EP2036160B1 - Magnetically tunable filter comprising coplanar lines - Google Patents

Magnetically tunable filter comprising coplanar lines Download PDF

Info

Publication number
EP2036160B1
EP2036160B1 EP07765056.2A EP07765056A EP2036160B1 EP 2036160 B1 EP2036160 B1 EP 2036160B1 EP 07765056 A EP07765056 A EP 07765056A EP 2036160 B1 EP2036160 B1 EP 2036160B1
Authority
EP
European Patent Office
Prior art keywords
magnetically tunable
tunable filter
filter according
filter
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07765056.2A
Other languages
German (de)
French (fr)
Other versions
EP2036160A1 (en
Inventor
Michael Dr. Aigle
Claus Tremmel
Dirk Schneiderbanger
Robert Rehner
Michael Sterns
Lorenz-Peter Schmidt
Sigfried Martius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Publication of EP2036160A1 publication Critical patent/EP2036160A1/en
Application granted granted Critical
Publication of EP2036160B1 publication Critical patent/EP2036160B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/215Frequency-selective devices, e.g. filters using ferromagnetic material
    • H01P1/218Frequency-selective devices, e.g. filters using ferromagnetic material the ferromagnetic material acting as a frequency selective coupling element, e.g. YIG-filters

Definitions

  • the invention relates to a magnetically tunable filter according to claim 1.
  • Magnetically tunable filter find z.
  • B. Use as variable bandpass filters in spectrum analyzers and network analyzers, wherein the desired resonant frequency is adjusted by means of an external variable magnetic field.
  • variable bandpass for frequencies within a frequency range of a maximum of a waveguide band, for example, 50-75 GHz with four resonator balls.
  • the variable bandpass includes an input waveguide, output waveguide and transition waveguide designed to propagate a TE 10 wave mode.
  • the end of the short-circuited wall input waveguide, the beginning of the output waveguide, which is also provided with a shorting wall and mounted in the direction of the externally applied homogeneous magnetic field below the input waveguide and the output waveguide transitional waveguide is arranged in operation between two magnetic poles, which for supplying the setting of a resonant frequency variable magnetic field.
  • Input waveguide and output waveguide have in the direction of wave propagation on a rectangular profile, which has a significantly smaller cross-sectional area in the coupling region than at the connecting flange.
  • the coupling region of the variable bandpass comprises the four resonator balls mounted near a shorting wall and each of the tapered end of the input waveguide and output waveguide and the transitional waveguide of constant cross-sectional area.
  • variable bandpass A disadvantage of in the US 4,888,569 described variable bandpass is that in the case of resonance, the field distribution of the coupled-out wave in the coupling region is unfavorable, since this is guided in a waveguide whose profile decreases perpendicular to the direction of propagation of the output shaft to the coupling region. This leads to unwanted reflections, which overlap destructively and thus reduce the amount of energy transported by the incoming wave. This effect also affects the output in the waveguide expiring wave, which now has a defined frequency, so that total relative to the input of the input waveguide and the output of the output waveguide, the insertion loss is increased because the field distributions in the coupling region are disturbed because of the tapered geometry of the waveguide ,
  • the invention is therefore based on the object to provide a magnetically tunable filter for high frequencies, which has the lowest possible insertion loss in the case of resonance and a very high isolation of the filter input and filter output in the decoupling case.
  • the magnetically tunable filter according to the invention comprises a filter housing and two tunable resonator spheres made of magnetizable material. These are arranged side-by-side in two filter arms, each filter arm having a structure built up on a substrate layer and in the direction of an electrical connection, i. has in the direction of the signal input or in the direction of the signal output, extending coplanar line. Both filter arms are connected by a common coupling opening and have a common filter housing. On both sides of the coupling opening the resonator balls are arranged on each side within the two filter arms.
  • the magnetically tunable filter according to the invention comprises two coplanar lines, whereby a good guidance of the incoming electromagnetic wave and the outgoing shaft is ensured.
  • the coplanar lines have no lower limit frequency.
  • the resonator spheres are positioned in the region of a short circuit, since a magnetic field maximum occurs over a large frequency range, which is independent of the frequency of the incoming electromagnetic wave. From the coupling structure and the conductivity type of the coplanar it follows that the working range of the filter according to the invention is relatively wide in terms of frequency and thus for a frequency range to be filtered z. B. from 40GHz to 75GHz is well suited.
  • the coplanar lines used have the advantage that they have a defined characteristic impedance, so that a good coupling of the resonator balls is adjustable.
  • the characteristic impedance of the coplanar line in the area of the resonator spheres can be easily adapted by using a ⁇ / 4 transformer or a tapers.
  • the coplanar line is preferably constructed on a substrate whose dielectric constant is as low as possible in order to keep the wavelength as large as possible in comparison with the diameter of the resonator spheres.
  • a large wavelength compared to the diameter of the resonator sphere reduces the excitation of interfering secondary modes, since at a large wavelength the magnetic field distribution in the volume of the resonator sphere is more homogeneous than at a smaller wavelength.
  • the two coplanar lines are completely embedded in metallic channels, so that they are largely surrounded by metallic walls.
  • an energy transfer is made possible by the fact that these channels or the filter arms are connected to each other via a coupling opening, wherein the coupling opening is formed differently according to the various embodiments or optionally having apertures with geometrically different or differently positioned apertures.
  • a partially closed by means of a metallic partition coupling opening has the advantage that the resonator have no direct line of sight to each other.
  • the height of the partition is here advantageously chosen so that, although the visual connection between the resonator is prevented, but still a sufficient coupling factor is guaranteed. This is a significant difference from all previous concepts.
  • Fig. 1 shows a perspective view of a schematically illustrated structure of a first embodiment of the magnetic according to the invention tunable filter 1 with a filter housing 2 and with two tunable and made of magnetizable material, in particular hexaferrite, existing resonator spheres 3a, 3b.
  • the entire filter housing 2 comprises two filter arms 4a, 4b, and a signal input 6a and a signal output 6b, wherein the resonator balls 3a, 3b are arranged side by side in the two filter arms 4a, 4b.
  • Each of the two filter arms 4a, 4b includes a coplanar line 7 constructed on a substrate layer 5 and extending in the direction of an electrical connection 6, wherein the substrate layer 5, which preferably has a low dielectric constant, is arranged on the metallic bottom 10 of the filter arm 4a, 4b.
  • the two adjoining and touching filter arms 4a, 4b are interconnected by a common coupling opening 8, wherein in each case a Resonatorkugel 3a, 3b is positioned on each side of the coupling opening 8 within the two filter arms 4a, 4b above the coplanar line 7.
  • the coplanar line 7 has two outer line strips 27a, 27b and a middle line strip 28, which are located on the same side of the substrate layer 5 facing away from the metallic bottom 10 and have a short-circuit region 31 in the end region 30 of the filter arm 4a, 4b.
  • the two outer conductor strips 27a, 27b and the middle conductor strip 28 are conductively connected to one another by a metal layer.
  • a plated-through hole 35 is provided, which passes through the metal layer through the substrate layer 5 with the Bottom 10 of the filter arm 4a, 4b and the filter housing 2 conductively connects.
  • These waveguide-coupled coplanar lines 7 have the advantage that the fields are concentrated in the vicinity of the middle line strip 28 and the non-conductive slots 29a, 29b, wherein the current density in the longitudinal direction in the vicinity of the short-circuit region 31 has maximum values.
