EP2014699A1 - Procédé de préparation de solides poreux organiques et solides obtenus grâce à ce procédé - Google Patents

Procédé de préparation de solides poreux organiques et solides obtenus grâce à ce procédé Download PDF

Info

Publication number
EP2014699A1
EP2014699A1 EP07011830A EP07011830A EP2014699A1 EP 2014699 A1 EP2014699 A1 EP 2014699A1 EP 07011830 A EP07011830 A EP 07011830A EP 07011830 A EP07011830 A EP 07011830A EP 2014699 A1 EP2014699 A1 EP 2014699A1
Authority
EP
European Patent Office
Prior art keywords
cyano
solids
monomers
polymerization
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07011830A
Other languages
German (de)
English (en)
Other versions
EP2014699B1 (fr
Inventor
Markus Antonietti
Arne Thomas
Pierre Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority to EP07011830A priority Critical patent/EP2014699B1/fr
Priority to AT07011830T priority patent/ATE441685T1/de
Priority to DE602007002294T priority patent/DE602007002294D1/de
Priority to US12/664,755 priority patent/US20100280216A1/en
Priority to PCT/EP2008/057542 priority patent/WO2008152147A1/fr
Priority to CN2008801005842A priority patent/CN101765620B/zh
Publication of EP2014699A1 publication Critical patent/EP2014699A1/fr
Application granted granted Critical
Publication of EP2014699B1 publication Critical patent/EP2014699B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method of preparing porous solids, as well as the porous solids obtainable by that method. Due to their porosity and large specific surface area, these solids proved useful e.g. as a catalyst carrier, as materials for separation and in chromatography, electrode materials and insulating materials, briefly in all fields of application where high specific surface areas are an asset.
  • US 3,164,555 relates to a method for producing heat resistant semi-conductor polymers comprising heating acetonitrile in an inert atmosphere in the presence of a catalyst. For instance, acetonitrile, benzonitrile and propionitrile are reacted with zinc chloride.
  • D.R. Anderson et al., in J. Polymer Sci. A-1, 4 (1966), pp. 1689-1702 describe thermally resistant polymers containing the s-triazine ring. For instance, dicyanobiphenyl is reacted in the presence of chlorosulfonic acid.
  • US 3,775,380 pertains to the polymerization of aromatic nitriles having at least two cyano groups by heating to a temperature of from about 410 to about 550 °C in the presence of a catalyst, such as a metal chloride to form curable polymeric compositions.
  • a catalyst such as a metal chloride
  • dicyanobenzenes are converted in the presence of a zinc chloride catalyst.
  • zinc chloride catalyst due to the presence of merely catalytic amounts of zinc chloride, no porous material can be obtained.
  • this may be due to the insufficient crosslinking of the framework, or by the lack of any appropriate template.
  • porous organic materials solids can be prepared by a simple method which comprises polymerizing, in a salt melt or an eutectic mixture of salt melt containing at least one Lewis acidic salt, cyano monomers having at least two cyano groups in their molecule, wherein the at least two cyano groups are bonded to a rigid linking group in the cyano monomer.
  • the present invention has been completed based on that finding. Specifically, the present invention relates to the above method, the porous solids obtainable by that method, and distinct uses of these solids.
  • the porous solids of the invention exhibit high porosity and associated extremely high specific surface areas. As such, these materials can be used in various fields where such high surface areas are advantageous, e.g. as a sorbent material, filtering material, insulating material, or as a catalyst carrier.
  • the preparation method in accordance with the invention involves the polymerization of cyano monomers having at least two cyano groups in their molecule, wherein the at least two cyano groups are bonded to a rigid linking group.
  • the term "rigid" characterizing the linking group in the cyano monomers is intended to indicate that the linking group when the cyano monomer containing the same is incorporated in the framework of the porous solid will prevent any substantial torsion or conformational change of the molecular framework.
  • the linking group which will remain after the cyclotrimerization reaction to be described below, is rigid, the framework of the formed porous solid will be sufficiently stable and have a persistent pore structure.
