EP2005421B1 - Vorrichtung und verfahren zum erzeugen eines umgebungssignals - Google Patents

Vorrichtung und verfahren zum erzeugen eines umgebungssignals Download PDF

Info

Publication number
EP2005421B1
EP2005421B1 EP07703145.8A EP07703145A EP2005421B1 EP 2005421 B1 EP2005421 B1 EP 2005421B1 EP 07703145 A EP07703145 A EP 07703145A EP 2005421 B1 EP2005421 B1 EP 2005421B1
Authority
EP
European Patent Office
Prior art keywords
signal
transient
channel
synthesis
examination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07703145.8A
Other languages
English (en)
French (fr)
Other versions
EP2005421A1 (de
Inventor
Jürgen HERRE
Oliver Hellmuth
Stephan Geyersberger
Andreas Walther
Christiaan Janssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to EP11182960.2A priority Critical patent/EP2402942B1/de
Priority to EP11182965.1A priority patent/EP2402943B1/de
Publication of EP2005421A1 publication Critical patent/EP2005421A1/de
Application granted granted Critical
Publication of EP2005421B1 publication Critical patent/EP2005421B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation 
    • H04S5/005Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation  of the pseudo five- or more-channel type, e.g. virtual surround
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments

Definitions

  • the present invention relates to audio signal processing, and more particularly to concepts for generating ambient signals (ambience signals) for loudspeakers in a multi-channel scenario for which no separate loudspeaker signal has been transmitted.
  • Multi-channel audio is becoming more and more popular.
  • Such playback systems generally consist of three speakers L (left), C (center) and R (right), which are typically located in front of the user, and two speakers Ls and Rs located behind the user, and typically one of them LFE channel, which is also called low-frequency effect channel or subwoofer.
  • LFE channel which is also called low-frequency effect channel or subwoofer.
  • Such a channel scenario is in Fig. 10 and in Fig. 11 indicated. While the positioning of the speakers L, C, R, Ls, Rs, with respect to the user as in the FIGS.
  • Such a multi-channel system provides several advantages over a typical stereo reproduction, which is a two-channel reproduction, such as in Fig. 9 is shown.
  • the listener has a better feeling of "immersing" in the audio scene due to the two rear speakers Ls and Rs.
  • the first option is to play the left and right channels through the left and right speakers of the multi-channel playback system.
  • a disadvantage of this solution is that you do not exploit the variety of existing speakers, so that you do not take advantage of the presence of the center speaker and the two rear speakers advantageous.
  • Another option is to convert the two channels into a multi-channel signal. This can be done during playback or through a special pre-processing, which all six speakers of the existing example Advantageously exploited 5.1 playback system and thus leads to an improved listening experience when the upmixing or the "upmix" of two channels on 5 or 6 channels is performed without errors.
  • the direct sound sources are reproduced by the three front channels so that they are perceived by the user at the same position as in the original two-channel version.
  • the original two-channel version is in Fig. 9 shown schematically, using the example of various drum instruments.
  • Fig. 10 shows a highly mixed version of the concept, in which all the original sound sources, so the drum instruments again from the three front speakers L, C and R are played, in addition to the two rear speakers special environmental signals are output.
  • the term "direct sound source” is thus used to describe a sound coming only and directly from a discrete sound source, such as a drum instrument or other instrument, or generally a particular audio object, as shown schematically in, for example, US Pat Fig. 9 represented by a drum instrument. Any additional sounds, such as due to wall reflections, etc. are not present in such a direct sound source.
  • the sound signals coming from the two rear speakers Ls, Rs in Fig. 10 are delivered, only off Ambient signals that are present in the original record or not.
  • Such ambient signals or "ambience” signals do not belong to a single sound source, but contribute to the reproduction of the room acoustics of a recording and thus lead to the so-called “immersion” sensation of the listener.
  • Fig. 11 Another alternative concept, called in-the-band concept, is in Fig. 11 shown schematically.
  • Each type of sound ie direct sound sources and ambient sounds, are all positioned around the listener.
  • the position of a sound is independent of its characteristics (direct sound sources or ambient sounds) and depends only on the specific design of the algorithm, as described in eg Fig. 11 is shown. So was in Fig. 11 the upmix algorithm determines that the two instruments 1100 and 1102 are positioned laterally relative to the listener while the two instruments 1104 and 1106 are positioned in front of the user.
  • the two rear speakers Ls, Rs now also contain portions of the two instruments 1100 and 1102 and no longer just ambient sounds, as in Fig. 10 was still the case where the same instruments were all positioned in front of the user.
  • the problem with the generation of the ambient signal is thus that on the one hand generates an ambient signal that includes information that goes beyond normal noise, but that the ambient signal unobtainable artifacts leads, so that a proper measure between audibility and information content is maintained.
  • the specialist publication " Enhancement of Audio Signals Using Transient Detection and Modification ", M. Goodwin and C. Avendano, AES, No. 6225 discloses a processing of audio signals that enables modification of audio signals by emphasizing or suppressing transients.
  • Transient detection uses a frequency domain analysis that provides a spectral flux parameter.
  • a continuous transient characterization function is used, which is used to control a non-linear frequency domain signal modification.
  • very small transients can be greatly amplified or suppressed.
  • the EP 1 385 150 A1 discloses a method and system for parametric characterization of transient audio signals wherein an approximate envelope for the transient audio signal is determined and amplitude values of samples of that envelope are determined to perform a spline approximation of the envelope.
  • the U.S. Patent No. 5,886,276 discloses a system and method for scalable audio signal encoding at various resolutions.
  • a model is used that takes into account that audio signals are composed of deterministic or sinusoidal components and transient components that represent the beginning of notes or other events in an audio signal, and stochastic components.
  • the object of the present invention is to provide a concept for generating an environmental signal in which audible artifacts are reduced.
  • the present invention is based on the recognition that the artifacts heard by listeners in ambient signals are the artifacts that cause the listener to think that the rear speaker is a direct source of sound, even though it senses that source of sound from the front.
