EP2047198A1 - Cooling fluid cooler - Google Patents

Cooling fluid cooler

Info

Publication number
EP2047198A1
EP2047198A1 EP08759324A EP08759324A EP2047198A1 EP 2047198 A1 EP2047198 A1 EP 2047198A1 EP 08759324 A EP08759324 A EP 08759324A EP 08759324 A EP08759324 A EP 08759324A EP 2047198 A1 EP2047198 A1 EP 2047198A1
Authority
EP
European Patent Office
Prior art keywords
sheet metal
cooling
range
flat tube
flat tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08759324A
Other languages
German (de)
French (fr)
Other versions
EP2047198B1 (en
Inventor
Frank Opferkuch
Jan BÖBEL
Axel Fezer
Klaus Mohrlok
Ulrich SCHÄFFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Publication of EP2047198A1 publication Critical patent/EP2047198A1/en
Application granted granted Critical
Publication of EP2047198B1 publication Critical patent/EP2047198B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements

Definitions

  • the invention relates to a coolant cooler for motor vehicles with a Gelo ⁇ ⁇ ended cooling network of flat tubes and fins made of very thin aluminum ⁇ sheets, and disposed at the ends of the flat tubes collector - or environmental steering boxes for the flowing in the flat tubes cooling liquid is cooled by means of cooling air flowing through the ribs.
  • the cooling liquid cooler described in the introduction represents the standard which has been in force for years in such heat exchangers. With the invention described below, this standard is not fundamentally changed but rather optimized in various respects.
  • Compact heat exchangers made of flat tubes and Venetian blind slats are known from the prior art for cooling the drive train of vehicles with internal combustion engines. These are able to achieve the highest cooling performance in the smallest space. In addition to a high volume-related power density, however, the lowest possible pressure loss on the coolant side and a low weight are the aim of an optimization. At the same time, for reasons of strength, in particular due to thermomechanical loads and due to the loads of the cooling network by pressure from the cooling system of the vehicle, the minimum wall thicknesses, in particular of the flat tubes, must be selected such that the same serve the other targets, such as, for.
  • the flat tubes often have no or only 1 to 2 internal supports.
  • the pipe heights are in the range of 1, 3 mm to 2.0 mm.
  • wall thicknesses greater than 0.20 mm are currently used.
  • the hydraulic diameter (4 x flow area / wetted circumference) is a characteristic variable for the hydraulic behavior.
  • hydraulic diameters of 1, 3 mm to 3.0 mm typically result on the coolant side.
  • a coolant radiator having all but one feature of all other features of the preamble of claim 1 is known from US 4,332,293.
  • the flat tubes are made of brass and the ribs of copper. Thisdeckenkeitkühler is therefore too heavy and too expensive. The same applies to thedefactkeitsküh- ler, which is known from US 5,329,988.
  • Another cooling liquid cooler is known from US 4,693,307. In it, a solution is presented, which limits the cooling air-side pressure loss by special design of the ribs.
  • the design of the flat tubes used was apparently not of particular interest indeckenkeitsksselern, because in the specified sources flat tubes have been shown and described without any peculiarities.
  • the object of the invention is to provide a cost-effectivechen-liquid cooler for motor vehicles whose properties such as in particular high heat transfer performance at comparatively low weight to meet the future demands of users in several respects.
  • the inventive solution of the problem arises in a trained according to the preamble of claim 1deflüsskühler by its design with the characterizing features of the same claim.
  • Each flat tube consists of at least two formed sheet metal strips, wherein at least one of the sheet metal strips forms the wall of the flat tube and another sheet metal strip forms a corrugated, inner channels forming channels therein.
  • the ratio of the constriction factor on the coolant side to the constriction factor on the cooling air side is approximately in the range between 0.20 to 0.44.
  • each flat tube consists of three deformed sheet-metal strips, wherein two sheet-metal strips form the wall of the flat tube and the third sheet-metal strip represents the corrugated, inner channels forming the inner channel.
  • the wall thickness of the flat tube is in the range of 0.10-0.20 mm.
  • the thickness of the inner insert is in the range of 0.03 - 0.10 mm. Because the inner liner can be made from thinner sheet metal, the possibility of weight reduction is extended without neglecting the strength.
  • the constriction factor is in a range between 0.15 and 0.28. On the cooling air side, however, the constriction factor is in a range between 0.63 and 0.76.
  • the constriction factor is calculated as the ratio of the area through which flows through to the entire end face F of the respective media side.
  • A is the area flowed through.
  • U is the wetted circumference of the area through which it flows.
  • FIG. 1 shows a view of a cooling liquid cooler according to the invention.
  • 2 shows a cross section through a flat tube of theharides and others.
  • FIGS. 3 and 4 show sections of the cooling network of the cooling liquid cooler according to the invention.
  • FIGS. 5 to 11 are graphs showing the difference between the flat tubes of the cooling liquid cooler of the present invention and the flat tubes of conventional cooling liquid coolers in several respects.
  • Fig. 12 shows another flat tube of another cooling liquid cooler according to the invention.