  • the coplanar line 7 embedded in the metallic filter housing 2 a good guidance of the electromagnetic wave to be transported, as defined by the line geometry, is thus achieved.
  • Fig. 2 shows a plan view of a schematically illustrated structure of a second embodiment of the magnetically tunable filter according to the invention 1.
  • a first, thin partition wall 9 between the respective substrate layers 5 of the filter arms 4a, 4b to the metallic bottom 10th of the filter housing 2 is sufficient.
  • the thickness 15 is dimensioned with two arrows and z. B. between 10 .mu.m - 100 .mu.m, preferably about 50 microns is dimensioned, the resonator 3 a, 3 b, which consist of a ferri-magnetic or a ferro-magnetic material and a diameter of z. B.
  • quartz carrier with the resonator sphere 3 a, 3 b is placed in the short-circuit region 31 of the coplanar line 7.
  • the dashed lines which run parallel to the signal input 6a or to the signal output 6b, each indicate a second thin partition 19, which in this second embodiment of the magnetically tunable filter according to the invention over the in Fig. 1 shown embodiment is added and based on Fig. 3 will be described in more detail.
  • Fig. 3 shows a side view of a schematically illustrated structure of the second embodiment of the magnetically tunable filter 1 according to the invention with respect to the two filter arms 4a, 4b centrally mounted first partition 9 and the second partition 19, which in the preceding Fig. 2 was indicated only as a dashed line.
  • the height 11 of the first partition wall 9 is less than the total height 12 of the filter housing 2 and the filter arm 4a, 4b, so that this first partition wall 19 a direct visual connection between the two resonator balls 3a, 3b, both sides the first partition 9 are arranged prevented.
  • the magnetically tunable filter according to the invention may instead of the first partition 9 within the common coupling opening 8 of the filter arms 4a, 4b also be mounted a diaphragm which extends from the bottom 10 of the filter housing 2 to the ceiling 16 of the filter housing 2 and an arbitrarily shaped and positioned Aperture has.
  • the aperture can, for example, be circular, elliptical or rectangular or have the shape of a polygon.
  • the second partition wall 19 is provided within the filter arms 4a, 4b and is perpendicular to the longitudinal direction of the coplanar line 7 and the first partition 9, the length 21 of the second partition 19 corresponding to the width 22 of a filter arm 4a, 4b and within the one filter arm 4a is positioned approximately in the region of a shorting wall 20b of the adjacent filter arm 4b, which in the plan view of Fig. 2 easy to recognize.
  • Fig. 3 is also seen that the second partition 19 is fixed in the embodiment of the ceiling 16 of the filter housing 2, wherein the height 23 of the second partition 19 is less than the distance 24 between the substrate layer 5 and the ceiling 16 of the filter housing 2, so that between a lower edge 25 of the second partition wall 19 and the substrate layer 5 with the coplanar line 7, a second gap 26 is formed with a substantially quadrangular profile.
  • Fig. 4 shows a front view of a schematically illustrated structure of the second embodiment of the magnetically tunable filter 1 according to the invention with the first partition 9 and the second partitions 19.
  • Both resonator spheres 3a, 3b are mirror images of each other on either side of the coupling opening 8 or on both sides of the first partition 9th arranged.
  • the center of the resonator ball 3a, 3b is located approximately above the line of symmetry of the middle line strip 28 of the coplanar line 7, so that each Resonator ball 3a, 3b is in the maximum of the magnetic field and an optimal excitation of the desired resonant frequency via the magnetic field of the high frequency source can be carried out, wherein the selected for the positioning of the resonator 3a, 3b area characterized in that in this area the magnetic field maximum independently of the frequency of the incoming and outgoing electromagnetic wave occurs.
  • the structure of the coplanar line 7, the z. B. has a characteristic impedance of 50 ⁇ , takes place on a substrate layer 5, which has a preferably low dielectric constant.
  • the ball diameter of the resonator balls 3a, 3b with z. B. 300 ⁇ m significantly smaller than the wavelength of the incoming and outgoing wave.
  • the excitation of interfering secondary modes is reduced because at a large wavelength, the magnetic field distribution in the spherical volume is more homogeneous than at a wavelength whose dimension is only slightly larger than the ball diameter of the resonator 3a, 3b.
  • the first partition wall 9 between the two resonator balls 3a, 3b prevents the direct coupling of stray fields in the region of the resonator ball 3a, 3b, so that a high decoupling is obtained far away from the resonance.
  • Fig. 5 shows a perspective view of a schematically illustrated structure of a filter arm 4a according to the second embodiment of the magnetically tunable filter 1 according to the invention with the two partitions 9 and 19.
  • This filter arm 4a forms one half of a cavity or a connecting resonator 32 for a H 10 -Wellenmode, in which the walls of the connecting resonator 32 from the bottom 10 of the filter housing, the two second partitions 19, the two side walls 36a, 36b and the two shorting walls 20a, 20b of the filter arms 4a, 4b and the ceiling 16 of the filter housing 2 are formed.
  • the side wall 36a and the shorting wall 20a are hatched in this illustration.
  • the through-connection 35 connects the metal layer of the coplanar line 7 to the metallic bottom 10 of the filter arm 4a.
  • Fig. 6 shows a first embodiment of the end portion of the coplanar line 7 of the magnetically tunable filter according to the invention 1.
  • the coplanar line is formed in this area as ⁇ / 4 transformer 34 to adjust the characteristic impedance of the input Koplanartechnisch 7 to the characteristic impedance of the coplanar line in the spherical region with the Resonatorkugel ,
  • Fig. 7 shows a second embodiment of the end portion of the coplanar line 7 of the magnetically tunable filter according to the invention 1.
  • the coplanar line is formed in this area as Taper 33 to adjust the characteristic impedance of the coplanar line 7 to the characteristic impedance of the connecting resonator 32 with the resonator.
  • Fig. 8 shows the simulated decoupling curve of the magnetically tunable filter 1 according to the invention in the non-resonance case (insulation), where curve A is the amount of the scattering matrix element S 11 and curve B is the frequency-dependent amount of the scattering matrix element S 12 of FIG represented as a two-port filter according to the invention.
  • the values of the curve B are in a range from -75 dB to -115 dB and prove that electromagnetic waves whose frequency lies outside the resonance frequency are very strongly attenuated by the filter 1 according to the invention.
  • Fig. 9 shows the simulated course of the coupling (curve C) as a function of the resonance frequency of the magnetically tunable filter 1 according to the invention and the simulated loss of attenuation (curve D) of the H 10 mode of a 2 mm wide waveguide with a length of 0.7 mm.
  • Curve C and curve D show that the frequency-dependent change in the attenuation of the filter 1 according to the invention with an increase in the resonant frequency of approximately 17 GHz substantially corresponds to the frequency-dependent change in the attenuation of the H 10 modes in the coupling waveguide with the dimensions mentioned above clearly shows that in the connecting resonator 32, the H 10 wave mode propagates in the case of resonance, the absolute attenuation values in the case of resonance lying between -3 dB and -7 dB and thus being orders of magnitude less than the values in FIG Fig. 8 shown decoupling case (insulation).
  • Figure 10 shows a simulated resonance profile of the magnetically tunable filter 1 according to the invention at a desired center frequency of 68 GHz.
  • Curve E shows the frequency-dependent curve of the absorption curve with an absorption maximum at 67.8 GHz and a half-value width of 0.2 GHz and a frequency uncertainty (FWHM) of approximately 0.3%.
  • Curve F shows the frequency-dependent curve of the transmission curve with a pronounced maximum at 67.8 GHz. It is clearly recognize that the frequency position of the absorption maximum and the transmission maximum agree very well.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

