EP2020672A2 - High frequency generator for ion and electron sources - Google Patents

High frequency generator for ion and electron sources Download PDF

Info

Publication number
EP2020672A2
EP2020672A2 EP08013495A EP08013495A EP2020672A2 EP 2020672 A2 EP2020672 A2 EP 2020672A2 EP 08013495 A EP08013495 A EP 08013495A EP 08013495 A EP08013495 A EP 08013495A EP 2020672 A2 EP2020672 A2 EP 2020672A2
Authority
EP
European Patent Office
Prior art keywords
frequency generator
coupling
coupling coil
resonant circuit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08013495A
Other languages
German (de)
French (fr)
Other versions
EP2020672B1 (en
EP2020672A3 (en
Inventor
Werner Kadrnoschka
Anton Lebeda
Johann Müller
Stefan Weis
Rainer Dr. Killinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArianeGroup GmbH
Original Assignee
Astrium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium GmbH filed Critical Astrium GmbH
Publication of EP2020672A2 publication Critical patent/EP2020672A2/en
Publication of EP2020672A3 publication Critical patent/EP2020672A3/en
Application granted granted Critical
Publication of EP2020672B1 publication Critical patent/EP2020672B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0018Arrangements or adaptations of power supply systems

Definitions

  • the invention relates to a device for coupling ionization energy in an inductively or inductively capacitively excited ion or electron source.
  • a plasma to be excited at high frequency is located inside an insulated vessel, the so-called discharge vessel.
  • a coupling coil for feeding a required for plasma excitation high-frequency energy is wound.
  • the plasma is thus within the coupling coil. Does it come through state changes, e.g. Changes in the density or conductivity, the plasma to impedance changes, so cause these detuning the resonant circuit.
  • the mismatching impedance of a coupling network connecting the high-frequency generator to the coupling coil must be compensated for by manually re-determining an impedance matching network (so-called matchbox) or an actuator.
  • the compensation results in the capacitance of a capacitor of the impedance matching network being reduced in magnitude, e.g. is suitably adjusted by surface modification, or the inductance of a coil of the impedance matching network is changed by the retraction of a ferrite.
  • the impedance matching via an impedance matching network can usually not be readjusted very quickly and optimally only over a small frequency load range. Not fast means that readjustment can be in the order of seconds. As a result, considerable power losses occur in the impedance matching networks.
  • a gas to be ionized such as Xe, Kr, Ar, Ne, He, H 2 , O 2 , CO 2 , Cs or Hg
  • a coupling coil wound around the discharge vessel for supplying a high-frequency energy necessary for plasma ex
  • the coupling coil is connected to the high-frequency generator and forms a series or parallel resonant circuit with the coupling capacitor of the high-frequency generator.
  • the inventive device corrects phase errors of current and voltage in the power output stage of the high-frequency generator by automatically tracking the frequency and phase of the resonant frequency of the load circuit.
  • the control principle is based on the fact that the PLL control circuit continuously compares the phase position of the sinusoidal high-frequency output current and the phase position of the generator output voltage via a digital phase detector and a phase error occurring by adjusting the generator frequency via a voltage-controlled oscillator (VCO) on the Frequency of the resonant circuit tunes until the phase error is zero. Since the reaction time of the PLL control device is very short ( ⁇ 100 ⁇ sec, depending on the design), no longer lasting phase errors occur even with rapid changes in the resonance frequencies.
  • the adaptation of the high-frequency generator to the consumer is thereby achieved with the highest possible efficiency. Due to the very fast frequency tracking and the phase adjustment by means of the digital phase comparator, the PLL control device ensures that current and voltage are always in phase and thus the maximum power can be coupled via the coupling coil in the plasma. This can be done without mechanical movement or otherwise.
  • the device according to the invention is characterized by its simplicity and great flexibility and usability over a wide frequency range.
  • the procedure according to the invention for optimum impedance and power adaptation thus consists of matching the power delivered by the high-frequency generator via a PLL (Phase Locked Loop) PLL, zero resonance and phase error, and transmitting it to the plasma.
  • PLL Phase Locked Loop
  • the transmission of the power with a zero phase error means that current and voltage in the resonant circuit are in phase and therefore no reactive currents are flowing. Thus, no reactive power losses can occur, whereby switching losses are almost eliminated.
  • the high frequency generator is characterized by the fact that an operation at resonance and optimum phase adjustment is possible. Only sinusoidal currents flow through the PLL control device, both in the high-frequency generator and in the resonant circuit and thus in the coupling coil. The sinusoidal current allows high efficiency of the high frequency generator and is therefore at high operating frequencies, ie frequencies above 0.5 MHz, between 90 and 95%.
  • An inventive device with a high-frequency generator with PLL control always operates on the resonant frequency of the coupling network of the ion or electron source.
  • the coupling network of the invention is formed by the resonant circuit of coupling coil and coupling capacitor. This means that the high-frequency generator follows all frequency changes independent of a frequency detuning and a frequency bandwidth-quality in-phase by the PLL control.
  • the power adjustment of the high-frequency generator takes place in the microsecond range and leads by the exact phase balance of current and voltage in switching elements of the high frequency generator and the resonant circuit to a nearly lossless switching and optimal power input into the plasma.
  • a device according to the invention is therefore particularly suitable for the high-frequency power supply of ion sources (TWK) and electron sources (NTR) with inductive excitation and for applications in which the lowest energy consumption is required.
  • TWK ion sources
  • NTR electron sources
  • a frequency and / or phase control for impedance matching of the resonant circuit is performed by the PLL control device.
  • the power control of the high frequency generator is vorrisebar by setting a DC input voltage and an input current of the high frequency generator.
  • the high-frequency generator is thus characterized by the fact that it generates a high-frequency output voltage from a controllable in voltage and current DC voltage source. This AC voltage source is interconnected with the inclusion of the coupling coil necessary for an inductive coupling and the additional coupling capacitor to form a resonant circuit.
  • the high-frequency generator of the device according to the invention is connected to the coupling coil without the interposition of an impedance matching network, a so-called matchbox.
  • the coupling of the high-frequency generator with PLL control nevertheless makes it possible, over a large power and frequency range, to couple the electrical energy directly into the plasma of the ion or electron source.
  • the resonant circuit which is formed from the coupling coil and the coupling capacitor, can optionally be designed as a series or parallel resonant circuit.
  • the impedance matching takes place in that the coupling coil and constructive coupling capacitances between the plasma and the discharge vessel and corresponding supply lines to the series or parallel / resonant circuit are included, with an automatic frequency and phase control is performed by the PLL-controlled high-frequency generator.
  • the coupling coil may have a center tap to which the high frequency generator is connected. This allows the cooling of the coupling coil by supplying a cooling medium without the interposition of insulators, since the coil ends of the coupling coil are at a reference potential.
  • the cooling medium water is preferably used.
  • a reference potential for example, serve the ground potential.
  • the coupling coil can be arranged between two or more coupling capacitors. It is useful if the forming resonant circuit forms a resonance frequency, which is within the so-called. Lock frequency of the PLL control device.
  • VCO Voltage Controlled Oscillator
  • a further embodiment provides that the high-frequency generator is connected to the coupling coil without the interposition of electronic components for an intermediate transformation.
  • An alternative embodiment provides that the at least one coupling capacitor and the coupling coil are connected via a transformer to the high-frequency generator. This may be useful, for example, in the event that very large impedance adjustments are required. It is provided that the transformer is capacitively coupled on the primary side with the high-frequency generator and the secondary side forms the resonant circuit with the at least one coupling capacitor and the coupling coil.
  • a device for detecting current and voltage in the resonant circuit is provided which is coupled to the PLL control device in order to supply the measured current and the measured voltage as controlled variables.
  • a further embodiment of the invention provides that the at least one coupling capacitor is arranged in the high-frequency generator or outside it (as an external component).
  • the coupling coil is grounded on one side or operated in isolation to a ground potential.
  • a further embodiment provides that the coupling coil and the plasma form a transformer, wherein the plasma represents a secondary winding of the transformer.
  • the high-frequency generator comprises a power output stage, which can optionally be designed as one of the variants listed below: half-bridge class D output stage; Full-bridge Class D amplifier; Push-pull output stage; Power amplifier of class E; Power amplifier of class F; Class C power amplifier.
  • the choice of which power output stage to provide in the radio-frequency generator essentially depends on the required frequency and power range.
  • the impedance matching to the coupling-in resonant circuit takes place in all cases via a frequency phase control by means of the PLL control device.
  • Class D and Class E power amplifiers are used, which are characterized by a maximum current flow angle of 180 ° in the switching elements of the output stages (with bipolar or MOSFET transistors).
  • class D power amplifiers without PLL control are used in conjunction with resonant circuits, even with the smallest frequency phase detunings, depending on the circuit quality of the resonant circuit, significant reactive currents of both capacitive or inductive character, depending on the direction of the phase frequency detuning , The consequence of this is very high current loadings of the output stage and consequently high losses in the output stages and coupling networks. The losses occur in the form of reactive power losses. They lead to a sharp drop in the power transmitted to the consumer.
  • PLL control By using the PLL control, the problems mentioned, i. Phase errors in the output stages, even with Class D, Class E and Class F power amplifiers completely avoided.
  • PLL control allows full performance utilization of these final stage types, i. a flow angle of 180 °.
  • a resonance frequency in the range of 0.5 MHz to 30 MHz is adjustable.
  • the coupled into the high frequency generator power is in the range of 1 W to 10 kW.
  • the load impedance coupled to the high frequency generator is in a range of 0.1 ohms to 1 ohms or in a range of 1 ohms to 50 ohms.
  • the discharge vessel of the device according to the invention has a gas inlet and an outlet arranged opposite to at least two extraction grids, each with a multi-hole mask, which serves as an electric lens for focusing the ion beams to be extracted.
  • the extraction is carried out by an electric field, which can be applied to the extraction grid.
  • the discharge vessel is made of a non-conductive Material with low high frequency losses formed, such as quartz, ceramic, Vespel or boron nitride.
  • the discharge vessel serves as a discharge space for the gas to be ionized.
  • the coupling coil according to another embodiment comprises a single-layer or a multi-layer or a bifilar winding.
  • the coupling coil is arranged around the discharge vessel or within the discharge vessel.
  • the coupling coil is cylindrical, conical, spherical or teilkonisch wound with cylindrical transition body to the discharge vessel.
  • Fig. 1 shows a schematic representation of a device according to the invention for coupling ionization energy in an ion or electron source.
  • a gas tank 1 in which a gas to be ionized is stored under high pressure, is coupled via a line to a fill and drain region 2.
  • the fill and drain region 2 is coupled via a further line to a flow control unit 3.
  • This has two outputs.
  • a first outlet is connected to an inlet 6 of a discharge vessel 4 for ionization of the gas.
  • a second output of the flow control unit 3 is connected to a neutralizer 10.
  • the discharge vessel 4 is made of a non-conductive material, which has only low radio frequency (RF) losses.
  • the discharge vessel 4 may for example consist of quartz, a ceramic, Vespel or boron nitride.
  • the discharge vessel 4 serves as a discharge space for the gas to be ionized, for example Xe, Kr, Ar, Ne, He, H 2 , O 2 , CO 2 , C
  • a coupling coil 5 is arranged around a cylindrical section of the discharge vessel 4, which is coupled to the inlet 6.
  • the coupling coil 5 may consist of a single-layer, multi-layer or bifilar winding, which is wound both around and within the discharge vessel.
  • the shape of the winding of the coupling coil is arbitrary. It can be cylindrical, conical, spherical or teilkonisch with cylindrical transition body.
  • the discharge vessel 4 with the surrounding coupling coil 5 and the neutralizer 10 are surrounded by an engine casing 21.
  • the coupling coil 5 is connected to a high-frequency generator 16, which generates a high-frequency output voltage from a controllable in voltage and current DC voltage source. Together with a coupling capacitor (not shown) provided in the high-frequency generator 16, the coupling coil 5 forms a resonance circuit.
  • the high-frequency generator, the field coupling on inductive or combined inductive and capacitive Basis is suitable for use in the frequency range from 0.5 MHz to 30 MHz. In this case, an efficiency of the high-frequency generator can be achieved, which is in the range between 90 and 95%.
  • extraction grid 8 At an outlet 7 of the discharge vessel 4 at least two, preferably two or three, extraction grid 8 are arranged, each having at least one multi-hole mask.
  • the extraction grids 8 serve as an electric lens for focusing the ion beams to be extracted.
  • the extraction is carried out by an electric field, which is applied to the extraction grid 8.
  • the extraction grids 8 are connected to an accelerator 18 and a plasma receiver 17 (also called a plasma holder), which have different potentials. While the plasma receiver 17 has the function of an anode and generates a voltage of +1200 V, the accelerator 18 provides a voltage of -250V. To the extraction grid, a retarder 19 is also connected.
  • the reference numeral 9 designates the direction of ejection of the positively charged ion beam e + from the extraction grating 8.
  • the positively charged ion beam is compensated at the output of the discharge vessel 4 by means of negatively charged electrons in order to prevent electrical charging of the device.
  • the reference numeral 13 designates the ejection direction of electrons e-, which are expelled from the neutralizer 10.
  • the neutralizer 10 comprises a cathode heater 11 and a neutralization unit 12.
  • An electrode of the cathode heater 11 is connected to an electrode of the neutralization unit 12.
  • a respective other electrode of the cathode heater 11 and the neutralization unit 12 is coupled to the neutralizer 10.
  • there is a potential difference of 9 V between the electrodes of the cathode heater 10 while a potential difference of 15 V exists between the electrodes of the neutralization unit 12.
  • FIG Fig. 2 A simple electrical equivalent circuit of the invention is shown in FIG Fig. 2 shown.
  • the coupling coil 5 and the plasma operate in the simplified sense as a transformer (reference numeral 36), wherein the plasma corresponds to a secondary winding 37 of the transformer 36.
  • the primary winding is formed by the coupling coil 5.
  • the resistors 35 and 38 represent line resistances.
  • With the reference numeral 22 of the coupling capacitor is characterized, which forms the resonant circuit with the coupling coil 5.
  • parasitic components parasitic components (resistor 35 and capacitor 46) are included.
  • the parasitic capacitor 46 represents, for example, capacitances of a (coaxial) cable and of output transistors.
  • a high frequency generator 16 is connected to the supply voltage source so that the input voltage Uin and the input current Jin are applied. On the output side, the high-frequency generator 16 is connected to the coupling capacitor 22.
  • the high-frequency generator is also marked with RFG (Radio Frequency Generator) in the figures.
  • Fig. 3 shows a simplified equivalent circuit diagram of the device according to the invention.
  • the high-frequency generator 16 is connected to the supply voltage source so that the input voltage Uin and the input current Jin are applied.
  • the high-frequency generator 16 is connected in series via the coupling capacitor 22 to the coupling coil 5.
  • the resistor 35 represents a line resistance. In simple terms, this means that the coupling coil 5, which is usually wound around the discharge vessel, is connected to the coupling capacitor to form a series or parallel resonant circuit.
  • Fig. 6 shows a schematic representation of the components required in a device according to the invention.
  • the invention is characterized in that the high-frequency generator 16 generates a high-frequency output voltage from a DC voltage source (power supply 33) that can be controlled in voltage and current.
  • the high frequency generator 16 is included the coupling coil 5 necessary for the inductive coupling and an additional resonance capacitor, the so-called coupling capacitor 22, are connected to form a resonant circuit.
  • the power generated by the high-frequency generator 16 is transmitted via a frequency-controlled and phase-controlled control loop, matched to resonance and zero phase error. This can, for example, the temporal courses of current and voltage at the output of the high-frequency generator of the Fig. 7 be removed.
  • the upper (square) curve shows the voltage U
  • the middle (sinusoid) curve the current I and the lower the control of the output stage.
  • the current is also shown to illustrate the phase equality.
  • Phase error zero means that current and voltage in the resonant circuit are in phase and thus no reactive currents are flowing. Thus no reactive power losses can occur, whereby switching losses are almost eliminated.
  • By operating at resonance and optimum phase balance, produced by a PLL control device only sinusoidal currents flow in both the switching elements of the high frequency generator 16 and in the resonant circuit and thus in the coupling coil 5.
  • the sinusoidal current allows the switching of switching elements in the current zero crossing.
  • a high efficiency in the range of 90 to 95% can be achieved.
  • the control loop is, as already explained, formed by the coupling coil 5 and the coupling capacitor 22, which in the embodiment of Fig. 6 is arranged inside the high-frequency generator 16.
  • the coupling capacitor 22 could also be formed as an external component.
  • the coupling capacitor 22 is coupled via a line to a power stage (output stage) 24, wherein the current flowing in this line is detected by a current measuring device 23.
  • the output stage 24 is exemplified as a class D output stage and is driven by a drive circuit 25, which includes a flip-flop 47 and driver stages 48, 49. Drive the driver stages 48, 49 via power amplifiers 52, 53 of the output stage 24.
  • the drive circuit 25 in turn is connected to a PLL control device 34.
  • VCO voltage controlled oscillator
  • the PLL control device 34 is coupled to the external power supply 33 via an input filter 31. Via an input filter 32, the output stage 24 is also connected to the power supply 33.
  • the PLL control device 34, more particularly the digital phase comparator 28 receives as input a current measured by the current measuring device 23 which is amplified by a signal amplifier 29. Furthermore, a voltage applied to the output of the output stage 24 is fed via an additional signal amplifier 30 to an input of the digital phase comparator 28.
  • a power adjustment can be done in the microsecond range by the exact phase balance of current and voltage in the switching elements of the drive circuit 25 and the resonant circuit and leads to a virtually lossless switching of the output stage 24 and thus an optimal power input into the discharged into the discharge vessel 4 plasma.
  • Such a high-frequency generator with PLL control is therefore particularly suitable for the high-frequency power supply of ion sources (TWK) as well as in electron sources (NTR) with inductive excitation as well as for applications in which the lowest energy consumption is required.
  • TWK ion sources
  • NTR electron sources
  • the invention makes it possible to use half-bridges in conjunction with a PLL frequency and phase control as well as a resonant circuit coupling.
  • Fig. 4 is a series resonant circuit shown, which can work in the frequency and power range of 600 kHz to 14 MHz and 1 W to 3 kW.
  • the output stage 24, designed as a half-bridge is connected between a supply connection and a reference potential connection and, in a known manner, comprises two switching elements 44 connected in series with their load paths, in the embodiment in the form of MOSFETs. These are controlled by the drive circuit 25.
  • the coupling capacitor 22 is coupled to a node 38, which is in each case connected to a main terminal of the switching elements 44.
  • a resistor 45 of the resonant circuit which represents a coil resistance, is connected to reference potential, eg ground.
  • the switching elements 44 are driven by the drive circuit 25, which is connected to a variable in power and voltage power supply.
  • Fig. 5 shows a further block diagram of a configured as a full-bridge amplifier 24 of the high-frequency generator.
  • a power amplifier designed as a full bridge is suitable for a frequency range from 600 kHz to 5 MHz and a power range from 2 kW to 10 kW.
  • the output stage 24 includes two parallel-connected half-bridge branches, which are connected between a supply and a reference potential terminal and each comprise two with their load paths connected in series switching elements 44 in the form of MOSFETS.
  • the resonant circuit comprising the coupling coil 5, the coupling capacitor 22 and the line resistance 35, is connected to a node 39 of a first half-bridge and a node 41 of a second half-bridge of the output stage 24.
  • the power supply 33, a smoothing capacitor 54 is connected in parallel.
  • Fig. 8 represents an electrical diagram of possible couplings of coupling coils to a high frequency generator.
  • a coupling of the high frequency generator 16 to the ion or electron source can be done via simple series resonant circuits or parallel resonant circuits in conjunction with a PLL phase control.
  • the coupling can take place via a series / parallel resonant circuit, wherein the coupling coil 5 a center tap owns (left half of Fig. 8 ). Whose two free ends can each be connected to a reference potential, in the embodiment mass.
  • a capacitor 55 is connected. Not shown is the simplicity of the PLL frequency / phase control.
  • the resonant circuit further comprises the coupling capacitor 22 and the line resistance 35.
  • a voltage supplied to the PLL control circuit is tapped via the resistor 35, these points being indicated by v.
  • the current supplied to the PLL control loop as a control variable is tapped off at the point marked I.
  • the coupling coil 5 is arranged between two coupling capacitors 22a and 22b. Both ends of the coupling coil 5 are capacitively connected. Not shown is the line resistance. Also not shown is provided in accordance with the inventive concept PLL frequency phase control and the high frequency generator.
  • the described coupling significantly increases the efficiency of the high-frequency generator and the efficiency of the ion or electron source. In both modules, no reactive currents occur, whereby the power loss decreases in each case.
  • Fig. 9 shows an exemplary schematic representation of the coupling of a coupling coil via an additional transformer 42 to the high frequency generator 16.
  • the additional transformer 42 is an additional transformer impedance matching, especially in the frequency and power range of 600 kHz to 5 MHz or 1 W to 1 kW possible.
  • the additional transformer 42 has a center tap in the exemplary embodiment.
  • a high-frequency generator 16 downstream capacitor 54 is used for DC decoupling of the auxiliary transformer 42nd
  • Fig. 10 shows a representation of frequency bandwidth and Resonanznikgüte or frequency detuning and phase response of an ion source at different Plasma states.
  • the different quality curves of the resonant circuit are caused by different impedances of the plasma due to different degrees of ionization. So the steepest curve in the lower graph has the highest quality and the smallest bandwidth.
  • the illustration illustrates that the control loop according to the invention reacts to grades of various kinds and locks firmly into place.
  • the curves given in the upper half of the figure show that, due to a change in the plasma impedances, ion currents of different phase position result, which are compensated by the phase locked loop.
  • Fig. 11 shows another block diagram illustrating the use of the PLL control device for controlling the high-frequency generator.
  • the output stage 24 is formed in the example as a class D half-bridge, wherein the resonant circuit is coupled to the node 39.
  • a current measuring device 23 is provided between the node 39 and a resistor 35.
  • the resistor 35 represents a line resistance.
  • the resistor 45 connected in series represents a coil resistance.
  • a voltage is tapped. This voltage and a current measured by the current measuring device 23 are supplied to the inputs of a phase comparator 28.
  • the voltage applied to the phase comparator 28 output voltage is filtered to the input of the voltage controlled oscillator 26, respectively.
  • phase comparator which has the function of an error amplifier, until there is a frequency and phase equality at its inputs.
  • driver stages 48, 49 are driven, which drive via transformers 50, 51 power amplifiers 52, 53 or drive.
  • Fig. 12 shows a device with a high frequency generator having a class D full bridge with PLL control.
  • the resonant circuit is designed as a series resonant circuit. The remaining components and their interconnection correspond to the description Fig. 11 ,
  • a device is shown with a high frequency generator having a class E power amplifier with PLL control.
  • the resonant circuit is designed as a series resonant circuit and comprises the coupling capacitor 22, the coupling coil 5 and the line resistor 35 and the coil resistor 45.
  • the use of a class E power amplifier circuit for the high frequency generator with PLL frequency and phase control and resonant circuit coupling, in particular a series / Parallel resonant circuit including the coupling coil is preferably used in the frequency and power range of 600 kHz to 30 MHz or 1 W to 500 W.
  • the coil 56 is part of the class E amplifier and many times larger than the coil 5. It serves as an energy store when the power amplifier 52 is locked. The remaining components and their interconnection correspond to the description Fig. 11 ,
  • FIG. 14 Figure 12 shows an equivalent electrical circuit diagram of a device with a high frequency generator having a class D half-bridge with PLL control and additional transform up-matching.
  • a transformer 57 and a capacitor 58 are connected to the output of the output stages 52, 53.
  • the capacitor 58 is connected in a known manner with a center tap of the transformer 57.
  • the remaining components and their interconnection correspond to the description Fig. 11 ,
  • FIG. 15 an embodiment of a possible capacitive impedance transformation, which in all amplifier classes (class C, class D, class E, class F) can be used.
  • the resistor 38 represents the resistance of the plasma.
  • the resistor 38, a capacitor 59 may be connected in parallel.
  • the resistor 60 and the capacitor 61 connected in parallel represent elements of the high-frequency generator.
  • the capacitors 22, 61 represent resonant capacitors, the coil 5 is the coupling coil.
  • the advantage of all the variants described is that a power coupling of the energy generated by the high frequency generator over a large power and frequency range without intermediate transformation and impedance matching network directly into the plasma of the ion or electron source is possible.
  • Core of the power adjustment is the inclusion of the coupling coil, design-related coupling capacitances between the plasma and the housing of the discharge vessel and the wiring to a series / or parallel resonant circuit, and the automatic frequency and phase control of the high-frequency generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