  • the porous solid free cyano groups which all belong to different cyano monomers or oligomers, will undergo a cyclotrimerization to give the porous solid, which consequently comprises triazine rings, in particular 1,3,5-triazine rings.
  • the at least two cyano groups in the cyano monomer molecules are preferably freely accessible, i.e. not sterically hindered.
  • An idealized polymerizsation mechanism is shown in Fig. 1 for 1,4-dicyanobenzene as a starting compound.
  • cyano monomers for use in the method of the invention are not particularly limited in kind. In the broadest aspect of the method of the invention, they can be represented by the following general formula (I):
  • A means the rigid linking group.
  • the index n indicating the number of cyano groups attached to the linking group A is ⁇ 2, preferably 2, 3 or 4, more preferably 2 or 3, and most preferably 2.
  • all of the n cyano groups are capable of undergoing the cyclotrimerization reaction as described above.
  • the linking group A may be a spiro moiety or an adamantane moiety.
  • Examples of cyano monomers containing this type of rigid linking group are shown below. Needless to mention, the present invention is not limited to these examples.
  • A represents an aromatic or heteroaromatic group, preferably having from 5 to 50, more preferably from 6 to 24, still more preferably from 6 to 18 ring atoms in total.
  • the ring atoms may include, apart from carbon atoms, for instance, nitrogen, sulfur and oxygen atoms.
  • the aromatic or heteroaromatic linking group A may consist of an aromatic or heteroaromatic single ring.
  • the single ring is 5 or 6 membered, optionally containing hetero atoms such as N, S or O.
  • the single ring linking group A may be benzene, pyridine, pyridazine, pyrimidine, pyrazine, thiophene, pyrrole and furane.
  • the single ring linking group A may be substituted, e.g. by one or more halogen atoms (F, Cl, Br and I), one or more aryl groups (preferably C 6 -C 14 -aryl groups) or one or more C 1-6 alkyl groups.
  • the above alkyl substituents may optionally be substituted. For instance, they may be present in the form of perfluoroalkyl groups. Examples of cyano monomers containing, as the rigid linking group, aromatic or heteroaromatic single rings are given below.
  • the (hetero)aromatic linking group A can be a fused ring system such as naphthalene, antracene or phenanthrene.
  • the fused ring systems can contain hetero atoms and have substituents such as exemplified above for the single ring. Examples of cyano monomers containing the fused ring system-type of rigid linking group are shown below.
  • the rigid linking group A may comprise more than one rings (or fused ring systems) which are mutually connected e.g. by a single bond, a carbonyl group, an oxygen atom, or a nitrogen atom. Examples of corresponding cyano monomers are illustrated, hereinafter.
  • M may be 2 H + , 2 Li + , Cu 2+ , Zn 2+ or Ni 2+ .
  • R 1 , R 2 , R 3 and R 4 can be independently selected from hydrogen; halogen (F, Cl, Br, I); aryl, in particular C 6 -C 14 -aryl; and C 1-6 alkyl groups, in particular C 1-6 -perfluoroalkyl groups.
  • the cyano monomers shown above by way of their structural formula are used with preference, e.g. where the polymerization is carried out in a zinc chloride melt. More preferred are the cyano monomers employed in the working examples of this specification.
  • the cyano monomers used in the present working examples are preferably subjected to the polymerization in accordance with the method of the invention in a salt melt of ZnCl 2 .
  • the most preferred cyano monomers are dicyanobenzenes, such as 1,3-and 1,4-dicyanobenzene. While mixtures of several types of cyano monomers can be used in the method of the invention, the use of a single kind of cyano monomer is preferred in view of the regularity of the obtained porous solid.
  • the solids which are obtainable by the preparation method of the invention are porous.
  • the formation of the pores is illustrated in Fig. 1 .
  • the total pore volume of the materials may be in the range of ⁇ 0.3 cm 3 /g.
  • the total pore volume is in the range of 0.3 to 2.5 cm 3 /g. More preferably, it is ⁇ 1.5 cm 3 /g, such as in the range of 1.5 and 2.5 cm 3 /g.
  • the porous solids of the invention may be microporous or mesoporous, and may additionally comprise macropores.