  • FIG. 5 illustrates evaluations of extensive FEM examinations carried out by the inventors.
  • FIG. 5 illustrates that the flat tubes 101 of the inventive coolant radiator, because of their inner insert c, the is made of a metal strip which is about 0.03 - 0.10 mm thick is much lighter (ordinate) than conventional flat tubes ordewashkeitkühler. At the same time, they can withstand higher internal pressures (abscissa). With regard to the internal pressure stability, the overlapping of the metal strips a, b, in the narrow sides S of the flat tubes 101 proves to be, which will be discussed in more detail below.
  • FIGS. 6 and 7 represent the evaluation of extensive thermo-hydraulic calculations.
  • FIG. 6 makes it clear that cooling liquid coolers according to the invention with such flat tubes 101, at approximately identical pressure loss, have a significantly higher specific cooling capacity than the prior art.
  • the upper cloud results represents thedeckenkeitkühler invention, including the prior art.
  • FIG. 7 permits an identical statement, wherein, in contrast to FIG. 6 in FIG. 7, the abscissa represents the pressure loss in the cooling air.
  • the cooling capacity is related to the inlet temperature difference ETD and to the mass of the cooling network.
  • the operating point was a coolant flow of 160kg / (m 2 s) and a cooling air flow of 8.0 kg / (m 2 s).
  • the investigated cooling grid dimensions were 600 mm flat tube length, 445 mm net width and 32 mm net depth.
  • the ratio of the two constriction factors on the ordinate with respect to the hydraulic diameters on the coolant side is considered.
  • An optimum in terms of compactness, lightweight construction and performance has been found when the hydraulic diameter is approximately between 0.8 and 1.5 mm and the mentioned ratio is in the range between 0.20 and 0.44.
  • 11 is intended to show that flat tubes 11, whose inner inserts c have a pitch T (FIG. 2) between 1, 2 and 3, 5 mm, with a tube height h in the range between 1, 1 mm and about 2.0 mm have occurred particularly frequently in relation to the advantageous properties described above.
  • Fig. 1 shows a front view of the cooling liquid cooler according to the invention.
  • the surface of the cooling network, which was affected by cooling air, was framed with a dashed line.
  • This area F is the end face which is used to determine the constriction factor on the cooling air side.
  • the counter is then the sum of the areas which are traversed by the cooling air, which are directed to the cooling air surfaces of all ribs 102, in other words, the end face F minus the areas occupied by the narrow sides of all flat tubes 101 of theissernet- zes become.
  • the flat tube of Fig. 2 is made of three endless metal strips.
  • Two wall parts rolled in the manner of a sheet-like edge are identically designed but arranged "reversed", one edge of one part encompassing one edge of the other part and the other edge of one part being encompassed by the other edge of the other part 3 and 4 show a section of the cooling network 1, consisting of flat tubes 101 and ribs 102.
  • the ribs 102 are so-called blind ribs 102 which have cuts in the rib flanks 3 and 4 have been indicated by the numerous parallel lines
  • the rib height H was set between 3 and 8 mm, whereby for inserts in the passenger car range 3 to 5.2 mm are cheaper. For commercial vehicles, for example, rib heights of up to 8 mm can be used.
  • the area F was indicated by a dashed line, which is used to determine the Kühifiüsstechniks remedyen constriction factor. This surface F corresponds approximately to the area which is encompassed by the collecting box 3 on the outside.
  • the sum of the area occupied by the flat tube sections is set in relation to the area F and gives the constriction factor on the cooling liquid side.
  • Their flat, that is, undeformed broadsides B have also proven to be an advantageous embodiment of the flat tubes 101, which with the venetian blind ribs 102 permit perfect solder joints, which noticeably contribute to achieving high heat transfer rates.
  • Narrow side S leads.
  • This metal strip a has a thickness of 0.12 mm.
  • the inner strip c forming sheet metal strip c is about 0.09 mm thick. It is wavy and created with its one longitudinal edge in the aforementioned bend B inside.
  • the flat tube is closed, wherein the second narrow side S is formed by nesting the formed longitudinal edges of a sheet metal strip a. All flat tubes have the advantage that their narrow sides S are very stable despite the small sheet thicknesses, as the two figures 2 and 12 show.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The invention relates to a cooling fluid cooler for motor vehicles having a soldered cooling network (1) made of flat tubes (101) and ribs (102), produced from very thin aluminum sheets (a, b, c), and having header or loop-around chambers (3) at the ends of the flat tubes (101) for the cooling fluid flowing in the flat tubes (101), said chambers being cooled by cooling air flowing through the ribs (102). The cooling fluid cooler has exceptional cooling power and a light weight. This is achieved according to the invention in that each flat tube (101) is made of at least two formed sheet metal strips (a, b, c), wherein at least the one sheet metal strip (a, b) forms the wall of the flat tube and the other sheet metal strip forms a wavy internal insert (c) forming channels (10) in the same, and that the ratio of the constriction factor on the cooling fluid side to the constriction factor on the cooling air side is approximately in the range of 0.20 to 0.44, wherein the hydraulic diameter on the cooling fluid side is approximately in the range of 0.8 to 1.5 mm.

