EP2012948B1 - Method for reshaping metal blanks made of superior and supreme hardness steels - Google Patents

Method for reshaping metal blanks made of superior and supreme hardness steels Download PDF

Info

Publication number
EP2012948B1
EP2012948B1 EP07728442A EP07728442A EP2012948B1 EP 2012948 B1 EP2012948 B1 EP 2012948B1 EP 07728442 A EP07728442 A EP 07728442A EP 07728442 A EP07728442 A EP 07728442A EP 2012948 B1 EP2012948 B1 EP 2012948B1
Authority
EP
European Patent Office
Prior art keywords
forming
temperature
forming tool
tool
tempered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07728442A
Other languages
German (de)
French (fr)
Other versions
EP2012948A1 (en
Inventor
Franz-Josef Lenze
Sascha Sikora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel AG filed Critical ThyssenKrupp Steel AG
Priority to PL07728442T priority Critical patent/PL2012948T3/en
Publication of EP2012948A1 publication Critical patent/EP2012948A1/en
Application granted granted Critical
Publication of EP2012948B1 publication Critical patent/EP2012948B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/22Deep-drawing with devices for holding the edge of the blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts

Definitions

  • the invention relates to a method for press hardening and tempered forming of blanks of higher and / or highest strength steels, in which the blank is heated prior to forming and then hot formed in a forming tool, wherein the forming tool has means for temperature control.
  • a board is first heated. This usually happens in an oven. Subsequently, the heated board is removed from the oven and placed in a forming tool in which the board are hot formed. For example, during press-hardening, the board is heated to at least austenitizing temperature. Subsequently, the board cools rapidly, transforming the austenitic structure of the board into a martensitic structure.
  • a problem with the forming tools known from the prior art is that although they allow a temperature of the forming tool, a precise control of the board temperature during forming can not be done.
  • the object of the present invention is to propose a forming tool for press-hardening and tempered forming as well as a method for press-hardening and tempered forming, which enables a precisely defined temperature control of the blank during the forming process.
  • the temperature zones in the forming tool during the forming uniform or different temperatures.
  • a temperature profile within the board or a constant temperature in the formed areas of the board can thus be set during the forming process.
  • more cost-effective forming tools according to a next further developed embodiment of the method according to the invention can be used in that the temperature of the individual temperature zones in the forming tool does not exceed a maximum temperature of 650 ° C. during forming.
  • inexpensive hot-work tool steels can be used for the production of the forming tool.
  • the microstructure of the press-hardened board in this temperature zone can be adjusted to an improved elongation at break under reduced values with respect to the yield strength and tensile strength.
  • the reason for this is considered to be that the fluctuation of the cooling rates is reduced despite higher surface pressures at higher tool temperatures.
  • the temperature of at least one temperature zone in the forming tool does not exceed 200 ° C., maximum yield strengths and tensile strengths are achieved in this area with a reduced elongation at break.
  • Another parameter for influencing the structure of the board during forming can be provided by the fact that the cooling behavior of the board is at least partially adjusted via the surface pressures of the forming tool. Especially in areas of low temperatures in the forming tool, ie in areas with a temperature below 200 ° C, a variation of the surface pressure leads to significantly different cooling rates, so that the structure of the board is variable in particular in these temperature zones on the surface pressure.
  • Particularly high mechanical strength values can be achieved with the method according to the invention by using, for example, a manganese-boron steel, in particular an alloy type 22MnB5 manganese-boron steel.
  • Tensile strengths of greater than 1500 MPa and yield strengths of more than 1000 MPa can be achieved with the steel type mentioned, the elongation at break A80 being approximately 5%.
  • the boards according to the invention have a surface coating for protection against oxide formation.
  • a corresponding oxide protection of the surfaces of the board can be provided by an aluminum-silicon coating.
  • a microstructure with the method according to the invention can be adjusted in a targeted manner, that a temperature difference between the heated board and the contact surfaces of the tempered tool between 50 and 650 ° C, preferably from 100 to 350 ° C is set.
  • the temperature of the board is understood here as the core temperature of the board.
  • a temperature difference of 50 ° C to 650 ° C almost all microstructures can be generated during forming, for example, a ferritic matrix with low temperature differences at 50 ° C.
  • essentially bainitic microstructures are produced by the forming in the board, which have a positive effect on the elongation behavior of the formed board.
  • the martensitic microstructure portion is substantially increased, which increases the strength, but reduces the elongation capacity of the formed board.
  • the single FIGURE shows a perspective sectional view of an embodiment of a forming tool for press hardening and tempered forming a board of higher and / or higher strength steels.
  • the illustrated in the single figure embodiment of a forming tool for press hardening and tempered forming has first as Umformwerkmaschinemaschinemaschine a drawing ring 1, a stamp 2 and a blank holder 3.
  • heating wires 5 are arranged, which temper the drawing ring 1 as the first temperature zone.
  • the stamp 2 has a heating coil 6, so that its temperature can also be regulated.
  • the receptacle 7 of the sheet metal holder comprises heating wires 8, which temper the sheet metal holder 3.
  • the individual temperature zones which are formed from the contact surfaces of the drawing ring 1, the punch 2 and the sheet holder 3 with the board and the individual heating wires are insulated by insulating material 9 against heat losses, for example in the tool holder 13.
  • the individual forming tool elements 1, 2, 3, which form the individual temperature zones are not thermally insulated from one another.
  • the thermocouples 10, 11, 12 in the immediate vicinity of the contact surfaces of Umformtechnikmaschinemaschinence 1, 2, 3 ensures with the board that an accurate temperature of the corresponding areas of the board can be achieved.
  • the drawing ring 1 and the blank holder 3 and the punch 2 with respect to the tool holder is thermally insulated, so that an uncontrolled heat flow into the tool holder 13 is prevented.
  • the three temperature zones of the drawing ring 1, the punch 2 and the sheet metal age 3 can be independently set to different temperatures from room temperature to, for example, a maximum of 650 ° C, preferably 200 to 650 ° C, especially 400 ° C to 650 ° C.
  • temperature profiles in the forming tool can thus also be generated in order to be able to respond to corresponding Make the deformed board a structural change, for example, due to different cooling rates of the board in these areas, bring about.
  • means for varying the surface pressure and the means for controlling the individual heating wires of the temperature zones are not shown in the single figure.
  • forming tool temperatures of, for example, 400 ° C to 650 ° C are preferred.
  • the microstructure consists only of martensite and maximum strength with reduced elongation at break is achieved.
  • Sample a) was converted into a tool tempered to 410 ° C. with a pressure of 80 bar and sample b) in a tool cooled to room temperature with a pressure of 80 bar.
  • Sample a) had a texture of bainite with tempering effects.
  • sample b) a martensitic, bainitic microstructure was detectable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Tires In General (AREA)
  • Forging (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A forming tool and a method for the press-hardening and tempered forming of a blank from high and/or very high strength steels are provided, in which the blank is heated before the tempered forming and then formed hot or semi-hot in a forming tool, wherein the forming tool has means for tempering. This is achieved in that the forming tool makes precisely defined temperature guidance of the blank during forming, and in that a plurality of controllable means are provided in the forming tool for tempering the forming tool, by which a plurality of temperature zones can be tempered in the forming tool, wherein at least contact surfaces of forming tool elements used for the tempered forming are allocated to individual temperature zones.

