EP2028720B1 - Multiband-Antenne und entsprechendes Verfahren für ein Funkkommunikationsgerät - Google Patents

Multiband-Antenne und entsprechendes Verfahren für ein Funkkommunikationsgerät Download PDF

Info

Publication number
EP2028720B1
EP2028720B1 EP07114890A EP07114890A EP2028720B1 EP 2028720 B1 EP2028720 B1 EP 2028720B1 EP 07114890 A EP07114890 A EP 07114890A EP 07114890 A EP07114890 A EP 07114890A EP 2028720 B1 EP2028720 B1 EP 2028720B1
Authority
EP
European Patent Office
Prior art keywords
patch
antenna
folded
frequency band
resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07114890A
Other languages
English (en)
French (fr)
Other versions
EP2028720A1 (de
Inventor
Dong Wang
Geyi Wen
Qinjiang Rao
Mark Pecen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BlackBerry Ltd
Original Assignee
Research in Motion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research in Motion Ltd filed Critical Research in Motion Ltd
Priority to EP07114890A priority Critical patent/EP2028720B1/de
Publication of EP2028720A1 publication Critical patent/EP2028720A1/de
Application granted granted Critical
Publication of EP2028720B1 publication Critical patent/EP2028720B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths

Definitions

  • the present invention relates generally to a manner by which to transduce signal energy at a radio device, such as a portable mobile station. More particularly, the present invention relates to an antenna, and an associated methodology, for the radio device.
  • the antenna is of dimensions permitting its positioning within, or carriage together with, a hand-carriable mobile station while providing operability over a wide range of frequencies.
  • the antenna is formed of a set of antenna patches that are configured together in a tri-dimensional arrangement. The spatial requirements of the antenna are reduced by folding one of the patches to cause contiguous portions thereof to extend in planar directions offset from that of another of the antenna patches.
  • the antenna is operable with a multi-mode radio device that operates at multiple, spaced frequency bands.
  • a cellular, or cellular-like communication system is an exemplary mobile radio communication system whose availability is widespread throughout significant portions of the populated areas of the world.
  • a cellular communication system is constructed generally to be in conformity with operational requirements set forth in an operating specification promulgated by a standards-setting body.
  • the operating specification defines a radio air interface extending between communication stations, i.e., the network infrastructure and a mobile station, operable in the communication system.
  • Regulatory bodies allocate portions of the electromagnetic spectrum. Different allocations are made for different types of systems, and different regulatory bodies regulate the use of the electromagnetic spectrum in different jurisdictions.
  • operating standards associated with different communication systems define operating parameters including parameters associated with the frequencies upon which the radio air interface is defined.
  • a mobile station While early implementations of mobile stations used to communicate in a cellular communication system were relatively bulky, and were relatively heavy, advancements in integrated-circuit, processing, and communication technologies have permitted the miniaturization of newer implementations of mobile stations. Mobile stations are now regularly of dimensions permitting their hand-carriage. And, increasingly, mobile stations are constructed to be operable in conformity with the operating requirements of more than one operating standard. Such a mobile station, referred to as a multi-mode mobile station, is capable of operation pursuant to a communication service by way of any communication system with which the multi-mode mobile station is operable.
  • Miniaturization of a mobile station provided as a result of the technological advancements noted-above has permitted the circuitry required for multi-mode mobile station to be housed in a housing of small dimension.
  • Multi-mode mobile stations are, for example, sometimes of configurations permitting their carriage in a shirt pocket of the user. Miniaturization is provided, not only by reducing the physical dimensions of the circuit paths of the receive and transmit chains of the circuitry of the mobile station, but also through sharing of circuit components between circuit paths used for communications pursuant to the different communication systems.
  • An antenna element is generally most effective in transducing signal energy when the transducer is of dimensions related to the wavelength of the signal energy that is to be transduced. For instance, antenna lengths corresponding to, or multiples of, one-quarter wavelengths of the signal energy that is to be transduced exhibit good antenna characteristics.