Die Erfindung bezieht sich auf ein magnetisch durchstimmbares Filter gemäß des Anspruchs 1. Magnetisch durchstimmbare Filter finden z. B. Verwendung als variable Bandpässe in Spektrumanalysatoren und Netzwerkanalysatoren, wobei die gewünschte Resonanzfrequenz mittels eines externen veränderbaren Magnetfeldes eingestellt wird.The invention relates to a magnetically tunable filter according to claim 1. Magnetically tunable filter find z. B. Use as variable bandpass filters in spectrum analyzers and network analyzers, wherein the desired resonant frequency is adjusted by means of an external variable magnetic field.

Aus dem Patent US 4,888,569 geht ein variabler Bandpass für Frequenzen innerhalb eines Frequenzbereichs von maximal einem Hohlleiterband z.B. 50-75 GHz mit vier Resonatorkugeln hervor. Der variable Bandpass umfasst einen Eingangshohlleiter, einen Ausgangshohlleiter und einen Übergangshohlleiter, welche für die Ausbreitung eines TE10 Wellenmodes ausgelegt sind. Das Ende des mit einer Kurzschlusswand terminierten Eingangshohlleiters, der Anfang des Ausgangshohlleiters, der ebenfalls mit einer Kurzschlusswand versehen ist und der in Richtung des extern angelegten homogenen Magnetfelds unterhalb des Eingangshohlleiters und des Ausgangshohlleiters angebrachte Übergangshohlleiter, ist im Betrieb zwischen zwei Magnetpolen angeordnet, die das für die Einstellung einer Resonanzfrequenz veränderbare Magnetfeld zuführen. Eingangshohlleiter und Ausgangshohlleiter weisen in Richtung der Wellenpropagation ein rechteckiges Profil auf, das im Koppelbereich eine deutlich kleinere Querschnittsfläche aufweist als am Verbindungsflansch. Der Koppelbereich des variablen Bandpasses umfasst die vier nahe an einer Kurzschlusswand angebrachten Resonatorkugeln und jeweils das verjüngte Ende des Eingangshohlleiters und des Ausgangshohlleiters sowie den Übergangshohlleiter mit konstanter Querschnittsfläche.From the patent US 4,888,569 goes out a variable bandpass for frequencies within a frequency range of a maximum of a waveguide band, for example, 50-75 GHz with four resonator balls. The variable bandpass includes an input waveguide, output waveguide and transition waveguide designed to propagate a TE 10 wave mode. The end of the short-circuited wall input waveguide, the beginning of the output waveguide, which is also provided with a shorting wall and mounted in the direction of the externally applied homogeneous magnetic field below the input waveguide and the output waveguide transitional waveguide is arranged in operation between two magnetic poles, which for supplying the setting of a resonant frequency variable magnetic field. Input waveguide and output waveguide have in the direction of wave propagation on a rectangular profile, which has a significantly smaller cross-sectional area in the coupling region than at the connecting flange. The coupling region of the variable bandpass comprises the four resonator balls mounted near a shorting wall and each of the tapered end of the input waveguide and output waveguide and the transitional waveguide of constant cross-sectional area.

Ein Nachteil des in der US 4,888,569 beschriebenen variablen Bandpasses besteht darin, dass im Resonanzfall die Feldverteilung der auszukoppelnden Welle im Koppelbereich ungünstig ist, da diese in einem Hohlleiter geführt ist, dessen Profil sich senkrecht zur Ausbreitungsrichtung der auszukoppelnden Welle zum Koppelbereich hin verkleinert. Dadurch kommt es zu unerwünschten Reflexionen, die destruktiv überlappen und somit den Betrag der durch die einlaufende Welle transportierten Energie mindern. Dieser Effekt betrifft auch die im Ausgangshohlleiter auslaufende Welle, die nun eine definierte Frequenz aufweist, so dass insgesamt bezogen auf den Eingang des Eingangshohlleiters und den Ausgang des Ausgangshohlleiters die Einfügedämpfung erhöht ist, da die Feldverteilungen im Koppelbereich wegen der sich verjüngenden Geometrie der Hohlleiter gestört sind.A disadvantage of in the US 4,888,569 described variable bandpass is that in the case of resonance, the field distribution of the coupled-out wave in the coupling region is unfavorable, since this is guided in a waveguide whose profile decreases perpendicular to the direction of propagation of the output shaft to the coupling region. This leads to unwanted reflections, which overlap destructively and thus reduce the amount of energy transported by the incoming wave. This effect also affects the output in the waveguide expiring wave, which now has a defined frequency, so that total relative to the input of the input waveguide and the output of the output waveguide, the insertion loss is increased because the field distributions in the coupling region are disturbed because of the tapered geometry of the waveguide ,

Ein weiterer Nachteil ist die begrenzte Bandbreite des Hohlleiterkonzepts.Another disadvantage is the limited bandwidth of the waveguide concept.

Der Erfindung liegt daher die Aufgabe zu Grunde, ein magnetisch durchstimmbares Filter für hohe Frequenzen zu schaffen, welches im Resonanzfall eine möglichst niedrige Einfügedämpfung und im Entkopplungsfall eine sehr hohe Isolation von Filtereingang und Filterausgang aufweist.The invention is therefore based on the object to provide a magnetically tunable filter for high frequencies, which has the lowest possible insertion loss in the case of resonance and a very high isolation of the filter input and filter output in the decoupling case.

Die Aufgabe wird gelöst durch das erfindungsgemäße magnetisch durchstimmbare Filter mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen des magnetisch durchstimmbaren Filters sind Gegenstand der hierauf rückbezogen Unteransprüche.The object is achieved by the magnetically tunable filter according to the invention with the features of claim 1. Advantageous developments of the magnetically tunable filter are the subject matter of the dependent claims.

Das erfindungsgemäße magnetisch durchstimmbare Filter umfasst ein Filtergehäuse und zwei durchstimmbare und aus magnetisierbaren Material gefertigte Resonatorkugeln. Diese sind nebeneinander in zwei Filterarmen angeordnet, wobei jeder Filterarm eine auf einer Substratschicht aufgebaute und in Richtung eines elektrischen Anschlusses, i.e. in Richtung des Signaleingangs bzw. in Richtung des Signalausgangs, verlaufende Koplanarleitung aufweist. Beide Filterarme sind durch eine gemeinsame Koppelöffnung miteinander verbunden und haben ein gemeinsames Filtergehäuse. Beidseits der Koppelöffnung sind die Resonatorkugeln auf jeder Seite innerhalb der beiden Filterarme angeordnet.The magnetically tunable filter according to the invention comprises a filter housing and two tunable resonator spheres made of magnetizable material. These are arranged side-by-side in two filter arms, each filter arm having a structure built up on a substrate layer and in the direction of an electrical connection, i. has in the direction of the signal input or in the direction of the signal output, extending coplanar line. Both filter arms are connected by a common coupling opening and have a common filter housing. On both sides of the coupling opening the resonator balls are arranged on each side within the two filter arms.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass das erfindungsgemäße magnetisch durchstimmbare Filter zwei Koplanarleitungen aufweist, wodurch eine gute Führung der einlaufenden elektromagnetischen Welle sowie der auslaufenden Welle gewährleistet ist. Die Koplanarleitungen besitzen keine untere Grenzfrequenz.The advantages achieved by the invention are, in particular, that the magnetically tunable filter according to the invention comprises two coplanar lines, whereby a good guidance of the incoming electromagnetic wave and the outgoing shaft is ensured. The coplanar lines have no lower limit frequency.

Des Weiteren ist es von Vorteil, dass die Resonatorkugeln im Bereich eines Kurzschlusses positioniert werden, da hier über einen großen Frequenzbereich ein Magnetfeldmaximum auftritt, welches unabhängig von der Frequenz der einlaufenden elektromagnetischen Welle ist. Aus der Koppelstruktur und dem Leitungstyp der Koplanarleitung ergibt sich, dass der Arbeitsbereich des erfindungsgemäßen Filters im Hinblick auf die Frequenz relativ breit ist und somit für einen zu filternden Frequenzbereich z. B. von 40GHz bis 75GHz gut geeignet ist.Furthermore, it is advantageous that the resonator spheres are positioned in the region of a short circuit, since a magnetic field maximum occurs over a large frequency range, which is independent of the frequency of the incoming electromagnetic wave. From the coupling structure and the conductivity type of the coplanar it follows that the working range of the filter according to the invention is relatively wide in terms of frequency and thus for a frequency range to be filtered z. B. from 40GHz to 75GHz is well suited.

Ferner haben die verwendeten Koplanarleitungen den Vorteil, dass sie einen definierten Wellenwiderstand aufweisen, so dass eine gute Ankopplung der Resonatorkugeln einstellbar ist. Der Wellenwiderstand der Koplanarleitung im Bereich der Resonatorkugeln ist zudem durch die Verwendung eines λ/4-Transformators oder eines Tapers einfach anzupassen.Furthermore, the coplanar lines used have the advantage that they have a defined characteristic impedance, so that a good coupling of the resonator balls is adjustable. In addition, the characteristic impedance of the coplanar line in the area of the resonator spheres can be easily adapted by using a λ / 4 transformer or a tapers.