Description

Die Erfindung betrifft ein Verfahren zum Presshärten und temperierten Umformen von Platinen aus höher- und/oder höchstfesten Stählen, bei welchem die Platine vor dem Umformen erhitzt wird und anschließend in einem Umformwerkzeug warm umgeformt wird, wobei das Umformwerkzeug Mittel zur Temperierung aufweist.The invention relates to a method for press hardening and tempered forming of blanks of higher and / or highest strength steels, in which the blank is heated prior to forming and then hot formed in a forming tool, wherein the forming tool has means for temperature control.

Aufgrund der immer höheren Anforderungen an die Festigkeitseigenschaften von Strukturbauteilen aus Stahl oder einer Stahllegierung im Kraftfahrzeugbau werden zunehmend Warmumformungen in der Serienfertigung eingesetzt, um höher- und/oder höchstfeste Stähle umformen zu können. Beim Warmumformen wird zunächst eine Platine erwärmt. Dies geschieht üblicherweise in einem Ofen. Anschließend wird die erhitzte Platine aus dem Ofen entnommen und in ein Umformwerkzeug eingelegt, in welchem die Platine warm umgeformt werden. Beim Umformen mit Presshärten wird beispielsweise die Platine mindestens auf Austenitisierungstemperatur erhitzt. Anschließend kommt es zu einer raschen Abkühlung der Platine, so dass das austenitische Gefüge der Platine in martensitisches Gefüge umgewandelt wird. Ausgehend von guten Umformeigenschaften beim Vorliegen eines austenitischen Gefüges erfolgt daher während des Umformens ein deutlicher Anstieg der Festigkeitswerte und damit eine Verschlechterung der Umformeigenschaften der Platine. Aus der deutschen Offenlegungsschrift DE 10 2005 018 974 A1 ist eine Vorrichtung bekannt, mit welcher Platinen aus einem Ofen in ein temperiertes Umformwerkzeug eingelegt werden können, wobei während des Entnehmens aus dem Ofen und des Einlegens in das Umformwerkzeug über Kontaktelemente die Platinen durch Stromfluss auf Temperatur gehalten werden. Hierdurch soll erreicht werden, dass die Platinen auch mit den für das Warmumformen vorgesehenen Temperaturen umgeformt werden. Darüber hinaus ist aus der deutschen Offenlegungsschrift DE 198 34 510 A1 ein Feinschneidwerkzeug bekannt, bei welchem in der Schneidplatte und in der Führungsplatte jeweils eine Heizplatte mit Heizelementen angeordnet und ein Temperatursensor zur Steuerung der Heizplatten vorgesehen ist. Mit dem bekannten Feinschneidwerkzeug sollen Warmarbeitsstähle sowohl bei Raumtemperatur als auch bei Halbwarmtemperatur verarbeitet werden.Due to the ever increasing demands on the strength properties of structural components made of steel or a steel alloy in the automotive industry increasingly hot forming in series production are used to transform higher and / or ultra-high strength steels can. During hot forming, a board is first heated. This usually happens in an oven. Subsequently, the heated board is removed from the oven and placed in a forming tool in which the board are hot formed. For example, during press-hardening, the board is heated to at least austenitizing temperature. Subsequently, the board cools rapidly, transforming the austenitic structure of the board into a martensitic structure. Based on good forming properties in the presence of an austenitic structure, therefore, during the forming a significant increase in the Strength values and thus a deterioration of the forming properties of the board. From the German patent application DE 10 2005 018 974 A1 a device is known, with which boards from an oven can be placed in a tempered forming tool, wherein during removal from the oven and the insertion into the forming tool via contact elements, the boards are held by current flow to temperature. This is intended to ensure that the boards are also formed with the temperatures intended for hot forming. In addition, from the German patent application DE 198 34 510 A1 a fine blanking tool is known in which in the cutting plate and in the guide plate each have a heating plate with heating elements arranged and a temperature sensor is provided for controlling the heating plates. With the known fineblanking tool, hot-work tool steels are to be processed both at room temperature and at half-warm temperature.

Problematisch bei den aus dem Stand der Technik bekannten Umformwerkzeugen ist nun, dass diese zwar eine Temperierung des Umformwerkzeugs ermöglichen, eine präzise Steuerung der Platinentemperatur beim Umformen jedoch nicht erfolgen kann.A problem with the forming tools known from the prior art is that although they allow a temperature of the forming tool, a precise control of the board temperature during forming can not be done.

Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein Umformwerkzeug zum Presshärten und temperierten Umformen sowie ein Verfahren zum Presshärten und temperierten Umformen vorzuschlagen, welches eine genau definierte Temperaturführung der Platine während des Umformens ermöglicht.Proceeding from this, the object of the present invention is to propose a forming tool for press-hardening and tempered forming as well as a method for press-hardening and tempered forming, which enables a precisely defined temperature control of the blank during the forming process.

Gemäß der Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch ein Verfahren gemäß Anspruch 1 gelöst.According to the teachings of the present invention, the object indicated above is achieved by a method according to claim 1.

Es hat sich herausgestellt, dass es zur Beibehaltung der guten Umformeigenschaften erwärmter höherfester bzw. höchstfester Stähle notwendig ist, die Temperatur der Kontaktflächen der Umformwerkzeugelemente mit der Platine sehr genau zu kontrollieren. Hierdurch ist es nicht nur möglich, den Verschleiß im Umformwerkzeug an den Kontaktflächen der Umformwerkzeugelemente mit der Platine zu minimieren, da durch die Temperaturführung optimale Prozessparameter, insbesondere optimale Prozesstemperaturen der Platine, eingestellt werden können. Darüber hinaus ist es möglich, Einfluss auf das Gefüge der Platine auszuüben, in dem die Abkühlgeschwindigkeiten der Platine während des Umformens in den einzelnen Temperaturzonen über die Temperaturdifferenz zur Platinentemperatur eingestellt wird. So können mit dem erfindungsgemäßen Umformwerkzeug unterschiedliche Werkstöffeigenschaften in der Platine eingestellt werden. Beispielsweise kann über die geregelten Temperaturzonen ein Spannungsarmglühen während und/oder nach dem Umformen durchgeführt werden.It has been found that in order to maintain the good forming properties of heated, higher-strength or high-strength steels it is necessary to control the temperature of the contact surfaces of the forming tool elements with the board very precisely. This not only makes it possible to minimize the wear in the forming tool at the contact surfaces of Umformwerkzeugelemente with the board, as optimal process parameters, in particular optimal process temperatures of the board can be adjusted by the temperature control. In addition, it is possible to exert influence on the structure of the board, in which the cooling rates of the board during the forming in the individual temperature zones is set via the temperature difference to the board temperature. Thus, with the forming tool according to the invention different workpiece properties can be set in the board. For example, stress relieving may be performed during and / or after forming over the controlled temperature zones.