The device has a coupling coil (5) that supplies high frequency energy for performing plasma excitation. A coupling capacitor (22) is electrically coupled with the coil. A high frequency generator (16) i.e. radio frequency generator, is electrically coupled with the coil. The generator with the capacitor forms a resonant circuit e.g. series resonant circuit. The generator has a phase locked loop control device that automatically performs impedance matching of the circuit, so that the circuit is operated by using resonance frequency.

Description

Die Erfindung betrifft eine Vorrichtung zur Einkopplung von lonisationsenergie in eine induktiv oder induktiv-kapazitiv angeregte lonen- oder Elektronenquelle.The invention relates to a device for coupling ionization energy in an inductively or inductively capacitively excited ion or electron source.

Bei einem lonentriebwerk befindet sich ein hochfrequent anzuregendes Plasma innerhalb eines isolierten Gefäßes, des sog. Entladungsgefäßes. Um das Entladungsgefäß ist eine Koppelspule zur Einspeisung einer zur Plasma-Anregung notwendigen Hochfrequenz-Energie gewickelt. Das Plasma befindet sich damit innerhalb der Koppelspule. Kommt es durch Zustandsänderungen, z.B. Änderungen der Dichte oder Leitfähigkeit, des Plasmas zu Impedanzänderungen, so bewirken diese Verstimmungen des Resonanzkreises.In an ion engine, a plasma to be excited at high frequency is located inside an insulated vessel, the so-called discharge vessel. To the discharge vessel, a coupling coil for feeding a required for plasma excitation high-frequency energy is wound. The plasma is thus within the coupling coil. Does it come through state changes, e.g. Changes in the density or conductivity, the plasma to impedance changes, so cause these detuning the resonant circuit.

Bei Hochfrequenzgeneratoren, die mit einer festen Frequenz, z.B. 13,56 MHz, betrieben werden, muss die sich durch Plasmazustände ändernde Impedanz eines den Hochfrequenzgenerator mit der Koppelspule verbindenden Einkoppelnetzwerks einstellende Fehlanpassung durch ein manuelles Nachbestimmen eines Impedanzanpassungsnetzwerks (sog. Matchbox) oder einen Stellantrieb kompensiert werden. Die Kompensation hat zur Folge, dass die Kapazität eines Kondensators des Impedanzanpassungsnetzwerks in ihrer Größe, z.B. durch Oberflächenveränderung, geeignet justiert wird oder die Induktivität einer Spule des Impedanzanpassungsnetzwerks durch das Einfahren eines Ferrites verändert wird. Die Impedanzanpassung über ein Impedanzanpassungsnetzwerk kann meist nicht sehr schnell und nur über einen kleinen Frequenz-Lastbereich optimal nachjustiert werden. Nicht schnell bedeutet, dass eine Nachjustierung im Bereich von Sekunden liegen kann. Hierdurch treten in den Impedanzanpassungsnetzwerken zum Teil erhebliche Verlustleistungen auf.In high-frequency generators which are at a fixed frequency, e.g. 13.56 MHz, the mismatching impedance of a coupling network connecting the high-frequency generator to the coupling coil must be compensated for by manually re-determining an impedance matching network (so-called matchbox) or an actuator. The compensation results in the capacitance of a capacitor of the impedance matching network being reduced in magnitude, e.g. is suitably adjusted by surface modification, or the inductance of a coil of the impedance matching network is changed by the retraction of a ferrite. The impedance matching via an impedance matching network can usually not be readjusted very quickly and optimally only over a small frequency load range. Not fast means that readjustment can be in the order of seconds. As a result, considerable power losses occur in the impedance matching networks.