  • the mobile station forms a multi-mode mobile station that operates at different frequency bands, different sizes of antennas are needed to transduce the signal energy of the different the circuitry of a multi-mode mobile station continue to decrease, dimensional requirements of the antenna elements are sometimes a limiting factor limiting further miniaturization of a mobile station.
  • Significant effort has therefore been exerted to construct an antenna, operable over multiple frequency bands, that is also of small dimension, thereby to permit its positioning within the housing of a mobile station.
  • a PIFA Planar Inverted-F Antenna
  • a PIFA is sometimes utilized to transduce signal energy at a mobile station.
  • a PIFA is of compact size and is of a low profile while providing for transducing of signal energy at more than one frequency band.
  • a problem typically exhibited with a PIFA is that a PIFA generally exhibits pass bands of narrow bandwidths.
  • a bandwidth of a PIFA is enhanced by configuring the PIFA together with a parasitic element. Such use of a parasitic element, however, increases the dimensions of the antenna. Additionally, tuning of the antenna becomes more difficult due to the additional resonant branches. Also, the branches sometimes introduce EMI (Electromagnetic Interference) that interferes with antenna operation. [0008A] U.S.
  • pre-grant publication 2003/0142022 discloses an apparatus and method for tuning the patches of a multi-band antenna using transmission lines, which inherently use up space in a mobile device.
  • PCT application KR01/01673 discloses a multi-band antenna, however, the antenna disclosed in that prior art reference is difficult to tune because the tuning is effectuated by slits formed in the radiating elements.
  • PCT application EP 2003/006199 also discloses a multi-band antenna, however, the disclosed antenna uses a multi-level radiator that requires a lot of space.
  • An improved antenna structure of small dimensions, and operable to transduce signal energy at multiple, disparate frequency bands is therefore needed.
  • Figure 1 illustrates a functional block diagram of a radio communication system in which an embodiment of the present invention is operable.
  • Figure 2 illustrates a representation of the configuration of the antenna of an embodiment of the present invention.
  • Figure 3 illustrates a representation of the antenna shown in Figure 2 , here in which the antenna is configured with folds formed in the folded patch portion thereof.
  • Figure 4 illustrates a representation of an exemplary return loss, plotted as a function of frequency, of an exemplary antenna of an embodiment of the present invention.
  • Figures 5 and 6 represent exemplary radiation patterns exhibited by the antenna of an embodiment of the present invention at two separate frequencies, at 950 MHz and 1880 MHz, respectively.
  • Figure 7 illustrates a method flow diagram representative of method of operation of an embodiment of the present invention.
  • the present invention accordingly, advantageously provides an antenna, and an associated methodology for transducing signal energy at a radio device, such as a portable mobile station.
  • an antenna is provided for the radio device.
  • the antenna is of compact dimensions that permits its positioning within, or carriage together with, a mobile station.
  • the antenna characteristics of the antenna permit its operation at selected frequency bands over a wide range of frequencies.
  • the antenna includes a set of antenna patches that are configured together in a tri-dimensional arrangement that extends in multiple planar directions. Reduction in the spatial requirements of the antenna is provided by the tri-dimensional configuration of the antenna. One of the patches of the set of antenna patches is forwarded such that contiguous portions thereof extend in planar directions offset from that of a portion contiguous thereto.
  • the antenna is configured to be operable at disparate frequency bands over a wide range of frequencies.
  • a first patch of the antenna forms a first main radiation element.
  • the first patch is L-shaped, forming an L-shaped patch.
  • the first radiation element is resonant at a frequency band depending upon the length of the patch and its location of connection to the second patch of the antenna.
  • the first main radiation element forming the L-shaped patch includes both a feed point connection and a ground connection that are connectable with corresponding portions of the circuitry of the mobile station. Signal energy generated at the mobile station circuitry is provided to the antenna at the feed point connection, and signal energy transduced into electrical form at the antenna is provided to the transceiver circuitry at the feed point connection.