Wie bereits ausgeführt, kommt einer genauen Kontrolle der Temperaturen der Platine während des Umformens beim Presshärten und temperierten Umformen von Platinen aus höher- und/oder höchstfesten Stählen besondere Bedeutung zu, da dann nicht nur die Warmumformeigenschaften gut kontrolliert werden können, sondern darüber hinaus über die Abkühlgeschwindigkeiten Einfluss auf das Gefüge genommen werden kann. Erfindungsgemäß wird dies durch die einzeln regelbaren Temperaturzonen, die den Kontaktflächen des Umformwerkzeugelementen zugeordnet sind, erreicht.As already stated, a precise control of the temperatures of the board during forming during press hardening and tempered forming of blanks of higher and / or very high strength steels is of particular importance, because then not only the hot forming properties can be controlled well, but also on the Cooling rates influence on the microstructure can be taken. According to the invention this is achieved by the individually controllable temperature zones, which are assigned to the contact surfaces of Umformwerkzeugelementen.

Vorzugsweise weisen die Temperaturzonen im Umformwerkzeug während des Umformens einheitliche oder unterschiedliche Temperaturen auf. Je nach Bedarf kann damit während des Umformens ein Temperaturprofil innerhalb der Platine oder eine konstante Temperatur in den umgeformten Bereichen der Platine eingestellt werden.Preferably, the temperature zones in the forming tool during the forming uniform or different temperatures. Depending on requirements, a temperature profile within the board or a constant temperature in the formed areas of the board can thus be set during the forming process.

Wie bereits ausgeführt, können kostengünstigere Umformwerkzeuge gemäß einer nächsten weitergebildeten Ausführungsform des erfindungsgemäßen Verfahrens dadurch verwendet werden, dass die Temperatur der einzelnen Temperaturzonen im Umformwerkzeug während des Umformens eine Temperatur von maximal 650 °C nicht übersteigt. In diesem Fall können kostengünstige Warmarbeitsstähle für die Herstellung des Umformwerkzeugs verwendet werden.As already stated, more cost-effective forming tools according to a next further developed embodiment of the method according to the invention can be used in that the temperature of the individual temperature zones in the forming tool does not exceed a maximum temperature of 650 ° C. during forming. In this case, inexpensive hot-work tool steels can be used for the production of the forming tool.

Beträgt die Temperatur mindestens einer Temperaturzone im Umformwerkzeug mehr als 200 °C, so kann das Gefüge der pressgehärteten Platine in dieser Temperaturzone auf eine verbesserte Bruchdehnung unter reduzierten Werten in Bezug auf die Streckgrenze und Zugfestigkeit eingestellt werden. Darüber hinaus reduzieren sich aufgrund einer höheren Werkzeugtemperatur Gefügeschwankungen aufgrund wechselnder Flächenpressungen. Hierfür wird die Ursache darin gesehen, dass die Schwankung der Abkühlraten trotz unterschiedlicher Flächenpressungen bei höheren Werkzeugtemperaturen verringert wird.If the temperature of at least one temperature zone in the forming tool is more than 200 ° C., the microstructure of the press-hardened board in this temperature zone can be adjusted to an improved elongation at break under reduced values with respect to the yield strength and tensile strength. In addition, due to a higher mold temperature, structural fluctuations due to changing surface pressures are reduced. The reason for this is considered to be that the fluctuation of the cooling rates is reduced despite higher surface pressures at higher tool temperatures.

Übersteigt die Temperatur zumindest einer Temperaturzone im Umformwerkzeug 200 °C nicht, so werden in diesem Bereich maximale Streckgrenzen und Zugfestigkeiten bei einer verringerten Bruchdehnung erzielt.If the temperature of at least one temperature zone in the forming tool does not exceed 200 ° C., maximum yield strengths and tensile strengths are achieved in this area with a reduced elongation at break.

Ein weiterer Parameter zur Beeinflussung des Gefüges der Platine während des Umformens kann dadurch bereitgestellt werden, dass das Abkühlverhalten der Platine zumindest teilweise über die Flächenpressungen des Umformwerkzeugs eingestellt wird. Insbesondere in Bereichen niedriger Temperaturen im Umformwerkzeug, also in Bereichen mit einer Temperatur unterhalb von 200 °C, führt eine Variation der Flächenpressung zu deutlich unterschiedlichen Abkühlgeschwindigkeiten, so dass das Gefüge der Platine insbesondere in diesen Temperaturzonen über die Flächenpressung veränderbar ist.Another parameter for influencing the structure of the board during forming can be provided by the fact that the cooling behavior of the board is at least partially adjusted via the surface pressures of the forming tool. Especially in areas of low temperatures in the forming tool, ie in areas with a temperature below 200 ° C, a variation of the surface pressure leads to significantly different cooling rates, so that the structure of the board is variable in particular in these temperature zones on the surface pressure.

Besonders hohe mechanische Festigkeitswerte können mit dem erfindungsgemäßen Verfahren dadurch erreicht werden, dass beispielsweise ein Mangan-Bor-Stahl, insbesondere ein Mangan-Bor-Stahl vom Legierungstyp 22MnB5, verwendet wird. Mit dem genannten Stahltyp können Zugfestigkeiten von größer als 1500 MPa und Streckgrenzen von mehr als 1000 MPa erreicht werden, wobei die Bruchdehnung A80 etwa bei 5 % liegt.Particularly high mechanical strength values can be achieved with the method according to the invention by using, for example, a manganese-boron steel, in particular an alloy type 22MnB5 manganese-boron steel. Tensile strengths of greater than 1500 MPa and yield strengths of more than 1000 MPa can be achieved with the steel type mentioned, the elongation at break A80 being approximately 5%.

Um während des Presshärtens und temperierten Umformens nach dem erfindungsgemäßen Verfahren eine Oxidbildung auf der Oberfläche der Platine zu verhindern, weisen die Platinen erfindungsgemäß eine Oberflächenbeschichtung zum Schutz vor Oxidbildung auf. Beispielsweise kann ein entsprechender Oxidschutz der Oberflächen der Platine durch eine Aluminium-Silizium-Beschichtung bereitgestellt werden.In order to prevent oxide formation on the surface of the board during the press-hardening and tempered forming by the method according to the invention, the boards according to the invention have a surface coating for protection against oxide formation. For example, a corresponding oxide protection of the surfaces of the board can be provided by an aluminum-silicon coating.