Description

Kühlflüssigkeitskühler Coolant radiator
Die Erfindung betrifft einen Kühlflüssigkeitskühler für Kraftfahrzeuge mit einem gelö¬ teten Kühlnetz aus Flachrohren und Rippen, hergestellt aus sehr dünnen Aluminium¬ blechen, und mit an den Enden der Flachrohre angeordneten Sammel - bzw. Um- lenkkästen für die in den Flachrohren strömende Kühlflüssigkeit, die mittels Kühlluft, die durch die Rippen strömt, gekühlt wird.The invention relates to a coolant cooler for motor vehicles with a Geloë ¬ ended cooling network of flat tubes and fins made of very thin aluminum ¬ sheets, and disposed at the ends of the flat tubes collector - or environmental steering boxes for the flowing in the flat tubes cooling liquid is cooled by means of cooling air flowing through the ribs.
Der einleitend beschriebene Kühlflüssigkeitskühler stellt den seit Jahren geltenden Standard bei solchen Wärmeübertragern dar. Mit der weiter unten beschriebenen Erfindung soll dieser Standard nicht grundsätzlich verändert sondern vielmehr in ver- schiedener Hinsicht optimiert werden.The cooling liquid cooler described in the introduction represents the standard which has been in force for years in such heat exchangers. With the invention described below, this standard is not fundamentally changed but rather optimized in various respects.
Aus dem Stand der Technik zur Kühlung des Antriebsstranges von Fahrzeugen mit Verbrennungsmotoren sind Kompaktwärmeübertrager aus Flachrohren und Jalousielamellen bekannt. Diese sind in der Lage, auf kleinstem Bauraum höchste Kühlleistungen zu erzielen. Neben einer hohen volumenbezogenen Leistungsdichte sind a- ber auch ein möglichst geringer Druckverlust auf der Kühlflüssigkeitsseite und ein geringes Gewicht das Ziel einer Optimierung. Gleichzeitig müssen aus Festigkeitsgründen, insbesondere auf Grund thermomechanischer Belastungen sowie durch die Belastungen des Kühlnetzes durch Druck aus dem Kühlsystem des Fahrzeugs, die Mindestwanddicken, insbesondere der Flachrohre so gewählt werden, dass diesel- ben den anderen Zielen, wie z. B. der Gewichtsreduzierung und den möglichst kleinen Querschnittsverengungen auf der Kühlflüssigkeitsseite und der Kühlluftseite (Kompaktheit) bei geringem Druckverlust, nicht signifikant entgegenwirken. Beim Stand der Technik besitzen die Flachrohre oftmals keine oder nur 1 bis 2 Innenab- stützungen. Die Rohrhöhen liegen im Bereich von 1 ,3 mm bis 2,0 mm. Aus Festig- keits- und Korrosionsgründen werden gegenwärtig Wanddicken größer 0,20 mm eingesetzt. Für das hydraulische Verhalten ist u. a. der hydraulische Durchmesser (4 x durchströmte Fläche / benetzter Umfang) eine charakteristische Größe. Bei den genannten Parametern der Rohre ohne Inneneinsatz ergeben sich typischerweise auf der Kühlflüssigkeitsseite hydraulische Durchmesser von 1 ,3 mm bis 3,0 mm. Zu- sammen mit den Lamellen mit typischen Höhen von 5,1 mm bis 9,5 mm und Wanddicken im Bereich 60μm bis 120μm ergibt sich auf der Kühlflüssigkeitsseite ein Verengungsfaktor (Verhältnis von durchströmter Fläche zu Stirnfläche) im Bereich von 0,05 bis 0,28. Es ist weiter bekannt, dass mit Hilfe von Inneneinsätzen die Beständigkeit der Flach¬ rohre gegenüber Innendruck und thermo-mechanischer Belastung signifikant verbes¬ sert werden kann. Das Problem ist allerdings, dass bei Flachrohren mit inneneinsät- zen üblicherweise der hydraulische Durchmesser deutlich kleiner ist als bei Flachroh- ren ohne Inneneinsätzen, wodurch der Druckverlust ansteigt.Compact heat exchangers made of flat tubes and Venetian blind slats are known from the prior art for cooling the drive train of vehicles with internal combustion engines. These are able to achieve the highest cooling performance in the smallest space. In addition to a high volume-related power density, however, the lowest possible pressure loss on the coolant side and a low weight are the aim of an optimization. At the same time, for reasons of strength, in particular due to thermomechanical loads and due to the loads of the cooling network by pressure from the cooling system of the vehicle, the minimum wall thicknesses, in particular of the flat tubes, must be selected such that the same serve the other targets, such as, for. As the weight reduction and the smallest possible cross-sectional constrictions on the coolant side and the cooling air side (compactness) with low pressure drop, not significantly counteract. In the prior art, the flat tubes often have no or only 1 to 2 internal supports. The pipe heights are in the range of 1, 3 mm to 2.0 mm. For reasons of strength and corrosion, wall thicknesses greater than 0.20 mm are currently used. Among other things, the hydraulic diameter (4 x flow area / wetted circumference) is a characteristic variable for the hydraulic behavior. For the above-mentioned parameters of the pipes without internal use, hydraulic diameters of 1, 3 mm to 3.0 mm typically result on the coolant side. Together with the lamellas with typical heights of 5.1 mm to 9.5 mm and wall thicknesses in the range of 60 μm to 120 μm, a constriction factor (ratio of area through which face flows through) in the range from 0.05 to 0 is obtained on the coolant side. 28th It is further known that the resistance of the flat tubes ¬ ¬ can be with the help of internal operations against internal pressure and thermo-mechanical stress significantly verbes sert. However, the problem is that with flat tubes with internal inserts, the hydraulic diameter is usually much smaller than with flat tubes without inner inserts, which increases the pressure loss.
Ein Kühlflüssigkeitskühler, der bis auf ein Merkmal alle anderen Merkmale des Oberbegriffes des Anspruchs 1 aufweist, ist aus der US 4 332 293 bekannt. Die Flachrohre bestehen dort aus Messing und die Rippen aus Kupfer. Dieser Kühlflüssigkeitskühler ist deshalb zu schwer und zu teuer. Ähnliches gilt für den Kühlflüssigkeitsküh- ler, der aus US 5 329 988 bekannt ist. Ein weiterer Kühlflüssigkeitskühler ist aus US 4 693 307 bekannt. Darin wird eine Lösung vorgestellt, die durch spezielle Ausbildung der Rippen den kühlluftseitigen Druckverlust begrenzt. Die Ausbildung der verwendeten Flachrohre war bei Kühlflüssigkeitskühlern scheinbar bisher nicht von besonderem Interesse, denn in den angegebenen Quellen sind Flachrohre ohne irgendwelche Besonderheiten gezeigt und beschrieben worden. Die Aufgabe der Erfindung besteht in der Bereitstellung eines kostengünstigen Kühl- flüssigkeitskühlers für Kraftfahrzeuge, dessen Eigenschaften wie insbesondere hohe Wärmeübertragungsleistung bei vergleichsweise niedrigem Gewicht den zukünftigen Forderungen der Anwender in mehrfacher Hinsicht gewachsen sein sollen. Die erfindungsgemäße Lösung der Aufgabe stellt sich bei einem gemäß dem Oberbegriff des Anspruchs 1 ausgebildeten