  • Characteristics for the perception of direct sound sources are transient processes, ie signal fine structures in the time signal, which concern a (fast) change over a change threshold from a quiet state to a loud state or from a loud state to a quiet state, or one (Strong) energy increase above a threshold of change in special bands and especially in the upper bands within a certain time.
  • transient events are, for example, the insertion of an instrument or the impact of a percussion instrument, or the end of a sound that does not fade away slowly, but ends abruptly.
  • a listener perceives such transient events as characteristics of direct sound sources, which according to the invention are eliminated from an ambient signal, so that the ambient loudspeakers are supplied with an environmental signal generated according to the invention which comprises no or only strongly attenuated transients.
  • the suppression of a transient in the ambient signal does not lead to an excessive amplitude modulation.
  • variations in the amplitude that is, the loudness, even if they are not transient, are below the transient threshold, but above a certain threshold of variation, are annoying to the user and therefore when such amplitude variations are due to a transient threshold simply eliminating a transient in an ambient signal would be detected by the listener as an artifact or error.
  • a transient period is thus detected in an examination signal, in which a transient region is present in the examination signal.
  • a synthesis signal for the transient period is generated, which is designed to produce the synthesis signal such that it has a flatter time course than the examination signal in the transient region, wherein the synthesis signal generator is further configured to provide the synthesis signal to generate that it differs by less than a predetermined threshold in view of its intensity of a preceding or subsequent portion of the examination signal.
  • This generated synthesis signal is then used by a signal substitutor instead of the examination signal in the transient period to obtain the ambient signal.
  • the extraction of an ambient signal-like signal from a two-channel stereo input signal is improved, or a post-processing of an existing signal, e.g. already an extracted raw ambient signal is made.
  • the examination signal is the actual two-channel stereo signal or respectively one channel of the two-channel signal, while in the second case the examination signal is already an extracted environment signal or a presynthesized environment signal.
  • the inventive concept is particularly useful for the upmix concept, which has also been presented as a "direct ambience concept".
  • the concept according to the invention can also be advantageous for the "in-the-band" concept, since it also leads to an improved environmental signal which, on the one hand, no longer has any interfering artifacts, but on the other hand still contains enough information for a user to benefit from the ambient signal.
  • the ambient signal generation according to the invention leads to the ambient signal no relevant parts of direct sound sources has, in particular, no transients are included or transients are included only in very strongly damped form. Otherwise, the listener would perceive direct sound sources behind them, which would conflict with the experience of the user, who typically only perceives sound sources from the front.
  • the inventive concept ensures that the surround signal is a continuous, uninterrupted, diffused sound signal, since intermittent ambient sound, which is obtained, for example, if transients were simply completely eliminated, would be considered uncomfortable by the user or even errors in the high-mix process would be perceived.
  • an ambience-like signal for the rear channels is extracted from the stereo signal.
  • the difference between the original right and left channels is simply used.
  • the back channels are created in this way, they often have transient-like components of direct sound sources.
  • These transients may be tones, such as, for example, musical beginnings or parts of percussive instruments.
  • a transient perceived behind the listener while a direct sound source (to which the transient typically belongs) is positioned in front of the listener has a negative impact on the localization of the direct sound source.
  • the direct sound source thus appears either wider than the original or, even more damaging, is perceived as an independent direct sound source behind the user, both effects being very undesirable, especially for the direct ambience concept.
  • this problem is addressed by suppressing transients in the ambient-like signal and minimizing the effect of this suppression on the remaining signal, i. the continuity of the signal is preserved by allowing only limited intensity variations for the transient period.
  • the signal generated for the transient period, before being used by the signal substituter is mixed with the signal originally present in the transient period, which is achieved, for example, by overlapping processing.
  • a cross-fading may be performed to slowly fade in a cross-fade range from the signal before the transient period to the signal in the transient period, or slowly out of the transient period hide.
  • the blanking out of the transient period into the original signal when no more transient is detected is preferred for an artifact-free listening impression, since it is intended to ensure that when there is a non-artifact-related examination signal, the transition from the synthesis signal to the original one Examination signal no cracking or something similar arises.
  • a manipulation of the signal in the transient period is performed in the frequency domain by randomizing signs of spectral values or, more generally, phases of spectral values, which inevitably results in a smoothing of the temporal fine structure of this frequency domain manipulated signal.
  • Another spectral processing is to perform a prediction on the frequency of the spectral values and then the Predictive spectral values to be used as spectral values of the synthesis signal, since the prediction on the frequency leads to a smoothing of the corresponding time signal.
  • the intensity of the transient period is to limit the change of spectral values from one block to another, this limitation being global , ie for all spectral values equal or selective, ie only for certain spectral values, which have a particularly large change, can take place.
  • Fig. 1 shows a part of the device according to the invention, for generating an ambient signal 10 which is suitable for transmission via loudspeaker, for which no separate loudspeaker signal has been transmitted.
  • Such speakers are typically the rear speakers or surround speakers, as in Ls, Rs in 10 and FIG. 11 For example, shown.
  • the device shown comprises a transient detector 11 for detecting a transient period (at 20 in Fig. 2 shown) in which an examination signal has a transient region.
  • a transient detector 11 for detecting a transient period (at 20 in Fig. 2 shown) in which an examination signal has a transient region.
  • any other methods of transient detection may be used, such as those found in an MPEG4 audio encoder that switches from short to long windows depending on transient detection .
  • transient detectors are used which can detect fast and strong changes in the envelope of a time signal.
  • Exemplary magnitudes to be detected are changes in the envelope that affect changes equal to or greater than 100% of the amplitude of the envelope over a period of 1 ms.
  • the transient detector 11 is coupled to a synthesis signal generator 12, which is designed to generate a synthesis signal 13 which satisfies the two conditions, on the one hand the transient condition and, on the other hand, the continuity condition.
  • the transient condition is that the synthesis signal has a shallower time course than the examination signal in the transient region
  • the continuity condition is that the intensity of the synthesis signal in the transient region is less than a preset one of an intensity of a preceding or succeeding portion of the examination signal Threshold deviates.