  • the pore sizes are defined in accordance with IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, pp. 587. That means, micropores have a width of less than 2 nm, mesopores of between 2 and 50 nm, and macropores of more than 50 nm.
  • the BET specific surface area of the solids of the invention is ⁇ 500 m 2 /g, such as 500 to 2500 m 2 /g, preferably it is ⁇ 1000 m 2 /g, for instance between 1000 and 2500 m 2 /g.
  • the porosity, specific surface area and functionality of the materials can be determined by selecting the cyano monomer, more specifically the rigid linking group in the cyano monomer that will remain in the final porous solid once the polymerization is completed. That means, by proper selection of the cyano monomer subjected to the polymerization reaction, the properties of the resultant solids can be tailor-made.
  • the polymerization of the cyano monomers is carried out in a salt melt or a eutectic mixture of salt melt containing, preferably consisting of, at least one Lewis acidic salt.
  • the Lewis acidic salt or mixture of more than one Lewis acidic salt
  • the at least one Lewis acidic salt contained in or constituting the salt melt or eutectic mixture of salt melt is not specifically limited in kind.
  • AlCl 3 , FeCl 3 , GaCl 3 , TiCl 4 , BCl 3 , SnCl 4 , SbCl 5 , ZnCl 2 and ZnBr 2 can be used.
  • ZnCl 2 and/or ZnBr 2 are used, and most preferably ZnCl 2 is used.
  • utectic mixture is intended to mean, in the case of binary systems, a mixture of a specific ratio of two compounds, such as Lewis acidic salts, which are not miscible in the solid state but completely miscible in the liquid state.
  • the reaction temperature is preferably above the melting point of the used Lewis acidic salt(s) constituting the salt melt.
  • the polymerization reaction can be carried out at a temperature of from 250 to 500 °C provided a salt melt can be formed at that temperature.
  • the reaction temperature is preferably 400 to 500 °C
  • the reaction time which depends on the reactivity of the cyano monomers, may be from 1 to 100 h, preferably 20 to 50 h, most preferably 25 to 40 h.
  • the reaction can be carried out at ambient pressure or under vacuum, the latter being preferred. If desired, the reaction mixture can be agitated by conventional means, but this is unnecessary. While the reaction can be carried out in an open vessel, it is preferably carried out in a sealed vessel, in particular in an inert gas atmosphere (e.g. nitrogen or argon).
  • an inert gas atmosphere e.g. nitrogen or argon
  • reaction conditions are preferred in that the evaporation of volatile cyano monomers, and the formation of zinc oxide side products can be suppressed.
  • a suitable vessel material such as Pyrex glass, quartz glass, stainless steel, or ceramics, which material will not be attacked by the salt melt reaction mixture.
  • the vessel material is of no further relevance to the polymerization reaction.
  • the course of the polymerization reaction can be monitored by way of FT-IR. As the cyclotrimerization proceeds, the peak typical for CN (at a wave number slightly above 2200 cm -1 ) shrinks, and bands in the range of 1350 to 1500 cm -1 , which are typical for 1,3,5-triazine, appear. This confirms the formation of a framework as illustrated in Fig. 1 .
  • the material can optionally be comminuted, e.g. ground in a mortar. Subsequently, the porous material can be washed, e.g. using water and/or acetone, and finally dried, for instance by heating, optionally under vacuum.
  • the method of the invention is simple and can give the desired porous materials in high yield.
  • Fig. 2 shows the absorption/desorption curve for the material obtained in Example 1. The absorption and desorption curve is not closed which is due to the nitrogen pressure exerted during the measurement and is typical for soft materials.
  • the polymerization is carried out in a salt melt of preferably zinc chloride, whereas merely catalytic amounts of zinc chloride were used in the prior art.
  • the molar ratio of the at least one Lewis acidic salt, and the cyano compound is ⁇ 0.5. More preferably the molar ratio is ⁇ 5, even more preferably 5 to 35, and still more preferably 7 to 15. Under these conditions, porous materials in accordance with the invention can generally be obtained which are amorphous materials.
  • amorphous means that there are no distinct reflections in the powder XRD pattern (WAXS pattern) of the material, when this recorded on a Bruker D8 Advance diffractometer using CuK ⁇ (1.5405 ⁇ ) radiation. The acquisition time was 30 minutes for a 40° 2 ⁇ scan.
