EP2031336B1 - Heat exchanger unit for a combustion engine - Google Patents

Heat exchanger unit for a combustion engine Download PDF

Info

Publication number
EP2031336B1
EP2031336B1 EP08104442A EP08104442A EP2031336B1 EP 2031336 B1 EP2031336 B1 EP 2031336B1 EP 08104442 A EP08104442 A EP 08104442A EP 08104442 A EP08104442 A EP 08104442A EP 2031336 B1 EP2031336 B1 EP 2031336B1
Authority
EP
European Patent Office
Prior art keywords
section
channel
fluid
flown
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08104442A
Other languages
German (de)
French (fr)
Other versions
EP2031336A3 (en
EP2031336A2 (en
Inventor
Hans-Jürgen Hüsges
Hans-Ulrich Kühnel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Original Assignee
Pierburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH filed Critical Pierburg GmbH
Publication of EP2031336A2 publication Critical patent/EP2031336A2/en
Publication of EP2031336A3 publication Critical patent/EP2031336A3/en
Application granted granted Critical
Publication of EP2031336B1 publication Critical patent/EP2031336B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Definitions

  • the invention relates to a heat transfer unit for an internal combustion engine, in particular for the cooling of exhaust gases, with a channel through which a fluid to be cooled with an inlet and an outlet and a flowed through by a cooling fluid channel with an inlet and an outlet, wherein the fluid to be cooled flowed through channel and the channel through which the cooling fluid flows are separated from each other by at least one partition, from which ribs extend into the channel through which the fluid to be cooled flows.
  • Heat transfer units for internal combustion engines are well known and are described in a variety of applications. They are used both for cooling gases, such as charge air or exhaust gas or for cooling liquids such as oil.
  • heat exchangers are known.
  • tube bundle coolers plate-type coolers or die-cast coolers.
  • coolers produced in particular by the die casting method have been developed in which ribs protrude from the partitions between a channel through which the cooling fluid flows and a channel through which a fluid to be cooled flows into the channel through which the fluid to be cooled flows. These ribs significantly improve the heat transfer, especially at high temperature gradients.
  • Such a heat exchanger is for example from the DE 10 2005 058 204 A1 known.
  • the heat exchanger disclosed herein has an inner and an outer shell, wherein the cooling fluid flows between the outer shell and the inner shell, while the fluid to be cooled flows in a U-shaped manner through the inner shell, ie first via the inlet into an inflow section and from here over a deflection region and a subsequent return flow section to the outlet.
  • the cooling fluid flows between the outer shell and the inner shell, while the fluid to be cooled flows in a U-shaped manner through the inner shell, ie first via the inlet into an inflow section and from here over a deflection region and a subsequent return flow section to the outlet.
  • the channel projecting from the partition wall between the two channels over the entire length of the fluid flow channel ribs In the channel projecting from the partition wall between the two channels over the entire length of the fluid flow channel ribs.
  • An exhaust gas heat exchanger with decreasing flow cross section is from JP 2001 027 157 A known.
  • a cross-sectional area between the walls delimited by the fluid to be cooled channel is greater in a first portion than in a second portion, wherein the ribs are distributed over the length of the channel such that a flow-through cross section in the first flowed through Section is less than or equal to the flow-through cross section in the second flow-through section.
  • the second section of the channel through which the fluid to be cooled flows is designed as a free cross section.
  • this free cross section in the second section of the pressure loss can be reduced by the missing internals in the channel of the heat transfer unit compared to the known designs and the space required for the second section can be minimized.
  • the channel through which the fluid to be cooled flows is U-shaped, wherein the first section serves as an inflow, to which a deflection adjoins, followed by the second section, which serves as remindströmabêt.
  • the inflow portion and the backflow portion are juxtaposed.
  • the inflow section can thereby be made wider with the same overall width and equipped with additional ribs, whereby the improvement of the cooling performance in the range of high temperature gradients can be achieved.
  • the pressure loss is kept substantially constant over the entire area or possibly reduced in size compared with the known embodiment with ribs.
  • the deflection region is designed essentially as a free cross section.
  • a sooting in the deflection can be largely avoided in comparison to known coolers through which U flowed.
  • over the life of the heat transfer unit can be as an increase in the pressure loss and reduction of the cooling capacity can be avoided because the sooting in the deflection is significantly reduced.
  • the figure shows a side view of a heat transfer unit according to the invention in a sectional view.
  • the heat transfer unit shown in the figure which is used in particular for cooling exhaust gases of an internal combustion engine, consists of a housing 1 in which a channel 2 through which a fluid to be cooled and a channel 3 through which a cooling fluid flows are arranged.
  • the housing 1 consists of a single or multi-part inner shell 4 and an outer shell 5 surrounding the inner shell 4, which is arranged substantially at a distance from the inner shell 4.
  • the flowed through by the cooling fluid channel 3 is arranged in the present embodiment between the inner shell 4 and the outer shell 5, while the flow-through of the fluid to be cooled channel 2 is limited by the inner shell 4.
  • the inner shell 4 forms a partition wall 6 between the two fluids in heat exchange.
  • the inner shell 4, like the outer shell 5, is open on one side and has on its open end side a first inlet 7 and a first outlet 8 arranged next to it.
  • Adjoining the inlet 7 is a first section 9, which serves as an inflow section, which is separated by a middle wall 10 from a second section 12, which serves as a return flow section, which in turn opens into the outlet 8.
  • a deflection region 13 is flowed through, with the beginning of which the middle wall 10 ends.
  • a plurality of ribs 14 is formed, which extend from the inner shell 4 and thus the partition wall 6 in the flowed through by the fluid to be cooled channel 2.
  • the inner shell 4 is still provided with partial ribs 15 only in the first section, while the remaining deflection region 13 has no further ribs.
  • the ribs 14 in the deflection has the advantage that thereby an otherwise frequently observed sooting in this area can be largely avoided.
  • Ribs 14 are also continued in the form of protrusions 19 on the middle wall 10 and the partitions 6, so that even with offset in rows one behind the other arranged ribs 14, the flow-through cross sections in the range of a row of ribs can be kept largely constant without having to change the rib shape.
  • Such a structure is chosen because in the region of the inflow section 9, the temperature gradient between the hot inflowing fluid, in particular exhaust gas, and the circulating cooling fluid is particularly large. For this reason, the available cooling surface and the dwell time in this area is increased in this area by the comparison of known designs, which require the same space, additional ribs over the cross section. Although this also the flow resistance and thus the pressure loss is increased, but this is compensated by the larger flow-through cross-section in the second section again. In the rear regions with a lower temperature gradient, although less cooling power is generated in such an embodiment, this is more than compensated by the generated cooling capacity in the first section. Thus, overall, the cooling capacity over the run length is increased at about the same residence time and the same space compared to known designs with uniform cross-sections and rib distributions.
  • the inner shell 4 additionally has a flange-shaped enlargement 16, via which the outer shell 5 can be fastened to the inner shell 4, for example by welding. At the same time, this flange-shaped enlargement 16 serves to close the channel 3 through which the cooling fluid flows.
  • the outer shell 5 in turn has an inlet 17 and an outlet 18, which are arranged laterally on the outer shell 5 in the present embodiment in the front and rear of the heat transfer unit.
  • webs for positive guidance of the cooling fluid can additionally be arranged, which extend to the outer shell 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • General Details Of Gearings (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