  • the L-shaped patch includes a lengthwise-extending leg piece and a foot piece extending outwardly therefrom. Appropriate selection of the dimensions of the leg piece and of the foot piece are determinative, together with the location of the connection of the L-shaped patch with the second antenna patch, of the characteristics of the first antenna patch.
  • the second antenna patch forms a folded patch, formed of multiple folded portions.
  • a first portion is contiguous to, and integral with, the L-shaped patch forming the first antenna patch.
  • the first portion is folded to extend in a planar direction offset from that of the planar direction in which the L-shaped first antenna patch extends.
  • the first folded portion of the folded antenna patch extends, e.g., in a planar direction substantially perpendicular to the planar direction in which the L-shaped, first antenna patch extends.
  • the folded antenna patch further includes a second folded portion, formed contiguous to, and integral with, the first folded portion.
  • the second folded portion is folded to extend in a direction offset from the planar direction in which the first folded section extends.
  • the second folded portion extends in a direction, e.g., substantially perpendicular to the planar direction in which the first folded portion extends.
  • the folded antenna patch further includes a third folded portion, formed contiguous to and integral with the second folded portion.
  • the third folded portion extends, e.g., in a direction substantially perpendicular to the planar direction in which the second folded portion extends.
  • the folded, second antenna patch includes a tuning strip, tunable to be of a length to cause the antenna patch to include resonant frequencies at a desired frequency range.
  • the antenna forms a pent-band antenna, capable of operation at five disparate frequency bands, including the 850, 900, 1800, 1900, and 2200 MHz frequency bands.
  • the antenna is configured to be resonant at other, and other numbers of, frequency bands.
  • the antenna permits signal energy to be transduced at any of the resonant frequencies. Due to its compact size, the antenna facilitates increased miniaturization of a mobile station, permitting its positioning within the housing of the mobile station.
  • a first patch forms a first radiation element.
  • the first patch is defined in a first planar direction and is resonant at least at a first higher frequency band.
  • a second patch forms a second resonant element.
  • the second patch includes a contiguous first portion, contiguous and integral with, the first patch.
  • the contiguous first portion is folded to be upstanding beyond the first planar direction in which the first patch extends. Thereby, the contiguous first portion extends in a second planar direction.
  • the second patch is resonant at a lower frequency band and a second higher frequency band.
  • the first and second higher frequency bands are, e g., of corresponding, overlapping, or differing frequencies.
  • a radio communication system shown generally at 10, provides for communication services, with mobile stations, of which the mobile station 12 is representative, by way of radio links defined upon a radio air interface 14. While the mobile station is generally representative of a mobile station operable in conformity with operating protocols of any of various operating specifications, in the exemplary implementation, the mobile station is operable to communicate at the 850, 900, 1800, 1900, and 2200 MHz frequency bands that correspond to 4 GSM (Global System for Mobile communications) frequency bands and a UMTS (Universal Mobile Telephone Service) band. Operability of the mobile station at the GSM frequencies and the UMTS frequencies provides a mobile station that is permitting of operation in a majority of the world-wide areas that provide for cellular-type communications.
  • GSM Global System for Mobile communications
  • UMTS Universal Mobile Telephone Service
  • a plurality of radio access networks (RANs), radio access networks 16, 18, 22, 24, and 26 are illustrated in Figure 1 .
  • the radio access networks 16-26 are representative, respectively, of a GSM 850 MHz system, a GSM 900 MHz system, a GSM 1800 MHz system, a GSM 1900 MHz system, and a UMTS 2200 MHz network, respectively.
  • the mobile station 12 When the mobile station 12 is positioned within the coverage area of any of such networks 16-26, the mobile station is capable of communicating with the radio access network.