Kühlflüssigkeitskühler durch dessen Ausgestaltung mit den kennzeichnenden Merkmalen desselben Anspruchs ein. Jedes Flachrohr besteht aus wenigstens zwei umgeformten Blechstreifen, wobei wenigstens einer der Blechstreifen die Wand des Flachrohres bildet und ein anderer Blechstreifen einen gewellten, Kanäle bildenden Inneneinsatz in demselben darstellt. Das Verhältnis des Verengungsfaktors auf der Kühlflüssigkeitsseite zum Verengungsfaktor auf der Kühlluftseite liegt etwa im Bereich zwischen 0,20 bis 0, 44. Der hydraulische Durchmesser auf der Kühlflüssigkeitsseite liegt etwa im Bereich zwischen 0,8 bis 1 ,5 mm. Die Erfinder haben festgestellt, dass ein mit diesen Merkma- len ausgestatteter Kühlflüssigkeitskühler einen vertretbaren Druckverlust bei ausgesprochen guter Wärmeübertragungsleistung aufweist. Insbesondere vorteilhaft ist die pro Gewichtseinheit erzielte Leistung, das heißt, der Kühlflüssigkeitskühler weist ein wesentlich geringeres Gewicht auf. Der Inneneinsatz sorgt für entsprechend hohe Widerstandsfähigkeit, insbesondere gegen Innendruck. Gemäß einer vorteilhaften Weiterbildung ist vorgesehen, dass jedes Flachrohr aus drei umgeformten Blechstreifen besteht, wobei zwei Blechstreifen die Wand des Flachrohres bilden und der dritte Blechstreifen den gewellten, Kanäle bildenden In- neneinsatz in demselben darstellt. Konkret ist vorgesehen, dass die Wanddicke des Flachrohres im Bereich von 0,10 - 0,20 mm liegt. Die Dicke des Inneneinsatzes liegt im Bereich von 0,03 - 0,10 mm. Weil der Inneneinsatz aus dünnerem Blech hergestellt werden kann, wird die Möglichkeit der Gewichtsreduzierung erweitert, ohne die Festigkeit zu vernachlässigen. Auf der Kühlflüssigkeitsseite liegt der Verengungsfaktor in einem Bereich zwischen 0,15 und 0,28. Auf der Kühlluftseite liegt der Verengungsfaktor hingegen in einem Bereich zwischen 0,63 und 0,76.A coolant radiator having all but one feature of all other features of the preamble of claim 1 is known from US 4,332,293. The flat tubes are made of brass and the ribs of copper. This Kühlflüssigkeitkühler is therefore too heavy and too expensive. The same applies to the Kühlflüssigkeitsküh- ler, which is known from US 5,329,988. Another cooling liquid cooler is known from US 4,693,307. In it, a solution is presented, which limits the cooling air-side pressure loss by special design of the ribs. The design of the flat tubes used was apparently not of particular interest in Kühlflüssigkeitskühlern, because in the specified sources flat tubes have been shown and described without any peculiarities. The object of the invention is to provide a cost-effective Kühl- liquid cooler for motor vehicles whose properties such as in particular high heat transfer performance at comparatively low weight to meet the future demands of users in several respects. The inventive solution of the problem arises in a trained according to the preamble of claim 1 Kühlflüsskühler by its design with the characterizing features of the same claim. Each flat tube consists of at least two formed sheet metal strips, wherein at least one of the sheet metal strips forms the wall of the flat tube and another sheet metal strip forms a corrugated, inner channels forming channels therein. The ratio of the constriction factor on the coolant side to the constriction factor on the cooling air side is approximately in the range between 0.20 to 0.44. The hydraulic diameter on the coolant side is approximately in the range between 0.8 to 1.5 mm. The inventors have found that a Kühlflüssigkeitkühler equipped with these features has a reasonable pressure loss with very good heat transfer performance. Particularly advantageous is the power achieved per unit weight, that is, the cooling liquid cooler has a much lower weight. The inner insert ensures correspondingly high resistance, especially against internal pressure. According to an advantageous development, it is provided that each flat tube consists of three deformed sheet-metal strips, wherein two sheet-metal strips form the wall of the flat tube and the third sheet-metal strip represents the corrugated, inner channels forming the inner channel. Specifically, it is provided that the wall thickness of the flat tube is in the range of 0.10-0.20 mm. The thickness of the inner insert is in the range of 0.03 - 0.10 mm. Because the inner liner can be made from thinner sheet metal, the possibility of weight reduction is extended without neglecting the strength. On the coolant side, the constriction factor is in a range between 0.15 and 0.28. On the cooling air side, however, the constriction factor is in a range between 0.63 and 0.76.
Der Verengungsfaktor wird berechnet als Verhältnis der durchströmten Fläche zur gesamten Stirnfläche F der jeweiligen Medienseite. Der hydraulische Durchmesser dh wird berechnet aus dh= AxAJO. A ist die durchströmte Fläche. U ist der benetzte Umfang der durchströmten Fläche. Weitere Merkmale befinden sich in den abhängigen Patentansprüchen. Die Erfindung wird im Anschluss in einem Ausführungsbeispiel unter Bezugnahme auf die beiliegenden Zeichnungen beschrieben. In dieser Beschreibung sind weitere Merkmale und deren Vorteile aufgeführt, die sich später möglicherweise als bedeutsam herausstellen können.The constriction factor is calculated as the ratio of the area through which flows through to the entire end face F of the respective media side. The hydraulic diameter d h is calculated from d h = AxAJO. A is the area flowed through. U is the wetted circumference of the area through which it flows. Further features are in the dependent claims. The invention will be described below in an embodiment with reference to the accompanying drawings. In this description, other features and their advantages are listed that may later prove to be significant.
Die Fig. 1 zeigt eine Ansicht auf einen erfindungsgemäßen Kühlflüssigkeitskühler. Die Fig. 2 zeigt einen Querschnitt durch ein Flachrohr des erfindungsgemäßen Kühl- flüssigkeitskühlers. Die Fig. 3 und 4 zeigen Ausschnitte aus dem Kühlnetz des erfindungsgemäßen Kühl- flüssigkeitskühlers.Fig. 1 shows a view of a cooling liquid cooler according to the invention. 2 shows a cross section through a flat tube of the Kühlsflüssigkeitskühlers invention. FIGS. 3 and 4 show sections of the cooling network of the cooling liquid cooler according to the invention.
Die Fig. 5 - 11 zeigen Diagramme, die den Unterschied zwischen den Flachrohren des erfindungsgemäßen Kühlflüssigkeitskühlers und Flachrohren von herkömmlichen Kühlflüssigkeitskühlern in mehrfacher Hinsicht aufzeigen. Die Fig. 12 zeigt ein anderes Flachrohr eines anderen erfindungsgemäßen Kühlflüssigkeitskühlers.FIGS. 5 to 11 are graphs showing the difference between the flat tubes of the cooling liquid cooler of the present invention and the flat tubes of conventional cooling liquid coolers in several respects. Fig. 12 shows another flat tube of another cooling liquid cooler according to the invention.