Schließlich kann eine Gefügestruktur mit dem erfindungsgemäßen Verfahren dadurch gezielt eingestellt werden, dass ein Temperaturunterschied zwischen der erwärmten Platine und den Kontaktflächen des temperierten Werkzeugs zwischen 50 und 650 °C, vorzugsweise von 100 bis 350 °C eingestellt wird. Als Temperatur der Platine wird hier die Kerntemperatur der Platine verstanden. Bei einem Temperaturunterschied von 50 °C bis 650 °C lassen sich nahezu alle Gefügestrukturen während des Umformens erzeugen, beispielsweise eine ferritische Grundmatrix bei geringen Temperaturunterschieden bei 50 °C. Bei größeren Temperaturunterschieden zwischen 100 °C und 300 °C werden im wesentlichen bainitische Gefügestrukturen durch das Umformen in der Platine erzeugt, welche sich positiv auf das Dehnungsverhalten der umgeformten Platine auswirken. Bei größeren Temperaturunterschieden von mehr als 300 °C wird im wesentlichen der martensitische Gefügestrukturanteil erhöht, welches zwar die Festigkeit steigert, aber das Dehnungsvermögen der umgeformten Platine verringert.Finally, a microstructure with the method according to the invention can be adjusted in a targeted manner, that a temperature difference between the heated board and the contact surfaces of the tempered tool between 50 and 650 ° C, preferably from 100 to 350 ° C is set. The temperature of the board is understood here as the core temperature of the board. At a temperature difference of 50 ° C to 650 ° C almost all microstructures can be generated during forming, for example, a ferritic matrix with low temperature differences at 50 ° C. For larger temperature differences between 100 ° C and 300 ° C essentially bainitic microstructures are produced by the forming in the board, which have a positive effect on the elongation behavior of the formed board. At larger temperature differences of more than 300 ° C, the martensitic microstructure portion is substantially increased, which increases the strength, but reduces the elongation capacity of the formed board.

Es gibt nun eine Vielzahl von Möglichkeiten das erfindungsgemäße Verfahren zum Presshärten und temperierten Umformen weiterzubilden und auszugestalten. Hierzu wird einerseits verwiesen auf die dem Patentanspruch 1 nachgeordneten Patentansprüche, andererseits auf die Beschreibung eines eines Umformwerkzeugs zur Durchführung des Verfahren gemäß der Erfindung in Verbindung mit der Zeichnung.There are now a variety of ways to further develop and design the method according to the invention for press hardening and tempered forming. For this purpose, on the one hand reference is made to the claims subordinate to claim 1, on the other hand to the description of a forming tool for carrying out the method according to the invention in conjunction with the drawing.

In der Zeichnung zeigt die einzige Figur in einer perspektivischen Schnittansicht ein Ausführungsbeispiel eines Umformwerkzeugs zum Presshärten und temperierten Umformen einer Platine aus höher- und/oder höchstfesten Stählen. Das in der einzigen Figur dargestellte Ausführungsbeispiel eines Umformwerkzeugs zum Presshärten und temperierten Umformen weist zunächst als Umformwerkzeugelemente einen Ziehring 1, einen Stempel 2 sowie einen Blechhalter 3 auf. In der Aufnahme 4 für den Ziehring 1 sind Heizdrähte 5 angeordnet, welche den Ziehring 1 als erste Temperaturzone temperieren. Der Stempel 2 weist eine Heizspirale 6 auf, so dass dessen Temperatur ebenfalls geregelt werden kann. Schließlich umfasst die Aufnahme 7 des Blechhalters Heizdrähte 8, welche den Blechhalter 3 temperieren. Die einzelnen Temperaturzonen, welche aus den Kontaktflächen des Ziehrings 1, des Stempels 2 und des Blechhalters 3 mit der Platine gebildet werden sowie die einzelnen Heizdrähte werden durch Isoliermaterial 9 gegenüber Wärmeverlusten, beispielsweise in die Werkzeugaufnahme 13, isoliert. In dem vorliegenden Ausführungsbeispiel des Umformwerkzeugs sind die einzelnen Umformwerkzeugelemente 1, 2, 3, welche die einzelnen Temperaturzonen bilden, zwar nicht untereinander wärmeisoliert. Allerdings ist durch Anordnung der Thermoelemente 10, 11, 12 in unmittelbarer Nähe der Kontaktflächen der Umformwerkzeugelemente 1, 2, 3 mit der Platine gewährleistet, dass eine genaue Temperierung der entsprechenden Bereiche der Platine erreicht werden kann. Wie aus der Figur zu erkennen ist, ist der Ziehring 1 sowie der Blechhalter 3 und der Stempel 2 gegenüber der Werkzeugaufnahme wärmeisoliert, so dass ein unkontrollierter Wärmeabfluss in die Werkzeugaufnahme 13 verhindert wird.In the drawing, the single FIGURE shows a perspective sectional view of an embodiment of a forming tool for press hardening and tempered forming a board of higher and / or higher strength steels. The illustrated in the single figure embodiment of a forming tool for press hardening and tempered forming has first as Umformwerkzeugelemente a drawing ring 1, a stamp 2 and a blank holder 3. In the receptacle 4 for the drawing ring 1 heating wires 5 are arranged, which temper the drawing ring 1 as the first temperature zone. The stamp 2 has a heating coil 6, so that its temperature can also be regulated. Finally, the receptacle 7 of the sheet metal holder comprises heating wires 8, which temper the sheet metal holder 3. The individual temperature zones, which are formed from the contact surfaces of the drawing ring 1, the punch 2 and the sheet holder 3 with the board and the individual heating wires are insulated by insulating material 9 against heat losses, for example in the tool holder 13. In the present embodiment of the forming tool, although the individual forming tool elements 1, 2, 3, which form the individual temperature zones, are not thermally insulated from one another. However, by arranging the thermocouples 10, 11, 12 in the immediate vicinity of the contact surfaces of Umformwerkzeugelemente 1, 2, 3 ensures with the board that an accurate temperature of the corresponding areas of the board can be achieved. As can be seen from the figure, the drawing ring 1 and the blank holder 3 and the punch 2 with respect to the tool holder is thermally insulated, so that an uncontrolled heat flow into the tool holder 13 is prevented.

Die drei Temperaturzonen des Ziehrings 1, des Stempels 2 und des Blechalters 3 können unabhängig voneinander auf unterschiedliche Temperaturen von Raumtemperatur bis beispielsweise maximal 650 °C, bevorzugt 200 bis 650 °C, insbesondere 400 °C bis 650 °C, eingestellt werden. Erfindungsgemäß können damit auch Temperaturprofile im Umformwerkzeug erzeugt werden, um an entsprechenden Stellen der umgeformten Platine eine Gefügeänderung, beispielsweise aufgrund unterschiedlicher Abkühlgeschwindigkeiten der Platine in diesen Bereichen, herbeizuführen. Der Einfachheit halber, sind in der einzigen Figur Mittel zur Variierung der Flächenpressung sowie die Mittel zur Ansteuerung der einzelnen Heizdrähte der Temperaturzonen nicht dargestellt.The three temperature zones of the drawing ring 1, the punch 2 and the sheet metal age 3 can be independently set to different temperatures from room temperature to, for example, a maximum of 650 ° C, preferably 200 to 650 ° C, especially 400 ° C to 650 ° C. According to the invention, temperature profiles in the forming tool can thus also be generated in order to be able to respond to corresponding Make the deformed board a structural change, for example, due to different cooling rates of the board in these areas, bring about. For the sake of simplicity, means for varying the surface pressure and the means for controlling the individual heating wires of the temperature zones are not shown in the single figure.