  • the intensity of the signal in the transient region is at most 1.5 times or 0.66 times the intensity of a preceding non-transient portion or subsequent non-transient portion of the examination signal. This will ensure that a transient suppression will not lead to a disturbing amplitude variation or intensity variation.
  • the threshold can also be realized by a confidence interval of 80% or less, which is determined based on the historical values.
  • Intensity measures that can be used for the present invention include the energy obtained by adding the sample squares or spectral value squares of a block, or a measure of performance that can be obtained considering the temporal block length, or a measure of weighting or unweighted adding up the magnitude of spectral values in a band, this particular measure, which is also an intensity, also being referred to as high frequency content if the band in which it is added is the upper frequency band of the examination signal, or generally higher frequencies versus lower Frequencies are more heavily weighted or have a greater impact on the end result.
  • the synthesis signal generator then generates a synthesis signal that is used by a signal substituter 14 to use the synthesis signal instead of the corresponding portion of the original examination signal to finally provide the ambient signal 10.
  • the signal substitute 14 thus receives in addition to the synthesis signal via the line 13 and the examination signal via a line 15, as in Fig. 1 is indicated.
  • the transient detector 11 receives the examination signal via an input line 16 and provides via an output line 17 a transient information to the synthesis signal generator 12, so that this generates the synthesis signal using the examination signal, which is provided to him via a line 18.
  • non-overlapping block processing as in FIG Fig. 2a represented or an overlapping block processing as in Fig. 2b shown used.
  • an examination signal 21 is divided into preferably equal blocks of a specific block length.
  • the transient detector detects a transient 22 in the transient period 20.
  • the transient 22 thus lies in the transient period 20 of FIG Fig. 2a , which causes the transient detector 11 to provide an output signal via its output line 17, which tells the synthesis signal generator 12 that it now has to start with signal synthesis.
  • the block of the examination signal corresponding to the transient period 20 is now synthesized by the synthesis signal generator and then substituted by the signal substituter 14 of the original block of the examination signal in the ambient signal.
  • a processing of the block of the examination signal is performed, which takes place in the frequency domain.
  • the synthesis signal has a sample which may differ significantly from a sample which is the last sample of the preceding block in the examination signal.
  • it is used in the art Fig. 2a it is preferable to superimpose a block before a transient period into the synthesis signal in the transient period, for example by adding the first sample of the generated synthesis signal to the eg last 10 samples of the previous block weighted according to the blanking function, and For example, according to the overlay function in Fig.
  • the last sample of the previous block is still in accordance with the blanking in Fig. 3 the first and the first sample samples of the synthesized block, respectively, weighted according to the fade-in function are added in the transient period to provide a fade. Accordingly, it is possible to proceed in the rear cross-fade range, ie, when the transient period returns to the non-transient-afflicted block of the ambient signal.
  • FIG. Fig. 2b To further reduce such block boundary artifacts, as shown in FIG Fig. 2b is shown, overlapping processing is preferred.
  • the transient detector then detects at the in Fig. 2b shown embodiment block areas, which are shown with ringed numbers (1), (2), (3), (4), (5), (6).
  • a transient is detected at 22. This causes it to be compared to Fig. 2a gives a larger transient period 20 since the transient at position 22 has been detected in both block 4 and block 5. Therefore, the synthesis signal generator 12 of Fig. 1 Generate synthesis signals for both block 4 and block 5.
  • the regions A, B, C are signaled by the signal substituter 14 of FIG Fig. 1
  • the section A is generated by the addition of the second half of the non-transient-related block 3 of the examination signal with the first half of the synthesis signal generated for the block 4.
  • the second part B of the transient period 20 is provided by adding the second half of the synthesis signal generated for block 4 to the first half of the synthesis signal generated for block 5 and from the signal substituter as a corresponding portion of the environmental signal 10 substituted.
  • the third portion C of the transient period 20 is generated by adding the second half of the synthesizer signal generator generated block # 5 to the first half of the block # 6, which is no longer transient, and written into the ambient signal by the signal substituter 14.
  • this skip function can be used to provide soft block transition from a non-synthesized block to a synthesized block in block processing with non-overlapping blocks, and also to provide a smooth transition from a synthesized block back to a non-synthesized block .
  • a corresponding cross-fade function can also be used to overshadow back to the original examination signal, in particular when a synthesis signal has been generated by a specific specified number of blocks. Given the likelihood that the synthesis signal has moved relatively far from the probe due to the extrapolation, an abrupt return to the probe would, in some cases, result in audible artifacts.
  • a synthesis signal is generated, which consists of 90% of the last synthesized block and 10% of the current block of investigation. In the next block, the ratio could then be changed to 80%: 20%, until then after a certain number of blocks, the synthesis signal is completely hidden and the current non-transient-related examination signal is fully displayed again.
  • the time signal which represents a block of the examination signal, is converted into a frequency domain representation or a subband representation by a converter 40, which may comprise a transformation or an analysis filter bank.
  • the spectral representation in the form of spectral coefficients or the subband signals are then, as shown at 41, optionally replaced by information about an extrapolated spectral representation or extrapolated subband signals, if it is a block of the time signal in which a transient has been detected.
  • the spectral representation is then optionally supplied, using additional information due to extrapolation, to a smoother 42, which influences the spectral values in such a way that the temporal course of the underlying signal is smoothed.
  • the smoother 42 will affect the subband signals so that the timing of the signal underlying the subband signals is smoother than before smoothing.
  • an inverse conversion into the time domain takes place using either an inverse transformation or a synthesis filterbank to finally arrive at a timing signal 44 which is smoother than the timing signal at the input of the stage 40, however, has energy that has not been significantly affected by smoothing.
  • the smoothing has been done so that the energy of the smoothed time signal 44 does not differ from the energy of the previous time signal any more than the threshold.
  • an overall e-energy manipulation of the energy of the time signal may occur.