Die Fig. 5 stellt Auswertungen umfangreicher FEM- Untersuchungen, die von den Erfindern ausgeführt wurden, dar. Die Fig. 5 verdeutlicht, dass die Flachrohre 101 des erfindungsgemäßen Kühlflüssigkeitskühlers wegen ihres Inneneinsatzes c, der aus einem Blechstreifen hergestellt wird, der etwa 0,03 - 0,10 mm dick ist wesentlich leichter ist (Ordinate) als herkömmliche Flachrohre bzw. Kühlflüssigkeitskühler. Gleichzeitig können sie höheren Innendrücken widerstehen (Abszisse). Bezüglich der Innendruckstabilität erweist sich auch die Überlappung der Blechstreifen a, b, in den Schmalseiten S der Flachrohre 101 , worauf weiter unten näher eingegangen wird.FIG. 5 illustrates evaluations of extensive FEM examinations carried out by the inventors. FIG. 5 illustrates that the flat tubes 101 of the inventive coolant radiator, because of their inner insert c, the is made of a metal strip which is about 0.03 - 0.10 mm thick is much lighter (ordinate) than conventional flat tubes or Kühlflüssigkeitkühler. At the same time, they can withstand higher internal pressures (abscissa). With regard to the internal pressure stability, the overlapping of the metal strips a, b, in the narrow sides S of the flat tubes 101 proves to be, which will be discussed in more detail below.
Die Fig. 6 und 7 repräsentieren die Auswertung umfangreicher thermo-hydraulischer Berechnungen. Die Fig. 6 macht deutlich, dass erfindungsgemäße Kühlflüssigkeitskühler mit solchen Flachrohren 101, bei etwa identischem Druckverlust eine deutlich höhere spezifische Kühlleistung aufweisen als der Stand der Technik. Die obere Ergebniswolke stellt die erfindungsgemäßen Kühlflüssigkeitskühler dar, die darunter den Stand der Technik. Die Fig. 7 lässt ein identische Aussage zu, wobei im Unterschied zur Fig. 6 in der Fig. 7 auf der Abszisse der Druckverlust in der Kühlluft betrachtet wurde. Für die spezifische Kühlleistung wird die Kühlleistung auf die Ein- trittstemperaturdifferenz ETD und die auf Masse des Kühlnetzes bezogen. Der Betriebspunkt lag bei einem Kühlflüssigkeitsstrom von 160kg / (m2s) und bei einem Kühlluftstrom von 8,0 kg / (m2s). Die untersuchten Kühlnetzabmessungen lagen bei 600 mm Flachrohrlänge, 445 mm Netzbreite und 32 mm Netztiefe. In der Fig. 8 wird der hydraulische Durchmesser auf der Kühlflüssigkeitsseite, also der Flachrohre 1 , auf der Abszisse, dem Verengungsfaktor auf der Kühlflüssigkeitsseite, auf der Ordinate, gegenübergestellt. In den Figuren wurde „Kühlmittel" angegeben, womit in diesem Fall die Kühlflüssigkeit gemeint ist. Die linke Wolke mit Ergebnissen zeigt die Erfindung und die rechte Ergebniswolke stellt Untersuchungen aus dem Stand der Technik dar. Es ist aus der Darstellung der Schluss zu ziehen, dass die hydraulischen Durchmesser in den Flachrohren 101 des erfindungsgemäßen Kühlflüssigkeitskühlers grundsätzlich kleiner sind als bei üblichen Kühlflüssig- keitskühlern. Die Erfinder haben durch eine thermo-hydraulische Optimierungsrechnung festgestellt, dass sich bei den gezeigten Flachrohren 101 mit Inneneinsatz c mit hydraulischen Durchmessern im Bereich zwischen 0,8 mm und 1 ,5 mm und mit ei- nem Verengungsfaktor auf der Kühlflüssigkeitsseite im Bereich von 0,15 - 0,28 die höchsten gewichtsspezifischen und auch volumenspezifischen Kühlleistungen bei gleichzeitig geringem kühlmittelseitigem Druckverlust erreichen lassen. Die vorteilhaften Grenzwerte wurden mittels gestrichelter Linien eingetragen. In der Fig. 9 wurde der Verengungsfaktor auf der Kühlluftseite dem hydraulischen Durchmesser gegenübergestellt.FIGS. 6 and 7 represent the evaluation of extensive thermo-hydraulic calculations. FIG. 6 makes it clear that cooling liquid coolers according to the invention with such flat tubes 101, at approximately identical pressure loss, have a significantly higher specific cooling capacity than the prior art. The upper cloud results represents the Kühlflüssigkeitkühler invention, including the prior art. FIG. 7 permits an identical statement, wherein, in contrast to FIG. 6 in FIG. 7, the abscissa represents the pressure loss in the cooling air. For the specific cooling capacity, the cooling capacity is related to the inlet temperature difference ETD and to the mass of the cooling network. The operating point was a coolant flow of 160kg / (m 2 s) and a cooling air flow of 8.0 kg / (m 2 s). The investigated cooling grid dimensions were 600 mm flat tube length, 445 mm net width and 32 mm net depth. In FIG. 8, the hydraulic diameter on the coolant side, ie the flat tubes 1, on the abscissa, the constriction factor on the coolant side, on the ordinate, compared. In the figures, "Coolant" has been given, meaning in this case the cooling liquid The left cloud with results shows the invention and the right cloud of results represents investigations from the state of the art The hydraulic diameters in the flat tubes 101 of the cooling liquid cooler according to the invention are generally smaller than in the case of conventional cooling liquid coolers The inventors have determined by a thermo-hydraulic optimization calculation that in the illustrated flat tubes 101 with inner insert c with hydraulic diameters in the range between 0.8 mm and 1, 5 mm and with a constriction factor on the coolant side in the range of 0.15-0.28 can achieve the highest weight-specific and also volume-specific cooling performances with simultaneously low coolant-side pressure loss The advantageous limit values were indicated by dashed Li registered. In FIG. 9, the constriction factor on the cooling air side has been compared with the hydraulic diameter.
In der Fig. 10 betrachtet man nun das Verhältnis der beiden Verengungsfaktoren auf der Ordinate gegenüber den hydraulischen Durchmessern auf der Kühlflüssigkeits- seite (Abszisse). Es wurde ein Optimum bezüglich kompakter Ausbildung, Leichtbau und Leistungsfähigkeit festgestellt, wenn der hydraulische Durchmesser etwa zwischen 0,8 und 1 ,5 mm angesiedelt ist und das erwähnte Verhältnis im Bereich zwischen 0,20 und 0,44 liegt. Die Fig. 11 soll zeigen, dass Flachrohre 11 , deren Inneneinsätze c eine Teilung T (Fig. 2) zwischen 1 , 2 und 3, 5 mm aufweisen, bei einer Rohrhöhe h im Bereich zwischen 1 ,1 mm und etwa 2,0 mm in Bezug auf die oben beschriebenen vorteilhaften Eigenschaften besonders häufig aufgetreten sind.In FIG. 10, the ratio of the two constriction factors on the ordinate with respect to the hydraulic diameters on the coolant side (abscissa) is considered. An optimum in terms of compactness, lightweight construction and performance has been found when the hydraulic diameter is approximately between 0.8 and 1.5 mm and the mentioned ratio is in the range between 0.20 and 0.44. 11 is intended to show that flat tubes 11, whose inner inserts c have a pitch T (FIG. 2) between 1, 2 and 3, 5 mm, with a tube height h in the range between 1, 1 mm and about 2.0 mm have occurred particularly frequently in relation to the advantageous properties described above.