Zudem ist die Koplanarleitung vorzugsweise auf einem Substrat aufgebaut, dessen Dielektrizitätszahl möglichst niedrig ist, um die Wellenlänge im Vergleich zum Durchmesser der Resonatorkugeln möglichst groß zu halten. Eine im Vergleich zum Durchmesser der Resonatorkugel große Wellenlänge vermindert die Anregung von störenden Nebenmoden, da bei einer großen Wellenlänge die magnetische Feldverteilung im Volumen der Resonatorkugel homogener ist als bei einer kleineren Wellenlänge.In addition, the coplanar line is preferably constructed on a substrate whose dielectric constant is as low as possible in order to keep the wavelength as large as possible in comparison with the diameter of the resonator spheres. A large wavelength compared to the diameter of the resonator sphere reduces the excitation of interfering secondary modes, since at a large wavelength the magnetic field distribution in the volume of the resonator sphere is more homogeneous than at a smaller wavelength.

Außerdem ist es von Vorteil, wenn die beiden Koplanarleitungen vollständig in metallische Kanäle eingebettet sind, so dass diese weitgehend von metallischen Wänden umgeben sind. Im Resonanzfall wird eine Energieübertragung dadurch ermöglicht, dass diese Kanäle bzw. die Filterarme über eine Koppelöffnung miteinander verbunden sind, wobei die Koppelöffnung gemäß den verschiedenen Ausführungsbeispielen unterschiedlich ausgebildet ist oder wahlweise Blenden mit geometrisch unterschiedlichen bzw. verschieden positionierte Blendenöffnungen aufweist.Moreover, it is advantageous if the two coplanar lines are completely embedded in metallic channels, so that they are largely surrounded by metallic walls. In the case of resonance, an energy transfer is made possible by the fact that these channels or the filter arms are connected to each other via a coupling opening, wherein the coupling opening is formed differently according to the various embodiments or optionally having apertures with geometrically different or differently positioned apertures.

Eine mittels einer metallischen Trennwand teilweise geschlossene Koppelöffnung hat den Vorteil, dass die Resonatorkugeln keine direkte Sichtverbindung zueinander haben. Die Höhe der Trennwand wird dabei vorteilhafterweise so gewählt, dass zwar die Sichtverbindung zwischen den Resonatorkugeln unterbunden ist, aber noch ein ausreichender Koppelfaktor gewährleistet ist. Dies ist ein bedeutender Unterschied zu allen bisherigen Konzepten.A partially closed by means of a metallic partition coupling opening has the advantage that the resonator have no direct line of sight to each other. The height of the partition is here advantageously chosen so that, although the visual connection between the resonator is prevented, but still a sufficient coupling factor is guaranteed. This is a significant difference from all previous concepts.

Sowohl die Struktur als auch die Betriebsweise der Erfindung sowie deren weitere Vorteile und Aufgaben sind jedoch am besten anhand der folgenden Beschreibung in Verbindung mit den dazugehörigen Zeichnungen verständlich. In der Zeichnung zeigen:

Fig. 1
eine perspektivische Darstellung einer schematisch dargestellten Struktur eines ersten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters;
Fig. 2
eine Draufsicht auf eine schematisch dargestellte Struktur eines zweiten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters;
Fig. 3
eine Seitenansicht einer schematisch dargestellte Struktur des zweiten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters;
Fig. 4
eine Vorderansicht auf eine schematisch dargestellte Struktur des zweiten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters;
Fig. 5
eine perspektivische Darstellung einer schematisch dargestellte Struktur eines Filterarms gemäß des zweiten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters;
Fig. 6
eine erste Ausführungsform des Endbereichs der Koplanarleitung des erfindungsgemäßen magnetisch durchstimmbaren Filters;
Fig. 7
eine zweite Ausführungsform des Endbereichs der Koplanarleitung des erfindungsgemäßen magnetisch durchstimmbaren Filters;
Fig. 8
den simulierten Entkopplungsverlauf des erfindungsgemäßen magnetisch durchstimmbaren Filters;
Fig. 9
den simulierten Verlauf der Verkopplung in Abhängigkeit von der Resonanzfrequenz des erfindungsgemäßen magnetisch durchstimmbaren Filters sowie den simulierten Dämpfungsverlust der H10 Mode eines 2mm breiten und 0, 7mm langen Koppel-Hohlleiters und
Fig.10
einen simulierten Resonanzverlauf des erfindungsgemäßen magnetisch durchstimmbaren Filters bei einer Resonanzfrequenz von 67,8 GHz.
However, both the structure and operation of the invention, as well as other advantages and objects thereof, will be best understood by reference to the following description taken in conjunction with the accompanying drawings. In the drawing show:
Fig. 1
a perspective view of a schematically illustrated structure of a first embodiment of the magnetically tunable filter according to the invention;
Fig. 2
a plan view of a schematically illustrated structure of a second embodiment of the magnetically tunable filter according to the invention;
Fig. 3
a side view of a schematically illustrated structure of the second embodiment of the magnetically tunable filter according to the invention;
Fig. 4
a front view of a schematically illustrated structure of the second embodiment of the magnetically tunable filter according to the invention;
Fig. 5
a perspective view of a schematically illustrated structure of a Filter arm according to the second embodiment of the magnetically tunable filter according to the invention;
Fig. 6
a first embodiment of the end portion of the coplanar line of the magnetically tunable filter according to the invention;
Fig. 7
a second embodiment of the end region of the coplanar line of the magnetically tunable filter according to the invention;
Fig. 8
the simulated decoupling curve of the magnetically tunable filter according to the invention;
Fig. 9
the simulated course of the coupling as a function of the resonance frequency of the magnetically tunable filter according to the invention and the simulated loss of attenuation of the H 10 mode of a 2mm wide and 0, 7mm long coupling waveguide and
Figure 10
a simulated resonance curve of the magnetically tunable filter according to the invention at a resonant frequency of 67.8 GHz.

Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen, wodurch sich eine wiederholende Beschreibung erübrigt.Corresponding parts are provided in all figures with the same reference numerals, whereby a repetitive description is unnecessary.

Fig. 1 zeigt eine perspektivische Darstellung einer schematisch dargestellten Struktur eines ersten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters 1 mit einem Filtergehäuse 2 und mit zwei abstimmbaren und aus magnetisierbaren Material, inbesondere aus Hexaferrit, bestehenden Resonatorkugeln 3a, 3b. Das gesamte Filtergehäuse 2 umfasst zwei Filterarme 4a, 4b, sowie einen Signaleingang 6a und einen Signalausgang 6b, wobei die Resonatorkugeln 3a, 3b nebeneinander in den zwei Filterarmen 4a, 4b angeordnet sind. Fig. 1 shows a perspective view of a schematically illustrated structure of a first embodiment of the magnetic according to the invention tunable filter 1 with a filter housing 2 and with two tunable and made of magnetizable material, in particular hexaferrite, existing resonator spheres 3a, 3b. The entire filter housing 2 comprises two filter arms 4a, 4b, and a signal input 6a and a signal output 6b, wherein the resonator balls 3a, 3b are arranged side by side in the two filter arms 4a, 4b.

Jeder der beiden Filterarme 4a, 4b beinhaltet eine auf einer Substratschicht 5 aufgebaute und in Richtung eines elektrischen Anschlusses 6 verlaufende Koplanarleitung 7, wobei die Substratschicht 5, die vorzugsweise eine niedrige Dielektrizitätszahl aufweist, am metallischen Boden 10 des Filterarms 4a, 4b angeordnet ist. Die beiden nebeneinander liegenden und sich berührenden Filterarme 4a, 4b sind durch eine gemeinsame Koppelöffnung 8 miteinander verbunden, wobei jeweils eine Resonatorkugel 3a, 3b auf jeder Seite der Koppelöffnung 8 innerhalb der beiden Filterarme 4a, 4b oberhalb der Koplanarleitung 7 positioniert ist.Each of the two filter arms 4a, 4b includes a coplanar line 7 constructed on a substrate layer 5 and extending in the direction of an electrical connection 6, wherein the substrate layer 5, which preferably has a low dielectric constant, is arranged on the metallic bottom 10 of the filter arm 4a, 4b. The two adjoining and touching filter arms 4a, 4b are interconnected by a common coupling opening 8, wherein in each case a Resonatorkugel 3a, 3b is positioned on each side of the coupling opening 8 within the two filter arms 4a, 4b above the coplanar line 7.