  • the transient is attenuated while the tonal components continue to be synthesized or past, by synthesizing the signal in the transient period by a prediction using a non-transient signal from the past.
  • the smoothing has caused the energy over the block to be more evenly distributed, thus producing a smoother timing, but without losing the block's energy Significantly changing samples of the examination signal. This is sufficient in most cases and ensures that the user hears a test signal that always satisfies the continuity condition. Only when the transient leads to a considerable increase in energy on the entire block, the smoothing alone, so the more even distribution of energy over the block, will not be sufficient and then a controlled signal limitation can be made.
  • Matrix decoders such as Dolby Pro Logic II or Logic 7, have the ability to upmix non-preprocessed 2-channel stereo files in multichannel surround files, although they have not been designed directly for this task. These Matrix decoders are often unable to suppress transient tones in the back channels, resulting in a signal that does not meet the requirements for transient-free and amplitude-continuity.
  • a transient suppression is produced without affecting the continuity of the synthesis signal or ambient signal.
  • an input signal e.g. a high-mix signal as obtained by a matrix up-mixer for the back channels, or a signal with similar characteristics and a similar range of application is analyzed to detect if a transient is present.
  • substitution signal When a transient is detected, the currently processed block is replaced with a substitution signal having a flat (non-transient) time envelope.
  • This substitution signal is either generated from previous signal portions in which no transient was present, or is generated from the currently processed block by a processing step that flattens the temporal envelope of the signal, or is generated by a combination of both methods.
  • the substitution signal generated by previous sections is obtained, for example, by extrapolating previous energy levels of the signal or by copying / repeating generated from previous signal sections without a transient range of the signal.
  • flattening of the temporal fine structure or fine time signal based on the currently processed block may be performed as described below with reference to FIGS FIGS. 5a, 5b or 5c is shown.
  • the absolute values of the spectral coefficients can be randomized within a limited range extending around the extrapolated spectral coefficients or amounts thereof, as will be described later Fig. 5c is pictured.
  • the phases or signs of the spectral coefficients of the processed block in which the transient is located may be randomized by a randomizer 50.
  • a short-time spectrum of the considered block of the examination signal is generated, and the complex spectral values obtained there are calculated in magnitude and phase, in order then to randomize the phases of the spectral values.
  • the signs can also be randomized to obtain a short-term spectrum with randomized phases / signs, which has a has a flatter time course of the corresponding time signal.
  • Fig. 5b An alternative implementation is in Fig. 5b represented by a predictor 51, which is designed to perform a prediction of the short-term spectrum over the frequency.
  • a predictor 51 is designed to perform a prediction of the short-term spectrum over the frequency.
  • Such a predictor is in J. Herre, JD Johnston: "Exploiting Both Time and Frequency Structure in a System that Uses to Analysis / Synthesis Filterbank with High Frequency Resolution", 103rd AES Convention, New York 1997 , Preprint 4519.
  • a short-term spectrum is generated which has a transient course in its assigned time signal.
  • a current spectral value of the short-term spectrum is predicted using a previous or a plurality of previous spectral values, and then the predicted spectral value could be subtracted from the actual spectral value to obtain a residual spectral value.
  • the residual spectral value of a typical prediction over frequency represents the value of interest and information-bearing information along with coefficients of a prediction filter
  • a given prediction filter is preset and the spectral values of the short-term spectrum are replaced by the spectral values predicted using this prediction filter, while the prediction error signal is no longer used.
  • the actually erroneous predictive spectral values thus obtained now have a flatter time course than the original short-term spectrum, but still have approximately the same energy, so that both the transient condition and the continuity condition, as described in connection with the synthesis signal generator 12 of FIG Fig. 1 has been shown is satisfied.
  • a preferred simple embodiment of the prediction filter exists simply in that a value of a spectral line lower in the index is used as a prediction value for a current spectral line.
  • the extrapolated signal may be blended with the original signal after a specified period of time, rather than hard switching, to avoid long-term extrapolation artifacts.
  • Fig. 6 it is preferred, as it is based on Fig. 6 is shown to detect tonal components / bands by a detector 60 and not to be influenced by the synthesis signal generator, but to combine in a mixer / combiner 61 with transient band synthesis signals to then, after a transformation into the time domain, the could take place in block 61, to obtain a time signal with a shallower time course, which still includes the tonal bands, that is, portions that were not transient, in an unchanged form.
  • Fig. 5c an implementation of the present invention, which does not require an implicit and no longer explicit transient detector.
  • a measure of the intensity of a processed signal block is, for example, the energy or radio frequency content (HFC) or other measure based on the spectral values, time samples, energy, power or other amplitude-related measure based on the signal. It is then determined in a device 54 whether an intensity increases from one block to the next above a threshold.
  • HFC radio frequency content
  • the spectral values of the processed block are limited so that their intensity does not exceed the intensity of the previous signal block by more than the determined relative or absolute threshold such that at least the overall dominance of transients is reduced.
  • This limitation takes place in a device 55 which is designed to, when a need for a limitation has been detected, ie when an implicit transient has been detected, either individually or globally limit spectral values.
  • An individual limitation would be that an increase in energy is calculated for spectral values or for bands and the spectral values or the energy bands increase only up to a maximum energy increase and values exceeding this are cut off.
  • the block Z / F represents a time / frequency domain conversion 57, wherein a conversion from the time domain into the frequency domain may also be filtering by means of an analysis filter bank, such that in this case the spectral representation consists of subband signals and not individual spectral components.
  • the transient detector as indicated at 11 in Fig. 1
  • means 89 for calculating the high-frequency content (HFC) for each block which is followed by a means for calculating the long-term HFC-72.
  • a comparator 73 detects if there is a transient or if there is a transient period in which a transient exists.
  • means 71 is configured to calculate the weighted radio frequency content (HFC) for each block of the original left signal and the original right signal. Alternatively, one HFC for each channel can be calculated separately.
  • the HFC is the weighted sum of the absolute values of all the frequency lines in a block, with increasing weighting factors from lower to higher frequencies.