Die Fig. 1 zeigt eine Frontansicht des erfindungsgemäßen Kühlflüssigkeitskühlers. Die von Kühlluft angeströmte Fläche des Kühlnetzes wurde mit einer gestrichelten Linie eingerahmt. Diese Fläche F ist die Stirnfläche, die zur Bestimmung des Verengungsfaktors auf der Kühlluftseite herangezogen wird. Im Zähler steht dann die Summe der Flächen, die von der Kühlluft durchströmt werden, welche die zur Kühlluft gerichteten Flächen aller Rippen 102 sind, mit anderen Worten, die Stirnfläche F abzüglich der Flächen, die von den Schmalseiten aller Flachrohre 101 des Kühlnet- zes belegt werden.Fig. 1 shows a front view of the cooling liquid cooler according to the invention. The surface of the cooling network, which was affected by cooling air, was framed with a dashed line. This area F is the end face which is used to determine the constriction factor on the cooling air side. In the counter is then the sum of the areas which are traversed by the cooling air, which are directed to the cooling air surfaces of all ribs 102, in other words, the end face F minus the areas occupied by the narrow sides of all flat tubes 101 of the Kühlnet- zes become.
In der Fig. 2 wurde eines der Flachrohre 1 des Kühlflüssigkeitskühlers im Querschnitt gezeigt. Die Flachrohrhöhe h multipliziert mit der Flachrohrlänge und mit der Anzahl der Flachrohre 1 ergibt die vorstehend gemeinte Fläche der Schmalseiten S. Das Flachrohr aus Fig. 2 wird aus drei endlosen Blechstreifen hergestellt. Zwei mit bo- genartigen Rändern gewalzte Wandteile sind identisch ausgebildet, jedoch „seitenverkehrt" angeordnet, wobei der eine Rand des einen Teils den einen Rand des anderen Teils umgreift und der andere Rand des einen Teils vom anderen Rand des anderen Teils umgriffen ist. Der Inneneinsatz wird zwischen den beiden Wandteilen eingeführt. Die Fig. 3 und 4 zeigen einen Ausschnitt aus dem Kühlnetz 1 , bestehend aus Flachrohren 101 und Rippen 102. Die Rippen 102 sind so genannte Jalousie-Rippen 102, die Schnitte in den Rippenflanken aufweisen. Die Schnitte sind in Fig. 3 und 4 durch die zahlreichen parallelen Linie angedeutet worden. Die Rippenhöhe H wurde zwischen 3 und 8 mm festgelegt, wobei für Einsätze im PKW - Bereich 3 - 5,2 mm günstiger sind. Beispielsweise bei Nutzfahrzeugen können Rippenhöhen bis 8 mm eingesetzt werden. Auch dort wurde die Fläche F mit einer Strichlinie angedeutet, die zur Bestimmung des kühifiüssigkeitsseitigen Verengungsfaktors herangezogen wird. Diese Fläche F entspricht etwa der Fläche die vom Sammelkasten 3 außen umfasst ist. Die Summe der von den Flachrohrquerschnitten belegten Flächen wird ins Verhältnis zur Fläche F gesetzt und ergibt den Verengungsfaktor auf der Kühlflüssig- keitsseite. Als vorteilhaftes Ausbildungsmerkmal der Flachrohre 101 haben sich auch deren ebenen, das heißt, unverformten Breitseiten B erwiesen, die mit den Jalousie- Rippen 102 perfekte Lötverbindungen zulassen, welche zur Erreichung hoher Wär- meübertragungsleistungen spürbar beitragen.2, one of the flat tubes 1 of the coolant radiator has been shown in cross section. The flat tube height h multiplied by the flat tube length and with the number of flat tubes 1 yields the above-mentioned surface of the narrow sides S. The flat tube of Fig. 2 is made of three endless metal strips. Two wall parts rolled in the manner of a sheet-like edge are identically designed but arranged "reversed", one edge of one part encompassing one edge of the other part and the other edge of one part being encompassed by the other edge of the other part 3 and 4 show a section of the cooling network 1, consisting of flat tubes 101 and ribs 102. The ribs 102 are so-called blind ribs 102 which have cuts in the rib flanks 3 and 4 have been indicated by the numerous parallel lines The rib height H was set between 3 and 8 mm, whereby for inserts in the passenger car range 3 to 5.2 mm are cheaper. For commercial vehicles, for example, rib heights of up to 8 mm can be used. Also there, the area F was indicated by a dashed line, which is used to determine the Kühifiüssigkeitsseitigen constriction factor. This surface F corresponds approximately to the area which is encompassed by the collecting box 3 on the outside. The sum of the area occupied by the flat tube sections is set in relation to the area F and gives the constriction factor on the cooling liquid side. Their flat, that is, undeformed broadsides B have also proven to be an advantageous embodiment of the flat tubes 101, which with the venetian blind ribs 102 permit perfect solder joints, which noticeably contribute to achieving high heat transfer rates.
Die Fig. 12 zeigt ein anderes Flachrohr des erfindungsgemäßen Kühlflüssigkeitsküh- lers, das aus lediglich zwei Blechstreifen a, c hergestellt wird. Die Figur zeigt auch einige Herstellungsschritte und ganz unten das fertige Flachrohr 101. In dem einen endlosen Blechstreifen a, der die Wand des Flachrohres darstellt, wird eine Faltung eingearbeitet. In der Faltung wird eine Biegung B ausgeführt, die zu der einenFIG. 12 shows another flat tube of the inventive cooling liquid cooler, which is produced from only two sheet metal strips a, c. The figure also shows some manufacturing steps and at the bottom of the finished flat tube 101. In the one endless metal strip a, which is the wall of the flat tube, a fold is incorporated. In the folding, a bend B is executed, which leads to the one
Schmalseite S führt. Dieser Blechstreifen a besitzt eine Dicke von 0,12 mm. Der den Inneneinsatz c bildende Blechstreifen c ist etwa 0,09 mm dick. Er wird gewellt und mit seinem einen Längsrand in der erwähnten Biegung B innen angelegt. Das Flachrohr wird geschlossen, wobei die zweite Schmalseite S durch Ineinanderlegen der umgeformten Längsränder des einen Blechstreifens a ausgebildet wird. Alle Flachrohre haben den Vorteil, dass ihre Schmalseiten S trotz der geringen Blechdicken sehr stabil sind, wie die beiden Figuren 2 und 12 zeigen. Narrow side S leads. This metal strip a has a thickness of 0.12 mm. The inner strip c forming sheet metal strip c is about 0.09 mm thick. It is wavy and created with its one longitudinal edge in the aforementioned bend B inside. The flat tube is closed, wherein the second narrow side S is formed by nesting the formed longitudinal edges of a sheet metal strip a. All flat tubes have the advantage that their narrow sides S are very stable despite the small sheet thicknesses, as the two figures 2 and 12 show.