Die Koplanarleitung 7 weist zwei äußere Leitungsstreifen 27a, 27b und einen mittleren Leitungsstreifen 28 auf, die sich auf derselben, dem metallischen Boden 10 abgewandten Seite der Substratschicht 5 befinden und im Endbereich 30 des Filterarms 4a, 4b einen Kurzschlussbereich 31 aufweisen. Im Kurzschlussbereich 31 sind die beiden äußeren Leitungsstreifen 27a, 27b und der mittlere Leitungsstreifen 28 durch eine Metallschicht leitend miteinander verbunden. Ferner ist im Kurzschlussbereich 31 eine Durchkontaktierung 35 vorgesehen, die die Metallschicht durch die Substratschicht 5 hindurch mit dem Boden 10 des Filterarms 4a, 4b bzw. des Filtergehäuses 2 leitend verbindet.The coplanar line 7 has two outer line strips 27a, 27b and a middle line strip 28, which are located on the same side of the substrate layer 5 facing away from the metallic bottom 10 and have a short-circuit region 31 in the end region 30 of the filter arm 4a, 4b. In the short-circuit region 31, the two outer conductor strips 27a, 27b and the middle conductor strip 28 are conductively connected to one another by a metal layer. Furthermore, in the short-circuit region 31, a plated-through hole 35 is provided, which passes through the metal layer through the substrate layer 5 with the Bottom 10 of the filter arm 4a, 4b and the filter housing 2 conductively connects.

Diese hohlleitergekoppelten Koplanarleitungen 7 haben den Vorteil, dass die Felder in der Nähe des mittleren Leitungsstreifen 28 und der nicht leitenden Schlitze 29a, 29b konzentriert sind, wobei die Stromdichte in Längsrichtung in der Nähe des Kurzschlussbereichs 31 Maximalwerte aufweist. Durch die in dem metallischen Filtergehäuse 2 eingebettete Koplanarleitung 7 erreicht man somit eine gute und durch die Leitungsgeometrie definierte Führung der zu transportierenden elektromagnetischen Welle.These waveguide-coupled coplanar lines 7 have the advantage that the fields are concentrated in the vicinity of the middle line strip 28 and the non-conductive slots 29a, 29b, wherein the current density in the longitudinal direction in the vicinity of the short-circuit region 31 has maximum values. As a result of the coplanar line 7 embedded in the metallic filter housing 2, a good guidance of the electromagnetic wave to be transported, as defined by the line geometry, is thus achieved.

Fig. 2 zeigt eine Draufsicht auf eine schematisch dargestellte Struktur eines zweiten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters 1. In der gemeinsamen Koppelöffnung 8 befindet sich nun eine erste, dünne Trennwand 9, die zwischen den jeweiligen Substratschichten 5 der Filterarme 4a, 4b bis auf den metallischen Boden 10 des Filtergehäuses 2 reicht. Beidseits dieser Trennwand 9, dessen Dicke 15 mit zwei Pfeilen bemaßt ist und z. B. zwischen 10 µm - 100 µm, bevorzugt ca. 50 µm bemessen ist, sind die Resonatorkugeln 3a, 3b, die aus einem ferri-magnetischen oder einem ferro-magnetischen Material bestehen und einen Durchmesser von z. B. 100 µm - 1000 µm, bevorzugt ungefähr 300 µm, aufweisen, auf einem nicht weiter dargestellten Quarzträger mit Epoxykleber verklebt. Der Quarzträger mit der Resonatorkugel 3a, 3b ist im Kurzschlussbereich 31 der Koplanarleitung 7 platziert. Fig. 2 shows a plan view of a schematically illustrated structure of a second embodiment of the magnetically tunable filter according to the invention 1. In the common coupling opening 8 is now a first, thin partition wall 9, between the respective substrate layers 5 of the filter arms 4a, 4b to the metallic bottom 10th of the filter housing 2 is sufficient. On both sides of this partition wall 9, the thickness 15 is dimensioned with two arrows and z. B. between 10 .mu.m - 100 .mu.m, preferably about 50 microns is dimensioned, the resonator 3 a, 3 b, which consist of a ferri-magnetic or a ferro-magnetic material and a diameter of z. B. 100 microns - 1000 microns, preferably about 300 microns, glued on a quartz substrate not shown with epoxy adhesive. The quartz carrier with the resonator sphere 3 a, 3 b is placed in the short-circuit region 31 of the coplanar line 7.

Die gestrichelten Linien, welche parallel zum Signaleingang 6a bzw. zum Signalausgang 6b verlaufen, deuten jeweils eine zweite dünne Trennwand 19 an, welche in diesem zweiten Ausführungsbeispiel des erfindungsgemäßen magnetisch durchstimmbaren Filters gegenüber dem in Fig. 1 gezeigten Ausführungsbeispiel hinzu kommt und anhand von Fig. 3 näher beschrieben wird.The dashed lines, which run parallel to the signal input 6a or to the signal output 6b, each indicate a second thin partition 19, which in this second embodiment of the magnetically tunable filter according to the invention over the in Fig. 1 shown embodiment is added and based on Fig. 3 will be described in more detail.

Fig. 3 zeigt eine Seitenansicht einer schematisch dargestellte Struktur des zweiten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters 1 mit der bezüglich der beiden Filterarme 4a, 4b mittig angebrachten ersten Trennwand 9 und mit der zweiten Trennwand 19, welche in der vorhergehenden Fig. 2 lediglich als gestrichelte Linie angedeutet wurde. Fig. 3 shows a side view of a schematically illustrated structure of the second embodiment of the magnetically tunable filter 1 according to the invention with respect to the two filter arms 4a, 4b centrally mounted first partition 9 and the second partition 19, which in the preceding Fig. 2 was indicated only as a dashed line.

In dieser Seitenansicht ist erkennbar, dass die Höhe 11 der ersten Trennwand 9 geringer ist als die Gesamthöhe 12 des Filtergehäuses 2 bzw. des Filterarms 4a, 4b, so dass diese erste Trennwand 19 eine direkte Sichtverbindung zwischen den beiden Resonatorkugeln 3a, 3b, die beidseits der ersten Trennwand 9 angeordnet sind, verhindert.In this side view, it can be seen that the height 11 of the first partition wall 9 is less than the total height 12 of the filter housing 2 and the filter arm 4a, 4b, so that this first partition wall 19 a direct visual connection between the two resonator balls 3a, 3b, both sides the first partition 9 are arranged prevented.

Zwischen einer Decke 16 des Filtergehäuses 2 und einer oberen Kante 17 der ersten Trennwand 9, die innerhalb der Koppelöffnung 8 parallel zu dieser verläuft und deren Länge 13 der Länge 14 der Koppelöffnung 8 entspricht, befindet sich daher ein erster viereckiger Spalt 18.Between a cover 16 of the filter housing 2 and an upper edge 17 of the first partition wall 9, which extends parallel to the coupling opening 8 and the length 13 of the length 14 of the coupling opening 8 corresponds, therefore, there is a first quadrangular gap 18th

In einer zusätzlichen nicht weiter dargestellten Ausführungsform des erfindungsgemäßen magnetisch durchstimmbaren Filters kann statt der ersten Trennwand 9 innerhalb der gemeinsamen Koppelöffnung 8 der Filterarme 4a, 4b auch eine Blende angebracht sein, die vom Boden 10 des Filtergehäuses 2 bis zur Decke 16 des Filtergehäuses 2 reicht und eine beliebig geformte und positionierte Blendenöffnung aufweist. Die Blendenöffnung kann beispielsweise kreisförmig, ellipsenförmig oder rechteckig sein oder die Form eines Polygons aufweisen.In an additional not further illustrated embodiment of the magnetically tunable filter according to the invention may instead of the first partition 9 within the common coupling opening 8 of the filter arms 4a, 4b also be mounted a diaphragm which extends from the bottom 10 of the filter housing 2 to the ceiling 16 of the filter housing 2 and an arbitrarily shaped and positioned Aperture has. The aperture can, for example, be circular, elliptical or rectangular or have the shape of a polygon.