Die Erfindung betrifft eine Wärmeübertragungseinheit für eine Verbrennungskraftmaschine, insbesondere zur Kühlung von Abgasen, mit einem von einem zu kühlenden Fluid durchströmten Kanal mit einem Einlass und einem Auslass und einem von einem Kühlfluid durchströmten Kanal mit einem Einlass und einem Auslass, wobei der vom zu kühlenden Fluid durchströmte Kanal und der vom Kühlfluid durchströmte Kanal durch zumindest eine Trennwand voneinander getrennt sind, von der aus sich Rippen in den vom zu kühlenden Fluid durchströmten Kanal erstrecken.The invention relates to a heat transfer unit for an internal combustion engine, in particular for the cooling of exhaust gases, with a channel through which a fluid to be cooled with an inlet and an outlet and a flowed through by a cooling fluid channel with an inlet and an outlet, wherein the fluid to be cooled flowed through channel and the channel through which the cooling fluid flows are separated from each other by at least one partition, from which ribs extend into the channel through which the fluid to be cooled flows.

Wärmeübertragungseinheiten für Verbrennungskraftmaschinen sind allgemein bekannt und werden in einer Vielzahl von Anmeldungen beschrieben. Sie dienen sowohl zur Kühlung von Gasen, wie beispielsweise Ladeluft oder Abgas oder zur Kühlung von Flüssigkeiten wie beispielsweise Öl.Heat transfer units for internal combustion engines are well known and are described in a variety of applications. They are used both for cooling gases, such as charge air or exhaust gas or for cooling liquids such as oil.

Nichtzuletzt aufgrund der vielfältigen Anwendungen sind sehr unterschiedliche Bauformen der Wärmeübertrager bekannt. Hier sind insbesondere Rohrbündelkühler, Kühler in Plattenbauweise oder auch Druckgusskühler zu nennen.Not at least because of the diverse applications very different types of heat exchangers are known. In particular, here are tube bundle coolers, plate-type coolers or die-cast coolers.