Es ist daher Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Einkopplung von lonisationsenergie in eine induktiv oder induktiv-kapazitiv angeregte lonen- oder Elektronenquelle für den Einsatz in einem lonentriebwerk anzugeben, welche die oben aufgeführten Nachteile nicht aufweist.It is therefore an object of the present invention to provide a device for coupling ionization energy into an inductively or inductively capacitively excited To specify ion or electron source for use in an ion engine, which does not have the disadvantages listed above.

Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Ausführungsformen ergeben sich aus den abhängigen Patentansprüchen.This object is achieved by a device having the features of claim 1. Advantageous embodiments will be apparent from the dependent claims.

Eine erfindungsgemäße Vorrichtung zur Einkopplung von lonisationsenergie in eine induktiv oder induktiv-kapazitiv angeregte lonen- oder Elektronenquelle umfasst: ein Entladungsgefäß für ein zu ionisierendes Gas, wie z.B. Xe, Kr, Ar, Ne, He, H2, O2, CO2, Cs oder Hg; einer um das Entladungsgefäß gewickelten Koppelspule zur Einspeisung einer zur Plasma-Anregung notwendigen Hochfrequenz-Energie; einen mit der Koppelspule elektrisch gekoppelten Koppelkondensator; und einen mit der Koppelspule elektronisch gekoppelten Hochfrequenzgenerator, der zusammen mit dem zumindest einen Koppelkondensator einen Resonanzkreis ausbildet, wobei der Hochfrequenzgenerator eine PLL-Regelungsvorrichtung zur automatischen Impedanzanpassung des Resonanzkreises aufweist, so dass der Resonanzkreis mit einer Resonanzfrequenz betreibbar ist.A device according to the invention for coupling ionization energy into an inductively or inductively capacitively excited ion or electron source comprises: a discharge vessel for a gas to be ionized, such as Xe, Kr, Ar, Ne, He, H 2 , O 2 , CO 2 , Cs or Hg; a coupling coil wound around the discharge vessel for supplying a high-frequency energy necessary for plasma excitation; a coupling capacitor electrically coupled to the coupling coil; and a high-frequency generator electronically coupled to the coupling coil and forming a resonance circuit together with the at least one coupling capacitor, the high-frequency generator having a PLL control device for automatic impedance matching of the resonance circuit so that the resonance circuit is operable at a resonance frequency.

Die Koppelspule wird an den Hochfrequenzgenerator angeschlossen und bildet mit dem Koppelkondensator des Hochfrequenzgenerators einen Serien- oder Parallelresonanzkreis.The coupling coil is connected to the high-frequency generator and forms a series or parallel resonant circuit with the coupling capacitor of the high-frequency generator.

Die erfindungsgemäße Vorrichtung korrigiert Phasenfehler von Strom und Spannung in der Leistungsendstufe des Hochfrequenzgenerators durch selbsttätiges Nachführen von Frequenz und Phase der Resonanzfrequenz des Lastkreises. Das Regelprinzip beruht darin, dass die PLL-Regelschaltung kontinuierlich die Phasenlage des sinusförmigen Hochfrequenzausgangsstroms und die Phasenlage der Generatorausgangsspannung über einen digitalen Phasendetektor vergleicht und einen auftretenden Phasenfehler durch Nachstellen der Generatorfrequenz über einen spannungskontrollierten Oszillator (VCO) auf die Frequenz des Resonanzkreises nachstimmt bis der Phasenfehler Null vorliegt. Da die Reaktionszeit der PLL-Regelungsvorrichtung sehr kurz ist (je nach Auslegung < 100 µsec) kommt es auch bei schnellen Änderungen der Resonanzfrequenzen zu keinen länger anhaltenden Phasenfehlern. Die Anpassung des Hochfrequenzgenerators an den Verbraucher erfolgt dadurch mit höchstmöglichem Wirkungsgrad. Durch die sehr schnelle Frequenznachführung und den Phasenabgleich mittels des digitalen Phasenkomparators sorgt die PLL-Regelungsvorrichtung dafür, dass Strom und Spannung immer in Phase sind und damit die maximale Leistung über die Koppelspule in das Plasma eingekoppelt werden kann. Dies kann dabei ohne mechanische Bewegung oder auf andere Weise erfolgen. Die erfindungsgemäße Vorrichtung zeichnet sich durch ihre Einfachheit und große Flexibilität und die Verwendbarkeit über einen großen Frequenzbereich aus.The inventive device corrects phase errors of current and voltage in the power output stage of the high-frequency generator by automatically tracking the frequency and phase of the resonant frequency of the load circuit. The control principle is based on the fact that the PLL control circuit continuously compares the phase position of the sinusoidal high-frequency output current and the phase position of the generator output voltage via a digital phase detector and a phase error occurring by adjusting the generator frequency via a voltage-controlled oscillator (VCO) on the Frequency of the resonant circuit tunes until the phase error is zero. Since the reaction time of the PLL control device is very short (<100 μsec, depending on the design), no longer lasting phase errors occur even with rapid changes in the resonance frequencies. The adaptation of the high-frequency generator to the consumer is thereby achieved with the highest possible efficiency. Due to the very fast frequency tracking and the phase adjustment by means of the digital phase comparator, the PLL control device ensures that current and voltage are always in phase and thus the maximum power can be coupled via the coupling coil in the plasma. This can be done without mechanical movement or otherwise. The device according to the invention is characterized by its simplicity and great flexibility and usability over a wide frequency range.

Die erfindungsgemäße Vorgehensweise zur optimalen Impedanz- und Leistungsanpassung besteht somit darin, die von dem Hochfrequenzgenerator abgegebene Leistung über einen PLL-Regelkreis (PLL = Phase Locked Loop), auf Resonanz und Phasenfehler Null abzugleichen und an das Plasma zu übertragen. Die Übertragung der Leistung mit einem Phasenfehler Null bedeutet, dass Strom und Spannung in dem Resonanzkreis in Phase liegen und damit keine Blindströme fließen. Somit können auch keine Blindleistungsverluste auftreten, wodurch Schaltverluste nahezu eliminiert sind.The procedure according to the invention for optimum impedance and power adaptation thus consists of matching the power delivered by the high-frequency generator via a PLL (Phase Locked Loop) PLL, zero resonance and phase error, and transmitting it to the plasma. The transmission of the power with a zero phase error means that current and voltage in the resonant circuit are in phase and therefore no reactive currents are flowing. Thus, no reactive power losses can occur, whereby switching losses are almost eliminated.

Zur Durchführung der automatischen Impedanzanpassung des Resonanzkreises werden Strom und Spannung in dem Resonanzkreis erfasst und der PLL-Regelungsvorrichtung als Regelgrößen zugeführt.To carry out the automatic impedance matching of the resonant circuit, current and voltage in the resonant circuit are detected and supplied to the PLL control device as controlled variables.

Der Hochfrequenzgenerator zeichnet sich dadurch aus, dass ein Betrieb bei Resonanz und optimalem Phasenabgleich möglich ist. Durch die PLL-Regelungsvorrichtung fließen nur sinusförmige Ströme, sowohl in dem Hochfrequenzgenerator als auch im Resonanzkreis und damit in der Koppelspule. Der sinusförmige Strom erlaubt einen hohen Wirkungsgrad des Hochfrequenzgenerators und beträgt daher auch bei hohen Betriebsfrequenzen, d.h. Frequenzen oberhalb von 0,5 MHz, zwischen 90 und 95 %.The high frequency generator is characterized by the fact that an operation at resonance and optimum phase adjustment is possible. Only sinusoidal currents flow through the PLL control device, both in the high-frequency generator and in the resonant circuit and thus in the coupling coil. The sinusoidal current allows high efficiency of the high frequency generator and is therefore at high operating frequencies, ie frequencies above 0.5 MHz, between 90 and 95%.

Eine erfindungsgemäße Vorrichtung mit einem Hochfrequenzgenerator mit PLL-Regelung arbeitet immer auf der Resonanzfrequenz des Einkoppelnetzwerkes der lonen- oder Elektronenquelle. Das Einkoppelnetzwerk der Erfindung ist durch den Resonanzkreis aus Koppelspule und Koppelkondensator gebildet. Dies bedeutet, der Hochfrequenzgenerator folgt allen Frequenzänderungen unabhängig von einer Frequenzverstimmung und einer Frequenzbandbreiten-Kreisgüte phasengenau durch die PLL-Regelung. Die Leistungsanpassung des Hochfrequenzgenerators erfolgt im Mikrosekunden-Bereich und führt durch den exakten Phasenabgleich von Strom und Spannung in Schaltelementen des Hochfrequenzgenerators und dem Resonanzkreis zu einem nahezu verlustfreien Schalten und einer optimalen Leistungseinkopplung in das Plasma.An inventive device with a high-frequency generator with PLL control always operates on the resonant frequency of the coupling network of the ion or electron source. The coupling network of the invention is formed by the resonant circuit of coupling coil and coupling capacitor. This means that the high-frequency generator follows all frequency changes independent of a frequency detuning and a frequency bandwidth-quality in-phase by the PLL control. The power adjustment of the high-frequency generator takes place in the microsecond range and leads by the exact phase balance of current and voltage in switching elements of the high frequency generator and the resonant circuit to a nearly lossless switching and optimal power input into the plasma.

Eine erfindungsgemäße Vorrichtung eignet sich deshalb besonders für die Hochfrequenzenergieversorgung von Ionenquellen (TWK) und Elektronenquellen (NTR) mit induktiver Anregung und für Anwendungen, bei denen es auf geringsten Energieverbrauch ankommt.A device according to the invention is therefore particularly suitable for the high-frequency power supply of ion sources (TWK) and electron sources (NTR) with inductive excitation and for applications in which the lowest energy consumption is required.

Gemäß einer Ausführungsform wird durch die PLL-Regelungsvorrichtung eine Frequenz- und/oder Phasenregelung zur Impedanzanpassung des Resonanzkreises durchgeführt. Die Leistungsregelung des Hochfrequenzgenerators ist durch Einstellung einer Eingangsgleichspannung und eines Eingangsstroms des Hochfrequenzgenerators vornehmbar. Der Hochfrequenzgenerator zeichnet sich somit dadurch aus, dass er aus einer in Spannungs- und Stromstärke steuerbaren Gleichspannungsquelle eine hochfrequente Ausgangsspannung erzeugt. Diese Wechselspannungsquelle wird unter Einbeziehung der für eine induktive Einkopplung notwendigen Koppelspule und des zusätzlichen Koppelkondensators zu einem Resonanzkreis verschaltet.According to one embodiment, a frequency and / or phase control for impedance matching of the resonant circuit is performed by the PLL control device. The power control of the high frequency generator is vornehmbar by setting a DC input voltage and an input current of the high frequency generator. The high-frequency generator is thus characterized by the fact that it generates a high-frequency output voltage from a controllable in voltage and current DC voltage source. This AC voltage source is interconnected with the inclusion of the coupling coil necessary for an inductive coupling and the additional coupling capacitor to form a resonant circuit.

In einer weiteren Ausführungsform ist der Hochfrequenzgenerator der erfindungsgemäßen Vorrichtung ohne Zwischenschaltung eines Impedanzanpassungsnetzwerks, einer sog. Matchbox, mit der Koppelspule verbunden. Die Ankopplung des Hochfrequenzgenerators mit PLL-Regelung erlaubt es dennoch, über einen großen Leistungs- und Frequenzbereich, die elektrische Energie direkt in das Plasma der lonen- oder Elektronenquelle einzukoppeln.In a further embodiment, the high-frequency generator of the device according to the invention is connected to the coupling coil without the interposition of an impedance matching network, a so-called matchbox. The coupling of the high-frequency generator with PLL control nevertheless makes it possible, over a large power and frequency range, to couple the electrical energy directly into the plasma of the ion or electron source.

Der Resonanzkreis, der aus Koppelspule und Koppelkondensator gebildet ist, kann wahlweise als Serien- oder Parallel-Resonanzkreis ausgebildet sein. Die Impedanzanpassung erfolgt dabei dadurch, dass die Koppelspule sowie konstruktive Koppelkapazitäten zwischen dem Plasma und dem Entladungsgefäß und entsprechender Zuleitungen zu dem Serien- oder Parallel-/Resonanzkreis einbezogen werden, wobei eine automatische Frequenz- und Phasenregelung durch den PLL-geregelten Hochfrequenzgenerator erfolgt.The resonant circuit, which is formed from the coupling coil and the coupling capacitor, can optionally be designed as a series or parallel resonant circuit. The impedance matching takes place in that the coupling coil and constructive coupling capacitances between the plasma and the discharge vessel and corresponding supply lines to the series or parallel / resonant circuit are included, with an automatic frequency and phase control is performed by the PLL-controlled high-frequency generator.