Die zweite Trennwand 19 ist innerhalb der Filterarme 4a, 4b vorgesehen und steht jeweils senkrecht zur Längsrichtung der Koplanarleitung 7 und zur ersten Trennwand 9, wobei die Länge 21 der zweiten Trennwand 19 der Breite 22 eines Filterarms 4a, 4b entspricht und innerhalb des einen Filterarms 4a ungefähr im Bereich einer Kurzschlusswand 20b des benachbarten Filterarms 4b positioniert ist, was in der Draufsicht von Fig. 2 gut zu erkennen ist.The second partition wall 19 is provided within the filter arms 4a, 4b and is perpendicular to the longitudinal direction of the coplanar line 7 and the first partition 9, the length 21 of the second partition 19 corresponding to the width 22 of a filter arm 4a, 4b and within the one filter arm 4a is positioned approximately in the region of a shorting wall 20b of the adjacent filter arm 4b, which in the plan view of Fig. 2 easy to recognize.

Aus Fig. 3 ist außerdem ersichtlich, dass die zweite Trennwand 19 im Ausführungsbeispiel an der Decke 16 des Filtergehäuses 2 befestigt ist, wobei die Höhe 23 der zweiten Trennwand 19 geringer ist als der Abstand 24 zwischen der Substratschicht 5 und der Decke 16 des Filtergehäuses 2, so dass zwischen einer unteren Kante 25 der zweiten Trennwand 19 und der Substratschicht 5 mit der Koplanarleitung 7 ein zweiter Spalt 26 mit einem im wesentlichen viereckigen Profil ausgebildet ist.Out Fig. 3 is also seen that the second partition 19 is fixed in the embodiment of the ceiling 16 of the filter housing 2, wherein the height 23 of the second partition 19 is less than the distance 24 between the substrate layer 5 and the ceiling 16 of the filter housing 2, so that between a lower edge 25 of the second partition wall 19 and the substrate layer 5 with the coplanar line 7, a second gap 26 is formed with a substantially quadrangular profile.

Fig. 4 zeigt eine Vorderansicht auf eine schematisch dargestellte Struktur des zweiten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters 1 mit der ersten Trennwand 9 und den zweiten Trennwänden 19. Beide Resonatorkugeln 3a, 3b sind spiegelbildlich zu einander beidseits der Koppelöffnung 8 bzw. diesseits und jenseits der ersten Trennwand 9 angeordnet. Der Mittelpunkt der Resonatorkugel 3a, 3b befindet sich ungefähr oberhalb der Symmetrielinie des mittleren Leitungsstreifen 28 der Koplanarleitung 7, so dass jede Resonatorkugel 3a, 3b sich im Maximum des magnetischen Feldes befindet und eine optimale Anregung der gewünschten Resonanzfrequenz über das magnetische Feld der Hochfrequenzquelle erfolgen kann, wobei der für die Positionierung der Resonatorkugel 3a, 3b gewählte Bereich dadurch gekennzeichnet ist, dass in diesem Bereich das Magnetfeldmaximum unabhängig von der Frequenz des der einlaufenden bzw. auslaufenden elektromagnetischen Welle auftritt. Fig. 4 shows a front view of a schematically illustrated structure of the second embodiment of the magnetically tunable filter 1 according to the invention with the first partition 9 and the second partitions 19. Both resonator spheres 3a, 3b are mirror images of each other on either side of the coupling opening 8 or on both sides of the first partition 9th arranged. The center of the resonator ball 3a, 3b is located approximately above the line of symmetry of the middle line strip 28 of the coplanar line 7, so that each Resonator ball 3a, 3b is in the maximum of the magnetic field and an optimal excitation of the desired resonant frequency via the magnetic field of the high frequency source can be carried out, wherein the selected for the positioning of the resonator 3a, 3b area characterized in that in this area the magnetic field maximum independently of the frequency of the incoming and outgoing electromagnetic wave occurs.

Der Aufbau der Koplanarleitung 7, die z. B. einen Wellenwiderstand von 50Ω aufweist, erfolgt auf einer Substratschicht 5, die eine vorzugsweise niedrige Dielektrizitätszahl aufweist. Dadurch ist der Kugeldurchmesser der Resonatorkugeln 3a, 3b mit z. B. 300µm deutlich kleiner als die Wellenlänge der einlaufenden und auslaufenden Welle. Somit wird die Anregung von störenden Nebenmoden verringert, da bei einer großen Wellenlänge die magnetische Feldverteilung im Kugelvolumen homogener ist als bei einer Wellenlänge, deren Dimension nur wenig größer als der Kugeldurchmesser der Resonatorkugel 3a, 3b ist. Die erste Trennwand 9 zwischen den beiden Resonatorkugeln 3a, 3b verhindert die unmittelbare Kopplung von Streufeldern im Bereich der Resonatorkugel 3a, 3b, so dass man eine hohe Entkopplung fernab der Resonanz erhält.The structure of the coplanar line 7, the z. B. has a characteristic impedance of 50Ω, takes place on a substrate layer 5, which has a preferably low dielectric constant. As a result, the ball diameter of the resonator balls 3a, 3b with z. B. 300μm significantly smaller than the wavelength of the incoming and outgoing wave. Thus, the excitation of interfering secondary modes is reduced because at a large wavelength, the magnetic field distribution in the spherical volume is more homogeneous than at a wavelength whose dimension is only slightly larger than the ball diameter of the resonator 3a, 3b. The first partition wall 9 between the two resonator balls 3a, 3b prevents the direct coupling of stray fields in the region of the resonator ball 3a, 3b, so that a high decoupling is obtained far away from the resonance.

Fig. 5 zeigt eine perspektivische Darstellung einer schematisch dargestellte Struktur eines Filterarms 4a gemäß des zweiten Ausführungsbeispiels des erfindungsgemäßen magnetisch durchstimmbaren Filters 1 mit den beiden Trennwänden 9 und 19. Dieser Filterarm 4a bildet die eine Hälfte eines Hohlraumresonators bzw. eines Verbindungsresonators 32 für einen H10-Wellenmode, wobei die Wände des Verbindungsresonators 32 aus dem Boden 10 des Filtergehäuses, den beiden zweiten Trennwänden 19, den beiden Seitenwänden 36a, 36b und den beiden Kurzschlusswänden 20a, 20b der Filterarme 4a, 4b und der Decke 16 des Filtergehäuses 2 gebildet werden. Die Seitenwand 36a und die Kurzschlusswand 20a sind in dieser Darstellung schraffiert gezeichnet. Fig. 5 shows a perspective view of a schematically illustrated structure of a filter arm 4a according to the second embodiment of the magnetically tunable filter 1 according to the invention with the two partitions 9 and 19. This filter arm 4a forms one half of a cavity or a connecting resonator 32 for a H 10 -Wellenmode, in which the walls of the connecting resonator 32 from the bottom 10 of the filter housing, the two second partitions 19, the two side walls 36a, 36b and the two shorting walls 20a, 20b of the filter arms 4a, 4b and the ceiling 16 of the filter housing 2 are formed. The side wall 36a and the shorting wall 20a are hatched in this illustration.

Im Kurzschlussbereich 31 des Filterarms 4a ist nun deutlich erkennbar, dass die Durchkontaktierung 35 die Metallschicht der Koplanarleitung 7 mit dem metallischen Boden 10 des Filterarms 4a verbindet.In the short-circuit region 31 of the filter arm 4a, it can now be clearly seen that the through-connection 35 connects the metal layer of the coplanar line 7 to the metallic bottom 10 of the filter arm 4a.

Fig. 6 zeigt eine erste Ausführungsform des Endbereichs der Koplanarleitung 7 des erfindungsgemäßen magnetisch durchstimmbaren Filters 1. Die Koplanarleitung ist in diesem Bereich als λ/4-Transformator 34 ausgebildet, um den Wellenwiderstand der Eingangs-Koplanarleitung 7 an den Wellenwiderstand der Koplanarleitung im Kugelbereich mit der Resonatorkugel anzupassen. Fig. 6 shows a first embodiment of the end portion of the coplanar line 7 of the magnetically tunable filter according to the invention 1. The coplanar line is formed in this area as λ / 4 transformer 34 to adjust the characteristic impedance of the input Koplanarleitung 7 to the characteristic impedance of the coplanar line in the spherical region with the Resonatorkugel ,

Fig. 7 zeigt eine zweite Ausführungsform des Endbereichs der Koplanarleitung 7 des erfindungsgemäßen magnetisch durchstimmbaren Filters 1. Die Koplanarleitung ist in diesem Bereich als Taper 33 ausgebildet um den Wellenwiderstand der Koplanarleitung 7 an den Wellenwiderstand des Verbindungsresonators 32 mit der Resonatorkugel anzupassen. Fig. 7 shows a second embodiment of the end portion of the coplanar line 7 of the magnetically tunable filter according to the invention 1. The coplanar line is formed in this area as Taper 33 to adjust the characteristic impedance of the coplanar line 7 to the characteristic impedance of the connecting resonator 32 with the resonator.