Insbesondere bei der Kühlung von Abgas ist eine zu große Versottung der Abgas durchströmten Kanäle zu verhindern, so dass die Kanäle im Querschnitt nicht zu klein gewählt werden können. Um dennoch einen ausreichend guten Wärmeübergang sicherzustellen, wurden insbesondere im Druckgussverfahren hergestellte Kühler entwickelt, bei denen von den Trennwänden zwischen einem vom Kühlfluid durchströmten Kanal und einem von einem zu kühlenden Fluid durchströmten Kanal Rippen in den vom zu kühlenden Fluid durchströmten Kanal ragen. Diese Rippen verbessern insbesondere bei hohen Temperaturgradienten deutlich den Wärmeübergang.In particular, in the cooling of exhaust gas is too large sooting of the exhaust gas flow through channels to prevent, so that the channels can not be chosen to be small in cross section. In order nevertheless to ensure a sufficiently good heat transfer, coolers produced in particular by the die casting method have been developed in which ribs protrude from the partitions between a channel through which the cooling fluid flows and a channel through which a fluid to be cooled flows into the channel through which the fluid to be cooled flows. These ribs significantly improve the heat transfer, especially at high temperature gradients.

Ein derartiger Wärmetauscher ist beispielsweise aus der DE 10 2005 058 204 A1 bekannt. Der hier offenbarte Wärmetauscher weist eine Innen- und eine Außenschale auf, wobei das Kühlfluid zwischen der Außenschale und der Innenschale strömt, während das zu kühlende Fluid U-förmig durch die Innenschale strömt, also zunächst über den Einlass in einen Einströmabschnitt und von hier aus über einen Umlenkbereich und einen folgenden Rückströmabschnitt zum Auslass. In den Kanal ragen von der Trennwand zwischen den beiden Kanälen über die gesamte Länge des Fluid durchströmten Kanals Rippen.Such a heat exchanger is for example from the DE 10 2005 058 204 A1 known. The heat exchanger disclosed herein has an inner and an outer shell, wherein the cooling fluid flows between the outer shell and the inner shell, while the fluid to be cooled flows in a U-shaped manner through the inner shell, ie first via the inlet into an inflow section and from here over a deflection region and a subsequent return flow section to the outlet. In the channel projecting from the partition wall between the two channels over the entire length of the fluid flow channel ribs.

Ein Abgas-Wärmetauscher mit abnehmendem Strömungsquerschnitt ist aus der JP 2001 027 157 A bekannt.An exhaust gas heat exchanger with decreasing flow cross section is from JP 2001 027 157 A known.

Bei einem derartig aufgebauten Wärmeübertrager hat sich herausgestellt, dass die Kühlwirkung im Strömungsverlauf mit sinkendem Temperaturgradienten nachlässt.
Zusätzlich entsteht im Umlenkbereich eines derartigen U-förmigen Wärmeübertragers eine deutlich erhöhte Versottung, was zu einem steigenden Druckverlust führt.
In a heat exchanger constructed in this way, it has been found that the cooling effect in the course of the flow declines with decreasing temperature gradient.
In addition, a significantly increased sooting occurs in the deflection region of such a U-shaped heat exchanger, which leads to an increasing pressure loss.

Zur Verhinderung von Versottung schlägt die DE 101 12 257 für einen Abgas-Wärmetauscher eine abnehmende Rippendichte bei konstantem Querschnitt vor.To prevent sooting beats the DE 101 12 257 for a flue gas heat exchanger, a decreasing fin density at a constant cross section.

Es ist daher Aufgabe der Erfindung, eine Wärmeübertragungseinheit bereitzustellen, bei der die Kühlleistung im Vergleich zu bekannten Ausführungen bei gleichem oder reduziertem Druckverlust verbessert wird, ohne dass zusätzlicher Bauraum benötigt wird.It is therefore an object of the invention to provide a heat transfer unit, in which the cooling performance is improved in comparison to known designs with the same or reduced pressure loss, without additional space is needed.