  • the mobile station is positioned within the coverage of each of the radio access networks. That is to say, in the illustrated example, all of the networks have overlapping coverage areas.
  • the radio access networks 16-26 are coupled, here by way of gateways (GWYs) 28 to a core network 30.
  • GWYs gateways
  • CE communication endpoint
  • the communication endpoint is representative of a communication device that communicates with the mobile station.
  • Transceiver circuitry 36 is embodied at the mobile station, formed of a transmit part and a receive part to operate upon data that is to be communicated by the mobile station or data that is received thereat.
  • the receive and transmit chains forming the receive and transmit parts, respectively, of the transceiver circuitry are operable in conformity with the operating standards and protocols associated with, and defining, the respective systems.
  • the transceiver circuitry of the mobile station is coupled to an antenna 42 of an embodiment of the present invention.
  • the antenna is constructed to permit its operation to transduce signal energy at all of the frequency bands at which the mobile station transceiver circuitry is operable.
  • the antenna 42 operates to transduce signal energy at any of the 850, 900, 1800, 1900, and 2200 MHz frequency bands.
  • the antenna is positioned within the housing 44 of the mobile station to be supportively enclosed by the housing. Howsoever positioned, the antenna is of small dimensions, facilitating its carriage together with the mobile station at any of the frequencies at which the mobile station operates.
  • Figure 2 illustrates the antenna 42, shown in Figure 1 to form part of the mobile station 12.
  • the exemplary implementation shown in Figure 2 forms a pent-band, i.e., a five-band, antenna that operates in conjunction with a five-band mobile station to transduce signal energy during its operation.
  • the view shown in Figure 2 is representative of the antenna prior to configuration into a tri-dimensional form. The view is that of the pattern of the antenna.
  • the antenna is folded at folds 48, 52, and 54, as shall be described below.
  • the antenna is shaped into three dimensions to be tri-dimensional in shape.
  • the resultant form of the antenna is substantially rectangular.
  • the antenna includes two antenna patches, a first antenna patch 58 and a second antenna patch 62.
  • the first antenna patch 58 here comprises an L-shaped patch including a lengthwise-extending leg part 64 and an outwardly-extending foot part 66.
  • An outer lengthwise dimension of the L-shaped patch extends in a linear direction along the entire length of the patch.
  • An inner lengthwise dimension, also extending in the same linear direction, is of a length that extends to the foot part and is of a length, in part, dependent upon the positioning and configuration of the foot part.
  • the first antenna patch is connected to the transceiver circuitry (shown in Figure 1 ) of the mobile station at a feed point connection 72 and a ground connection 74.
  • the first antenna patch is resonant at a frequency band of frequencies determined by the characteristics of the antenna patch.
  • the lengthwise dimension of the patch i.e., the length of the leg piece of the L-shaped patch together with the location of connection of the second antenna patch is, in significant part, determinative of the operable frequency band of the first antenna patch.
  • the first antenna patch is configured to exhibit a resonant band of a relatively high frequency.
  • the second antenna patch 62 forms a folded patch with three portions, a first portion 78, a second portion 82, and a third portion 84 defined by the folding lines 48, 52, and 54, respectively. That is to say, the portion 78, 82, and 84 are defined by the folding of the antenna patch at the fold lines.
  • the first portion is constructed to be contiguous to, and integral with, portions of the first antenna patch 58.
  • the portion 78 When folded about the fold line 48, the portion 78 extends in a second planar direction, offset from a first planar direction in which the first antenna patch extends.
  • the planar directions are offset, e.g., by ninety degree angles to be perpendicular to one another.
  • the second portion 82 is formed contiguous to, and integral with, the first portion 78. Folding of the second portion about the fold line 52 causes the second portion to extend in a third planar direction, offset from the second planar direction in which the portion 78 extends.
  • the angle formed by folding of the antenna patch about the fold line 54 forms a substantially perpendicular angle to cause the third portion to extend in a planar direction substantially perpendicular to the planar direction of the second portion.