Fig. 8 zeigt den simulierten Entkopplungsverlauf des erfindungsgemäßen magnetisch durchstimmbaren Filters 1 im Nicht-Resonanzfall (Isolation), wobei Kurve A den Betrag des Streumatrixelements S11 und Kurve B den frequenzabhängigen Betrag des Streumatrixelements S12 des als Zweitor behandelten erfindungsgemäßen Filters wiedergibt. Die Werte der Kurve B liegen in einem Bereich von -75 dB bis -115 dB und belegen, dass elektromagnetische Wellen, deren Frequenz außerhalb der Resonanzfrequenz liegt, von dem erfindungsgemäßen Filter 1 sehr stark gedämpft werden. Fig. 8 shows the simulated decoupling curve of the magnetically tunable filter 1 according to the invention in the non-resonance case (insulation), where curve A is the amount of the scattering matrix element S 11 and curve B is the frequency-dependent amount of the scattering matrix element S 12 of FIG represented as a two-port filter according to the invention. The values of the curve B are in a range from -75 dB to -115 dB and prove that electromagnetic waves whose frequency lies outside the resonance frequency are very strongly attenuated by the filter 1 according to the invention.

Fig. 9 zeigt den simulierten Verlauf der Kopplung (Kurve C) in Abhängigkeit von der Resonanzfrequenz des erfindungsgemäßen magnetisch durchstimmbaren Filters 1 sowie den simulierten Dämpfungsverlust (Kurve D) der H10 Mode eines 2mm breiten Hohlleiters mit einer Länge von 0,7mm. Kurve C und Kurve D zeigen, dass die frequenzabhängige Änderung der Dämpfung des erfindungsgemäßen Filters 1 bei einer Erhöhung der Resonanzfrequenz um ungefähr 17 GHz im wesentlichen der frequenzabhängigen Änderung der Dämpfung der H10 Modes in dem Koppel-Hohlleiter mit den oben genannten Abmessungen entspricht, was deutlich zeigt, dass im Verbindungsresonator 32 sich im Resonanzfall der H10-Wellenmode ausbreitet, wobei die absoluten Dämpfungswerte im Resonanzfall zwischen -3 dB und -7dB liegen und somit um Größenordnungen geringer sind als die Werte im in Fig. 8 gezeigten Entkopplungsfall (Isolation). Fig. 9 shows the simulated course of the coupling (curve C) as a function of the resonance frequency of the magnetically tunable filter 1 according to the invention and the simulated loss of attenuation (curve D) of the H 10 mode of a 2 mm wide waveguide with a length of 0.7 mm. Curve C and curve D show that the frequency-dependent change in the attenuation of the filter 1 according to the invention with an increase in the resonant frequency of approximately 17 GHz substantially corresponds to the frequency-dependent change in the attenuation of the H 10 modes in the coupling waveguide with the dimensions mentioned above clearly shows that in the connecting resonator 32, the H 10 wave mode propagates in the case of resonance, the absolute attenuation values in the case of resonance lying between -3 dB and -7 dB and thus being orders of magnitude less than the values in FIG Fig. 8 shown decoupling case (insulation).

Fig.10 zeigt einen simulierten Resonanzverlauf des erfindungsgemäßen magnetisch durchstimmbaren Filters 1 bei einer angestrebten Mittenfrequenz von 68 GHz. Kurve E zeigt den frequenzabhängigen Verlauf der Absorptionskurve mit einem Absorptionsmaximum bei 67,8 GHz und einer Halbwertsbreite von 0,2 GHz und einer Frequenzunschärfe (FWHM) von ungefähr 0,3%. Kurve F zeigt den frequenzabhängigen Verlauf der Transmissionskurve mit einem ausgeprägten Maximum bei ebenfalls 67,8 GHz. Es ist deutlich zu erkennen, dass die Frequenzlage des Absorptionsmaximums und des Transmissionsmaximum sehr gut übereinstimmen. Figure 10 shows a simulated resonance profile of the magnetically tunable filter 1 according to the invention at a desired center frequency of 68 GHz. Curve E shows the frequency-dependent curve of the absorption curve with an absorption maximum at 67.8 GHz and a half-value width of 0.2 GHz and a frequency uncertainty (FWHM) of approximately 0.3%. Curve F shows the frequency-dependent curve of the transmission curve with a pronounced maximum at 67.8 GHz. It is clearly recognize that the frequency position of the absorption maximum and the transmission maximum agree very well.

Claims (23)