Diese Aufgabe wird dadurch gelöst, dass eine Querschnittsfläche zwischen den vom zu kühlenden Fluid durchströmten Kanal begrenzenden Wänden in einem ersten Abschnitt größer ist als in einem zweiten Abschnitt, wobei die Rippen über die Länge des Kanals derart verteilt sind, dass ein durchströmbarer Querschnitt im ersten durchströmten Abschnitt kleiner oder gleich dem durchströmbaren Querschnitt im zweiten durchströmten Abschnitt ist. Somit kann im Vergleich zu bekannten Einheiten die Anzahl der Rippen im ersten Abschnitt, in dem ein hoher Temperaturgradient vorhanden ist, deutlich erhöht werden und somit eine deutlich höhere Kühlleistung erreicht werden. Der in diesem Bereich im Vergleich zu bekannten Ausführungen steigende Druckverlust kann im zweiten Abschnitt wieder ausgeglichen werden, so dass die Verweilzeit im Vergleich zu gleich großen bekannten Einheiten im Wesentlichen unverändert bleiben kann.This object is achieved in that a cross-sectional area between the walls delimited by the fluid to be cooled channel is greater in a first portion than in a second portion, wherein the ribs are distributed over the length of the channel such that a flow-through cross section in the first flowed through Section is less than or equal to the flow-through cross section in the second flow-through section. Thus, compared to known units, the number of ribs in the first section, in which a high temperature gradient is present, can be significantly increased and thus a significantly higher cooling capacity can be achieved. The increasing in this area compared to known designs pressure loss can be compensated again in the second section, so that the residence time can remain substantially unchanged compared to known units of the same size.

In einer weiterführenden Ausführungsform ist der zweite Abschnitt des vom zu kühlenden Fluid durchströmten Kanals als freier Querschnitt ausgebildet ist. Durch diesen freien Querschnitt im zweiten Abschnitt kann der Druckverlust durch die fehlenden Einbauten im Kanal der Wärmeübertragungseinheit im Vergleich zu den bekannten Ausführungen reduziert werden und der Platzbedarf für den zweiten Abschnitt minimiert werden.In a further embodiment, the second section of the channel through which the fluid to be cooled flows is designed as a free cross section. Through this free cross section in the second section of the pressure loss can be reduced by the missing internals in the channel of the heat transfer unit compared to the known designs and the space required for the second section can be minimized.

In einer bevorzugten Ausführungsform ist der vom zu kühlenden Fluid durchströmte Kanal U-förmig ausgebildet, wobei der erste Abschnitt als Einströmabschnitt dient, an den sich ein Umlenkbereich anschließt, an den sich der zweite Abschnitt anschließt, der als Rückströmabschnitt dient. Bei einer derartigen U-Form liegen der Einströmabschnitt und der Rückströmabschnitt nebeneinander. Der Einströmabschnitt kann dadurch bei gleich bleibender Gesamtbreite breiter ausgeführt und mit zusätzlichen Rippen bestückt werden, wodurch die Verbesserung der Kühlleistung im Bereich hoher Temperaturgradienten erreicht werden kann. Gleichzeitig wird der Druckverlust im Vergleich zur bekannten Ausführung mit Rippen über den gesamten Bereich im Wesentlichen konstant gehalten oder gegebenenfalls verkleinert.In a preferred embodiment, the channel through which the fluid to be cooled flows is U-shaped, wherein the first section serves as an inflow, to which a deflection adjoins, followed by the second section, which serves as Rückströmabschnitt. With such a U-shape, the inflow portion and the backflow portion are juxtaposed. The inflow section can thereby be made wider with the same overall width and equipped with additional ribs, whereby the improvement of the cooling performance in the range of high temperature gradients can be achieved. At the same time, the pressure loss is kept substantially constant over the entire area or possibly reduced in size compared with the known embodiment with ribs.

In einer weiterführenden Ausführung ist der Umlenkbereich im Wesentlichen als freier Querschnitt ausgebildet. Somit kann im Vergleich zu bekannten U-förmig durchströmten Kühlern eine Versottung im Umlenkbereich weitestgehend vermieden werden. Insbesondere über die Lebensdauer der Wärmeübertragungseinheit kann so eine Erhöhung des Druckverlustes und Verminderung der Kühlleistung vermieden werden, da die Versottung im Umlenkbereich deutlich reduziert wird.In a further embodiment, the deflection region is designed essentially as a free cross section. Thus, a sooting in the deflection can be largely avoided in comparison to known coolers through which U flowed. In particular, over the life of the heat transfer unit can be as an increase in the pressure loss and reduction of the cooling capacity can be avoided because the sooting in the deflection is significantly reduced.

Durch diese Ausführungen wird eine bezüglich der Kühlleistung und Baugröße optimierte Wärmeübertragungseinheit geschaffen, ohne einen erhöhten Druckverlust zu generieren.These embodiments provide a heat transfer unit optimized with regard to the cooling capacity and size, without generating an increased pressure loss.

Ein Ausführungsbeispiel ist in der Figur dargestellt und wird nachfolgend beschrieben.An embodiment is shown in the figure and will be described below.