  • X (f) are the spectral coefficients for certain frequencies
  • w (f) are weighting factors for certain frequencies.
  • the energy in the higher frequency components is weighted compared to the energy in the lower frequency components.
  • energy in higher spectral components is a better indication of a transient than energy in lower spectral components.
  • all spectral components can be used to calculate the HFC.
  • the calculation of the HFC can also be carried out starting from a limit which is approximately in the middle range of the spectrum, so that the low spectral coefficients play no role in the calculation of the HFC.
  • the threshold depends on the type of moving average. If the moving average is an average in which the past is weighted more heavily relative to the more recent block, ie a slower average, the threshold is closer to unity than in the case where the past is less heavily weighted into the moving average. Here the threshold would be further away from one.
  • the extrapolated values are blended in with the original values, when a fixed time interval has elapsed, such as three blocks of synthesis signals were present which then has to be returned to the original signal.
  • a fixed time interval has elapsed
  • the transient period is shorter than three blocks, it is preferred not to perform the crossfading because then it is assumed that the extrapolated signals have not yet moved so much from the original signals.
  • the fading can take place either before conversion into the time domain or, preferably, after conversion into the time domain, as at 76 in FIG Fig. 7 is shown to obtain the synthesis signal.
  • the inventive concept may be integrated into an environment signal extraction process or used as a separate post-processing step using an existing environmental signal, but still includes undesirable transients prior to processing in accordance with the invention.
  • the processing steps according to the invention can be carried out in the frequency domain per frequency line or in subbands. However, they can also be performed only partially in the frequency range typically above a certain frequency limit, or else in the time domain exclusively or in a combination of time and frequency range.
  • FIG. 12 shows a preferred embodiment of the present invention in which the ambient signal generation device is not only designed to generate ambient signals for a left surround channel output 80 and a right surround channel output 81.
  • the device according to the invention further comprises in addition a high mixer 82 for generating signals for the left channel L, the right channel R, the center channel C and preferably also for the LFE channel, as shown in FIG Fig. 8 is shown.
  • Both the combination of transient detector 12, synthesis generator 14 and signal substitute 16, ie the high mixer 82, are fed by a decoder 84.
  • the decoder 84 is configured to receive and process a bit stream 85 to provide a mono signal or a stereo signal 86 on the output side.
  • the bit stream may be an MP3 bit stream or an MP3 file, or it may be an AAC file, or may also be a representation of a parametrically encoded multi-channel signal.
  • the bitstream 85 could be a left channel, right channel, and center channel parametric representation, including one transmission channel and multiple cues for the second and third channels, this processing being known from BCC multi-channel processing.
  • the decoder 84 would be a BCC decoder which not only provides a mono or a stereo signal, but even provides a 3-channel signal, but which still does not include data on the two surround channels Ls, Rs.
  • the examination signal thus becomes a mono signal, a stereo signal or even a multi-channel signal in this case but does not include its own loudspeaker signals for the surround channels Ls, Rs.
  • the surrounding signal for the left surround channel is calculated, and from the right channel, the surround signal for the right channel is calculated.
  • the method according to the invention can be implemented in hardware or in software.
  • the implementation may be on a digital storage medium, in particular a floppy disk or CD with electronically readable control signals, which may interact with a programmable computer system such that the method is performed.
  • the invention thus also consists in a computer program product with a program code stored on a machine-readable carrier for carrying out the method according to the invention, when the computer program product runs on a computer.
  • the invention can thus be realized as a computer program with a program code for carrying out the method when the computer program runs on a computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Description

  • Die vorliegende Erfindung bezieht sich.auf die Audiosignalverarbeitung und insbesondere auf Konzepte zum Erzeugen von Umgebungssignalen (Ambience-Signalen) für Lautsprecher in einem Multikanal-Szenario, für die kein eigenes Lautsprechersignal übertragen worden ist.
  • Multikanal-Audiomaterial wird mehr und mehr populär. Dies hat dazu geführt, dass inzwischen auch viele Endbenutzer Multikanal-Wiedergabesysteme besitzen. Dies ist hauptsächlich darauf zurückzuführen, dass DVDs immer populärer werden, und dass daher auch viele Benutzer von DVDs inzwischen 5.1-Multikanal-Ausrüstungen haben. Solche Wiedergabesysteme bestehen im allgemeinen aus drei Lautsprechern L (Links), C (Center) und R (Rechts), die typischerweise vor dem Benutzer angeordnet sind, und zwei Lautsprechern Ls und Rs, die hinter dem Benutzer angeordnet sind, und typischerweise noch aus einem LFE-Kanal, der auch Niederfrequenz-Effekt-Kanal oder Subwoofer genannt wird. Ein solches Kanal-Szenario ist in Fig. 10 und in Fig. 11 angedeutet. Während die Positionierung der Lautsprecher L, C, R, Ls, Rs, bezüglich des Benutzers wie in den Figuren 10 und 11 gezeichnet vorgenommen werden sollte, damit der Benutzer einen möglichst guten Höreindruck bekommt, ist die Positionierung des LFE-Kanals (in Figs. 10 und 11 nicht gezeigt) nicht so entscheidend, da das Ohr bei derart niedrigen Frequenzen keine Lokalisierung vornehmen kann und der LFE-Kanal somit irgendwo, wo er aufgrund seiner beträchtlichen Größe nicht stört, angeordnet werden kann.
  • Ein solches Mehrkanalsystem erzeugt mehrere Vorteile gegenüber einer typischen Stereo-Reproduktion, die eine Zweikanal-Reproduktion ist, wie sie z.B. in Fig. 9 gezeigt ist.
  • Auch außerhalb der optimalen mittigen Hörposition ergibt sich eine verbesserte Stabilität des vorderen Höreindrucks, der auch als "Front Image" bezeichnet wird, und zwar aufgrund des Mitten-Kanals. Es ergibt sich somit ein größerer "Sweet-Spot", wobei "Sweet Spot" für die optimale Hörposition steht.