  • crystalline porous solids could be obtained, e.g. using 1,4-dicyanobenzene as the cyano compound.
  • the crystalline solids represent another embodiment of the porous solids of the invention.
  • the powder XRD pattern of the crystalline materials if measured under the above conditions, feature a distinct reflection at a diffraction angle corresponding to the pore wall distance. Simulated XRD powder patterns revealed a stacking of C 8 H 4 N 2 sheets in eclipsed conformation.
  • the IR spectra were collected with a BIORAD FTS 6000 FTIR spectrometer, equipped with an attenuated total reflection (ATR) setup. Thermogravimetric analysis has been carried out using a NETZSCH TG209. The heating rate was 20 K/min. Transmission electron microscopy (TEM) images of microtomed samples were taken with a Zeiss EM 912Q at an acceleration voltage of 120 kV. Nitrogen adsorption data were obtained with a Quantachrome Autosorb-1 at liquid nitrogen temperature after having degassed the samples at 150 °C under high vacuum over night.
  • TEM Transmission electron microscopy
  • a Pyrex ampoule (diameter: 3 cm, height: 12 cm) was charged with 1,4-diacyanobenzene (2.0 g, 15.6 mmol) and ZnCl 2 (15 g, 110.0 mmol) in a nitrogen atmosphere.
  • the ampoule was evacuated (0.01 mbar) and subsequently sealed.
  • the vial was then heated to 400 °C (10 °C/min) and maintained at this temperature for 40 h. After cooling to room temperature, the vial was opened, and the reaction mixture was discharged. The discharged reaction mixture was ground in a mortar and stirred in water (200 ml) for 4 h.
  • TGA (O 2 , 20-1000 °C, 10 °C min -1 ): residual mass: 2.38 assigned to ZnO; corresponding to 3.99 % ZnCl 2 .
  • Fig. 1 The adsorption-desorption isotherm of the material is shown in Fig. 1 .
  • the reaction was carried out like in Example 1 except that the reaction vessel was a quartz ampoule, the reaction temperature was 500 °C, the reaction time was reduced to 25 h, and 1.0 g (7.8 mmol) 1,4-dicyanobenzene and 20.0 g ZnCl 2 (146.6 mmol) were used.
  • the reaction was carried out as described in Example 2, and the amount of reactants was 1.0 g (7.8 mmol) 1,4-dicyanobenzene, and 30.0 g (220.0 mmol) ZnCl 2 .
  • TGA (O 2 , 20 - 1000 °C, 10 °C min -1 ): 480 C (decomposition, 94.55 %); residual mass 2.89 %, assigned to ZnO; corresponding to 4.84 % ZnCl 2 .
  • Table 1 Example No. Monomer Temp. (°C) Reaction time (h) Yield (%) Specific surface area (m 2 g -1 ) Molar ratio ZnCl 2 / cyano compound 1 1,4-dicyano benzene 400 40 90 1110 7.05 2 1,4-dicyano benzene 500 25 86 1670 18.80 3 1,4-dicyano benzene 500 25 83 1589 28.21 4 1,4-dicyano benzene 400 40 92 1220 0.94 5 1,2-dicyano Benzene 400 40 95 530 7.05 6 1,3-dicyano Benzene 400 40 90 1505 7.05 7 4,4'-dicyano biphenyl 400 40 83 2515 12.50 8 Tris(4-cyano phenyl) amine 400 40 98 827 30.25 9 1,3,5-tris(4-cyano phenyl) benzene 400 40 95 1235 30.00 10
  • the solids of the invention exhibit a high porosity as evidenced by their high BET specific surface area, and can be prepared by a simple method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Medicinal Preparation (AREA)
EP07011830A 2007-06-15 2007-06-15 Procédé de préparation de solides poreux organiques et solides obtenus grâce à ce procédé Not-in-force EP2014699B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07011830A EP2014699B1 (fr) 2007-06-15 2007-06-15 Procédé de préparation de solides poreux organiques et solides obtenus grâce à ce procédé
AT07011830T ATE441685T1 (de) 2007-06-15 2007-06-15 Verfahren zur herstellung organischer poríser festkírper und mit diesem verfahren herstellbare festkírper
DE602007002294T DE602007002294D1 (de) 2007-06-15 2007-06-15 Verfahren zur Herstellung organischer poröser Festkörper und mit diesem Verfahren herstellbare Festkörper
US12/664,755 US20100280216A1 (en) 2007-06-15 2008-06-16 Method of preparing organic porous solids and solids obtainable by this method
PCT/EP2008/057542 WO2008152147A1 (fr) 2007-06-15 2008-06-16 Procédé de préparation de solides poreux organiques et solides pouvant être obtenus par ce procédé
CN2008801005842A CN101765620B (zh) 2007-06-15 2008-06-16 有机多孔性固体的制备方法以及通过该方法可获得的固体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07011830A EP2014699B1 (fr) 2007-06-15 2007-06-15 Procédé de préparation de solides poreux organiques et solides obtenus grâce à ce procédé