  • the three portions of the second antenna patch and the first antenna patch define four planar directions that, when perpendicular, together define a rectangular shape.
  • the second portion 82 of the antenna patch 62 includes a tuning strip that is of a length that is determinative of one of the frequency ranges, and hence bands, at which the antenna is resonant. And, the length of the patch, in the lengthwise direction, independently determines resonant frequencies at a lower frequency band and at a high frequency band. Tuning of the lower frequency is provided by the selection, or change, of the configuration of the tuning strip.
  • FIG 3 again illustrates the antenna 42, shown previously in Figures 1 and 2 .
  • the antenna is here positioned at a substrate 92 at which the transceiver circuitry 36 is mounted.
  • the transceiver circuitry is connected by way of conductive paths 94 with the feed point connection and the ground connection 72 and 74, respectively.
  • the antenna is mounted upon a substrate part 98 that, in the exemplary implementation forms a FR-4 dielectric substrate of a thickness of 1.5 millimeters and is of a relative permittivity of 4.4.
  • Folded as shown, the second portion 82 of the second antenna patch is upstanding beyond the first antenna patch 58.
  • the first portion 78 is of a height of 10 millimeters in the exemplary implementation.
  • the ground panel size is 55 millimeters by 90 millimeters.
  • the conductive paths of the first and second antenna patches of the antenna are of lengths and widths that are resonant at selected frequency ranges, selected in the exemplary implementation to be resonant at five frequency ranges, including the 850, 900, 1800, 1900, and 2200 MHz bands.
  • a lower frequency band width extends between 824 and 961 MHz while a higher frequency band width extends from 1700 to 2200 MHz.
  • Appropriate selection of the dimensions of the first antenna patch extends the bandwidth of the higher frequency band to extend between 1600 and 2300 MHz. Due to the folded nature of the second antenna patch, the space required on the substrate 92/98 is reduced relative to a two-dimensional implementation.
  • Figure 4 illustrates a graphical representation 104 that shows exemplary return loss of an exemplary antenna 42 shown in any of the preceding figures.
  • Review of the representation illustrates pass bands 106, 108, and 112. Through appropriate selection of the configuration of the antenna, the pass bands are located at other frequencies.
  • Figures 5 and 6 illustrate exemplary radiation patterns exhibited by the antenna 42 in an exemplary implementation.
  • a first plot 118 is representative of the radiation pattern at 950 MHz in the YZ plane.
  • the curve 122 is representative of a second radiation pattern, also at the 950 MHz frequency, but in an XY plane.
  • a first radiation pattern 128 is representative of the radiation pattern at 1880 MHz in the YZ plane.
  • the radiation pattern 132 is representative of the radiation pattern, at the same frequency, but in the XY plane.
  • Figure 7 illustrates a method flow diagram shown generally at 142, representative of the method of operation of an embodiment of the present invention.
  • the method transuces signal energy at a radio device.
  • a first radiation element is formed, comprised of a first patch defined to extend in a first planar direction and resonant at a first frequency band.
  • a second radiation element is formed.
  • the second radiation element includes a folded loop having a contiguous first portion.
  • the contiguous first portion is contiguous and integral with the first patch.
  • the second radiation element also includes a contiguous second portion, contiguous and integral with the first portion.
  • the contiguous first portion is folded to be upstanding beyond the first patch in a second planar direction and the contiguous second portion is folded to extend in a third planar direction, offset from the second planar direction.
  • the second radiation element is resonant at a second frequency band.
  • the second radiation element further includes a contiguous third portion, contiguous and integral with the contiguous second portion.
  • the contiguous third portion extends in a fourth planar direction, offset from the third planar direction.
  • the element is formed such that the second and fourth planar directions are substantially parallel and such that the third planar direction is substantially parallel to the first planar direction in which the first element extends.
  • the folded loop is tuned.
  • signal energy is transduced within any of the first and second frequency bands at any of the first patch and the folded loop.
  • a multi-band antenna is formed, of compact configuration, facilitating its use together with a mobile station, or other portable radio device.