  • Ferner hat der Zuhörer ein besseres Gefühl des "Eintauchens" in die Audioszene aufgrund der beiden hinteren Lautsprecher Ls und Rs.
  • Dennoch existiert eine riesige Anzahl an im Besitz des Benutzers befindlichen oder allgemein verfügbaren Audiomaterials, das nur als Stereomaterial existiert, das also nur zwei Kanäle hat, nämlich den linken Kanal und den rechten Kanal. Typische Tonträger für solche Stereostücke sind Kompakt-Disks.
  • Um ein solches Stereomaterial über eine 5.1-Multikanal-Audioanlage abzuspielen, hat man zwei Optionen, die gemäß der ITU empfohlen werden.
  • Die erste Option besteht darin, den linken und den rechten Kanal über den linken und den rechten Lautsprecher des Multikanal-Wiedergabesystems abzuspielen. Nachteilig an dieser Lösung ist jedoch, dass man die Vielzahl der bereits bestehenden Lautsprecher nicht ausnutzt, dass man also das Vorhandensein des Center-Lautsprechers.und der beiden hinteren Lautsprecher nicht vorteilhaft ausnutzt.
  • Eine andere Option besteht darin, die zwei Kanäle in ein Multikanalsignal umzuwandeln. Dies kann während der Wiedergabe oder durch eine spezielle Vorverarbeitung geschehen, welche alle sechs Lautsprecher des beispielsweise vorhandenen 5.1- Wiedergabesystems vorteilhaft ausnutzt und damit zu einem verbesserten Höreindruck führt, wenn das Hochmischen oder der "Upmix" von zwei Kanälen auf 5 bzw. 6 Kanäle fehlerfrei durchgeführt wird.
  • Nur dann hat die zweite Option, also die Verwendung sämtlicher Lautsprecher des Mehrkanalsystems einen Vorteil gegenüber der ersten Lösung, wenn man also keine Upmix-Fehler begeht. Solche Upmix-Fehler können insbesondere störend sein, wenn Signale für die hinteren Lautsprecher, welche auch als Ambience-Signale oder Umgebungssignale bekannt sind, nicht fehlerfrei erzeugt werden.
  • Eine Möglichkeit, diesen sogenannten Upmix-Prozess durchzuführen, ist unter dem Stichwort "Direct Ambience-Konzept" bekannt. Die Direktschallquellen werden durch die drei vorderen Kanäle derart wiedergegeben, dass sie von dem Benutzer an der gleichen Position wie in der ursprünglichen Zweikanalversion wahrgenommen werden. Die ursprüngliche Zweikanalversion ist in Fig. 9 schematisch dargestellt, und zwar am Beispiel verschiedener Drum-Instrumente.
  • Fig. 10 zeigt eine hochgemischte Version des Konzepts, bei der alle ursprünglichen Schallquellen, also die Drum-Instrumente wieder von den drei vorderen Lautsprecher L, C und R wiedergegeben werden, wobei zusätzlich von den beiden hinteren Lautsprechern spezielle Umgebungssignale ausgegeben werden. Der Ausdruck "Direkt-Schallquelle" wird somit dazu verwendet, um einen Ton zu beschreiben, der nur und direkt von einer diskreten Schallquelle wie beispielsweise einem Drum-Instrument oder einem anderen Instrument oder allgemein einem speziellen Audioobjekt kommt, wie es schematisch z.B. in Fig. 9 anhand eines Drum-Instruments dargestellt ist. Irgendwelche zusätzlichen Töne, wie beispielsweise aufgrund von Wandreflexionen etc. sind in einer solchen Direktschallquelle nicht vorhanden. In diesem Szenario bestehen die Schallsignale, die von den beiden hinteren Lautsprechern Ls, Rs in Fig. 10 abgegeben werden, nur aus Umgebungssignalen, die in der ursprünglichen Aufzeichnung vorhanden sind oder nicht. Solche Umgebungssignale oder "Ambience"-Signale gehören nicht zu einer einzigen Schallquelle, sondern tragen zur Reproduktion der Raumakustik einer Aufzeichnung bei und führen somit zu dem sogenannten "Eintauch"-Gefühl des Zuhörers.
  • Ein weiteres Alternativkonzept, das als "In-the-Band"-Konzept bezeichnet ist, ist in Fig. 11 schematisch dargestellt. Jeder Schalltyp, also Direktschallquellen und umgebungs-artige Töne werden alle um den Zuhörer herum positioniert. Die Position eines Tons ist unabhängig von seiner Charakteristik (Direktschallquellen oder umgebungs-artige Töne) und hängt nur von dem spezifischen Entwurf des Algorithmus ab, wie es z.B. in Fig. 11 dargestellt ist. So wurde in Fig. 11 durch den Upmix-Algorithmus bestimmt, dass die beiden Instrumente 1100 und 1102 seitlich bezüglich des Zuhörers positioniert werden, während die beiden Instrumente 1104 und 1106 vor dem Benutzer positioniert werden. Dies führt dazu, dass die beiden hinteren Lautsprecher Ls, Rs nunmehr auch Anteile der beiden Instrumente 1100 und 1102 enthalten und nicht mehr nur umgebungs-artige Töne, wie es bei Fig. 10 noch der Fall war, wo dieselben Instrumente alle vor dem Benutzer positioniert worden sind.
  • Die Fachveröffentlichung "C. Avendano und J.M. Jot: "Ambience Extraction and Synthesis from Stereo Signals for Multichannel Audio Upmix", IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 02, Orlando, F1, May 2002" offenbart eine Frequenzbereichstechnik, um Umgebungsinformationen in Stereo-Audiosignalen zu identifizieren und zu extrahieren. Dieses Konzept basiert auf der Berechnung einer Inter-Kanal-Kohärenz und einer nicht-linearen Abbildungsfunktion, die es erlauben soll, Zeit-Frequenz-Regionen in dem Stereosignal zu bestimmen, die hauptsächlich aus Umgebungs-Komponenten bestehen. Umgebungssignale werden dann synthetisiert und verwendet, um die hinteren Kanäle oder "Surround"-Kanäle Ls, Rs (Figs. 10 und 11) eines Multikanal-Wiedergabesystems zu speichern.