Die Figur zeigt eine Seitenansicht einer erfindungsgemäßen Wärmeübertragungseinheit in geschnittener Darstellung.The figure shows a side view of a heat transfer unit according to the invention in a sectional view.

Die in der Figur dargestellte Wärmeübertragungseinheit, welche insbesondere zur Kühlung von Abgasen einer Verbrennungskraftmaschine dient, besteht aus einem Gehäuse 1, in dem ein von einem zu kühlenden Fluid durchströmter Kanal 2 sowie ein von einem Kühlfluid durchströmter Kanal 3 angeordnet sind. Das Gehäuse 1 besteht aus einer ein- oder mehrteiligen Innenschale 4 sowie einer die Innenschale 4 umgebenden Außenschale 5, welche im Wesentlichen beabstandet von der Innenschale 4 angeordnet ist.The heat transfer unit shown in the figure, which is used in particular for cooling exhaust gases of an internal combustion engine, consists of a housing 1 in which a channel 2 through which a fluid to be cooled and a channel 3 through which a cooling fluid flows are arranged. The housing 1 consists of a single or multi-part inner shell 4 and an outer shell 5 surrounding the inner shell 4, which is arranged substantially at a distance from the inner shell 4.

Der vom Kühlfluid durchströmte Kanal 3 ist in vorliegendem Ausführungsbeispiel zwischen der Innenschale 4 und der Außenschale 5 angeordnet, während der vom zu kühlenden Fluid durchströmte Kanal 2 durch die Innenschale 4 begrenzt ist. Somit bildet die Innenschale 4 eine Trennwand 6 zwischen den beiden in Wärmeaustausch stehenden Fluiden.The flowed through by the cooling fluid channel 3 is arranged in the present embodiment between the inner shell 4 and the outer shell 5, while the flow-through of the fluid to be cooled channel 2 is limited by the inner shell 4. Thus, the inner shell 4 forms a partition wall 6 between the two fluids in heat exchange.

Die Innenschale 4 ist ebenso wie die Außenschale 5 einseitig offen ausgebildet und weist an ihrer offenen Stirnseite einen ersten Einlass 7 sowie einen daneben angeordneten ersten Auslass 8 auf. An den Einlass 7 schließt sich ein erster Abschnitt 9 an, der als Einströmabschnitt dient, der durch eine Mittelwand 10 von einem zweiten Abschnitt 12, der als Rückströmabschnitt dient, getrennt ist, der wiederum im Auslass 8 mündet. In Strömungsrichtung zwischen dem Einströmabschnitt 9 und dem Rückströmabschnitt 12 wird ein Umlenkbereich 13 durchströmt, mit dessen Beginn die Mittelwand 10 endet.The inner shell 4, like the outer shell 5, is open on one side and has on its open end side a first inlet 7 and a first outlet 8 arranged next to it. Adjoining the inlet 7 is a first section 9, which serves as an inflow section, which is separated by a middle wall 10 from a second section 12, which serves as a return flow section, which in turn opens into the outlet 8. In the flow direction between the inflow section 9 and the return flow section 12, a deflection region 13 is flowed through, with the beginning of which the middle wall 10 ends.

Im Einströmabschnitt 9 ist eine Vielzahl von Rippen 14 ausgebildet, welche sich von der Innenschale 4 und somit der Trennwand 6 in den vom zu kühlenden Fluid durchströmten Kanal 2 erstrecken. Im Umlenkbereich 13 ist die Innenschale 4 lediglich im ersten Abschnitt noch mit Teilrippen 15 ausgestattet, während der übrige Umlenkbereich 13 keine weiteren Rippen aufweist. Die Rippen 14 im Umlenkbereich nicht auszuführen, birgt den Vorteil, dass hierdurch eine sonst häufig zu beobachtende Versottung in diesem Bereich weitestgehend vermieden werden kann. Die Rippen 14 sind auch in Form von Ausbuchtungen 19 an der Mittelwand 10 bzw. den Trennwänden 6 weitergeführt, so dass auch bei versetzt in Reihen hintereinander angeordneten Rippen 14 die durchströmten Querschnitte im Bereich einer Rippenreihe weitestgehend konstant gehalten werden können, ohne die Rippenform verändern zu müssen.In the inflow portion 9, a plurality of ribs 14 is formed, which extend from the inner shell 4 and thus the partition wall 6 in the flowed through by the fluid to be cooled channel 2. In the deflection region 13, the inner shell 4 is still provided with partial ribs 15 only in the first section, while the remaining deflection region 13 has no further ribs. Not to carry out the ribs 14 in the deflection, has the advantage that thereby an otherwise frequently observed sooting in this area can be largely avoided. Ribs 14 are also continued in the form of protrusions 19 on the middle wall 10 and the partitions 6, so that even with offset in rows one behind the other arranged ribs 14, the flow-through cross sections in the range of a row of ribs can be kept largely constant without having to change the rib shape.