Bei Versuchen mit Platinen beispielsweise aus Mangan-Bor-Stahl vom Legierungstyp 22MnB5 sind unterschiedliche Temperaturen im gesamten Werkzeug eingestellt worden. Der Einfachheit halber wurde bei den Versuchen die Temperatur im Ziehring 1, Stempel 2 und Blechhalter 3 jeweils identisch eingestellt. Aufgrund der Position der Thermoelemente 10, 11, 12 ist damit gewährleistet, dass die eingestellte Temperatur auch an den Kontaktflächen zur Platine vorliegt und damit der Umformtemperatur entspricht. In den Versuchen zeigte sich, dass bei geringen Werkzeugtemperaturen, d.h. unterhalb von 200 °C, die höchsten Festigkeitswerte bei einer Bruchdehnung A80 von etwa 5% erzielt werden konnten. Die Messwerte für die Streckgrenze RP0,2 lagen oberhalb von 1050 MPa und für die Zugfestigkeit Rm oberhalb von 1500 MPa. Bei höheren Werkzeugtemperaturen oberhalb von 200 °C sanken die Werte für die Streckgrenze RP0,2 auf unter 1000 MPa ab. Gleichzeitig betrugen die Werte für die Zugsfestigkeit auf unter 1500 MPa. Allerdings steigerte sich die Bruchdehnung A80 auf etwa 5,8 %. Beispielsweise sanken bei einer Werkzeugtemperatur von 400 °C die Zugfestigkeit auf Rm = 820 MPa , die Streckgrenze auf Rp0,2 = 610 MPa ab. Die Bruchdehnung stieg dagegen auf A80 = 10 %. Die Ursache für die geänderten Festigkeitswerte wird darin gesehen, dass bei höherer Umformwerkzeugtemperatur weiterhin Austenitanteile im Gefüge vorhanden sind. Um ein Gefüge mit höheren Bruchdehnungswerten zu erzielen werden daher Umformwerkzeugtemperaturen von beispielsweise 400 °C bis 650 °C bevorzugt. Bei Umformwerkzeugtemperaturen unterhalb von 200 °C besteht das Gefüge dagegen nur noch aus Martensit und eine maximale Festigkeit bei verringerter Bruchdehnung wird erreicht.In tests with boards, for example made of manganese-boron steel alloy 22MnB5 different temperatures have been set throughout the tool. For the sake of simplicity, the temperature in the drawing ring 1, punch 2 and blank holder 3 was set in each case identical in the experiments. Due to the position of the thermocouples 10, 11, 12 is thus ensured that the set temperature is also present at the contact surfaces to the board and thus corresponds to the forming temperature. The tests showed that at low mold temperatures, ie below 200 ° C, the highest strength values could be achieved with an elongation at break A80 of about 5%. The measured values for the yield strength R P0.2 were above 1050 MPa and for the tensile strength R m above 1500 MPa. At higher mold temperatures above 200 ° C, the values for the yield strength R P0.2 dropped below 1000 MPa. At the same time, the tensile strength values were less than 1500 MPa. However, the elongation at break A80 increased to about 5.8%. For example, at a mold temperature of 400 ° C, the tensile strength dropped to R m = 820 MPa, the yield strength to R p0.2 = 610 MPa. On the other hand, the elongation at break increased to A80 = 10%. The cause of the changed strength values is seen in the fact that at higher forming tool temperature Austenitanteile continue to exist in the structure. To a structure With higher elongation at break values, therefore, forming tool temperatures of, for example, 400 ° C to 650 ° C are preferred. At forming temperatures below 200 ° C, however, the microstructure consists only of martensite and maximum strength with reduced elongation at break is achieved.

Es zeigte sich darüber hinaus, dass bei einer erhöhten Werkzeugtemperatur unterschiedliche Flächenpressungen auf die Gefügeausbildung nur einen geringen Einfluss hatten. Dies wird darauf zurückgeführt, dass die unterschiedlichen Flächenpressungen, welche in einem Bereich von 0,15 MPa bis 3,83 MPa variiert wurden, nur geringe Unterschiede in der Abkühlrate für den Temperaturbereich von 790 °C bis 390 °C bewirkten. Die für diesen Temperaturbereich gemessenen Abkühlraten lagen zwischen 80 und 115 K/s. Wird das Umformwerkzeug jedoch auf eine Temperatur unterhalb von 200 °C temperiert, so ist aufgrund des großen Temperaturunterschiedes zwischen der Platine und dem Umformwerkzeug der Einfluss der Flächenpressung auf die Abkühlrate und damit deren Einfluss auf die Ausbildung des Gefüges deutlich größer. Es hat sich herausgestellt, dass bei niedrigen Werkzeugtemperaturen, d.h. unterhalb von 200 °C, über die Flächenpressung unterschiedliche Abkühlgeschwindigkeiten von 80 K/s bis 480 K/s gemessen werden konnten. Dies hatte zur Folge, dass bei den extrem hohen Abkühlgeschwindigkeiten ein sehr grobes martensitisches Gefüge entstanden ist. Bei Abkühlgeschwindigkeiten von 80 K/s bis 130 K/s entstand dagegen ein feinkörniges martensitisches Gefüge, welches insgesamt als vorteilhaft angesehen wird. Die gemessenen Werte für die Streckgrenze und die Zugfestigkeit wurden durch die unterschiedlichen Gefügeausbildungen nicht geändert. Um maximale Festigkeitswerte beim Presshärten und temperierten Umformen von höher- und/oder höchstfesten Stählen zu erreichen, muss daher die Temperaturführung im Umformwerkzeug bzw. in der umzuformenden Platine sehr genau eingehalten werden. Das beschriebene Ausführungsbeispiel des Umformwerkzeugs zum Presshärten und temperierten Umformens ist hierzu besonders geeignet.It was also shown that with an increased mold temperature, different surface pressures had only a minor influence on the microstructure formation. This is attributed to the fact that the different surface pressures, which varied in a range of 0.15 MPa to 3.83 MPa, caused only slight differences in the cooling rate for the temperature range of 790 ° C to 390 ° C. The cooling rates measured for this temperature range were between 80 and 115 K / s. However, if the forming tool is heated to a temperature below 200 ° C., the influence of the surface pressure on the cooling rate and thus its influence on the formation of the microstructure is markedly greater due to the large temperature difference between the blank and the forming tool. It has been found that at low mold temperatures, ie below 200 ° C, different cooling rates of 80 K / s to 480 K / s could be measured via the surface pressure. As a result, a very coarse martensitic microstructure was created at the extremely high cooling rates. At cooling rates of 80 K / s to 130 K / s, however, a fine-grained martensitic microstructure was formed, which is considered to be advantageous overall. The measured values for the yield strength and the tensile strength were not changed by the different microstructures. For maximum strength values during press hardening and tempered forming of higher and / or ultra-high strength steels, therefore, the temperature control in the forming tool or in the reshaped board must be met very accurately. The described embodiment of the forming tool for press hardening and tempered forming is particularly suitable for this purpose.