  • In der Fachveröffentlichung "R. Irwan und Ronald M. Aarts: "A method to convert stereo to multi-channel sound", The proceedings of the AES 19th International Conference, Schloss Elmau, Deutschland, Juni 21-24, Seiten 139-143, 2001" wird ein Verfahren präsentiert, um ein Stereosignal in ein Multikanalsignal umzuwandeln. Das Signal für die Surround-Kanäle wird unter Verwendung einer Kreuzkorrelationstechnik berechnet. Eine Hauptkomponentenanalyse (PCA; PCA = Principle Component Analysis) wird verwendet, um einen Vektor zu berechnen, der eine Richtung des dominanten Signals anzeigt. Dieser Vektor wird dann von einer ZweiKanal-Darstellung auf eine Drei-Kanal-Darstellung abgebildet, um die drei vorderen Kanäle zu erzeugen.
  • Die Fachveröffentlichung "G. Soulodre, "Ambience-Based Upmixing", Workshop "Spatial Coding Of Surround Sound: A Progress Report", 117th AES Convention, San Francisco, CA, USA, 2004" offenbart ein System, das ein Multikanalsignal aus einem Stereosignal erzeugt. Das Signal wird in sogenannte individuelle Quellenströme und Umgebungsströme zerlegt. Basierend auf diesen Strömen synthetisiert ein sogenannter "Ästhetik-Prozessor" das Multikanal-Ausgangssignal.
  • Alle bekannten Techniken versuchen auf verschiedene Arten und Weisen die Ambience-Signale bzw. Umgebungssignale aus dem ursprünglichen Stereosignal zu extrahieren oder sogar aus Rauschen bzw. weiteren Informationen zu synthetisieren, wobei zur Synthese der Ambience-Signale auch Informationen, welche nicht im Stereosignal sind, verwendet werden können. Letztendlich geht es jedoch immer darum, Informationen aus dem Stereosignal zu extrahieren bzw. Informationen in ein Wiedergabe-Szenario einzuspeisen, die nicht explizit vorliegen, da typischerweise nur ein Zweikanal-Stereosignal und gegebenenfalls irgendwelche Zusatzinformationen bzw. Metainformationen zur Verfügung stehen.
  • Insofern ist die Extraktion oder teilweise Extraktion und teilweise Synthetisierung von solchen Umgebungssignalen eine riskante Angelegenheit, da es ein Benutzer als störend empfinden würde, wenn in den Umgebungskanälen Informationen von Schallquellen enthalten sind, die der Benutzer als direkt von vorne kommend, also vom linken Kanal, mittleren Kanal und rechten Kanal kommend identifiziert. Aus diesem Grund würde man eine Erzeugung von Umgebungssignalen sehr "defensiv" machen, um ganz sicher zu gehen, dass keine vom Benutzer als störend empfundenen Artefakte erzeugt werden. Der andere Extremfall, wenn man zu defensiv bei der Erzeugung der Umgebungssignale agiert, besteht darin, dass ein sehr leises, bzw. kaum mehr wahrnehmbares Umgebungssignal extrahiert wird, oder dass das Umgebungssignal nur noch Rauschen hat, jedoch keine besonderen Informationen mehr hat, so dass das Umgebungssignal sehr wenig zum Hörgenuss beiträgt und eigentlich in diesem Fall ganz weggelassen werden könnte.
  • Problematisch bei der Erzeugung des Umgebungssignals ist somit, dass man einerseits ein Umgebungssignal erzeugt, das Informationen umfasst, die über normales Rauschen hinausgehen, das jedoch das Umgebungssignal nicht zu hörbaren Artefakten führt, dass also ein richtiges Maß zwischen Hörbarkeit und Informationsgehalt beibehalten wird.
  • Die Fachveröffentlichung "Enhancement of Audio Signals Using Transient Detection and Modification", M. Goodwin und C. Avendano, AES, Nr. 6225, offenbart eine Verarbeitung von Audiosignalen, die eine Modifikation von Audiosignalen durch Hervorhebung oder Unterdrückung von Transienten ermöglicht. Die Transientendetektion verwendet eine Frequenzbereichsanalyse, die einen Spektralflussparameter liefert. Hierzu wird eine kontinuierliche Transientencharakterisierungsfunktion eingesetzt, die dazu verwendet wird, um eine nicht-lineare Frequenzbereichs-Signalmodifikation zu steuern. Insbesondere können bei einer nicht-linearen Modifikation sehr kleine Transienten sehr stark verstärkt oder unterdrückt werden.
  • Die Fachveröffentlichung "Ambience Extraction and Synthesis from Stereo Signals for Multi-Channel Audio Up-Mix", C. Avendano und J.-M. Jot, International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 13.-17. Mai 2002 offenbart eine Frequenzbereichstechnik, um eine Umgebungsinformation in Stereo-Audio-Signalen zu identifizieren und zu extrahieren. Das Verfahren basiert auf der Berechnung eines Zwischen-Kanal-Kohärenz-Index und einer nicht-linearen Abbildungsfunktion, die es erlaubt, Zeit-Frequenz-Regionen zu bestimmen, die ja hauptsächlich aus Umgebungs-Komponenten in dem Zweikanalsignal bestehen.
  • Die EP 1 385 150 A1 offenbart ein Verfahren und ein System zur parametrischen Charakterisierung von transienten Audiosignalen, wobei eine angenäherte Hüllkurve für das transiente Audiosignal bestimmt wird und Amplitudenwerte von Abtastwerten dieser Hüllkurve bestimmt werden, um eine Spline-Approximation der Hüllkurve durchzuführen.