Im Rückströmabschnitt 12 sind im vorliegenden Ausführungsbeispiel keine Rippen ausgebildet, so dass dieser einen freien Querschnitt darstellt. Denkbar ist es, auch hier einzelne Rippen anzuordnen. Der vorhandene Querschnitt ohne Rippen zwischen den Trennwänden 6 beziehungsweise der Mittelwand 10 ist im Einströmbereich deutlich größer als im Rückströmbereich. Die Anordnung beziehungsweise Verteilung der Rippen 14 ist so gewählt, dass der tatsächlich durchströmbare Querschnitt im Einströmbereich 9 durch eine hohe Anzahl an Rippen 14 derart verkleinert wird, dass dieser trotz der ohne Rippen größeren vorhandenen Breite im Vergleich zum Rückströmabschnitt 12 kleiner oder gleich dem tatsächlich durchströmbaren Querschnitt des Rückströmabschnitts 12 ist. Die Erweiterung des durchströmbaren Querschnitts findet dabei im Umlenkbereich 13 statt.In the return flow section 12 no ribs are formed in the present embodiment, so that this represents a free cross-section. It is conceivable to arrange individual ribs here as well. The existing cross section without ribs between the partitions 6 and the middle wall 10 is significantly larger in the inflow region than in the return flow region. The arrangement or distribution of the ribs 14 is selected so that the actually durchströmbare cross section in the inflow 9 is reduced by a large number of ribs 14 that this despite the ribs existing larger width compared to the Rückströmabschnitt 12 less than or equal to the actually permeable Cross section of the return flow 12 is. The extension of the flow-through cross section takes place in the deflection region 13.

Ein derartiger Aufbau wird gewählt, da im Bereich des Einströmabschnitts 9 der Temperaturgradient zwischen dem heißen einströmenden Fluid, insbesondere Abgas, und dem umströmenden Kühlfluid besonders groß ist. Aus diesem Grund wird in diesem Bereich durch die im Vergleich zu bekannten Ausführungen, welche gleichen Bauraum benötigen, zusätzlichen Rippen über den Querschnitt die zur Verfügung stehende Kühlfläche und die Verweildauer in diesem Bereich erhöht. Hierdurch wird zwar auch der Strömungswiderstand und somit der Druckverlust erhöht, was jedoch durch den größeren durchströmbaren Querschnitt im zweiten Abschnitt wieder ausgeglichen wird. In den hinteren Bereichen mit geringerem Temperaturgradienten wird in einer solchen Ausführung zwar weniger Kühlleistung erzeugt, was jedoch durch die erzeugte Kühlleistung im ersten Abschnitt mehr als ausgeglichen wird. Somit wird insgesamt die Kühlleistung über die Lauflänge bei etwa gleicher Verweilzeit und gleichem Bauraum im Vergleich zu bekannten Ausführungen mit gleichmäßigen Querschnitten und Rippenverteilungen erhöht.Such a structure is chosen because in the region of the inflow section 9, the temperature gradient between the hot inflowing fluid, in particular exhaust gas, and the circulating cooling fluid is particularly large. For this reason, the available cooling surface and the dwell time in this area is increased in this area by the comparison of known designs, which require the same space, additional ribs over the cross section. Although this also the flow resistance and thus the pressure loss is increased, but this is compensated by the larger flow-through cross-section in the second section again. In the rear regions with a lower temperature gradient, although less cooling power is generated in such an embodiment, this is more than compensated by the generated cooling capacity in the first section. Thus, overall, the cooling capacity over the run length is increased at about the same residence time and the same space compared to known designs with uniform cross-sections and rib distributions.

Am Einlass 7 bzw. Auslass 8 weist die Innenschale 4 zusätzlich eine flanschförmige Erweiterung 16 auf, über die die Außenschale 5 an der Innenschale 4 beispielsweise durch Schweißen befestigt werden kann. Gleichzeitig dient diese flanschförmige Erweiterung 16 zum Verschluss des vom Kühlfluid durchströmten Kanals 3.At the inlet 7 and outlet 8, the inner shell 4 additionally has a flange-shaped enlargement 16, via which the outer shell 5 can be fastened to the inner shell 4, for example by welding. At the same time, this flange-shaped enlargement 16 serves to close the channel 3 through which the cooling fluid flows.