In einer weiteren Ausführungsform kann die Koppelspule über eine Mittelpunktanzapfung verfügen, an welche der Hochfrequenzgenerator angeschlossen ist. Dies erlaubt die Kühlung der Koppelspule durch Zuführung eines Kühlmediums ohne die Zwischenschaltung von Isolatoren, da die Spulenenden der Koppelspule auf einem Bezugspotential liegen. Als Kühlmedium wird vorzugsweise Wasser verwendet. Als Bezugspotential kann beispielsweise das Massepotential dienen.In a further embodiment, the coupling coil may have a center tap to which the high frequency generator is connected. This allows the cooling of the coupling coil by supplying a cooling medium without the interposition of insulators, since the coil ends of the coupling coil are at a reference potential. As the cooling medium, water is preferably used. As a reference potential, for example, serve the ground potential.

In einer weiteren Ausführungsform kann die Koppelspule zwischen zwei oder mehreren Koppelkondensatoren angeordnet sein. Zweckmäßig ist dabei, wenn der sich bildende Resonanzkreis eine Resonanzfrequenz bildet, welche innerhalb der sog. Lockfrequenz der PLL-Regelvorrichtung liegt. Der Hochfrequenzgenerator führt die Frequenz z.B. mittels eines spannungsgesteuerten Oszillators (VCO = Voltage Controlled Oscillator) und einem digitalen Phasenvergleich von Strom und Spannung im Resonanzkreis so lange nach, bis der Phasenfehler Null wird.In a further embodiment, the coupling coil can be arranged between two or more coupling capacitors. It is useful if the forming resonant circuit forms a resonance frequency, which is within the so-called. Lock frequency of the PLL control device. The high-frequency generator, for example, the frequency by means of a voltage-controlled oscillator (VCO = Voltage Controlled Oscillator) and a digital phase comparison of current and voltage in the resonant circuit until the phase error is zero.

Eine weitere Ausführungsform sieht vor, dass der Hochfrequenzgenerator ohne Zwischenschaltung von elektronischen Bauelementen für eine Zwischentransformation mit der Koppelspule verbunden ist. Eine alternative Ausführungsform sieht vor, dass der zumindest eine Koppelkondensator und die Koppelspule über einen Transformator an den Hochfrequenzgenerator angeschlossen sind. Dies kann beispielsweise für den Fall zweckmäßig sein, dass sehr große Impedanzanpassungen erforderlich sind. Dabei ist vorgesehen, dass der Transformator primärseitig kapazitiv mit dem Hochfrequenzgenerator gekoppelt ist und sekundärseitig mit dem zumindest einen Koppelkondensator und der Koppelspule den Resonanzkreis bildet. Zweckmäßigerweise ist eine Vorrichtung zur Erfassung von Strom und Spannung in dem Resonanzkreis vorgesehen, welche mit der PLL-Regelungsvorrichtung gekoppelt ist, um dieser den gemessenen Strom und die gemessene Spannung als Regelgrößen zuzuführen.A further embodiment provides that the high-frequency generator is connected to the coupling coil without the interposition of electronic components for an intermediate transformation. An alternative embodiment provides that the at least one coupling capacitor and the coupling coil are connected via a transformer to the high-frequency generator. This may be useful, for example, in the event that very large impedance adjustments are required. It is provided that the transformer is capacitively coupled on the primary side with the high-frequency generator and the secondary side forms the resonant circuit with the at least one coupling capacitor and the coupling coil. Advantageously, a device for detecting current and voltage in the resonant circuit is provided which is coupled to the PLL control device in order to supply the measured current and the measured voltage as controlled variables.

Eine weitere Ausführungsform der Erfindung sieht vor, dass der zumindest eine Koppelkondensator in dem Hochfrequenzgenerator oder außerhalb von diesem (als externes Bauelement) angeordnet ist.A further embodiment of the invention provides that the at least one coupling capacitor is arranged in the high-frequency generator or outside it (as an external component).

Ferner kann vorgesehen sein, dass die Koppelspule einseitig geerdet oder isoliert zu einem Massepotential betrieben wird.Furthermore, it can be provided that the coupling coil is grounded on one side or operated in isolation to a ground potential.

Eine weitere Ausführungsform sieht vor, dass die Koppelspule und das Plasma einen Transformator ausbilden, wobei das Plasma eine Sekundärwicklung des Transformators darstellt.A further embodiment provides that the coupling coil and the plasma form a transformer, wherein the plasma represents a secondary winding of the transformer.

Der Hochfrequenzgenerator umfasst eine Leistungsendstufe, die wahlweise als eine der nachfolgend aufgeführten Varianten ausgebildet sein kann: Halbbrücken-Klasse-D-Endstufe; Vollbrücken-Klasse-D-Endstufe; Push-Pull-Endstufe; Endstufe der Klasse E; Endstufe der Klasse F; Endstufe der Klasse C. Die Auswahl, welche Leistungsendstufe in dem Hochfrequenzgenerator vorgesehen wird, hängt im Wesentlichen von dem geforderten Frequenz- und Leistungsbereich ab. Die Impedanzanpassung an den Einkoppelresonanzkreis erfolgt in allen Fällen über eine Frequenz-Phasenregelung mittels der PLL-Regelungsvorrichtung.The high-frequency generator comprises a power output stage, which can optionally be designed as one of the variants listed below: half-bridge class D output stage; Full-bridge Class D amplifier; Push-pull output stage; Power amplifier of class E; Power amplifier of class F; Class C power amplifier. The choice of which power output stage to provide in the radio-frequency generator essentially depends on the required frequency and power range. The impedance matching to the coupling-in resonant circuit takes place in all cases via a frequency phase control by means of the PLL control device.

Als Endstufen für den Hochfrequenzgenerator werden vorzugsweise Klasse-D-und Klasse-E-Endstufen verwendet, welche sich durch einen maximalen Stromflusswinkel von 180 ° in den Schaltelementen der Endstufen (mit Bipolar- oder MOSFET-Transistoren) auszeichnen. Werden Klasse-D-Endstufen ohne PLL-Regelung im Zusammenhang mit Resonanzkreisen eingesetzt, so kommt es schon bei kleinsten Frequenz-Phasenverstimmungen, abhängig von der Kreisgüte des Resonanzkreises, zu erheblichen Blindströmen, sowohl kapazitiven oder induktiven Charakters, je nach Richtung der Phasen-Frequenzverstimmung. Die Folge davon sind sehr hohe Strombelastungen der Endstufe und demzufolge hohe Verluste in den Endstufen und Koppelnetzwerken. Die Verluste treten in Form von Blindstromverlusten auf. Sie führen zu einem starken Absinken der zum Verbraucher übertragenen Leistung. Durch den Einsatz der PLL-Regelung werden die erwähnten Probleme, d.h. Phasenfehler in den Endstufen, auch bei Klasse-D-, Klasse-E- und Klasse-F-Endstufen vollständig vermieden. Der Einsatz der PLL-Regelung ermöglicht die volle Performanzausnutzung dieser Endstufentypen, d.h. einen Stromflusswinkel von 180 °.As output stages for the high-frequency generator preferably Class D and Class E power amplifiers are used, which are characterized by a maximum current flow angle of 180 ° in the switching elements of the output stages (with bipolar or MOSFET transistors). If class D power amplifiers without PLL control are used in conjunction with resonant circuits, even with the smallest frequency phase detunings, depending on the circuit quality of the resonant circuit, significant reactive currents of both capacitive or inductive character, depending on the direction of the phase frequency detuning , The consequence of this is very high current loadings of the output stage and consequently high losses in the output stages and coupling networks. The losses occur in the form of reactive power losses. They lead to a sharp drop in the power transmitted to the consumer. By using the PLL control, the problems mentioned, i. Phase errors in the output stages, even with Class D, Class E and Class F power amplifiers completely avoided. The use of PLL control allows full performance utilization of these final stage types, i. a flow angle of 180 °.

Durch den Hochfrequenzgenerator ist eine Resonanzfrequenz im Bereich von 0,5 MHz bis 30 MHz einstellbar. Die in den Hochfrequenzgenerator eingekoppelte Leistung liegt im Bereich von 1 W bis 10 kW. Die an den Hochfrequenzgenerator gekoppelte Lastimpedanz liegt in einem Bereich von 0,1 Ohm bis 1 Ohm oder in einem Bereich von 1 Ohm bis 50 Ohm.By the high frequency generator, a resonance frequency in the range of 0.5 MHz to 30 MHz is adjustable. The coupled into the high frequency generator power is in the range of 1 W to 10 kW. The load impedance coupled to the high frequency generator is in a range of 0.1 ohms to 1 ohms or in a range of 1 ohms to 50 ohms.

In einer weiteren Ausgestaltung weist das Entladungsgefäß der erfindungsgemäßen Vorrichtung einen Gaseinlass und einen gegenüberliegend angeordneten Auslass mit zumindest zwei Extraktionsgittern mit jeweils einer Multilochmaske auf, welche als elektrische Linse zur Fokussierung der zu extrahierenden Ionenstrahlen dient. Die Extraktion erfolgt durch ein elektrisches Feld, das an die Extraktionsgitter anlegbar ist. Das Entladungsgefäß ist aus einem nichtleitenden Material mit geringen Hochfrequenzverlusten gebildet, wie z.B. Quarz, Keramik, Vespel oder Bor-Nitrid. Das Entladegefäß dient als Entladeraum für das zu ionisierende Gas.In a further embodiment, the discharge vessel of the device according to the invention has a gas inlet and an outlet arranged opposite to at least two extraction grids, each with a multi-hole mask, which serves as an electric lens for focusing the ion beams to be extracted. The extraction is carried out by an electric field, which can be applied to the extraction grid. The discharge vessel is made of a non-conductive Material with low high frequency losses formed, such as quartz, ceramic, Vespel or boron nitride. The discharge vessel serves as a discharge space for the gas to be ionized.

Die Koppelspule umfasst gemäß einer weiteren Ausführungsform eine einlagige oder eine mehrlagige oder eine bifilare Wicklung. Dabei ist die Koppelspule um das Entladungsgefäß oder innerhalb des Entladungsgefäßes angeordnet. Die Koppelspule ist zylindrisch, kegelig, sphärisch oder teilkonisch mit zylindrischem Übergangskörper um das Entladungsgefäß gewickelt.The coupling coil according to another embodiment comprises a single-layer or a multi-layer or a bifilar winding. The coupling coil is arranged around the discharge vessel or within the discharge vessel. The coupling coil is cylindrical, conical, spherical or teilkonisch wound with cylindrical transition body to the discharge vessel.

Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Einkopplung von lonisationsenergie in eine lonen- oder Elektronenquelle;
Fig. 2
ein elektrisches Ersatzschaltbild der erfindungsgemäßen Vorrichtung;
Fig. 3
ein vereinfachtes erfindungsgemäßes Ersatzschaltbild der erfindungsgemäßen Vorrichtung;
Fig. 4
ein Prinzipschaltbild einer als Halbbrücke ausgeführten Endstufe eines Hochfrequenzgenerators mit einem Serienresonanzkreis;
Fig. 5
ein Prinzipschaltbild einer als Vollbrücke ausgestalteten Endstufe eines Hochfrequenzgenerators mit einem Serienresonanzkreis;
Fig. 6
eine schematische Darstellung der in einer erfindungsgemäßen Vorrichtung notwendigen Komponenten;
Fig. 7
die zeitlichen Verläufe von Strom und Spannung an einem Ausgang des Hochfrequenzgenerators;
Fig. 8
ein elektrisches Schaltbild zweier möglicher Ankopplungen von Koppelspulen an einen Hochfrequenzgenerator;
Fig. 9
eine beispielhafte Darstellung der Ankopplung einer Koppelspule über einen Zusatz-Transformator an den Hochfrequenzgenerator;
Fig. 10
eine Darstellung von Frequenzbandbreite und Resonanzkreisgüte bzw. Frequenzverstimmung sowie Phasengang einer lonenquelle bei verschiedenen Plasmazuständen;
Fig. 11
ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Halbbrücke mit PLL-Regelung aufweist;
Fig. 12
ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Vollbrücke mit PLL-Regelung aufweist;
Fig. 13
ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-E-Endstufe mit PLL-Regelung aufweist;
Fig. 14
ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Halbbrücke mit PLL-Regelung und zusätzlicher transformatorischer Aufwärtsanpassung aufweist; und
Fig. 15
eine schematische Darstellung einer Impedanztransformation am Ausgang des Hochfrequenzgenerators.
The invention will be explained in more detail with reference to FIGS. Show it:
Fig. 1
a schematic representation of a device according to the invention for coupling ionisationsenergie in an ion or electron source;
Fig. 2
an electrical equivalent circuit diagram of the device according to the invention;
Fig. 3
a simplified inventive equivalent circuit diagram of the device according to the invention;
Fig. 4
a schematic diagram of a running as a half-bridge output stage of a high frequency generator with a series resonant circuit;
Fig. 5
a schematic diagram of a configured as a full-bridge output stage of a high-frequency generator with a series resonant circuit;
Fig. 6
a schematic representation of the necessary components in a device according to the invention;
Fig. 7
the time profiles of current and voltage at an output of the high-frequency generator;
Fig. 8
an electrical circuit diagram of two possible couplings of coupling coils to a high-frequency generator;
Fig. 9
an exemplary representation of the coupling of a coupling coil via an additional transformer to the high frequency generator;
Fig. 10
a representation of frequency bandwidth and Resonanzkreisgüte or frequency detuning and phase response of an ion source at different plasma states;
Fig. 11
an electrical equivalent circuit diagram of a device with a high-frequency generator having a class D half-bridge with PLL control;
Fig. 12
an electrical equivalent circuit diagram of a device with a high frequency generator having a class D full bridge with PLL control;
Fig. 13
an electrical equivalent circuit diagram of a device with a high-frequency generator having a class E power amplifier with PLL control;
Fig. 14
an electrical equivalent circuit diagram of a device with a high-frequency generator having a class D half-bridge with PLL control and additional transformer upward adjustment; and
Fig. 15
a schematic representation of an impedance transformation at the output of the high frequency generator.