Publications (2)

Publication Number Publication Date
EP2014699A1 true EP2014699A1 (fr) 2009-01-14
EP2014699B1 EP2014699B1 (fr) 2009-09-02

Family

ID=38637836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07011830A Not-in-force EP2014699B1 (fr) 2007-06-15 2007-06-15 Procédé de préparation de solides poreux organiques et solides obtenus grâce à ce procédé

Country Status (6)

Country Link
US (1) US20100280216A1 (fr)
EP (1) EP2014699B1 (fr)
CN (1) CN101765620B (fr)
AT (1) ATE441685T1 (fr)
DE (1) DE602007002294D1 (fr)
WO (1) WO2008152147A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190797B (zh) * 2010-03-08 2014-11-05 安徽大学 具有纳米孔洞的三嗪基共价键有机骨架材料的快速合成方法及用途
CN104829848B (zh) * 2013-11-14 2018-01-12 香港科技大学深圳研究院 一种可溶性含氮超支化聚合物及其制备方法和应用
WO2016035321A1 (fr) * 2014-09-01 2016-03-10 国立大学法人 東京大学 Materiau hybride conducteur comprenant une structure organique covalente
WO2018111777A1 (fr) * 2016-12-12 2018-06-21 The Regents Of The University Of California Ingénierie de taille de pores de matériaux carbonés poreux à l'aide de structures organiques covalentes
CN107416797A (zh) * 2017-08-31 2017-12-01 武汉工程大学 一种分散碳纳米管的方法
US10926226B2 (en) 2018-03-08 2021-02-23 ExxonMobil Research & Engineering Company Company Functionalized membranes and methods of production thereof
CN108976417B (zh) * 2018-06-05 2021-03-30 广东工业大学 一种三嗪环共价有机聚合物、电极材料及其制备方法和应用
CN113736081B (zh) * 2021-09-07 2023-05-26 黑龙江大学 一种ctf-1材料及其制备方法
CN114380965B (zh) * 2021-12-24 2023-02-07 江南大学 一种聚苯并咪唑离子型共价有机框架材料bm-s及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654192A (en) * 1968-08-19 1972-04-04 Minnesota Mining & Mfg Poly(arylene s-triazines)
US3775380A (en) * 1971-09-01 1973-11-27 Texaco Inc Polymerization of aromatic nitriles
US4125513A (en) * 1975-10-14 1978-11-14 Texaco Inc. Thermoplastic compositions containing triazine polymer coated reinforcing agents
WO2003000774A1 (fr) * 2001-06-21 2003-01-03 The Victoria University Of Manchester Materiaux organiques microporeux