Die Außenschale 5 weist wiederum einen Einlass 17 sowie einen Auslass 18 auf, welche in vorliegendem Ausführungsbeispiel im vorderen und hinteren Bereich der Wärmeübertragungseinheit seitlich an der Außenschale 5 angeordnet sind. An der Innenschale 4 können zusätzlich Stege zur Zwangsführung des Kühlfluids angeordnet werden, die sich bis zur Außenschale 5 erstrecken.The outer shell 5 in turn has an inlet 17 and an outlet 18, which are arranged laterally on the outer shell 5 in the present embodiment in the front and rear of the heat transfer unit. On the inner shell 4, webs for positive guidance of the cooling fluid can additionally be arranged, which extend to the outer shell 5.

Es sollte klar sein, dass sich diese Konstruktion auch auf andere Bauweisen von Wärmeübertragungseinheiten übertragen lässt, wobei zu beachten ist, dass bei gleich bleibendem, zur Verfügung stehenden Bauraum jeweils die benutzte Kühlfläche im Bereich hoher Temperaturgradienten vergrößert werden sollte, auch wenn hierdurch eine Verkleinerung der Kühlflächen im Bereich kleinerer Temperaturgradienten die Folge ist.It should be clear that this construction can also be applied to other types of heat transfer units, whereby it should be noted that, with the space available being the same, the used cooling surface should always be increased in the region of high temperature gradients, even if this reduces the size of the heat exchanger Cooling surfaces in the range of smaller temperature gradients is the result.

Claims (4)

  1. Heat exchanger unit for a combustion engine, in particular for cooling exhaust gases, comprising a channel (2) flown through by a fluid to be cooled, having an inlet (7) and an outlet (8), and a channel (3) flown through by a cooling fluid, having an inlet (17) and an outlet (18), wherein the channel (2) flown through by a fluid to be cooled and the channel (3) flown through by a cooling fluid are separated by at least one partitioning wall (6) from which ribs (14, 15) extend into the channel (2) flown through by a fluid to be cooled, wherein a cross sectional area between the walls (6, 10) delimiting the channel (2) flown through by a fluid to be cooled is larger in a first section (9) than in a second section (12), characterized in that the ribs (14) are distributed over the length of the channel (2) such that a flow-through cross section in the first section (9) flown through is smaller or equal to the flow-through cross section in the second section (12) flown through.
  2. Heat exchanger unit of claim 1, characterized in that the second section (12) of the channel (2) flown through by a fluid to be cooled is designed as a free cross section.
  3. Heat exchanger unit of one of claims 1 or 2, characterized in that the channel (2) flown through by a fluid to be cooled is U-shaped, the first section (9) serving as an inflow section which is adjoined by a diverting section (13) adjoined by the second section (12) serving as a return flow section.
  4. Heat exchanger of claim 3, characterized in that the diverting section (13) is designed substantially as a free cross section.
EP08104442A 2007-08-31 2008-06-17 Heat exchanger unit for a combustion engine Not-in-force EP2031336B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007041338A DE102007041338B3 (en) 2007-08-31 2007-08-31 Heat transfer unit for an internal combustion engine

Publications (3)

Publication Number Publication Date
EP2031336A2 EP2031336A2 (en) 2009-03-04
EP2031336A3 EP2031336A3 (en) 2011-05-18
EP2031336B1 true EP2031336B1 (en) 2012-12-05

Family

ID=39942384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08104442A Not-in-force EP2031336B1 (en) 2007-08-31 2008-06-17 Heat exchanger unit for a combustion engine

Country Status (3)