Claims

Patentansprüche claims
1. Kühlflüssigkeitskühler für Kraftfahrzeuge mit einem gelöteten Kühlnetz (1) aus Flachrohren (101) und Rippen (102), hergestellt aus sehr dünnen Aluminiumblechen (a, b, c), und mit an den Enden der Flachrohre (101) angeordneten Sammel - bzw. Umlenkkästen (3) für die in den Flachrohren (101) strömende Kühlflüssigkeit, die mittels Kühlluft, die durch die Rippen (102) strömt, gekühlt wird, gekennzeichnet dadurch, dass jedes Flachrohr (101) aus wenigstens zwei umgeformten Blechstreifen (a, b, c) besteht, wobei wenigstens der eine Blechstreifen (a, b) die Wand des Flachrohres bil- det und der andere Blechstreifen einen gewellten, Kanäle (10) bildenden, Inneneinsatz (c) in demselben darstellt, und dass das Verhältnis des Verengungsfaktors auf der Kühlflüssigkeitsseite zum Verengungsfaktor auf der Kühlluftseite etwa im Bereich zwischen 0,20 bis 0,44 liegt, wobei der hydraulische Durchmesser auf der Kühlflüssigkeitsseite etwa im Bereich zwischen 0,8 bis 1 ,5 mm liegt.Coolant radiator for motor vehicles with a brazed cooling network (1) of flat tubes (101) and ribs (102), made of very thin aluminum sheets (a, b, c), and arranged at the ends of the flat tubes (101) collecting or Deflection boxes (3) for the cooling liquid flowing in the flat tubes (101) which is cooled by means of cooling air flowing through the ribs (102), characterized in that each flat tube (101) consists of at least two formed sheet metal strips (a, b , c), wherein at least one sheet metal strip (a, b) forms the wall of the flat tube and the other sheet metal strip is a corrugated, channels (10) forming, inner insert (c) in the same, and that the ratio of the constriction factor the cooling liquid side to the constriction factor on the cooling air side is approximately in the range between 0.20 to 0.44, wherein the hydraulic diameter on the coolant side is approximately in the range between 0.8 to 1, 5 mm.
2. Kühlflüssigkeitskühler nach Anspruch 1 , dadurch gekennzeichnet, dass jedes Flachrohr (1) aus drei umgeformten Blechstreifen (a, b, c) besteht, wobei zwei Blechstreifen (a, b) die Wand des Flachrohres bilden und der dritte Blechstreifen (c) den gewellten Inneneinsatz in demselben darstellt.2. Coolant radiator according to claim 1, characterized in that each flat tube (1) consists of three formed sheet metal strips (a, b, c), wherein two sheet metal strips (a, b) form the wall of the flat tube and the third sheet metal strip (c) the represents corrugated indoor use in the same.
3. Kühlflüssigkeitskühler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wanddicke (d) des Flachrohres im Bereich von 0,10 - 0,25 mm liegt und dass die Dicke des Inneneinsatzes (c) im Bereich von 0,03 - 0,10 mm liegt.3. Coolant cooler according to claim 1 or 2, characterized in that the wall thickness (d) of the flat tube in the range of 0.10 - 0.25 mm and that the thickness of the inner insert (c) in the range of 0.03 - 0, 10 mm.
4. Kühlflüssigkeitskühler nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Verengungsfaktor auf der Kühlflüssigkeitsseite in einem bevorzugten Bereich zwischen 0,15 und 0,28 liegt.4. Coolant radiator according to one of the preceding claims, characterized in that the constriction factor on the coolant side is in a preferred range between 0.15 and 0.28.
5. Kühlflüssigkeitskühler nach einem der vorstehenden Ansprüche, dadurch gekenn- zeichnet, dass der Verengungsfaktor auf der Kühlluftseite in einem bevorzugten Bereich zwischen 0,63 und 0,76 liegt. 5. Coolant radiator according to one of the preceding claims, characterized in that the constriction factor on the cooling air side is in a preferred range between 0.63 and 0.76.
6. Kühlflüssigkeitskühler nach Anspruch 1 , dadurch gekennzeichnet, dass die Dicke der Rippen (2) nicht größer ist als 0,08 mm, wobei die Höhe (H) der Rippen im Bereich von 3,0 - 8,0 mm liegt.6. The cooling liquid cooler according to claim 1, characterized in that the thickness of the ribs (2) is not greater than 0.08 mm, wherein the height (H) of the ribs in the range of 3.0 - 8.0 mm.
7. Kühlflüssigkeitskühler nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Wandteile (a, b) des Flachrohrs (101) identisch ausgebildet sind, wobei sie einen Längsrand mit einem größeren Bogen und einen zweiten Längsrand mit einem kleineren Bogen aufweisen, wobei die Wandteile (a, b) seitenverkehrt zueinander angeordnet sind, dass die beiden parallel laufenden Wandteile zusammengeführt werden, wobei der gewellte Inneneinsatz (c) zwischen die beiden Wandteile (a, b) eingeführt wird, wobei die Wandteile an ihren Bögen in Eingriff gebracht werden, wobei der größere Bogen des einen Teils den kleineren Bogen des anderen Teils umgreift und der kleinere Bogen des einen Teils vom größeren Bogen des anderen Teils umgriffen ist. 7. Kühlflüssigkeitskühler according to any one of the preceding claims, characterized in that the two wall parts (a, b) of the flat tube (101) are formed identically, wherein they have a longitudinal edge with a larger arc and a second longitudinal edge with a smaller arc, said Wall parts (a, b) are arranged side-inverted to each other, that the two parallel wall parts are merged, wherein the corrugated inner insert (c) between the two wall parts (a, b) is introduced, wherein the wall parts are brought to their arches in engagement, wherein the larger arc of the one part engages around the smaller arc of the other part and the smaller arc of the one part is encompassed by the larger arc of the other part.
EP08759324.0A 2007-07-17 2008-06-24 Cooling fluid cooler Not-in-force EP2047198B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007033177A DE102007033177A1 (en) 2007-07-17 2007-07-17 Coolant radiator
PCT/EP2008/005065 WO2009010155A1 (en) 2007-07-17 2008-06-24 Cooling fluid cooler

Publications (2)

Publication Number Publication Date
EP2047198A1 true EP2047198A1 (en) 2009-04-15
EP2047198B1 EP2047198B1 (en) 2016-10-26

Family

ID=39735353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08759324.0A Not-in-force EP2047198B1 (en) 2007-07-17 2008-06-24 Cooling fluid cooler