Landscapes

  • Waveguide Aerials (AREA)

Claims (15)

  1. Eine Antenne (42) für eine Pent-Band-Funkkommunikation zur Verbindung mit einer Funk-Transceiver-Schaltung, wobei die Antenne (42) auf einem Substrat (98) angebracht ist und aufweist:
    einen ersten Patch (58), der ein erstes Ausstrahlungselement bildet, wobei der erste Patch L-förmig ist und einen sich längs erstreckenden Schenkelteil (64) und einen sich nach außen erstreckenden Fußteil (66) hat, wobei sich eine Längendimension des L-förmigen Patches in einer linearen Richtung entlang einer gesamten Länge des Patches erstreckt,
    wobei sich eine innere Längendimension ebenfalls in der linearen Richtung zu dem sich nach außen erstreckenden Fußteil erstreckt, wobei der erste Antennen-Patch eine Zufuhrpunkt-Verbindung (72) umfasst, die sich von und angrenzend zu dem ersten Antennen-Patch erstreckt, wobei der erste Antennen-Patch mit der Funk-Transceiver-Schaltung verbunden ist an der Zufuhrpunkt-Verbindung (72) und an einer Masse-Verbindung (74) für die Antenne (42), wobei der erste Antennen-Patch konfiguriert ist, bei einer Frequenz eine Resonanz zu haben, die durch die Längendimension des L-förmigen Patches und durch eine Position einer Verbindung eines zweiten gefalteten Antennen-Patches (62) zu dem ersten Antennen-Patch bestimmt wird, wobei der erste Patch zumindest an einem ersten höheren Frequenzband resonant ist; wobei
    der zweite gefaltete Antennen-Patch (62) ein zweites Ausstrahlungselement bildet, und einen ersten Abschnitt (78), einen zweiten Abschnitt (82) und
    einen dritten Abschnitt (84) umfasst, wobei der erste Abschnitt (78) angrenzend und integral mit dem ersten Patch (58) ist, wobei der erste Abschnitt (78) des zweiten gefalteten Antennen-Patches (62) gefaltet ist,
    um sich in einer zweiten planaren Richtung im Wesentlichen senkrecht zu einer ersten planaren Richtung des ersten Patches zu erstrecken, wobei der zweite Abschnitt (82) des zweiten gefalteten Patches (62) angrenzend und integral mit dem ersten Abschnitt (78) ist und gefaltet ist, um sich in einer dritten planaren Richtung zu erstrecken, wobei der zweite Abschnitt (82) einen Tuning-Streifen (88) einer Länge hat, die einen der Frequenzbereiche der Antenne (42) bestimmt, wobei der dritte Abschnitt des zweiten gefalteten Antennen-Patches (62) gefaltet ist, um sich in einer vierten planaren Richtung im Wesentlichen senkrecht zu dem zweiten Abschnitt zu erstrecken, wobei der zweite Patch (62) zumindest in einem niedrigeren Frequenzband und einem zweiten höheren Frequenzband resonant ist.
  2. Die Antenne (42) gemäß Anspruch 1, wobei das erste höhere Frequenzband, an dem der erste Patch (58) konfiguriert ist, resonant zu sein, abhängig ist von einer Längendimension des sich längs erstreckenden Schenkelteils (64) des ersten Patches.
  3. Die Antenne (42) gemäß Anspruch 2, wobei die Längendimension des L-förmigen Patches (64) eine innere Längendimension aufweist, die durch Positionieren des Fußteils (66) relativ zu dem länglichen Schenkelteil (64) bestimmt wird.
  4. Die Antenne (42) gemäß Anspruch 2, wobei die Längendimension des länglichen Schenkelteils (64) eine äußere Längendimension aufweist, die eine gesamte Länge des Schenkelteils (64) definiert.
  5. Die Antenne (42) gemäß Anspruch 1, wobei das erste höhere Frequenzband, in dem das erste Ausstrahlungselement (58), das den ersten Patch bildet, resonant ist, zwischen 1600 MHz und 2300 MHz positioniert ist.
  6. Die Antenne (42) gemäß Anspruch 1, wobei das erste höhere Frequenzband mit dem zweiten höheren Frequenzband zumindest überlappt.
  7. Die Antenne (42) gemäß Anspruch 1, wobei der erste Patch (58) weiter konfiguriert ist, eine Kommunikationsvorrichtungs-Zufuhrpunkt (72)-Verbindung zu umfassen.
  8. Die Antenne (42) gemäß Anspruch 1, wobei der erste Patch (58) weiter konfiguriert ist, eine Kommunikationsvorrichtung-Masse-Verbindung (74) zu umfassen.
  9. Die Antenne (42) gemäß Anspruch 1, wobei die dritte planare Richtung, in die sich der zweite Abschnitt (82) erstreckt, im Wesentlichen senkrecht zu der zweiten planaren Richtung ist, in die sich der erste Abschnitt (78) erstreckt.
  10. Die Antenne (42) gemäß Anspruch 1, wobei das zweite höhere Frequenzband, in dem das zweite Ausstrahlungselement, das den zweiten Patch (62) bildet, konfiguriert ist, resonant zu sein, von einer Längendimension des zweiten Patches (62) abhängig ist.