Fig. 1 zeigt eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Einkopplung von Ionisationsenergie in eine Ionen- oder Elektronenquelle. Ein Gastank 1, in dem ein zu ionisierendes Gas unter hohem Druck bevorratet ist, ist über eine Leitung mit einem Füll- und Abflussbereich 2 gekoppelt. Der Füll- und Abflussbereich 2 ist über eine weitere Leitung mit einer Flusssteuereinheit 3 gekoppelt. Diese weist zwei Ausgänge auf. Ein erster Ausgang ist mit einem Einlass 6 eines Entladungsgefäßes 4 zur lonisation des Gases verbunden. Ein zweiter Ausgang der Flusssteuereinheit 3 ist mit einem Neutralisator 10 verbunden. Das Entladungsgefäß 4 besteht aus einem nichtleitenden Material, das nur geringe Hochfrequenz (HF)-Verluste aufweist. Das Entladungsgefäß 4 kann beispielsweise aus Quarz, einer Keramik, Vespel oder Bor-Nitrid bestehen. Das Entladungsgefäß 4 dient als Entladeraum für das zu ionisierende Gas, z.B. Xe, Kr, Ar, Ne, He, H2, O2, CO2, Cs oder Hg. Fig. 1 shows a schematic representation of a device according to the invention for coupling ionization energy in an ion or electron source. A gas tank 1, in which a gas to be ionized is stored under high pressure, is coupled via a line to a fill and drain region 2. The fill and drain region 2 is coupled via a further line to a flow control unit 3. This has two outputs. A first outlet is connected to an inlet 6 of a discharge vessel 4 for ionization of the gas. A second output of the flow control unit 3 is connected to a neutralizer 10. The discharge vessel 4 is made of a non-conductive material, which has only low radio frequency (RF) losses. The discharge vessel 4 may for example consist of quartz, a ceramic, Vespel or boron nitride. The discharge vessel 4 serves as a discharge space for the gas to be ionized, for example Xe, Kr, Ar, Ne, He, H 2 , O 2 , CO 2 , Cs or Hg.

An dem Einlass 6 des Entladungsgefäßes 4 befinden sich ein Isolator 14 sowie ein Flussbegrenzer 15. Um einen zylinderförmigen Abschnitt des Entladungsgefäßes 4, der mit dem Einlass 6 gekoppelt ist, ist eine Koppelspule 5 angeordnet. Die Koppelspule 5 kann aus einer einlagigen, mehrlagigen oder bifilaren Wicklung bestehen, welche sowohl um als auch innerhalb des Entladungsgefäßes gewickelt ist. Die Form der Wicklung der Koppelspule ist dabei beliebig. Sie kann zylindrisch, kegelig, sphärisch oder teilkonisch mit zylindrischem Übergangskörper sein. Das Entladungsgefäß 4 mit der dieses umgebenden Koppelspule 5 sowie der Neutralisator 10 sind von einem Triebwerksgehäuse 21 umgeben.At the inlet 6 of the discharge vessel 4 there are an insulator 14 and a flow limiter 15. A coupling coil 5 is arranged around a cylindrical section of the discharge vessel 4, which is coupled to the inlet 6. The coupling coil 5 may consist of a single-layer, multi-layer or bifilar winding, which is wound both around and within the discharge vessel. The shape of the winding of the coupling coil is arbitrary. It can be cylindrical, conical, spherical or teilkonisch with cylindrical transition body. The discharge vessel 4 with the surrounding coupling coil 5 and the neutralizer 10 are surrounded by an engine casing 21.

Die Koppelspule 5 ist mit einem Hochfrequenzgenerator 16 verbunden, der aus einer in Spannung und Stromstärke steuerbaren Gleichspannungsquelle eine hochfrequente Ausgangsspannung erzeugt. Zusammen mit einem in dem Hochfrequenzgenerator 16 vorgesehenen Koppelkondensator (nicht dargestellt) bildet die Koppelspule 5 einen Resonanzkreis aus. Der Hochfrequenzgenerator, der eine Feldeinkopplung auf induktiver bzw. kombinierter induktiver und kapazitiver Basis vornehmen kann, ist für einen Einsatz im Frequenzbereich von 0,5 MHz bis 30 MHz geeignet. Dabei lässt sich ein Wirkungsgrad des Hochfrequenzgenerators erreichen, der im Bereich zwischen 90 und 95 % liegt.The coupling coil 5 is connected to a high-frequency generator 16, which generates a high-frequency output voltage from a controllable in voltage and current DC voltage source. Together with a coupling capacitor (not shown) provided in the high-frequency generator 16, the coupling coil 5 forms a resonance circuit. The high-frequency generator, the field coupling on inductive or combined inductive and capacitive Basis is suitable for use in the frequency range from 0.5 MHz to 30 MHz. In this case, an efficiency of the high-frequency generator can be achieved, which is in the range between 90 and 95%.

An einem Auslass 7 des Entladungsgefäßes 4 sind zumindest zwei, bevorzugt zwei oder drei, Extraktionsgitter 8 angeordnet, die jeweils zumindest eine Multilochmaske aufweisen. Die Extraktionsgitter 8 dienen als elektrische Linse zur Fokussierung der zu extrahierenden lonenstrahlen. Die Extraktion erfolgt durch ein elektrisches Feld, das an die Extraktionsgitter 8 angelegt wird. Zu diesem Zweck sind die Extraktionsgitter 8 mit einem Beschleuniger 18 und einer Plasmaaufnahme 17 (auch Plasma Holder genannt) verbunden, die unterschiedliche Potentiale aufweisen. Während die Plasmaaufnahme 17 die Funktion einer Anode hat und eine Spannung von +1200 V erzeugt, stellt der Beschleuniger 18 eine Spannung von -250 V bereit. An die Extraktionsgitter ist ferner ein Verzögerer 19 angeschlossen. Mit dem Bezugszeichen 9 ist die Richtung des Ausstoßes des positiv geladenen lonenstrahls e+ aus dem Extraktionsgitter 8 gekennzeichnet. Der positiv geladene lonenstrahl wird am Ausgang des Entladungsgefäßes 4 mittels negativ geladener Elektronen kompensiert, um eine elektrische Aufladung der Vorrichtung zu verhindern. Mit dem Bezugszeichen 13 ist die Ausstoßrichtung von Elektronen e- gekennzeichnet, wobei diese aus dem Neutralisator 10 ausgestoßen werden.At an outlet 7 of the discharge vessel 4 at least two, preferably two or three, extraction grid 8 are arranged, each having at least one multi-hole mask. The extraction grids 8 serve as an electric lens for focusing the ion beams to be extracted. The extraction is carried out by an electric field, which is applied to the extraction grid 8. For this purpose, the extraction grids 8 are connected to an accelerator 18 and a plasma receiver 17 (also called a plasma holder), which have different potentials. While the plasma receiver 17 has the function of an anode and generates a voltage of +1200 V, the accelerator 18 provides a voltage of -250V. To the extraction grid, a retarder 19 is also connected. The reference numeral 9 designates the direction of ejection of the positively charged ion beam e + from the extraction grating 8. The positively charged ion beam is compensated at the output of the discharge vessel 4 by means of negatively charged electrons in order to prevent electrical charging of the device. The reference numeral 13 designates the ejection direction of electrons e-, which are expelled from the neutralizer 10.

Der Neutralisator 10 umfasst eine Kathodenheizung 11 sowie eine Neutralisationseinheit 12. Eine Elektrode der Kathodenheizung 11 ist mit einer Elektrode der Neutralisationseinheit 12 verbunden. Eine jeweils andere Elektrode der Kathodenheizung 11 und der Neutralisationseinheit 12 ist mit dem Neutralisator 10 gekoppelt. Zwischen den Elektroden der Kathodenheizung 10 besteht beispielsweise ein Potentialunterschied von 9 V, während zwischen den Elektroden der Neutralisationseinheit 12 ein Potentialunterschied von 15 V besteht.The neutralizer 10 comprises a cathode heater 11 and a neutralization unit 12. An electrode of the cathode heater 11 is connected to an electrode of the neutralization unit 12. A respective other electrode of the cathode heater 11 and the neutralization unit 12 is coupled to the neutralizer 10. For example, there is a potential difference of 9 V between the electrodes of the cathode heater 10, while a potential difference of 15 V exists between the electrodes of the neutralization unit 12.

Ein einfaches elektrisches Ersatzschaltbild der Erfindung ist in Fig. 2 dargestellt. In dem elektrischen Ersatzschaltbild wird das neben der erfindungsgemäßen Vorrichtung das in dem Entladungsgefäß befindliche Plasma berücksichtigt. Die Koppelspule 5 und das Plasma arbeiten im vereinfachten Sinne wie ein Transformator (Bezugszeichen 36), wobei das Plasma einer Sekundärwicklung 37 des Transformators 36 entspricht. Die Primärwicklung wird durch die Koppelspule 5 gebildet. Die Widerstände 35 und 38 repräsentieren Leitungswiderstände. Mit dem Bezugszeichen 22 ist der Koppelkondensator gekennzeichnet, der mit der Koppelspule 5 den Resonanzkreis ausbildet. In dem Resonanzkreis sind parasitäre Bauelemente (Widerstand 35 und Kondensator 46) enthalten. Der parasitäre Kondensator 46 repräsentiert z.B. Kapazitäten eines (Koaxial-)kabels und von Ausgangstransistoren. Bei kurzen Leitungslängen und Frequenzen unterhalb von 3 MHz kann die Kapazität des parasitären Kondensators 46 vernachlässigt werden. Ein Hochfrequenzgenerator 16 ist mit der speisenden Spannungsquelle verbunden, so dass die Eingangsspannung Uin und der Eingangsstrom Jin anliegen. Ausgangsseitig ist der Hochfrequenzgenerator 16 an den Koppelkondensator 22 angeschlossen. Der Hochfrequenzgenerator ist in den Figuren auch mit RFG (Radio Frequency Generator) gekennzeichnet.A simple electrical equivalent circuit of the invention is shown in FIG Fig. 2 shown. In the electrical equivalent circuit diagram that is in addition to the invention Device takes into account the plasma located in the discharge vessel. The coupling coil 5 and the plasma operate in the simplified sense as a transformer (reference numeral 36), wherein the plasma corresponds to a secondary winding 37 of the transformer 36. The primary winding is formed by the coupling coil 5. The resistors 35 and 38 represent line resistances. With the reference numeral 22 of the coupling capacitor is characterized, which forms the resonant circuit with the coupling coil 5. In the resonant circuit parasitic components (resistor 35 and capacitor 46) are included. The parasitic capacitor 46 represents, for example, capacitances of a (coaxial) cable and of output transistors. With short line lengths and frequencies below 3 MHz, the capacitance of the parasitic capacitor 46 can be neglected. A high frequency generator 16 is connected to the supply voltage source so that the input voltage Uin and the input current Jin are applied. On the output side, the high-frequency generator 16 is connected to the coupling capacitor 22. The high-frequency generator is also marked with RFG (Radio Frequency Generator) in the figures.

Fig. 3 zeigt ein vereinfachtes Ersatzschaltbild der erfindungsgemäßen Vorrichtung. Der Hochfrequenzgenerator 16 ist mit der speisenden Spannungsquelle verbunden, so dass die Eingangsspannung Uin und der Eingangsstrom Jin anliegen. Ausgangsseitig ist der Hochfrequenzgenerator 16 über den Koppelkondensator 22 seriell mit der Koppelspule 5 verbunden. Der Widerstand 35 repräsentiert einen Leitungswiderstand. Vereinfacht ausgedrückt, bedeutet dies, dass die Koppelspule 5, welche üblicherweise um das Entladungsgefäß gewickelt ist, mit dem Koppelkondensator zu einem Serien- oder Parallelresonanzkreis verschaltet ist. Fig. 3 shows a simplified equivalent circuit diagram of the device according to the invention. The high-frequency generator 16 is connected to the supply voltage source so that the input voltage Uin and the input current Jin are applied. On the output side, the high-frequency generator 16 is connected in series via the coupling capacitor 22 to the coupling coil 5. The resistor 35 represents a line resistance. In simple terms, this means that the coupling coil 5, which is usually wound around the discharge vessel, is connected to the coupling capacitor to form a series or parallel resonant circuit.