Darüber hinaus wurden zwei weitere Proben aus einer 22MnB5-Stahllegierung mit einer Aluminium-Silizium(AlSi)-Beschichtung ca. 6 Minuten lang auf 950 °C erwärmt. Probe a) wurde in einem auf 410 °C temperierten Werkzeug mit einem Druck von 80 bar und Probe b) in einem auf Raumtemperatur gekühlten Werkzeug mit einem Druck von 80 bar umgeformt.In addition, two additional samples of a 22MnB5 steel alloy with an aluminum-silicon (AlSi) coating were heated to 950 ° C for approximately 6 minutes. Sample a) was converted into a tool tempered to 410 ° C. with a pressure of 80 bar and sample b) in a tool cooled to room temperature with a pressure of 80 bar.

Mikroschliffe der Proben a) und b) zeigten unterschiedliche Gefügeausbildungen. Probe a) wies ein Gefüge aus Bainit mit Anlasseffekten auf. Im Gegensatz dazu war bei Probe b) eine martensitisch, bainitische Gefügestruktur nachweisbar.Micro-sections of samples a) and b) showed different microstructures. Sample a) had a texture of bainite with tempering effects. In contrast, in sample b) a martensitic, bainitic microstructure was detectable.

Eine weitere Probe des oben genannten Typs wurde bei 900 °C geglüht und in ca. 6s in eine Presse überführt, wobei die Kerntemperatur des Blechs noch bei ca. 750 °C lag. Die Temperatur der Presse betrug 600 °C und die Schließzeit ca. 1,5 S. Im Anschluss an die temperierte Umformung erfolgte eine schlagartige Abkühlung auf Raumtemperatur. Die Untersuchung der Probe zeigte eine ferritische Grundmatrix mit zeilenförmig angeordnetem Perlit, wobei zusätzlich einzelne Martensitinseln und Bainitanteile festgestellt wurden. Bei einer weiteren Klemmätzung konnten geringe Restaustenitanteile aufgezeigt werden. Über die Versuche konnte gezeigt werden, dass durch das temperierte Umformen gezielt Martensit, Bainit und/oder Perlit sowie Restaustenit im Blech eingestellt werden kann.Another sample of the above type was annealed at 900 ° C and transferred in about 6s in a press, the core temperature of the sheet was still at about 750 ° C. The temperature of the press was 600 ° C and the closing time about 1.5 S. Following the tempered forming was a sudden cooling to room temperature. Examination of the sample showed a basic ferritic matrix with perlite arranged in rows, with individual martensite islands and bainite constituents additionally being detected. In a further Klemmätzung small residual Austenitanteile could be shown. About the experiments could be shown that Martensite, bainite and / or perlite and retained austenite in the metal sheet can be adjusted by tempered forming.

Claims (9)

  1. Method for the press-hardening and tempered forming of blanks from high and/or very high strength steels, in which the blank is heated at least to austenising temperature before the forming and then is hot-formed in a forming tool, wherein the forming tool has means for tempering, characterised in that the blank is formed by means of contact surfaces of forming tool elements provided in the forming tool for forming, wherein the contact surfaces are at least partially allocated to a plurality of temperature zones provided in the forming tool and a plurality of temperature zones of the forming tool is tempered during the forming by way of tempering means, in each case to pre-defined temperature values.
  2. Method according to Claim 1,
    characterised in that the temperature zones in the forming tool have uniform or different temperatures during the forming.
  3. Method according to Claim 1 or 2,
    characterised in that the temperature of the individual temperature zones in the forming tool does not exceed a temperature of maximum 650°C during the forming.
  4. Method according to any one of Claims 1 to 3,
    characterised in that the temperature of at least one temperature zone in the forming tool is greater than 200°C.
  5. Method according to any one of Claims 1 to 4,
    characterised in that the temperature of at least one temperature zone does not exceed 200°C.
  6. Method according to any one of Claims 1 to 5,
    characterised in that the cooling behaviour of the blank is at least partially adjusted by the surface pressures of the forming tool.
  7. Method according to any one of Claims 1 to 6,
    characterised in that a manganese-boron steel is used, in particular a manganese-boron steel of alloy type 22MnB5.
  8. Method according to any one of Claims 1 to 7,
    characterised in that the blank has a surface coating to provide protection against oxide formation.
  9. Method according to any one of Claims 1 to 8,
    characterised in that a temperature difference is set between the heated blank and the contact surfaces of the tempered tool between 50 and 650°C, preferably from 100 to 350°C.
EP07728442A 2006-04-24 2007-04-24 Method for reshaping metal blanks made of superior and supreme hardness steels Active EP2012948B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07728442T PL2012948T3 (en) 2006-04-24 2007-04-24 Method for reshaping metal blanks made of superior and supreme hardness steels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006019395A DE102006019395A1 (en) 2006-04-24 2006-04-24 Apparatus and method for forming blanks of higher and highest strength steels
PCT/EP2007/053986 WO2007122230A1 (en) 2006-04-24 2007-04-24 Unit and method for reshaping metal blanks made of superior and supreme hardness steels

Publications (2)

Publication Number Publication Date
EP2012948A1 EP2012948A1 (en) 2009-01-14
EP2012948B1 true EP2012948B1 (en) 2009-09-09

Family

ID=38292968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07728442A Active EP2012948B1 (en) 2006-04-24 2007-04-24 Method for reshaping metal blanks made of superior and supreme hardness steels

Country Status (12)

Country Link
US (1) US9068239B2 (en)
EP (1) EP2012948B1 (en)
JP (1) JP5270535B2 (en)
AT (1) ATE442213T1 (en)
BR (1) BRPI0710175A2 (en)
CA (1) CA2649519C (en)
DE (2) DE102006019395A1 (en)
ES (1) ES2333274T3 (en)
MX (1) MX2008013630A (en)
PL (1) PL2012948T3 (en)
PT (1) PT2012948E (en)
WO (1) WO2007122230A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012104734A1 (en) * 2012-05-31 2013-12-05 Outokumpu Nirosta Gmbh Method and device for producing formed sheet metal parts at cryogenic temperature
US9340233B2 (en) 2010-10-15 2016-05-17 Benteler Automobiltechnik Gmbh Method for producing a hot-formed and press-hardened metal component
CN112371820A (en) * 2020-10-26 2021-02-19 苏州加益不锈钢制品有限公司 Progressive automatic pot body stretching process and production device thereof