  11. Die Antenne (42) gemäß Anspruch 1, wobei das zweite Ausstrahlungselement, das den zweiten Patch (62) bildet, weiter aufweist einen Tuning-Streifen einer Tuning-Streifen-Länge, wobei eine Längendimension des Tuning-Streifens teilweise für das niedrigere Frequenzband bestimmend ist, in dem der zweite Patch (62) resonant ist.
  12. Die Antenne (42) gemäß Anspruch 1, wobei das erste höhere Frequenzband 1600-2300 MHz umfasst und wobei das zweite höhere Frequenzband 1700-2200 MHz umfasst.
  13. Die Antenne (42) gemäß Anspruch 1, wobei das niedrigere Frequenzband, in dem der zweite Patch (62) resonant ist, ein Frequenzband in einem Bereich von 824 MHz bis 961 MHz aufweist, und wobei das zweite höhere Frequenzband ein Frequenzband in einem Bereich von 1700 MHz bis 2200 MHz aufweist.
  14. Ein Verfahren (142) zum Umwandeln von Signalenergie an einer Pent-Band-Funkvorrichtung, wobei das Verfahren die Operationen aufweist:
    Bilden eines ersten L-förmigen Ausstrahlungselements (144), das einen ersten Patch aufweist, der definiert ist, sich in einer ersten planaren Richtung zu erstrecken und an einem ersten höheren Frequenzband resonant zu sein, wobei der erste Patch aufweist: einen sich längs erstreckenden Schenkelteil (64) und einen sich nach außen erstreckenden Fußteil (66), wobei sich eine Längendimension des L-förmigen Patches in einer linearen Richtung entlang einer gesamten Länge des Patches erstreckt und sich eine innere Längendimension ebenfalls in der linearen Richtung zu dem sich nach außen erstreckenden Fußteil erstreckt, wobei der erste Antennen-Patch eine Zufuhrpunkt-Verbindung (72) umfasst, die sich von und angrenzend zu dem ersten Antennen-Patch erstreckt, wobei der erste Antennen-Patch vorgesehen ist zur Verbindung mit einer Funk-Transceiver-Schaltung an der Zufuhrpunkt-Verbindung (72) und an einer Masse-Verbindung (74) für die Antenne (42), wobei der erste Antennen-Patch an einer Frequenz resonant ist, die durch die Längendimension des L-förmigen Patches und durch eine Position einer Verbindung eines zweiten gefalteten Antennen-Patches (62) zu dem ersten Antennen-Patch bestimmt wird;
    Bilden eines zweiten Ausstrahlungselements (146), das den zweiten gefalteten Antennen-Patch aufweist, der angrenzend und integral mit dem ersten Patch ist und einen ersten Abschnitt (78), einen zweiten Abschnitt (82) und einen dritten Abschnitt (84) umfasst, wobei der erste Abschnitt (78) des zweiten gefalteten Patches gefaltet ist, um sich in einer zweiten planaren Richtung im Wesentlichen senkrecht zu einer ersten planaren Richtung des ersten Patches zu erstrecken, wobei der zweite Abschnitt (82) des zweiten gefalteten Patches (62) angrenzend und integral mit dem ersten Abschnitt (78) ist und gefaltet ist, um sich in einer dritten planaren Richtung zu erstrecken, wobei der zweite Abschnitt (82) einen Tuning-Streifen (88) einer Länge hat, die einen der Frequenzbereiche der Antenne (42) bestimmt, wobei der dritte Abschnitt (84) des zweiten gefalteten Antennen-Patches (62) gefaltet ist, um sich in einer vierten planaren Richtung im Wesentlichen senkrecht zu dem zweiten Abschnitt zu erstrecken, wobei das zweite Ausstrahlungselement resonant ist zumindest in einem niedrigeren Frequenzband und einem zweiten höheren Frequenzband;
    Anbringen der Antenne (42) auf einem Substrat (98) und Verbinden der Antenne mit der Funk-Transceiver-Schaltung; und
    Umwandeln (152) von Signalenergie in einem der höheren und niedrigeren Frequenzbänder an einem des ersten Patches und des Tuning-Streifens (88).
  15. Das Verfahren (142) gemäß Anspruch 14, das den weiteren Vorgang eines Anpassens des Tuning-Streifens (88) aufweist.
EP07114890A 2007-08-23 2007-08-23 Multiband-Antenne und entsprechendes Verfahren für ein Funkkommunikationsgerät Active EP2028720B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07114890A EP2028720B1 (de) 2007-08-23 2007-08-23 Multiband-Antenne und entsprechendes Verfahren für ein Funkkommunikationsgerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07114890A EP2028720B1 (de) 2007-08-23 2007-08-23 Multiband-Antenne und entsprechendes Verfahren für ein Funkkommunikationsgerät