Fig. 6 zeigt eine schematische Darstellung der in einer erfindungsgemäßen Vorrichtung notwendigen Komponenten. Die Erfindung zeichnet sich dadurch aus, dass der Hochfrequenzgenerator 16 aus einer in Spannungs- und Stromstärke steuerbaren Gleichspannungsquelle (Energieversorgung 33) eine hochfrequente Ausgangsspannung erzeugt. Der Hochfrequenzgenerator 16 wird unter Einbeziehung der für die induktive Einkopplung notwendigen Koppelspule 5 und eines zusätzlichen Resonanzkondensators, dem sog. Koppelkondensator 22, zu einem Resonanzkreis verschaltet. Zur optimalen Impedanz- und Leistungsanpassung wird die von dem Hochfrequenzgenerator 16 erzeugte Leistung über einen frequenz- und phasengeführten Regelkreis, auf Resonanz und Phasenfehler Null abgeglichen, übertragen. Dies kann beispielsweise den zeitlichen Verläufen von Strom und Spannung am Ausgang des Hochfrequenzgenerators der Fig. 7 entnommen werden. Die obere (Rechteck-)Kurve bildet die Spannung U, die mittlere (Sinus-)Kurve den Strom I und die untere die Ansteuerung der Endstufe ab. In der oberen Abbildung ist zusätzlich der Strom dargestellt um die Phasengleichheit zu verdeutlichen. Phasenfehler Null bedeutet, dass Strom und Spannung in dem Resonanzkreis in Phase liegen und somit keine Blindströme fließen. Damit können keine Blindleistungsverluste auftreten, wodurch Schaltverluste nahezu eliminiert sind. Durch den Betrieb bei Resonanz und optimalem Phasenabgleich, hergestellt durch eine PLL-Regelungsvorrichtung, fließen nur sinusförmige Ströme sowohl in den Schaltelementen des Hochfrequenzgenerators 16 als auch im Resonanzkreis und damit in der Koppelspule 5. Der sinusförmige Strom erlaubt das Schalten von Schaltelementen im StromNulldurchgang. Damit ist ein hoher Wirkungsgrad im Bereich von 90 bis 95 % erzielbar. Fig. 6 shows a schematic representation of the components required in a device according to the invention. The invention is characterized in that the high-frequency generator 16 generates a high-frequency output voltage from a DC voltage source (power supply 33) that can be controlled in voltage and current. The high frequency generator 16 is included the coupling coil 5 necessary for the inductive coupling and an additional resonance capacitor, the so-called coupling capacitor 22, are connected to form a resonant circuit. For optimum impedance and power matching, the power generated by the high-frequency generator 16 is transmitted via a frequency-controlled and phase-controlled control loop, matched to resonance and zero phase error. This can, for example, the temporal courses of current and voltage at the output of the high-frequency generator of the Fig. 7 be removed. The upper (square) curve shows the voltage U, the middle (sinusoid) curve the current I and the lower the control of the output stage. In the upper figure, the current is also shown to illustrate the phase equality. Phase error zero means that current and voltage in the resonant circuit are in phase and thus no reactive currents are flowing. Thus no reactive power losses can occur, whereby switching losses are almost eliminated. By operating at resonance and optimum phase balance, produced by a PLL control device, only sinusoidal currents flow in both the switching elements of the high frequency generator 16 and in the resonant circuit and thus in the coupling coil 5. The sinusoidal current allows the switching of switching elements in the current zero crossing. Thus, a high efficiency in the range of 90 to 95% can be achieved.

Der Regelkreis wird, wie bereits erläutert, durch die Koppelspule 5 und die Koppelkapazität 22 gebildet, die im Ausführungsbeispiel der Fig. 6 im Inneren des Hochfrequenzgenerators 16 angeordnet ist. In einer alternativen, nicht dargestellten Ausführungsform, könnte der Koppelkondensator 22 auch als externes Bauteil ausgebildet sein. In dem Resonanzkreis sind ferner zwei Widerstände 35 und 40 verschaltet, welche Leitungswiderstände repräsentieren. Der Koppelkondensator 22 ist über eine Leitung mit einer Leistungsstufe (Endstufe) 24 gekoppelt, wobei der in dieser Leitung fließende Strom mit einer Strommesseinrichtung 23 erfasst wird. Die Endstufe 24 ist beispielhaft als Klasse-D-Endstufe ausgebildet und wird von einer Ansteuerschaltung 25 angesteuert, welche ein Flip-Flop 47 und Treiberstufen 48, 49 umfasst. Die Treiberstufen 48, 49 treiben über Transformatoren Endstufen 52, 53 der Endstufe 24. Die Ansteuerschaltung 25 ihrerseits ist mit einer PLL-Regelungseinrichtung 34 verbunden. Diese umfasst einen spannungsgesteuerten Oszillator 26 (VCO = Voltage Controlled Oscillator), ein damit gekoppeltes Filter 27 sowie einen mit dem Filter 27 gekoppelten digitalen Phasenkomparator 28. Die PLL-Regelungsvorrichtung 34 ist über ein Eingangsfilter 31 mit der externen Energieversorgung 33 gekoppelt. Über ein Eingangsfilter 32 ist ebenfalls die Endstufe 24 mit der Energieversorgung 33 verbunden. Die PLL-Regelungsvorrichtung 34, genauer der digitale Phasenkomparator 28, erhält als Eingangssignal einen durch die Strommesseinrichtung 23 gemessenen Strom, der durch einen Signalverstärker 29 verstärkt ist. Ferner wird eine am Ausgang der Endstufe 24 anliegende Spannung über einen weiteren Signalverstärker 30 einem Eingang des digitalen Phasencomparators 28 zugeführt. Eine Leistungsanpassung kann im Mikrosekunden-Bereich durch den exakten Phasenabgleich von Strom und Spannung in den Schaltelementen der Ansteuerschaltung 25 und dem Resonanzkreis erfolgen und führt zu einem nahezu verlustfreien Schalten der Endstufe 24 und damit einer optimalen Leistungseinkopplung in das in das Entladungsgefäß 4 eingeleitete Plasma.The control loop is, as already explained, formed by the coupling coil 5 and the coupling capacitor 22, which in the embodiment of Fig. 6 is arranged inside the high-frequency generator 16. In an alternative, not shown embodiment, the coupling capacitor 22 could also be formed as an external component. In the resonant circuit two resistors 35 and 40 are further connected, which represent line resistances. The coupling capacitor 22 is coupled via a line to a power stage (output stage) 24, wherein the current flowing in this line is detected by a current measuring device 23. The output stage 24 is exemplified as a class D output stage and is driven by a drive circuit 25, which includes a flip-flop 47 and driver stages 48, 49. Drive the driver stages 48, 49 via power amplifiers 52, 53 of the output stage 24. The drive circuit 25 in turn is connected to a PLL control device 34. This includes a voltage controlled oscillator 26 (VCO), a filter 27 coupled thereto, and a digital phase comparator 28 coupled to the filter 27. The PLL control device 34 is coupled to the external power supply 33 via an input filter 31. Via an input filter 32, the output stage 24 is also connected to the power supply 33. The PLL control device 34, more particularly the digital phase comparator 28, receives as input a current measured by the current measuring device 23 which is amplified by a signal amplifier 29. Furthermore, a voltage applied to the output of the output stage 24 is fed via an additional signal amplifier 30 to an input of the digital phase comparator 28. A power adjustment can be done in the microsecond range by the exact phase balance of current and voltage in the switching elements of the drive circuit 25 and the resonant circuit and leads to a virtually lossless switching of the output stage 24 and thus an optimal power input into the discharged into the discharge vessel 4 plasma.

Ein derartiger Hochfrequenzgenerator mit PLL-Regelung eignet sich deshalb besonders für die hochfrequente Energieversorgung von lonenquellen (TWK) sowie in Elektronenquellen (NTR) mit induktiver Anregung sowie für Anwendungen, bei denen es auf geringsten Energieverbrauch ankommt.Such a high-frequency generator with PLL control is therefore particularly suitable for the high-frequency power supply of ion sources (TWK) as well as in electron sources (NTR) with inductive excitation as well as for applications in which the lowest energy consumption is required.

Die Erfindung ermöglicht als Endstufe in dem Hochfrequenzgenerator 16 den Einsatz von Halbbrücken in Verbindung mit einer PLL-Frequenz- und Phasenregelung sowie einer Resonanzkreisankopplung. Im Ausführungsbeispiel der Fig. 4 ist ein Serienresonanzkreis dargestellt, welcher im Frequenz- und Leistungsbereich von 600 kHz bis 14 MHz bzw. 1 W bis 3 kW arbeiten kann. Die als Halbbrücke ausgebildete Endstufe 24 ist zwischen einem Versorgungs- und einem Bezugspotentialanschluss verschaltet und umfasst in bekannter Weise zwei mit ihren Laststrecken seriell zueinander verschaltete Schaltelemente 44, im Ausführungsbeispiel in Form von MOSFETs. Diese werden durch die Ansteuerschaltung 25 angesteuert. Die Koppelkapazität 22 ist mit einem Knotenpunkt 38, welcher jeweils mit einem Hauptanschluss der Schaltelemente 44 verbunden ist, gekoppelt. Ein Widerstand 45 des Resonanzkreises, der einen Spulenwiderstand repräsentiert, ist mit Bezugspotential, z.B. Masse, verbunden. Die Schaltelemente 44 werden durch die Ansteuerschaltung 25 angesteuert, die mit einer in Strom und Spannung veränderlichen Energieversorgung verbunden ist.As an output stage in the high-frequency generator 16, the invention makes it possible to use half-bridges in conjunction with a PLL frequency and phase control as well as a resonant circuit coupling. In the embodiment of Fig. 4 is a series resonant circuit shown, which can work in the frequency and power range of 600 kHz to 14 MHz and 1 W to 3 kW. The output stage 24, designed as a half-bridge, is connected between a supply connection and a reference potential connection and, in a known manner, comprises two switching elements 44 connected in series with their load paths, in the embodiment in the form of MOSFETs. These are controlled by the drive circuit 25. The coupling capacitor 22 is coupled to a node 38, which is in each case connected to a main terminal of the switching elements 44. A resistor 45 of the resonant circuit, which represents a coil resistance, is connected to reference potential, eg ground. The switching elements 44 are driven by the drive circuit 25, which is connected to a variable in power and voltage power supply.

Fig. 5 zeigt ein weiteres Prinzipschaltbild einer als Vollbrücke ausgestalteten Endstufe 24 des Hochfrequenzgenerators. Eine als Vollbrücke ausgebildete Endstufe eignet sich für einen Frequenzbereich von 600 kHz bis 5 MHz und einen Leistungsbereich von 2 kW bis 10 kW. In bekannter Weise umfasst die Endstufe 24 jeweils zwei parallel verschaltene Halbbrückenzweige, die zwischen einem Versorgungs- und einem Bezugspotentialanschluss verschaltet sind und jeweils zwei mit ihren Laststrecken seriell verschaltete Schaltelemente 44 in Form von MOSFETS umfassen. Der Resonanzkreis, umfassend die Koppelspule 5, den Koppelkondensator 22 sowie den Leitungswiderstand 35, ist mit einem Knotenpunkt 39 einer ersten Halbbrücke und einem Knotenpunkt 41 einer zweiten Halbbrücke der Endstufe 24 verbunden. Ferner ist der Energieversorgung 33 ein Glättungskondensator 54 parallel geschaltet. Fig. 5 shows a further block diagram of a configured as a full-bridge amplifier 24 of the high-frequency generator. A power amplifier designed as a full bridge is suitable for a frequency range from 600 kHz to 5 MHz and a power range from 2 kW to 10 kW. In known manner, the output stage 24 includes two parallel-connected half-bridge branches, which are connected between a supply and a reference potential terminal and each comprise two with their load paths connected in series switching elements 44 in the form of MOSFETS. The resonant circuit, comprising the coupling coil 5, the coupling capacitor 22 and the line resistance 35, is connected to a node 39 of a first half-bridge and a node 41 of a second half-bridge of the output stage 24. Further, the power supply 33, a smoothing capacitor 54 is connected in parallel.

Der Übersichtlichkeit halber sind in den Fig. 4 und 5 weder die Ansteuerschaltung zur Ansteuerung der Schaltelemente 44 noch die PLL-Regelungsvorrichtung zur Anpassung der Frequenz und Phase dargestellt.For the sake of clarity are in the Fig. 4 and 5 neither the drive circuit for driving the switching elements 44 nor the PLL control device for adjusting the frequency and phase shown.

Fig. 8 stellt ein elektrisches Schaltbild möglicher Ankopplungen von Koppelspulen an einen Hochfrequenzgenerator dar. Eine Ankopplung des Hochfrequenzgenerators 16 an die lonen- oder Elektronenquelle kann über einfache Serienresonanzkreise oder Parallelresonanzkreise in Verbindung mit einer PLL-Phasenregelung erfolgen. Ebenso kann die Ankopplung über einen Serien-/Parallelresonanzkreis erfolgen, wobei die Koppelspule 5 eine Mittelanzapfung besitzt (linke Hälfte der Fig. 8). Deren zwei freie Enden können jeweils mit einem Bezugspotential, im Ausführungsbeispiel Masse, verbunden sein. Parallel dazu ist ein Kondensator 55 verschaltet. Nicht dargestellt ist der Einfachheit halber die PLL-Frequenz-/Phasenregelung. Der Resonanzkreis umfasst ferner den Koppelkondensator 22 sowie den Leitungswiderstand 35. Eine dem PLL-Regelkreis zugeführte Spannung wird über den Widerstand 35 abgegriffen, wobei diese Punkte mit v gekennzeichnet sind. Der dem PLL-Regelkreis als Regelgröße zugeführte Strom wird an dem mit I gekennzeichneten Punkt abgegriffen. In der rechten Hälfte der Fig. 8 ist eine Darstellung gewählt, bei der die Koppelspule 5 zwischen zwei Koppelkondensatoren 22a und 22b angeordnet ist. Beide Enden der Koppelspule 5 sind kapazitiv angeschlossen. Nicht dargestellt ist der Leitungswiderstand. Nicht dargestellt ist ferner die gemäß dem erfindungsgemäßen Gedanken vorgesehene PLL-Frequenz-Phasenregelung sowie der Hochfrequenzgenerator. Durch die beschriebene Ankopplung steigen der Wirkungsgrad des Hochfrequenzgenerators und der Wirkungsgrad der lonen- oder Elektronenquelle erheblich. In beiden Baugruppen treten keine Blindströme auf, wodurch die Verlustleistung jeweils sinkt. Durch eine optimierte Wahl der Windungszahl der Spule können sowohl eine optimale Plasmaeinkopplung als auch optimale Betriebsparameter (Betriebsspannung und Strom) des Hochfrequenzgenerators erreicht werden. Fig. 8 represents an electrical diagram of possible couplings of coupling coils to a high frequency generator. A coupling of the high frequency generator 16 to the ion or electron source can be done via simple series resonant circuits or parallel resonant circuits in conjunction with a PLL phase control. Likewise, the coupling can take place via a series / parallel resonant circuit, wherein the coupling coil 5 a center tap owns (left half of Fig. 8 ). Whose two free ends can each be connected to a reference potential, in the embodiment mass. In parallel, a capacitor 55 is connected. Not shown is the simplicity of the PLL frequency / phase control. The resonant circuit further comprises the coupling capacitor 22 and the line resistance 35. A voltage supplied to the PLL control circuit is tapped via the resistor 35, these points being indicated by v. The current supplied to the PLL control loop as a control variable is tapped off at the point marked I. In the right half of the Fig. 8 an illustration is chosen in which the coupling coil 5 is arranged between two coupling capacitors 22a and 22b. Both ends of the coupling coil 5 are capacitively connected. Not shown is the line resistance. Also not shown is provided in accordance with the inventive concept PLL frequency phase control and the high frequency generator. The described coupling significantly increases the efficiency of the high-frequency generator and the efficiency of the ion or electron source. In both modules, no reactive currents occur, whereby the power loss decreases in each case. By an optimized choice of the number of turns of the coil, both an optimal plasma coupling and optimal operating parameters (operating voltage and current) of the high-frequency generator can be achieved.