Country Link
US (1) US8245767B2 (en)
EP (1) EP2031336B1 (en)
DE (1) DE102007041338B3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090114373A1 (en) * 2007-11-02 2009-05-07 Calsonic Kansei Corporation Heat exchanger
DE102008049253B4 (en) * 2008-09-26 2012-12-20 Pierburg Gmbh Automotive exhaust gas cooler
DE102008051268A1 (en) * 2008-10-10 2010-04-15 Mahle International Gmbh cooling device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099913A (en) * 1990-02-05 1992-03-31 General Motors Corporation Tubular plate pass for heat exchanger with high volume gas expansion side
KR100353020B1 (en) * 1993-12-28 2003-01-10 쇼와 덴코 가부시키가이샤 Multilayer Heat Exchanger
JP3719453B2 (en) * 1995-12-20 2005-11-24 株式会社デンソー Refrigerant evaporator
US6206089B1 (en) * 1996-10-29 2001-03-27 Denso Corporation Heat exchanger and method for manufacturing the same
JP3361475B2 (en) * 1998-05-18 2003-01-07 松下電器産業株式会社 Heat exchanger
JP2001027157A (en) * 1999-07-13 2001-01-30 Mitsubishi Motors Corp Strut for egr cooler
US6318455B1 (en) * 1999-07-14 2001-11-20 Mitsubishi Heavy Industries, Ltd. Heat exchanger
DE10010266A1 (en) 2000-03-02 2001-11-15 Behr Gmbh & Co Plate-type heat exchanger has corrugated fins arranged between neighboring plate pairs to form second flow channels that allow flow of second heat exchange medium in flow changing direction
JP4069570B2 (en) * 2000-03-16 2008-04-02 株式会社デンソー Exhaust heat exchanger
JP4065781B2 (en) * 2001-02-19 2008-03-26 昭和電工株式会社 Heat exchanger, car air conditioner using the same, and automobile equipped with heat exchanger
DE102005029321A1 (en) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Heat exchanger for exhaust gas cooling has structural elements arranged so that duct has internal variable heat transfer increasing in direction of flow
DE202006009464U1 (en) 2005-09-23 2006-09-14 Pierburg Gmbh Heat exchanger recovering waste heat from exhaust or flue gases, separates flows using wall covered with fins having sharp leading edges and blunt trailing edges
DE102005058204B4 (en) * 2005-12-02 2008-07-24 Pierburg Gmbh Cooling device for an internal combustion engine
DE102006029043B4 (en) * 2006-06-24 2015-04-23 Pierburg Gmbh Heat transfer unit for an internal combustion engine

Also Published As

Publication number Publication date
EP2031336A3 (en) 2011-05-18
US20090056321A1 (en) 2009-03-05
EP2031336A2 (en) 2009-03-04
US8245767B2 (en) 2012-08-21
DE102007041338B3 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
EP1999423B1 (en) Exhaust gas cooler for a motor vehicle
DE102008036222B3 (en) Heat transfer unit for an internal combustion engine
EP1996888B1 (en) Heat exchanger for a motor vehicle
EP2678627B1 (en) Exhaust gas cooler
EP1955001A1 (en) Cooling device for an internal combustion engine
EP2066992A2 (en) Heat exchanger for an internal combustion engine
DE202006009464U1 (en) Heat exchanger recovering waste heat from exhaust or flue gases, separates flows using wall covered with fins having sharp leading edges and blunt trailing edges
DE102006012219B4 (en) Heat transfer unit with a closable fluid part inlet
DE102009047620C5 (en) Heat exchanger with tube bundle
DE2907810A1 (en) HEAT EXCHANGER
DE4432972A1 (en) Heat exchanger having two rows of tubes (pipes), in particular for motor vehicles
DE112013007041T5 (en) heat exchangers
DE102006029043B4 (en) Heat transfer unit for an internal combustion engine
EP2031336B1 (en) Heat exchanger unit for a combustion engine
DE102004044861A1 (en) Heat exchangers for motor vehicles
EP3066407B1 (en) Heat exchanger
AT513300B1 (en) heat exchangers
DE102012111928A1 (en) Heat exchanger for an internal combustion engine
DE102007008865B3 (en) Heat transfer device
DE102010001635A1 (en) Heat exchanger, particularly exhaust gas or charge air heat exchanger, has housing, where one flow barrier is formed in flow space in intermediate space between two pipes
DE102008059407A1 (en) Heat exchanger, exhaust gas recirculation system and use of the heat exchanger
WO2015197362A1 (en) Heat exchanger
EP2430385B1 (en) Radiator for a motor vehicle having an internal combustion engine
WO2007036238A1 (en) Heat exchanger
EP2253493A2 (en) Device for heating the interior of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 25/07 20060101ALI20110412BHEP

Ipc: F28F 13/08 20060101ALI20110412BHEP

Ipc: F28F 3/04 20060101AFI20081216BHEP

Ipc: F28D 9/00 20060101ALI20110412BHEP

Ipc: F28F 13/14 20060101ALI20110412BHEP

Ipc: F28D 7/10 20060101ALI20110412BHEP

17P Request for examination filed

Effective date: 20111020

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 13/08 20060101ALI20120904BHEP

Ipc: F28D 9/00 20060101ALI20120904BHEP

Ipc: F02M 25/07 20060101ALI20120904BHEP

Ipc: F28F 13/14 20060101ALI20120904BHEP

Ipc: F28F 3/04 20060101AFI20120904BHEP

Ipc: F28D 7/10 20060101ALI20120904BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 587496

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008816

Country of ref document: DE

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130621

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130703

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

26N No opposition filed

Effective date: 20130906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

BERE Be: lapsed

Owner name: PIERBURG G.M.B.H.

Effective date: 20130630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008816

Country of ref document: DE

Effective date: 20130906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130622

Year of fee payment: 6

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130617

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 587496

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008008816

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008008816

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080617

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130617