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025517B1 (fr) * 1970-12-19 1975-08-23
US4056560A (en) * 1974-08-23 1977-11-01 The United States Of America As Represented By The Secretary Of The Navy N,N'-bis(3,4-dicyanophenyl) alkanediamides
FR2369290A1 (fr) * 1976-10-28 1978-05-26 Asahi Chemical Ind Adsorbant pour proteine
DE19544450A1 (de) * 1995-11-29 1997-06-05 Basf Ag Verfahren zur Herstellung von Enolethern
HUP0104526A3 (en) * 1998-12-02 2003-07-28 Henkel Kgaa Substance for bonding, coating and sealing, consisting of cyanoacrylates and aldehyde or ketone condensation products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654192A (en) * 1968-08-19 1972-04-04 Minnesota Mining & Mfg Poly(arylene s-triazines)
US3775380A (en) * 1971-09-01 1973-11-27 Texaco Inc Polymerization of aromatic nitriles
US4125513A (en) * 1975-10-14 1978-11-14 Texaco Inc. Thermoplastic compositions containing triazine polymer coated reinforcing agents
WO2003000774A1 (fr) * 2001-06-21 2003-01-03 The Victoria University Of Manchester Materiaux organiques microporeux

Also Published As

Publication number Publication date
DE602007002294D1 (de) 2009-10-15
EP2014699B1 (fr) 2009-09-02
US20100280216A1 (en) 2010-11-04
ATE441685T1 (de) 2009-09-15
CN101765620B (zh) 2012-06-27
CN101765620A (zh) 2010-06-30
WO2008152147A1 (fr) 2008-12-18

Similar Documents

Publication Publication Date Title
EP2014699B1 (fr) Procédé de préparation de solides poreux organiques et solides obtenus grâce à ce procédé
Haase et al. Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks
Kuhn et al. Porous, covalent triazine‐based frameworks prepared by ionothermal synthesis
Dong et al. Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO 2 and phenylsilane
Li et al. Polymorphism of 2D imine covalent organic frameworks
Modak et al. A triazine functionalized porous organic polymer: excellent CO 2 storage material and support for designing Pd nanocatalyst for C–C cross-coupling reactions
Zhao et al. Targeted synthesis of a 2D ordered porous organic framework for drug release
Jin et al. Development of organic porous materials through Schiff-base chemistry
Liao et al. Catalyst-free and efficient fabrication of highly crystalline fluorinated covalent organic frameworks for selective guest adsorption
Hug et al. A functional triazine framework based on N-heterocyclic building blocks
KR101565862B1 (ko) 올레핀 중합 촉매용 캐리어, 그의 제조 방법 및 용도
US20140148596A1 (en) Covalent Organic Frameworks and Methods of Making Same
CN108368241B (zh) 作为用于开环聚合的催化剂的MOFs
Mahmoudi et al. Fabrication of UiO-66 nanocages confined brønsted ionic liquids as an efficient catalyst for the synthesis of dihydropyrazolo [4′, 3’: 5, 6] pyrano [2, 3-d] pyrimidines
Peralta et al. Synthesis and adsorption properties of ZIF-76 isomorphs
Li et al. Squaramide-decorated covalent organic framework as a new platform for biomimetic hydrogen-bonding organocatalysis
Bourda et al. Conquering the crystallinity conundrum: Efforts to increase quality of covalent organic frameworks
Pourebrahimi et al. Functionalized covalent triazine frameworks as promising platforms for environmental remediation: A review
Ma et al. Construction of novel benzoxazine-linked covalent organic framework with antimicrobial activity via postsynthetic cyclization
Liu et al. Design and synthesis of conjugated polymers of tunable pore size distribution
US9353236B2 (en) Acrylamide-based mesoporous polymer and preparation method thereof
Ashirov et al. Salt-templated solvothermal synthesis of dioxane-linked three-dimensional nanoporous organic polymers for carbon dioxide and iodine capture
Tao et al. Synthesis of Porous Organic Polymers Via Catalytic Vapor-Assisted Solvent-Free Method
KR101154326B1 (ko) 디우레아를 포함하는 유기-무기 혼성 실리카 중간세공 분자체 및 그 제조방법
Bennabi et al. In situ polymerization of the metal-organic framework 5 (MOF-5) by the use of maghnite-H+ as a green solid catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20071211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007002294

Country of ref document: DE

Date of ref document: 20091015

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

26N No opposition filed

Effective date: 20100603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100615

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130605

Year of fee payment: 7

Ref country code: DE

Payment date: 20130620

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130702

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007002294

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140615

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007002294

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140615

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630