Fig. 9 zeigt eine beispielhafte schematische Darstellung der Ankopplung einer Koppelspule über einen Zusatz-Transformator 42 an den Hochfrequenzgenerator 16. Durch den Zusatz-Transformator 42 ist eine zusätzliche transformatorische Impedanzanpassung, insbesondere im Frequenz- und Leistungsbereich von 600 kHz bis 5 MHz bzw. 1 W bis 1 kW möglich. Der Zusatz-Transformator 42 weist im Ausführungsbeispiel eine Mittelanzapfung auf. Ein dem Hochfrequenzgenerator 16 nachgeschalteter Kondensator 54 dient zur Gleichspannungsentkopplung des Zusatz-Transformators 42. Fig. 9 shows an exemplary schematic representation of the coupling of a coupling coil via an additional transformer 42 to the high frequency generator 16. By the additional transformer 42 is an additional transformer impedance matching, especially in the frequency and power range of 600 kHz to 5 MHz or 1 W to 1 kW possible. The additional transformer 42 has a center tap in the exemplary embodiment. A high-frequency generator 16 downstream capacitor 54 is used for DC decoupling of the auxiliary transformer 42nd

Fig. 10 zeigt eine Darstellung von Frequenzbandbreite und Resonanzkreisgüte bzw. Frequenzverstimmung sowie Phasengang einer lonenquelle bei verschiedenen Plasmazuständen. Die unterschiedlichen Gütekurven des Resonanzkreises sind durch unterschiedliche Impedanzen des Plasmas aufgrund unterschiedlicher lonisationsgrade verursacht. So hat die steilste Kurve in der unteren Graphik die größte Güte und die kleinste Bandbreite. Die Darstellung veranschaulicht, dass der erfindungsgemäße Regelkreis auf Güten unterschiedlichster Art reagiert und stabil einrastet. Die in der oberen Hälfte der Figur angegebenen Kurven zeigen, dass sich durch eine Veränderung der Plasma-Impedanzen Ionenströme unterschiedlicher Phasenlage ergeben, welche durch den Phasenregelkreis kompensiert werden. Fig. 10 shows a representation of frequency bandwidth and Resonanzkreisgüte or frequency detuning and phase response of an ion source at different Plasma states. The different quality curves of the resonant circuit are caused by different impedances of the plasma due to different degrees of ionization. So the steepest curve in the lower graph has the highest quality and the smallest bandwidth. The illustration illustrates that the control loop according to the invention reacts to grades of various kinds and locks firmly into place. The curves given in the upper half of the figure show that, due to a change in the plasma impedances, ion currents of different phase position result, which are compensated by the phase locked loop.

Fig. 11 zeigt ein weiteres Prinzipschaltbild, das den Einsatz der PLL-Regelungsvorrichtung zur Steuerung des Hochfrequenzgenerators darstellt. Die Endstufe 24 ist im Beispiel als Klasse-D-Halbbrücke ausgebildet, wobei der Resonanzkreis mit dem Knotenpunkt 39 gekoppelt ist. Zwischen dem Knotenpunkt 39 und einem Widerstand 35 ist eine Strommesseinrichtung 23 vorgesehen. Der Widerstand 35 stellt einen Leitungswiderstand dar. Der seriell dazu verschaltete Widerstand 45 repräsentiert einen Spulenwiderstand. Zwischen dem Knotenpunkt 39 und einem Bezugspotential wird eine Spannung abgegriffen. Diese Spannung und ein durch die Strommesseinrichtung 23 gemessener Strom werden den Eingängen eines Phasenkomparators 28 zugeführt. Die an dem Phasenkomparator 28 anliegende Ausgangsspannung wird gefiltert an den Eingang des spannungsgesteuerten Oszillators 26 zugeführt. Diese Steuerspannung wird von dem Phasenkomparator, der die Funktion eines Fehlerverstärkers hat, verändert, bis an seinen Eingängen eine Frequenz- und Phasengleichheit vorliegt. Über ein Flip-Flop 47 werden Treiberstufen 48, 49 angesteuert, die über Transformatoren 50, 51 Endstufen 52, 53 ansteuern bzw. treiben. Fig. 11 shows another block diagram illustrating the use of the PLL control device for controlling the high-frequency generator. The output stage 24 is formed in the example as a class D half-bridge, wherein the resonant circuit is coupled to the node 39. Between the node 39 and a resistor 35, a current measuring device 23 is provided. The resistor 35 represents a line resistance. The resistor 45 connected in series represents a coil resistance. Between the node 39 and a reference potential, a voltage is tapped. This voltage and a current measured by the current measuring device 23 are supplied to the inputs of a phase comparator 28. The voltage applied to the phase comparator 28 output voltage is filtered to the input of the voltage controlled oscillator 26, respectively. This control voltage is changed by the phase comparator, which has the function of an error amplifier, until there is a frequency and phase equality at its inputs. Via a flip-flop 47 driver stages 48, 49 are driven, which drive via transformers 50, 51 power amplifiers 52, 53 or drive.

Fig. 12 zeigt eine Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Vollbrücke mit PLL-Regelung aufweist. Der Resonanzkreis ist als Serienresonanzkreis ausgebildet. Die übrigen Bauelemente und deren Verschaltung entsprechen der Beschreibung zu Fig. 11. Fig. 12 shows a device with a high frequency generator having a class D full bridge with PLL control. The resonant circuit is designed as a series resonant circuit. The remaining components and their interconnection correspond to the description Fig. 11 ,

In Fig. 13 ist eine Vorrichtung mit einem Hochfrequenzgenerator dargestellt, der eine Klasse-E-Endstufe mit PLL-Regelung aufweist. Der Resonanzkreis ist als Serienresonanzkreis ausgebildet und umfasst den Koppelkondensator 22, die Koppelspule 5 und den Leitungswiderstand 35 und den Spulenwiderstand 45. Der Einsatz einer Klasse-E-Endstufenschaltung für den Hochfrequenzgenerator mit PLL-Frequenz- und Phasenregelung und Resonanzkreisankopplung, insbesondere einem Serien-/Parallelresonanzkreis einschließlich der Koppelspule, wird bevorzugt im Frequenz- und Leistungsbereich von 600 kHz bis 30 MHz bzw. 1 W bis 500 W eingesetzt. Die Spule 56 ist Bestandteil des Klasse-E-Verstärkers und um ein Vielfaches größer als die Spule 5. Sie dient als Energiespeicher, wenn die Endstufe 52 gesperrt ist. Die übrigen Bauelemente und deren Verschaltung entsprechen der Beschreibung zu Fig. 11.In Fig. 13 a device is shown with a high frequency generator having a class E power amplifier with PLL control. The resonant circuit is designed as a series resonant circuit and comprises the coupling capacitor 22, the coupling coil 5 and the line resistor 35 and the coil resistor 45. The use of a class E power amplifier circuit for the high frequency generator with PLL frequency and phase control and resonant circuit coupling, in particular a series / Parallel resonant circuit including the coupling coil, is preferably used in the frequency and power range of 600 kHz to 30 MHz or 1 W to 500 W. The coil 56 is part of the class E amplifier and many times larger than the coil 5. It serves as an energy store when the power amplifier 52 is locked. The remaining components and their interconnection correspond to the description Fig. 11 ,

Fig. 14 zeigt ein elektrisches Ersatzschaltbild einer Vorrichtung mit einem Hochfrequenzgenerator, der eine Klasse-D-Halbbrücke mit PLL-Regelung und zusätzlicher transformatorischer Aufwärtsanpassung aufweist. Hierzu sind ein Transformator 57 und ein Kondensator 58 mit dem Ausgang der Endstufen 52, 53 verschaltet. Der Kondensator 58 ist dabei in bekannter Weise mit einer Mittelpunktsanzapfung des Transformators 57 verbunden. Die übrigen Bauelemente und deren Verschaltung entsprechen der Beschreibung zu Fig. 11. Fig. 14 Figure 12 shows an equivalent electrical circuit diagram of a device with a high frequency generator having a class D half-bridge with PLL control and additional transform up-matching. For this purpose, a transformer 57 and a capacitor 58 are connected to the output of the output stages 52, 53. The capacitor 58 is connected in a known manner with a center tap of the transformer 57. The remaining components and their interconnection correspond to the description Fig. 11 ,

Schließlich zeigt Fig. 15 ein Ausführungsbeispiel einer möglichen kapazitiven Impedanztransformation, welche bei sämtlichen Verstärkerklassen (Klasse C, Klasse D, Klasse E, Klasse F) zum Einsatz kommen kann. Mit einer derartigen Impedanztransformation ist es möglich, die Impedanz des Plasmas bzw. eine Eingangsimpedanz Zi des Resonanzkreises zu variieren und damit die Effizienz, den Frequenzbereich sowie den Spannungsbereich (zur Schubauflösung) zu optimieren. Der Widerstand 38 repräsentiert den Widerstand des Plasmas. Dem Widerstand 38 kann ein Kondensator 59 parallel geschaltet sein. Der Widerstand 60 und der dazu parallel geschaltete Kondensator 61 repräsentieren Elemente des Hochfrequenzgenerators. Die Kondensatoren 22, 61 repräsentieren Resonanzkondensatoren, die Spule 5 ist die Koppelspule.Finally shows Fig. 15 an embodiment of a possible capacitive impedance transformation, which in all amplifier classes (class C, class D, class E, class F) can be used. With such an impedance transformation, it is possible to vary the impedance of the plasma or an input impedance Zi of the resonant circuit and thus to optimize the efficiency, the frequency range and the voltage range (for shear resolution). The resistor 38 represents the resistance of the plasma. The resistor 38, a capacitor 59 may be connected in parallel. The resistor 60 and the capacitor 61 connected in parallel represent elements of the high-frequency generator. The capacitors 22, 61 represent resonant capacitors, the coil 5 is the coupling coil.

Der Vorteil sämtlicher beschriebener Varianten besteht darin, dass eine Leistungseinkopplung der von dem Hochfrequenzgenerator erzeugten Energie über einen großen Leistungs- und Frequenzbereich ohne Zwischentransformation und Impedanzanpassungsnetzwerk direkt in das Plasma der lonen- oder Elektronenquelle möglich ist. Kern der Leistungsanpassung ist dabei die Einbeziehung der Koppelspule, konstruktionsbedingter Koppelkapazitäten zwischen dem Plasma und dem Gehäuse des Entladungsgefäßes sowie der Verkabelung zu einem Serien-/oder Parallelresonanzkreis, sowie die automatische Frequenz- und Phasenregelung des Hochfrequenzgenerators.The advantage of all the variants described is that a power coupling of the energy generated by the high frequency generator over a large power and frequency range without intermediate transformation and impedance matching network directly into the plasma of the ion or electron source is possible. Core of the power adjustment is the inclusion of the coupling coil, design-related coupling capacitances between the plasma and the housing of the discharge vessel and the wiring to a series / or parallel resonant circuit, and the automatic frequency and phase control of the high-frequency generator.

Claims (26)

