) 2004-01-28 2004-01-28 Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP04705750A Division EP1709372B1 (en) 2004-01-28 2004-01-28 Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature
EP04705750.0 Division 2004-01-28

Publications (3)

Publication Number Publication Date
EP2063201A2 EP2063201A2 (en) 2009-05-27
EP2063201A3 EP2063201A3 (en) 2009-10-14
EP2063201B1 true EP2063201B1 (en) 2013-02-27

Family

ID=34812843

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09003503A Expired - Lifetime EP2063201B1 (en) 2004-01-28 2004-01-28 Method of operating a refrigeration system
EP04705750A Expired - Lifetime EP1709372B1 (en) 2004-01-28 2004-01-28 Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04705750A Expired - Lifetime EP1709372B1 (en) 2004-01-28 2004-01-28 Highly efficient evaporation in refrigerating installations and corresponding method for obtaining stable conditions with minimal and/or desired temperature differences of the media to be cooled in relation to the evaporation temperature

Country Status (6)

Country Link
US (1) US9010136B2 (en)
EP (2) EP2063201B1 (en)
AT (1) ATE426785T1 (en)
DE (1) DE502004009247D1 (en)
ES (2) ES2322152T3 (en)
WO (1) WO2005073645A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2322152T3 (en) 2004-01-28 2009-06-17 Bms-Energietechnik Ag HIGHLY EFFICIENT EVAPORATION IN REFRIGERATION FACILITIES WITH THE PROCEDURE REQUIRED FOR OBTAINING STABLE CONDITIONS WITH MINIMUM AND / OR DESIRED TEMPERATURE DIFFERENCES OF THE MEDIA TO BE REFRIGERATED WITH RESPECT TO THE EVAPORATION TEMPERATURE.
WO2009065233A1 (en) * 2007-11-21 2009-05-28 Remo Meister System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems
DE102008043823B4 (en) * 2008-11-18 2011-05-12 WESKA Kälteanlagen GmbH heat pump system
DE102012002593A1 (en) * 2012-02-13 2013-08-14 Eppendorf Ag Centrifuge with compressor cooling device and method for controlling a compressor cooling device of a centrifuge

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640086A (en) * 1970-02-27 1972-02-08 American Standard Inc Refrigerant flow control employing plural valves
US3952533A (en) * 1974-09-03 1976-04-27 Kysor Industrial Corporation Multiple valve refrigeration system
DE2451361A1 (en) * 1974-10-29 1976-05-06 Jakob Coolant circulation in refrigerator of cold-storage plant - controlled drive-motor speeds maintain constant temperature at expansion valve
US4493193A (en) * 1982-03-05 1985-01-15 Rutherford C. Lake, Jr. Reversible cycle heating and cooling system
DE3801711A1 (en) * 1988-01-21 1989-07-27 Linde Ag METHOD FOR OPERATING A REFRIGERATION SYSTEM AND REFRIGERATION SYSTEM FOR IMPLEMENTING THE PROCESS
US5150584A (en) * 1991-09-26 1992-09-29 General Motors Corporation Method and apparatus for detecting low refrigerant charge
US5533352A (en) * 1994-06-14 1996-07-09 Copeland Corporation Forced air heat exchanging system with variable fan speed control
JP3598604B2 (en) * 1995-09-08 2004-12-08 ダイキン工業株式会社 Heat transfer device
JPH1054616A (en) * 1996-08-14 1998-02-24 Daikin Ind Ltd Air conditioner
US5970732A (en) * 1997-04-23 1999-10-26 Menin; Boris Beverage cooling system
JPH11193967A (en) 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
DE29800048U1 (en) 1998-01-03 1998-04-23 Koenig Harald Heat pump with arrangement of a heat exchanger to improve the coefficient of performance
US6438978B1 (en) * 1998-01-07 2002-08-27 General Electric Company Refrigeration system
US5921092A (en) * 1998-03-16 1999-07-13 Hussmann Corporation Fluid defrost system and method for secondary refrigeration systems
FR2779994B1 (en) * 1998-06-23 2000-08-11 Valeo Climatisation VEHICLE AIR CONDITIONING CIRCUIT EQUIPPED WITH A PREDETENT DEVICE
US6170270B1 (en) * 1999-01-29 2001-01-09 Delaware Capital Formation, Inc. Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost
JP3985394B2 (en) * 1999-07-30 2007-10-03 株式会社デンソー Refrigeration cycle equipment
US6216481B1 (en) * 1999-09-15 2001-04-17 Jordan Kantchev Refrigeration system with heat reclaim and with floating condensing pressure
US6446450B1 (en) * 1999-10-01 2002-09-10 Firstenergy Facilities Services, Group, Llc Refrigeration system with liquid temperature control
US6330802B1 (en) * 2000-02-22 2001-12-18 Behr Climate Systems, Inc. Refrigerant loss detection
NO320664B1 (en) * 2001-12-19 2006-01-16 Sinvent As System for heating and cooling vehicles
AU2002347179A1 (en) * 2002-12-11 2004-06-30 Bms-Energietechnik Ag Evaporation process control for use in refrigeration technology
NO318864B1 (en) * 2002-12-23 2005-05-18 Sinvent As Improved heat pump system
ES2322152T3 (en) 2004-01-28 2009-06-17 Bms-Energietechnik Ag HIGHLY EFFICIENT EVAPORATION IN REFRIGERATION FACILITIES WITH THE PROCEDURE REQUIRED FOR OBTAINING STABLE CONDITIONS WITH MINIMUM AND / OR DESIRED TEMPERATURE DIFFERENCES OF THE MEDIA TO BE REFRIGERATED WITH RESPECT TO THE EVAPORATION TEMPERATURE.