  1. Magnetically tunable filter (1) having a filter housing (2) and having two resonator spheres (3a, 3b) which are tunable, consist of magnetisable material and are arranged next to one another in two filter branches (4a, 4b), the two filter branches (4a, 4b) being connected by a common coupling opening (8) and a resonator sphere (3a, 3b) respectively being positioned on each side of the coupling opening (8) inside the two filter branches (4a, 4b),
    characterised in that
    each filter branch (4a, 4b) comprises a coplanar line (7) arranged on a substrate layer (5) and extending in the direction of an electrical connection (6),
  2. Magnetically tunable filter according to Claim 1,
    characterised in that
    the coupling opening (8) common to the two filter branches (4a, 4b) adjoins a first separating wall (9), which extends between the respective substrate layers (5) of the filter branches (4a, 4b) as far as the bottom (10) of the filter housing (2), the height (11) of the first separating wall (9) being less than the total height (12) of the filter housing (2).
  3. Magnetically tunable filter according to Claim 2,
    characterised in that
    the length (13) of the first separating wall (9), which extends along and parallel to the coupling opening (8), corresponds to the length (14) of the coupling opening (8).
  4. Magnetically tunable filter according to Claim 2 or 3,
    characterised in that
    the thickness (15) of the first separating wall (9) is from 10 µm to 100 µm, preferably approximately 50 µm.
  5. Magnetically tunable filter according to one of Claims 2 to 4,
    characterised in that
    the first separating wall (9) prevents direct line of sight between the resonator spheres (3a, 3b) arranged on either side of the coupling opening (8), or on either side of the first separating wall (9).
  6. Magnetically tunable filter according to one of Claims 2 to 5,
    characterised in that
    a first quadrilateral gap (18), which constitutes the coupling opening (8), is formed between a lid (16) of the filter housing (2) and an upper edge (17) of the first separating wall (9).
  7. Magnetically tunable filter according to Claim 1,
    characterised in that
    the common coupling opening (8) of the two filter branches (4a, 4b) comprises an iris, which extends from the bottom (10) of the filter housing (2) as far as its lid (16), the iris having an arbitrarily shaped and positioned iris aperture.
  8. Magnetically tunable filter according to Claim 7,
    characterised in that
    the iris aperture is circular, elliptical, rectangular, triangular, or has the shape of a polygon.
  9. Magnetically tunable filter according to one of Claims 1 to 8,
    characterised in that
    a second separating wall (19), which is respectively oriented perpendicularly to the coplanar line (8), is respectively formed inside the two filter branches (4a, 4b).
  10. Magnetically tunable filter according to Claim 9,
    characterised in that
    the second separating wall (19) inside one filter branch (4a, 4b) is positioned approximately in the vicinity of a short-circuit wall (20a, 20b) of the other filter branch (4a, 4b).
  11. Magnetically tunable filter according to Claim 9 or 10,
    characterised in that
    the length (21) of the second separating wall (19) corresponds to the width (22) of the filter branch (4a, 4b).
  12. Magnetically tunable filter according to one of Claims 9 to 11,
    characterised in that
    the second separating wall (19) is connected to a lid (16) of the filter housing (2).
  13. Magnetically tunable filter according to one of Claims 9 to 12,
    characterised in that
    the height (23) of the second separating wall (19) is less than the distance (24) between the substrate layer (5) and the lid (16) of the filter housing (2).
  14. Magnetically tunable filter according to one of Claims 9 to 13,
    characterised in that
    a second gap (26) with an essentially quadrilateral profile is formed between a lower edge (25) of the second separating wall (19) and the substrate layer (5).
  15. Magnetically tunable filter according to one of Claims 1 to 14,
    characterised in that
    the resonator spheres (3a, 3b) consist of a ferrimagnetic or ferromagnetic material, in particular a ferrite.
  16. Magnetically tunable filter according to one of Claims 1 to 15,
    characterised in that
    the resonator spheres (3a, 3b) have a diameter of from 100 µm to 1000 µm, preferably approximately 300 µm.
  17. Magnetically tunable filter according to one of Claims 1 to 16,
    characterised in that
    the resonator spheres (3a, 3b) are arranged mirror-symmetrically to one another on either side of the coupling opening (8).
  18. Magnetically tunable filter according to one of Claims 1 to 17,
    characterised in that
    the coplanar lines (7) consisting of respectively two outer line strips (27a, 27b) and respectively one central line strip (28) comprise, in the respective end regions (30) of the filter branch (4a, 4b), a short-circuit region (31) where the central line strip (28) of a coplanar line (7) is conductively connected to the two outer line strips (27a, 27b) of the coplanar line (7).
  19. Magnetically tunable filter according to one of Claims 1 to 18,
    characterised in that
    matching of the characteristic impedance of the coplanar line (7) to the characteristic impedance of a connecting resonator (32) formed in the end region of the two filter branches (4a, 4b) is carried out by means of a taper (33).
  20. Magnetically tunable filter according to one of Claims 1 to 18,
    characterised in that
    the matching of the characteristic impedance of the coplanar line (7) to the characteristic impedance of the connecting resonator (32) formed in the end region of the two filter branches is carried out by means of a λ/4 transformer (34) and/or a taper.
  21. Magnetically tunable filter according to Claim 19 or 20,
    characterised in that
    the connecting resonator (32) is a cavity resonator for an H10 wave mode.
  22. Magnetically tunable filter according to one of Claims 1 to 21,
    characterised in that
    in a filter branch (4a, 4b), the resonator sphere (3a, 3b) is placed in a short-circuit region (31) of the coplanar line (7) by means of a quartz carrier.
  23. Magnetically tunable filter according to Claim 22,
    characterised in that
    the resonator sphere (3a, 3b) is bonded on the quartz carrier by means of an epoxy adhesive.
EP07765056.2A 2006-07-04 2007-07-04 Magnetically tunable filter comprising coplanar lines Active EP2036160B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006030882 2006-07-04
DE102006053416 2006-11-13
DE102007001832A DE102007001832A1 (en) 2006-07-04 2007-01-12 Magnetically tunable filter for use as variable band-pass filters in spectrum analyzers and network analyzers, for high frequencies, has filter arms, each of which is provided with coplanar line that is arranged on substrate layer
PCT/EP2007/005927 WO2008003483A1 (en) 2006-07-04 2007-07-04 Magnetically tunable filter comprising coplanar lines

Publications (2)

Publication Number Publication Date
EP2036160A1 EP2036160A1 (en) 2009-03-18
EP2036160B1 true EP2036160B1 (en) 2014-01-22

Family

ID=38806169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07765056.2A Active EP2036160B1 (en) 2006-07-04 2007-07-04 Magnetically tunable filter comprising coplanar lines

Country Status (4)

Country Link
US (1) US8120449B2 (en)
EP (1) EP2036160B1 (en)
DE (1) DE102007001832A1 (en)
WO (1) WO2008003483A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368169A (en) 1964-05-08 1968-02-06 Stanford Research Inst Tunable bandpass filter
DE1217002B (en) * 1964-07-30 1966-05-18 Siemens Ag Tunable filter for very short electromagnetic waves, which can be tuned by means of the magnetocrystalline anisotropy properties
US3400343A (en) * 1965-02-23 1968-09-03 Physical Electronics Lab Tunable bandpass filter
US3889213A (en) * 1974-04-25 1975-06-10 Us Navy Double-cavity microwave filter
US4600906A (en) * 1982-12-03 1986-07-15 Raytheon Company Magnetically tuned resonant circuit wherein magnetic field is provided by a biased conductor on the circuit support structure
US4888569A (en) * 1988-05-23 1989-12-19 Hewlett-Packard Company Magnetically tuneable millimeter wave bandpass filter having high off resonance isolation
US4857871A (en) * 1988-10-31 1989-08-15 Harris David L Magnetic field-tunable filter with plural section housing and method of making the same
GB9216915D0 (en) * 1992-08-10 1992-09-23 Applied Radiation Lab Improved radio frequency filter
US5465417A (en) * 1993-12-16 1995-11-07 Hewlett-Packard Company Integrated barium-ferrite tuned mixer for spectrum analysis to 60 GHz
US6563405B2 (en) * 2001-06-21 2003-05-13 Microsource, Inc. Multi-resonator ferrite microstrip coupling filter

Also Published As

Publication number Publication date
WO2008003483A1 (en) 2008-01-10
DE102007001832A1 (en) 2008-01-10
US20090039983A1 (en) 2009-02-12
EP2036160A1 (en) 2009-03-18
US8120449B2 (en) 2012-02-21

Similar Documents

Publication Publication Date Title
DE60306067T2 (en) Dielectric monoblock microwave delay filter with triple mode
DE69838961T2 (en) Dielectric waveguide
DE1964670A1 (en) Waveguide with a dielectric carrier
EP1212806B1 (en) High-frequency band pass filter assembly, comprising attenuation poles
DE2726797A1 (en) MICROWAVE BAND FILTER
DE2946836A1 (en) HIGH FREQUENCY FILTER
DE3784686T2 (en) SUPPLY DEVICE OF A SATELLITE ANTENNA.
DE102015009221A1 (en) Improved dual-band tunable bandpass filter
EP2100343B1 (en) Ferrite filter from iris-coupled finlines
DE3007580C2 (en) Oscillator with a dielectric resonator
DE68917373T2 (en) Magnetically tunable bandpass filter.
DE69112943T2 (en) Transition piece between electromagnetic waveguides, in particular between a round waveguide and a coaxial waveguide.
WO2004109842A1 (en) High-frequency filter, particularly provided in the style of a duplex filter
DE10143689A1 (en) Filters, multiplexers and communication devices
DE10214895A1 (en) Resonator component with filter, duplexer and communication device e.g. for cellular communication system, has conductive core and rod positioned in conductive cavity
DE69932653T2 (en) Dielectric filter and dielectric duplexer
DE60110033T2 (en) Band-pass filter with a compact dielectric structure consisting of half-wave resonators and intermediate evanescent waveguides
DE19915074A1 (en) Dielectric resonator and dielectric filter with such a resonator
DE2828047C2 (en) Frequency-dependent coupling system
EP2036160B1 (en) Magnetically tunable filter comprising coplanar lines
DE60015692T2 (en) Oscillator and radio
DE2404168A1 (en) MICROSTRIP CIRCULATOR
DE3019523A1 (en) Compact coupling between waveguide and microstrip conductor - having stepped recess extending into duct
DE891999C (en) Bandstop for centimeter waves
DE69211428T2 (en) Filter device for electromagnetic waves in a waveguide with rotational symmetry, and inserted rectangular waveguide pieces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REHNER, ROBERT

Inventor name: TREMMEL, CLAUS

Inventor name: SCHMIDT, LORENZ-PETER

Inventor name: SCHNEIDERBANGER, DIRK

Inventor name: AIGLE, MICHAEL DR.

Inventor name: STERNS, MICHAEL

Inventor name: MARTIUS, SIGFRIED

17Q First examination report despatched

Effective date: 20090424

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012731

Country of ref document: DE

Effective date: 20140306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012731

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012731

Country of ref document: DE

Effective date: 20141023

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 17

Ref country code: DE

Payment date: 20230720

Year of fee payment: 17