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053819A1 (en) * 2006-11-14 2008-05-15 Thyssenkrupp Steel Ag Production of a steel component used in the chassis construction comprises heating a sheet metal part and hot press quenching the heated sheet metal part
FR2927828B1 (en) * 2008-02-26 2011-02-18 Thyssenkrupp Sofedit METHOD OF FORMING FROM FLAN IN SOFT MATERIAL WITH DIFFERENTIAL COOLING
DE102008022401B4 (en) * 2008-05-06 2012-12-06 Thyssenkrupp Steel Europe Ag Process for producing a steel molding having a predominantly bainitic structure
DE102008022400B4 (en) * 2008-05-06 2013-08-01 Thyssenkrupp Steel Europe Ag Process for producing a steel molding having a predominantly martensitic structure
DE102008022399A1 (en) * 2008-05-06 2009-11-19 Thyssenkrupp Steel Ag Process for producing a steel molding having a predominantly ferritic-bainitic structure
DE102008055514A1 (en) * 2008-12-12 2010-06-17 Thyssenkrupp Steel Europe Ag Method for producing a component with improved elongation at break properties
KR101159897B1 (en) * 2009-03-26 2012-06-26 현대제철 주식회사 Cooling system for press mold and method for producing automobile parts using the same
DE102009043926A1 (en) 2009-09-01 2011-03-10 Thyssenkrupp Steel Europe Ag Method and device for producing a metal component
DE102011102800B4 (en) * 2010-05-28 2014-07-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a monolithic component, monolithic component and tool for producing a monolithic component
DE102010027554A1 (en) 2010-07-19 2012-01-19 Thyssenkrupp Umformtechnik Gmbh Forming tool and method for hot forming and partial press hardening of a work piece made of sheet steel
TWI386259B (en) * 2010-09-29 2013-02-21 Nat Kaohsiung First University Of Science Technology With the mold material within the heating function of the stamping die
EP2754723A3 (en) 2011-01-17 2016-08-31 Tata Steel IJmuiden BV Method to produce a hot formed part, and part thus formed
ES2635765T5 (en) 2011-03-10 2020-09-28 Schwartz Gmbh Furnace system and procedure for partial heating of sheet steel parts
DE102011018850B4 (en) 2011-04-27 2015-06-25 Gestamp Umformtechnik Gmbh Device for forming and partial press hardening of a work piece made of hardenable sheet steel
DE102011102167A1 (en) * 2011-05-21 2012-11-22 Volkswagen Aktiengesellschaft Producing molded component with two structural regions of different ductility which are made of flat or preformed circuit board of hardenable steel, comprises heating circuit board in first region, shaping circuit board and partially curing
DE102011108912A1 (en) * 2011-07-28 2013-01-31 Volkswagen Aktiengesellschaft Segmented press hardening tool
DE102011111212B4 (en) * 2011-08-20 2014-04-24 Audi Ag Forming tool for the production of press-hardened sheet-metal components
US20130105046A1 (en) * 2011-10-27 2013-05-02 GM Global Technology Operations LLC System and method for generating a welded assembly
DE102011055643A1 (en) * 2011-11-23 2013-05-23 Thyssenkrupp Steel Europe Ag Method and forming tool for hot forming and press hardening of workpieces made of sheet steel, in particular galvanized workpieces made of sheet steel
EP2664682A1 (en) 2012-05-16 2013-11-20 ThyssenKrupp Steel Europe AG Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same
DE202012006529U1 (en) * 2012-07-09 2012-11-07 Steinhoff & Braun's Gmbh Holding and transport device
DE102013004034B4 (en) * 2013-03-08 2021-03-25 Volkswagen Aktiengesellschaft Forming tool for hot forming and / or press hardening with at least one cutting punch to create a recess in the sheet material while it is still warm
DE102013108046A1 (en) 2013-07-26 2015-01-29 Thyssenkrupp Steel Europe Ag Method and device for partial hardening of semi-finished products
DE102014108901B3 (en) 2014-06-25 2015-10-01 Thyssenkrupp Ag Method and forming tool for hot forming and corresponding workpiece
DE102015115049B4 (en) 2015-09-08 2018-04-26 Thyssenkrupp Ag Method and device for adjusting a mechanical property of a workpiece made of steel
DE102016202381B4 (en) * 2016-02-17 2022-08-18 Thyssenkrupp Ag vehicle wheel
DE102016123496A1 (en) * 2016-12-05 2018-06-07 Schuler Pressen Gmbh Tool for casting and / or forming a molded part, casting device, press and method for compensating a thermal load of a molded part
DE102017202294B4 (en) * 2017-02-14 2019-01-24 Volkswagen Aktiengesellschaft Process for producing a hot-formed and press-hardened sheet steel component
DE102018200843A1 (en) 2018-01-19 2019-07-25 Bayerische Motoren Werke Aktiengesellschaft Method and heating device for heating a workpiece for producing a component, in particular for a motor vehicle
CN112684832B (en) * 2019-10-17 2022-01-28 中国石油化工股份有限公司 Method and equipment for overcoming temperature reaction lag of silicon carbide annular carrier
AU2022273526B2 (en) * 2021-05-12 2023-12-21 Galvion Incorporated System for forming a deep drawn helmet and method therefor
EP4283004A1 (en) 2022-05-24 2023-11-29 ThyssenKrupp Steel Europe AG Flat steel product having improved processing properties

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE890035C (en) * 1943-10-31 1953-09-17 Daimler Benz Ag Method and device for preventing the springing back of pressed sheet metal parts after cold pressing
DE1527957B1 (en) * 1966-04-05 1971-11-11 Hoesch Ag Process for deep drawing of dethreaded composite sheet
US3605477A (en) * 1968-02-02 1971-09-20 Arne H Carlson Precision forming of titanium alloys and the like by use of induction heating
DE2332287C3 (en) * 1973-06-25 1980-06-04 Wuerttembergische Metallwarenfabrik, 7340 Geislingen Method and device for deep drawing of sheet steel
FR2692504A1 (en) 1992-06-17 1993-12-24 Lorraine Laminage Warm drawing of steel sheet into complex shapes - using appts. that rapidly heats localised areas of blank, so reducing operating cycle
JPH0655230A (en) * 1992-08-06 1994-03-01 Nippon Steel Corp Deep drawing forming method of magnesium sheet
JP3380286B2 (en) 1993-03-31 2003-02-24 マツダ株式会社 Warm press die structure
KR970001324B1 (en) * 1994-03-25 1997-02-05 김만제 Hot rolling method of high mn steel
JPH09262629A (en) 1996-03-28 1997-10-07 Aisin Seiki Co Ltd Die for isothermal transformation
IT1290040B1 (en) * 1997-03-07 1998-10-19 Marcegaglia S P A METHOD FOR STABILIZATION OF ROCKS AND RELATIVE STABILIZER ELEMENT
DE19834510A1 (en) 1998-07-31 2000-02-03 Feintool Int Holding Production of steel work pieces
US6550302B1 (en) * 1999-07-27 2003-04-22 The Regents Of The University Of Michigan Sheet metal stamping die design for warm forming
US6810709B2 (en) 2002-10-11 2004-11-02 General Motors Corporation Heated metal forming tool
JP2005177805A (en) 2003-12-19 2005-07-07 Nippon Steel Corp Hot press forming method
DE102005018974B4 (en) 2004-04-29 2015-04-09 Kuka Systems Gmbh Method and device for heating electrically conductive uncoated or coated circuit boards
JP4551694B2 (en) 2004-05-21 2010-09-29 株式会社神戸製鋼所 Method for manufacturing warm molded product and molded product
JP2006104527A (en) 2004-10-06 2006-04-20 Nippon Steel Corp Method for producing high strength component and high strength component
US7285761B1 (en) * 2005-03-24 2007-10-23 Mehmet Terziakin Hot forming system for metal workpieces