Also Published As

Publication number Publication date
US9010136B2 (en) 2015-04-21
EP2063201A3 (en) 2009-10-14
EP2063201A2 (en) 2009-05-27
EP1709372A1 (en) 2006-10-11
US20070137229A1 (en) 2007-06-21
ATE426785T1 (en) 2009-04-15
EP1709372B1 (en) 2009-03-25
DE502004009247D1 (en) 2009-05-07
ES2401946T3 (en) 2013-04-25
WO2005073645A1 (en) 2005-08-11
ES2322152T3 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
DE10138255B4 (en) Arrangement of cascade refrigeration system
DE60132287T2 (en) High pressure control in a transcritical vapor compression cycle
EP0701096A2 (en) Method for operating a cold producing installation for air conditioning of vehicles and cold producing installation carrying out the same
CH627833A5 (en) ABSORPTION COOLING METHOD BY COOKING ENERGY, WHICH IS ADDED TO AN ABSORPTION COOLING SYSTEM.
DE102015112439A1 (en) refrigeration plant
DE69928386T2 (en) HEAT PUMP OR AIR CONDITIONER WITH SEVERAL COMPRESSORS
EP3099985B1 (en) Refrigeration plant
EP3859235A1 (en) Test chamber and method for controlling
DE102004031701A1 (en) Steam compression cooling circuit for transporting heat has high and low pressure heat exchangers, decompression device and gas-liquid separation device
EP2063201B1 (en) Method of operating a refrigeration system
DE202007017723U1 (en) Plant for refrigeration, heating or air conditioning, in particular refrigeration system
DE102011012644A1 (en) Cooling system for cooling and freezing of foods in warehouses or supermarkets, has refrigerant circuit, which is provided for circulation of refrigerant, particularly carbon dioxide, in operating flow direction
EP1570215B1 (en) Evaporation process control for use in refrigeration technology
DE19832682C2 (en) Defrosting device for an evaporator of a heat pump or an air conditioner
DE102009014682B4 (en) Heat pump for a water heater
EP3922925A1 (en) Compression cooling system and method for operating a compression cooling system
DE2438418A1 (en) Rotating vane gas compressor for refrigerating plant - has means for injecting the gas in liquid state into the compression chamber
EP2028429A2 (en) Heat pump assembly
EP3922930B1 (en) Compression cooling system and method for operating a compression cooling system
DE19620105A1 (en) Operation of refrigerating plant
DE202017105087U1 (en) Konstanttemperaturflüssigkeitszirkuliervorrichtung
EP3563098A1 (en) Method for operating a heat pump installation, heat pump installation and power plant having a heat pump installation
EP3922931B1 (en) Compression cooling system and method for operating the same
DE3016251A1 (en) METHOD FOR CONTROLLING AN ABSORPTION HEATING SYSTEM
DE102011112911A1 (en) refrigeration plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1709372

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20091114

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20111013

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MEISTER, REMO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEISTER, REMO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1709372

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 598715

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014047

Country of ref document: DE

Effective date: 20130425

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2401946

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130425

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130527

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130528

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014047

Country of ref document: DE

Effective date: 20131128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140121

Year of fee payment: 11

Ref country code: IE

Payment date: 20140128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140128

Year of fee payment: 11

Ref country code: FR

Payment date: 20140123

Year of fee payment: 11

Ref country code: TR

Payment date: 20140106

Year of fee payment: 11

Ref country code: ES

Payment date: 20140129

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140121

Year of fee payment: 11

BERE Be: lapsed

Owner name: MEISTER, REMO

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130227

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230124

Year of fee payment: 20

Ref country code: AT

Payment date: 20230120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230123

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004014047

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 598715

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240128