Publications (2)

Publication Number Publication Date
EP2028720A1 EP2028720A1 (de) 2009-02-25
EP2028720B1 true EP2028720B1 (de) 2012-11-07

Family

ID=38596805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07114890A Active EP2028720B1 (de) 2007-08-23 2007-08-23 Multiband-Antenne und entsprechendes Verfahren für ein Funkkommunikationsgerät

Country Status (1)

Country Link
EP (1) EP2028720B1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136594B2 (en) 2009-08-20 2015-09-15 Qualcomm Incorporated Compact multi-band planar inverted F antenna
TWI483471B (zh) * 2011-08-02 2015-05-01 Arcadyan Technology Corp 雙頻天線
US20170018845A1 (en) * 2015-07-17 2017-01-19 Samsung Electro-Mechanics Co., Ltd. Antenna apparatus
CN107112633B (zh) * 2015-12-22 2021-01-05 华为技术有限公司 一种移动终端
US11962102B2 (en) 2021-06-17 2024-04-16 Neptune Technology Group Inc. Multi-band stamped sheet metal antenna

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368939B1 (ko) * 2000-10-05 2003-01-24 주식회사 에이스테크놀로지 높은 복사효율과 광대역 특성을 갖는 내장형 안테나와 그실장방법
DE10049845A1 (de) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Mehrband-Mikrowellenantenne
US6650295B2 (en) 2002-01-28 2003-11-18 Nokia Corporation Tunable antenna for wireless communication terminals
DE10231961B3 (de) 2002-07-15 2004-02-12 Kathrein-Werke Kg Niedrig bauende Dual- oder Multibandantenne, insbesondere für Kraftfahrzeuge
US7088294B2 (en) * 2004-06-02 2006-08-08 Research In Motion Limited Mobile wireless communications device comprising a top-mounted auxiliary input/output device and a bottom-mounted antenna

Also Published As

Publication number Publication date
EP2028720A1 (de) 2009-02-25

Similar Documents

Publication Publication Date Title
US7719470B2 (en) Multi-band antenna, and associated methodology, for a radio communication device
US9406998B2 (en) Distributed multiband antenna and methods
JP4769793B2 (ja) 大きく曲がったスロットを有するマルチバンドコンパクトpifaアンテナ
EP1973192B1 (de) Antennenvorrichtung und entsprechendes Verfahren für ein Multiband-Radiogerät
US7629932B2 (en) Antenna apparatus, and associated methodology, for a multi-band radio device
EP1869726B1 (de) Antenne mit mehreren resonanzfrequenzen
US6759991B2 (en) Antenna arrangement
JP4865855B2 (ja) GSM、UMTS、およびWiFi用途向けマルチバンド・アンテナ
US20030103010A1 (en) Dual-band antenna arrangement
US7403161B2 (en) Multiband antenna in a communication device
JP4436414B2 (ja) 多重帯域内蔵型アンテナの共振周波数調整方法
US20080303729A1 (en) Multiband antenna system and methods
JP4232158B2 (ja) アンテナ装置及びこれを用いた通信機器
JP2006504308A (ja) 無線デバイスおよびアンテナ構造
JP2006527557A (ja) 複数の共振周波数帯域を有したループ型マルチ・ブランチ平面アンテナおよびそれを組み込んだ無線端末
CN112689033B (zh) 终端设备
US7629933B2 (en) Multi-band antenna, and associated methodology, for a radio communication device
CN104518278A (zh) 天线及终端
EP2028720B1 (de) Multiband-Antenne und entsprechendes Verfahren für ein Funkkommunikationsgerät
CN112467357A (zh) 天线结构
CN101682104A (zh) 天线布置
JP2009111959A (ja) 平行2線アンテナおよび無線通信機器
TWI719837B (zh) 可調天線模組
CN103151612A (zh) 宽边耦合馈电的多频段宽带平面天线
CN111725609B (zh) 天线结构

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090304

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 583324

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007026498

Country of ref document: DE

Effective date: 20130103

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 583324

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130307

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130208

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130307

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130207

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BLACKBERRY LIMITED, CA

Free format text: FORMER OWNER: RESEARCH IN MOTION LIMITED, CA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BLACKBERRY LIMITED

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: 2200 UNIVERSITY AVENUE EAST, WATERLOO, ON N2K 0A7 (CA)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007026498

Country of ref document: DE

Effective date: 20130808

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130823

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007026498

Country of ref document: DE

Representative=s name: MERH-IP MATIAS ERNY REICHL HOFFMANN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007026498

Country of ref document: DE

Representative=s name: MERH-IP MATIAS ERNY REICHL HOFFMANN PATENTANWA, DE

Effective date: 20140925

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007026498

Country of ref document: DE

Representative=s name: MERH-IP MATIAS ERNY REICHL HOFFMANN, DE

Effective date: 20140925

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007026498

Country of ref document: DE

Owner name: BLACKBERRY LIMITED, WATERLOO, CA

Free format text: FORMER OWNER: RESEARCH IN MOTION LTD., WATERLOO, ONTARIO, CA

Effective date: 20140925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130823

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070823

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230826

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230828

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230825

Year of fee payment: 17

Ref country code: DE

Payment date: 20230829

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007026498

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007026498

Country of ref document: DE

Owner name: MALIKIE INNOVATIONS LTD., IE

Free format text: FORMER OWNER: BLACKBERRY LIMITED, WATERLOO, ONTARIO, CA