Vorrichtung zur Einkopplung von lonisationsenergie in eine induktiv oder induktiv-kapazitiv angeregte lonen- oder Elektronenquelle, mit - einem Entladungsgefäß (4) für ein zu ionisierendes Gas, - einer um das Entladungsgefäß (4) gewickelten Koppelspule (5) zur Einspeisung einer zur Plasma-Anregung notwendigen Hochfrequenz-Energie, - einem mit der Koppelspule (5) elektrisch gekoppelten Koppelkondensator (22), - einem mit der Koppelspule (5) elektrisch gekoppelten Hochfrequenzgenerator (16), der zusammen mit dem zumindest einen Koppelkondensator (22) einen Resonanzkreis ausbildet, wobei der Hochfrequenzgenerator (16) eine PLL-Regelungsvorrichtung (34) zur automatischen Impedanzanpassung des Resonanzkreises aufweist, so dass der Resonanzkreis mit einer Resonanzfrequenz betreibbar ist. Device for coupling ionization energy into an inductively or inductively capacitively excited ion or electron source, with a discharge vessel (4) for a gas to be ionized, a coupling coil (5) wound around the discharge vessel (4) for feeding in a high-frequency energy necessary for plasma excitation, - One with the coupling coil (5) electrically coupled coupling capacitor (22), - One with the coupling coil (5) electrically coupled high frequency generator (16) which forms a resonant circuit together with the at least one coupling capacitor (22), wherein the high frequency generator (16) has a PLL control device (34) for automatic impedance matching of the resonant circuit, then that the resonant circuit is operable at a resonant frequency. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass durch die PLL-Regelungsvorrichtung (34) eine Frequenz- und/oder Phasenregelung zur Impedanzanpassung des Resonanzkreises durchgeführt wird.Apparatus according to claim 1, characterized in that by the PLL control device (34), a frequency and / or phase control for impedance matching of the resonant circuit is performed. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Leistungsregelung des Hochfrequenzgenerators (16) durch Einstellung einer Eingangsgleichspannung (Uin) und eines Eingangsstroms (Jin) des Hochfrequenzgenerators (16) vornehmbar ist.Apparatus according to claim 1 or 2, characterized in that the power control of the high frequency generator (16) by setting a DC input voltage (Uin) and an input current (Jin) of the high frequency generator (16) is vornehmbar. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Hochfrequenzgenerator (16) mit oder ohne Zwischenschaltung eines Impedanzanpassungsnetzwerks mit der Koppelspule verbunden ist.Device according to one of the preceding claims, characterized in that the high-frequency generator (16) is connected with or without the interposition of an impedance matching network with the coupling coil. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Resonanzkreis als Serien- oder Parallelresonanzkreis ausgebildet ist.Device according to one of the preceding claims, characterized in that the resonant circuit is designed as a series or parallel resonant circuit. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) über eine Mittelpunktanzapfung (41) verfügt, an welche der Hochfrequenzgenerator (16) angeschlossen ist.Device according to one of the preceding claims, characterized in that the coupling coil (5) has a center tap (41) to which the high-frequency generator (16) is connected. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) zwischen zwei oder mehreren Koppelkondensatoren (22a, 22b) angeordnet ist.Device according to one of the preceding claims, characterized in that the coupling coil (5) between two or more coupling capacitors (22a, 22b) is arranged. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Hochfrequenzgenerator (16) ohne Zwischenschaltung von elektronischen Bauelementen für eine Zwischentransformation mit der Koppelspule (5) verbunden ist.Device according to one of the preceding claims, characterized in that the high-frequency generator (16) without the interposition of electronic components for an intermediate transformation with the coupling coil (5) is connected. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der zumindest eine Koppelkondensator (22) und die Koppelspule über einen Transformator (42) an den Hochfrequenzgenerator angeschlossen sind.Device according to one of claims 1 to 7, characterized in that the at least one coupling capacitor (22) and the coupling coil via a transformer (42) are connected to the high-frequency generator. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der Transformator (42) primärseitig kapazitiv mit dem Hochfrequenzgenerator gekoppelt ist und sekundärseitig mit dem zumindest einen Koppelkondensator (22) und der Koppelspule (5) den Resonanzkreis bildet.Apparatus according to claim 9, characterized in that the transformer (42) is capacitively coupled on the primary side with the high-frequency generator and the secondary side with the at least one coupling capacitor (22) and the coupling coil (5) forms the resonant circuit. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass eine Vorrichtung zur Erfassung von Strom und Spannung in dem Resonanzkreis vorgesehen ist, welche mit der PLL-Regelungsvorrichtung (34) gekoppelt ist, um dieser den gemessenen Strom und die gemessene Spannung als Regelgrößen zuzuführen.Apparatus according to claim 10, characterized in that a device for detecting current and voltage is provided in the resonant circuit, which coupled to the PLL control device (34) is to supply the measured current and the measured voltage as controlled variables. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der zumindest eine Koppelkondensator (22) in dem Hochfrequenzgenerator (16) oder außerhalb von diesem angeordnet ist.Device according to one of the preceding claims, characterized in that the at least one coupling capacitor (22) is arranged in the high-frequency generator (16) or outside thereof. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) einseitig geerdet ist.Device according to one of the preceding claims, characterized in that the coupling coil (5) is grounded on one side. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) isoliert zu einem Bezugspotential über den Resonanzkreis angeschlossen ist.Device according to one of the preceding claims, characterized in that the coupling coil (5) is connected in isolation to a reference potential via the resonant circuit. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) und das Plasma einen Transformator ausbilden, wobei das Plasma eine Sekundärwicklung des Transformators darstellt.Device according to one of the preceding claims, characterized in that the coupling coil (5) and the plasma form a transformer, wherein the plasma is a secondary winding of the transformer. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Hochfrequenzgenerator (16) eine Leistungsendstufe (24) umfasst.Device according to one of the preceding claims, characterized in that the high-frequency generator (16) comprises a power output stage (24). Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die Leistungsendstufe (24) wahlweise als eine der nachfolgend aufgeführten Varianten ausgebildet ist: - Halbbrücken-Klasse-D-Endstufe; - Vollbrücken-Klasse-D-Endstufe; - Push-Pull-Endstufe; - Endstufe der Klasse E; - Endstufe der Klasse F; - Endstufe der Klasse C. Apparatus according to claim 16, characterized in that the power output stage (24) is optionally designed as one of the variants listed below: - Half-bridge class D power amplifier; - Full Bridge Class D Power Amplifier; - push-pull output stage; - Class E power amplifier; - Class F power amplifier; - Class C power amplifier. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass durch den Hochfrequenzgenerator (16) eine Resonanzfrequenz im Bereich von 0,5 MHz bis 30 MHz einstellbar ist.Device according to one of the preceding claims, characterized in that a resonance frequency in the range of 0.5 MHz to 30 MHz can be set by the high-frequency generator (16). Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die in den Hochfrequenzgenerator (16) eingekoppelte Leistung im Bereich von 1 W bis 10 kW ist.Device according to one of the preceding claims, characterized in that in the high-frequency generator (16) coupled power is in the range of 1 W to 10 kW. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die an den Hochfrequenzgenerator (16) gekoppelte Lastimpedanz in einem Bereich von 0,1 Ohm bis 1 Ohm oder in einem Bereich von 1 Ohm bis 50 Ohm liegt.Device according to one of the preceding claims, characterized in that the load impedance coupled to the high frequency generator (16) is in a range of 0.1 ohms to 1 ohms or in a range of 1 ohms to 50 ohms. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Entladungsgefäß (4) einen Gaseinlass (6) und einen gegenüberliegend angeordneten Auslass (7) mit zumindest zwei Extraktionsgittern (8) mit jeweils einer Multilochmaske umfasst, welche als elektrische Linse zur Fokussierung der zu extrahierenden Ionenstrahlen dient.Device according to one of the preceding claims, characterized in that the discharge vessel (4) comprises a gas inlet (6) and an outlet arranged opposite (7) with at least two extraction grids (8), each with a multi-hole mask, which serves as an electric lens for focusing the extracting ion beams is used. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass an die Extraktionsgitter (8) ein elektrisches Feld anlegbar ist.Apparatus according to claim 21, characterized in that an electric field can be applied to the extraction grids (8). Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Entladungsgefäß (4) aus einem nicht leitenden Material mit geringen Hochfrequenzverlusten gebildet ist.Device according to one of the preceding claims, characterized in that the discharge vessel (4) is formed of a non-conductive material with low high-frequency losses. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) eine einlagige oder eine mehrlagige oder eine bifilare Wicklung umfasst.Device according to one of the preceding claims, characterized in that the coupling coil (5) comprises a single-layer or a multilayer or a bifilar winding. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) um das Entladungsgefäß (4) oder innerhalb des Entladungsgefäßes angeordnet ist.Device according to one of the preceding claims, characterized in that the coupling coil (5) is arranged around the discharge vessel (4) or within the discharge vessel. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Koppelspule (5) zylindrisch, kegelförmig, sphärisch oder teilkonisch mit zylindrischem Übergangskörper um das Entladungsgefäß entsprechender Form gewickelt ist.Device according to one of the preceding claims, characterized in that the coupling coil (5) is cylindrical, conical, spherical or teilkonisch wound with cylindrical transition body to the discharge vessel of corresponding shape.
EP08013495.0A 2007-08-02 2008-07-26 High frequency generator for ion and electron sources Active EP2020672B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007036592.8A DE102007036592B4 (en) 2007-08-02 2007-08-02 High frequency generator for ion and electron sources

Publications (3)

Publication Number Publication Date
EP2020672A2 true EP2020672A2 (en) 2009-02-04
EP2020672A3 EP2020672A3 (en) 2010-11-10
EP2020672B1 EP2020672B1 (en) 2020-05-06

Family

ID=39944376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08013495.0A Active EP2020672B1 (en) 2007-08-02 2008-07-26 High frequency generator for ion and electron sources

Country Status (4)

Country Link
US (1) US8294370B2 (en)
EP (1) EP2020672B1 (en)
DE (1) DE102007036592B4 (en)
RU (1) RU2461908C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933884A1 (en) * 2020-07-01 2022-01-05 Analytik Jena GmbH Spectrometric generator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076404B4 (en) 2011-05-24 2014-06-26 TRUMPF Hüttinger GmbH + Co. KG A method of impedance matching the output impedance of a high frequency power supply arrangement to the impedance of a plasma load and high frequency power supply arrangement
RU2499320C2 (en) * 2011-11-28 2013-11-20 Ильшат Гайсеевич Мусин Inductance-capacitance generator (lc-generator)
EP3340746B1 (en) 2016-12-22 2021-05-05 Technische Hochschule Mittelhessen Control unit for controlling a high frequency generator
KR20180109351A (en) * 2017-03-28 2018-10-08 엘에스산전 주식회사 Proportional and resonant current controller
DE102017107177A1 (en) * 2017-04-04 2018-10-04 Tesat-Spacecom Gmbh & Co. Kg Frequency control for a frequency generator of an ion engine
RU2695541C1 (en) * 2018-07-02 2019-07-24 Акционерное общество "Концерн "Созвзедие" Device for inputting energy into gas-discharge plasma
EP3754187B1 (en) 2019-06-18 2023-12-13 ThrustMe Radio-frequency generator for plasma source and method for adjusting the same
DE102020106692A1 (en) 2020-03-11 2021-09-16 Analytik Jena Gmbh Generator for spectrometry
CN111577564A (en) * 2020-06-30 2020-08-25 中国人民解放军国防科技大学 Single-stage composite double-pulse enhanced ionization type induction pulse plasma thruster

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948229C1 (en) 1999-10-07 2001-05-03 Daimler Chrysler Ag High frequency ion source

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507588A (en) * 1983-02-28 1985-03-26 Board Of Trustees Operating Michigan State University Ion generating apparatus and method for the use thereof
RU2095877C1 (en) * 1995-06-19 1997-11-10 Государственный научно-исследовательский институт прикладной механики и электродинамики Московского авиационного института Ion production method and ion source implementing it
US5965034A (en) * 1995-12-04 1999-10-12 Mc Electronics Co., Ltd. High frequency plasma process wherein the plasma is executed by an inductive structure in which the phase and anti-phase portion of the capacitive currents between the inductive structure and the plasma are balanced
US5824606A (en) * 1996-03-29 1998-10-20 Lam Research Corporation Methods and apparatuses for controlling phase difference in plasma processing systems
US5770922A (en) 1996-07-22 1998-06-23 Eni Technologies, Inc. Baseband V-I probe
KR100542459B1 (en) * 1999-03-09 2006-01-12 가부시끼가이샤 히다치 세이사꾸쇼 Apparatus for treating substrate by plasma and method thereof
DE10215660B4 (en) * 2002-04-09 2008-01-17 Eads Space Transportation Gmbh High frequency electron source, in particular neutralizer
US6703080B2 (en) * 2002-05-20 2004-03-09 Eni Technology, Inc. Method and apparatus for VHF plasma processing with load mismatch reliability and stability
JP4901094B2 (en) * 2004-11-30 2012-03-21 株式会社Sen Beam irradiation device
US7459899B2 (en) * 2005-11-21 2008-12-02 Thermo Fisher Scientific Inc. Inductively-coupled RF power source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948229C1 (en) 1999-10-07 2001-05-03 Daimler Chrysler Ag High frequency ion source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933884A1 (en) * 2020-07-01 2022-01-05 Analytik Jena GmbH Spectrometric generator

Also Published As

Publication number Publication date
EP2020672B1 (en) 2020-05-06
EP2020672A3 (en) 2010-11-10
US20090058303A1 (en) 2009-03-05
DE102007036592B4 (en) 2014-07-10
DE102007036592A1 (en) 2009-02-19
RU2008131500A (en) 2010-02-10
US8294370B2 (en) 2012-10-23
RU2461908C2 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
DE102007036592B4 (en) High frequency generator for ion and electron sources
EP1701376B1 (en) Vacuum plasma generator
EP0261338B1 (en) Inductively excited ion source
DE69914435T2 (en) Tunable and customizable resonator coil assembly for ion implantation linear accelerators
EP1699107B1 (en) 3 dB coupler
DE102011076404B4 (en) A method of impedance matching the output impedance of a high frequency power supply arrangement to the impedance of a plasma load and high frequency power supply arrangement
Jones et al. Simple radio-frequency power source for ion guides and ion traps
DE10257147B4 (en) A power supply device for generating high frequency power for a plasma generating device
EP1062679B1 (en) Plasma etching installation
DE112013005486B4 (en) HF transformer, energy supply with HF transformer, ion optical system with energy supply arrangement, method for operating an HF transformer for energy supply, method for controlling an ion optical system
DE4112161A1 (en) HIGH VOLTAGE GENERATOR FOR ELECTRICAL, CAPACITIVE PARTS CONTAINING LOADS, ESPECIALLY FOR LASER
DE19933842A1 (en) Device and method for etching a substrate by means of an inductively coupled plasma
EP1410698B1 (en) High-frequency matching network
EP1203396B1 (en) Method for etching a substrate using an inductively coupled plasma
EP3340746A1 (en) Control unit for controlling a high frequency generator
EP3631980B1 (en) High frequency amplifier arrangement and method for designing a high frequency amplifier arrangement
WO2005027258A1 (en) 90° hybrid
DE202010016850U1 (en) RF power coupler
EP1739716A1 (en) HF plasma process system
JP2003535439A (en) Integrated resonator and amplifier system
EP4136665A1 (en) Impedance matching circuit and plasma supply system and operating method
DE102020106692A1 (en) Generator for spectrometry
EP2993775A1 (en) Galvanically separated auxiliary power supply using dielectric wave guide and microwaves
DE10008485B4 (en) RF matching network
DE3842756A1 (en) Radio-frequency ion beam source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20110423

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20130219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARIANEGROUP GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008017078

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008017078

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 16

Ref country code: GB

Payment date: 20230720

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 16