Country Status (6)

Country Link
US (1) US8522862B2 (en)
EP (1) EP2047198B1 (en)
CN (1) CN101755184B (en)
BR (1) BRPI0813528B1 (en)
DE (1) DE102007033177A1 (en)
WO (1) WO2009010155A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001566A1 (en) * 2010-02-04 2011-08-04 Behr GmbH & Co. KG, 70469 Flat tube for low temperature radiator used in car for indirect refrigeration of e.g. accumulator, has channels dimensioned such that hydraulic diameter ranges between specific values, where diameter amounts to quadruple of quotient
WO2012106242A2 (en) * 2011-01-31 2012-08-09 Delphi Technologies, Inc. Method of fabricating a double-nosed tube for a heat exchanger
CN102116591A (en) * 2011-03-09 2011-07-06 甘肃蓝科石化高新装备股份有限公司 Double-face fin plate tube structure for air cooler
US20150144309A1 (en) * 2013-03-13 2015-05-28 Brayton Energy, Llc Flattened Envelope Heat Exchanger
PL228722B1 (en) * 2014-12-30 2018-04-30 Valeo Autosystemy Spolka Z Ograniczona Odpowiedzialnoscia Turbulence stimulating fin for a finned tube unit fitted for a heat exchanger, and the fin-shaping roller adapted for shaping the mentioned turbulence stimulating fin, the unit composed of the tube for the heat exchanger and the turbulence stimulating fin, and the heat exchanger
KR20170015146A (en) * 2015-07-31 2017-02-08 엘지전자 주식회사 Heat exchanger
JP2018009731A (en) * 2016-07-13 2018-01-18 株式会社ティラド Core portion structure of heat exchanger
NL2018753B1 (en) * 2017-04-20 2018-05-08 Apex Int Holding B V Gas Flow Conditioner Device for a Heat Exchanger
EP3473961B1 (en) 2017-10-20 2020-12-02 Api Heat Transfer, Inc. Heat exchanger
EP3521745B1 (en) * 2018-02-06 2022-10-05 Valeo Autosystemy SP. Z.O.O. A flat tube assembly for a heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1027366A (en) * 1962-11-24 1966-04-27 Svenska Metallverken Ab An improved radiator and method of making it
JPS56155391A (en) 1980-04-30 1981-12-01 Nippon Denso Co Ltd Corrugated fin type heat exchanger
US4693307A (en) 1985-09-16 1987-09-15 General Motors Corporation Tube and fin heat exchanger with hybrid heat transfer fin arrangement
US5185925A (en) * 1992-01-29 1993-02-16 General Motors Corporation Method of manufacturing a tube for a heat exchanger
US5329988A (en) 1993-05-28 1994-07-19 The Allen Group, Inc. Heat exchanger
JP2001165587A (en) * 1999-12-06 2001-06-22 Mitsubishi Heavy Ind Ltd Tube for heat exchanger
JP2001165532A (en) * 1999-12-09 2001-06-22 Denso Corp Refrigerant condenser
WO2005022064A1 (en) 2003-08-26 2005-03-10 Valeo, Inc. Aluminum heat exchanger and method of making thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009010155A1 *

Also Published As

Publication number Publication date
WO2009010155A1 (en) 2009-01-22
US20100218926A1 (en) 2010-09-02
CN101755184A (en) 2010-06-23
EP2047198B1 (en) 2016-10-26
BRPI0813528A2 (en) 2014-12-23
US8522862B2 (en) 2013-09-03
DE102007033177A1 (en) 2009-01-22
CN101755184B (en) 2013-01-23
BRPI0813528B1 (en) 2019-02-05

Similar Documents

Publication Publication Date Title
EP2047198B1 (en) Cooling fluid cooler
DE60219538T2 (en) heat exchangers
DE102006054814B4 (en) Soldered flat tube for capacitors and / or evaporators
DE69822361T2 (en) Flat tube with multiple passages for heat exchangers and heat exchangers with such tubes
DE60102104T2 (en) Heat exchanger and heat exchanger tube therefor
EP0519334A2 (en) Flat tube heat exchanger, process for manufacturing same, applications and flat tubes for heat exchanger
EP0374895A2 (en) Refrigerant condenser for a vehicle air conditioning unit
EP3531055A1 (en) Plate-type heat exchanger and method of manufacturing same
DE10014475A1 (en) Dual heat exchanger has two heat exchanger units for exchanging heat between first and second fluids and air, parallel sets of pipes carrying fluids and corrugated ribs between pipes
DE102007016050A1 (en) Wärmetaustauscher
DE102011108892B4 (en) capacitor
DE112013001903T5 (en) heat exchangers
DE102006016711B4 (en) Flat tube for heat exchanger
DE102015110527A1 (en) Heat exchanger and method for producing such
DE4026988A1 (en) Heat exchanger in vehicle - comprises assembly of flat pipes and corrugated rib units
DE102007031824A1 (en) Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE10257767A1 (en) Heat exchanger for condenser or gas cooler for air conditioning installations has two rows of channels for coolant with manifolds at ends and has ribs over which air can flow
DE102005048407A1 (en) A tube made from a profiled rolled metal product and method of making the same
EP1588115B1 (en) Heat exchanger, especially gas cooler
DE102018217299A1 (en) Method for producing a heat exchanger
EP1672305A1 (en) Heat exchange fin and heat exchanger
DE112005000422T5 (en) A flat tube forming plate-shaped body, a flat tube, a heat exchanger and a method for producing a heat exchanger
DE102009041406B3 (en) Heat exchanger for use as evaporator in energy recovery plant of motor vehicle, has smaller flat tube arranged in larger flat tube, where broad sides of walls of larger flat tube lie against each other, when tubes are coaxially arranged
DE6602685U (en) HEAT EXCHANGERS, IN PARTICULAR COOLERS FOR COMBUSTION VEHICLE ENGINES, WITH THE SAME SPACER PLATES ARRANGED BETWEEN THE COOLANT PIPES FOR THE SUPPLY OF THE COOLING AIR FLOW
DE102008020230A1 (en) Heat exchanger for vehicle combustion engine coolant radiator has exchanger tube wall perpendicular to longitudinal direction with zigzag profile and/or zigzag flow cross-section for first medium; cross-section can also have interruptions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100324

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 840326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014736

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008014736

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170126

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170624

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 840326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220630

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008014736

Country of ref document: DE

Representative=s name: TER MEER STEINMEISTER & PARTNER PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008014736

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103