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340233B2 (en) 2010-10-15 2016-05-17 Benteler Automobiltechnik Gmbh Method for producing a hot-formed and press-hardened metal component
DE102010048209C5 (en) * 2010-10-15 2016-05-25 Benteler Automobiltechnik Gmbh Method for producing a hot-formed press-hardened metal component
DE102012104734A1 (en) * 2012-05-31 2013-12-05 Outokumpu Nirosta Gmbh Method and device for producing formed sheet metal parts at cryogenic temperature
US10532395B2 (en) 2012-05-31 2020-01-14 Thyssenkrupp Steel Europe Ag Method and device for producing shaped sheet metal parts at a low temperature
CN112371820A (en) * 2020-10-26 2021-02-19 苏州加益不锈钢制品有限公司 Progressive automatic pot body stretching process and production device thereof
CN112371820B (en) * 2020-10-26 2023-02-17 苏州加益不锈钢制品有限公司 Progressive automatic pot body stretching process and production device thereof

Also Published As

Publication number Publication date
JP5270535B2 (en) 2013-08-21
JP2009534196A (en) 2009-09-24
PL2012948T3 (en) 2010-05-31
ATE442213T1 (en) 2009-09-15
PT2012948E (en) 2009-12-10
DE502007001501D1 (en) 2009-10-22
ES2333274T3 (en) 2010-02-18
CA2649519A1 (en) 2007-11-01
DE102006019395A1 (en) 2007-10-25
BRPI0710175A2 (en) 2011-08-16
MX2008013630A (en) 2008-11-10
WO2007122230A1 (en) 2007-11-01
CA2649519C (en) 2014-05-20
US9068239B2 (en) 2015-06-30
EP2012948A1 (en) 2009-01-14
US20090178740A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
EP2012948B1 (en) Method for reshaping metal blanks made of superior and supreme hardness steels
EP3037186B1 (en) Method for producing a steel component with a sharp bounded transition region which is thermoformed and press-hardened
EP2497840B2 (en) Oven system for partially heating steel blanks
EP2993241B1 (en) Method and press for manufacturing cured sheet metal components, in sections at least
DE102005025026B3 (en) Production of metal components with adjacent zones of different characteristics comprises press-molding sheet metal using ram and female mold, surfaces of ram which contact sheet being heated and time of contact being controlled
DE102007008117B3 (en) Method and device for tempered forming of hot-rolled steel material
DE102009043926A1 (en) Method and device for producing a metal component
DE112015004312T5 (en) METHOD FOR PRODUCING A STRUCTURAL COMPONENT THROUGH A THERMOMAGNETIC TEMPERING PROCESS THAT CAUSES LOCALIZED ZONES
DE102010049205B4 (en) Hot forming line and method for hot forming sheet metal
EP2324938A1 (en) Method and thermal recasting assembly for producing a hardened, thermally recast workpiece
DE102015207928B4 (en) Method and tool for producing press-hardened shaped sheet metal parts with different strength ranges by pre-embossing of the sheet metal material
EP2864506A1 (en) Method and device for producing a press-hardened metal component
EP3420111B1 (en) Process for targeted heat treatment of individual component zones
DE102009060388A1 (en) Method for sheet deformation, involves heating zone of work piece at high temperature, and inserting heated work piece into heat insulated or heated deformation device
EP0820529B1 (en) Method of manufacturing hot-worked elongated products, in particular bar or pipe, from high-alloy or hypereutectoid steel
DE102015113056B4 (en) Method for the contactless cooling of steel sheets and device therefor
DE102007030388A1 (en) Method for the production of a hardened sheet metal component comprises deforming a flexible rolled metal strip with different thickness regions in a deforming tool and pressure hardening
DE102012105580B3 (en) Press hardening of steel, comprises e.g. cold pre-forming steel sheet, heating and cooling, where press hardness number is determined e.g. for adjusting steel alloy, and which is equal to cooling rate in mold/theoretical press cooling rate
EP3141619B1 (en) Method for adjusting a mechanical property of a workpiece made from steel
EP3426808B1 (en) Application of thermally treated flat steel product
EP3332040B1 (en) Method for producing a tool steel
DE102013110902B3 (en) Method for producing a wear-resistant component with increased vibration resistance in the connection area
DE102020134685B3 (en) Process for the production of hot-formed and press-hardened components
AT401359B (en) METHOD FOR PRODUCING A HEART PIECE
DE112019005194T5 (en) HOT FORMING PROCESS AND HOT FORMING PRODUCT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR RESHAPING METAL BLANKS MADE OF SUPERIOR AND SUPREME HARDNESS STEELS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007001501

Country of ref document: DE

Date of ref document: 20091022

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THYSSENKRUPP STEEL EUROPE AG

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20091203

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: THYSSENKRUPP STEEL EUROPE AG

Effective date: 20091118

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2333274

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100109

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 6693

Country of ref document: SK

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E007460

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

26N No opposition filed

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091210

BERE Be: lapsed

Owner name: THYSSENKRUPP STEEL A.G.

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100424

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090909

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502007001501

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230330

Year of fee payment: 17

Ref country code: PL

Payment date: 20230329

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 17

Ref country code: FR

Payment date: 20230419

Year of fee payment: 17

Ref country code: ES

Payment date: 20230525

Year of fee payment: 17

Ref country code: DE

Payment date: 20230418

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230418

Year of fee payment: 17

Ref country code: HU

Payment date: 20230403

Year of fee payment: 17

Ref country code: AT

Payment date: 20230421

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240322

Year of fee payment: 18

Ref country code: PT

Payment date: 20240322

Year of fee payment: 18

Ref country code: SK

Payment date: 20240322

Year of fee payment: 18