  • Das US-Patent Nr. 5,886,276 offenbart ein System und ein Verfahren für ein skalierbares Audiosignalcodieren mit verschiedenen Auflösungen. Hierzu wird ein Modell verwendet, das berücksichtigt, dass Audiosignale aus deterministischen oder sinusförmigen Komponenten und transienten Komponenten, die den Anfang von Noten oder anderen Ereignissen in einem Audiosignal darstellen, und stochastischen Komponenten zusammengesetzt sind.
  • Die Fachveröffentlichung "The Precedence Effect in Sound Localization", H. Wallach u.a., Journal of Educational Psychology, American Psychological Association, Bd. 62, Nr. 3, Juli 1949, Seiten 315-319 beschäftigt sich mit der Frage, wieso Töne überhaupt in einem Raum mit Schallreflexionen lokalisiert werden können. Insbesondere wird auf den Präzedenz-Effekt eingegangen, auf den es zurückzuführen ist, dass diese Schall-Lokalisierung stattfindet.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, ein Konzept zum Erzeugen eines Umgebungssignals zu schaffen, in dem hörbare Artefakte reduziert sind.
  • Diese Aufgabe wird durch eine Vorrichtung zum Erzeugen eines Umgebungssignals gemäß Patentanspruch 1, ein Verfahren zum Erzeugen eines Umgebungssignals gemäß Patentanspruch 14 oder ein Computer-Programm gemäß Patentanspruch 15 gelöst.
  • Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass die Artefakte, die von Zuhörern bei Umgebungssignalen am negativsten empfunden werden, Artefakte sind, die dazu führen, dass der Zuhörer meint, dass im hinteren Lautsprecher eine direkte Schallquelle ist, obgleich er diese Schallquelle von vorne wahrnimmt. Charakteristika für das Empfinden von direkten Schallquellen sind transiente Vorgänge, also Signal-Feinstrukturen im Zeitsignal, die eine (schnelle) Änderung über einer Änderungsschwelle von einem leisen Zustand in einen lauten Zustand oder von einem lauten Zustand in einen leisen Zustand betreffen, bzw. die einen (starken) Energieanstieg über einer Änderungsschwelle in speziellen Bändern und insbesondere in den oberen Bändern innerhalb einer bestimmten Zeit betreffen.
  • Solche transienten Vorgänge sind beispielsweise das Einsetzen eines Instruments oder der Anschlag eines Schlaginstruments, oder das Ende eines Tons, der nicht langsam ausklingt, sondern der abrupt beendet wird. Ein Zuhörer nimmt solche transienten Vorgänge als Kennzeichen von Direktschallquellen wahr, die erfindungsgemäß aus einem Umgebungssignal eliminiert werden, so dass den Umgebungslautsprechern ein erfindungsgemäß erzeugtes Umgebungssignal geliefert wird, das keine oder nur stark gedämpfte Transienten umfasst.
  • Erfindungsgemäß wird ferner sichergestellt, dass die Unterdrückung eines Transienten in dem Umgebungssignal nicht zu einer zu großen Amplitudenmodulation führt. Erfindungsgemäß wurde nämlich ferner herausgefunden, dass Variationen der Amplitude, also der Lautstärke, auch wenn sie nicht transient sind, also unter der Transientenschwelle liegen, wenn sie jedoch oberhalb einer bestimmten Variationsschwelle sind, vom Benutzer als störend und damit dann, wenn solche Amplitudenvariationen aufgrund einer einfachen Eliminierung eines Transienten in einem Umgebungssignal entstehen würden, vom Zuhörer als Artefakt oder Fehler erkannt werden würden.
  • Erfindungsgemäß wird somit in einem Untersuchungssignal ein Transientenzeitraum detektiert, in dem ein transienter Bereich im Untersuchungssignal vorhanden ist. Hierauf wird mit Hilfe eines Synthesesignalgenerators ein Synthesesignal für den Transientenzeitraum erzeugt, der ausgebildet ist, um das Synthesesignal so zu erzeugen, dass es einen flacheren zeitlichen Verlauf als das Untersuchungssignal in dem transienten Bereich aufweist, wobei ferner der Synthesesignalgenerator ausgebildet ist, um das Synthesesignal so zu erzeugen, dass es sich im Hinblick auf seine Intensität eines vorangegangenen oder nachfolgenden Abschnitts des Untersuchungssignals um weniger als eine vorbestimmte Schwelle unterscheidet. Dieses erzeugte Synthesesignal wird dann mittels eines Signalsubstituierers anstatt des Untersuchungssignals im Transientenzeitraum verwendet, um das Umgebungssignal zu erhalten.
  • Erfindungsgemäß wird somit die Extraktion eines Umgebungssignal-artigen Signals aus einem Zwei-Kanal-Stereoeingangssignal verbessert, oder es wird eine Nachverarbeitung eines existierenden Signals, das z.B. bereits ein extrahiertes Roh-Umgebungssignal ist, vorgenommen. Im ersten Fall ist das Untersuchungssignal das tatsächliche ZweiKanal-Stereosignal bzw. jeweils ein Kanal des Zwei-Kanal-Signals, während im zweiten Fall das Untersuchungssignal bereits ein extrahiertes Umgebungssignal oder ein vorsynthetisiertes Umgebungssignal ist. Damit ist das erfindungsgemäße Konzept besonders nützlich für das Upmix-Konzept, das auch als "Direct-Ambience-Konzept" dargestellt worden ist. Auch für das "In-the-Band"-Konzept kann das erfindungsgemäße Konzept vorteilhaft sein, da es auch dort zu einem verbesserten Umgebungssignal führt, das einerseits keine störenden Artefakte mehr hat, das jedoch andererseits noch genug Informationen umfasst, damit ein Benutzer einen Nutzen vom Umgebungssignal hat.
  • Die erfindungsgemäße Umgebungssignalerzeugung führt dazu, dass das Umgebungssignal keine relevanten Teile von Direktschallquellen hat, wobei insbesondere keine Transienten enthalten sind bzw. Transienten nur in sehr stark gedämpfter Form enthalten sind. Anderenfalls würde der Zuhörer Direktschallquellen hinter sich wahrnehmen, was im Konflikt zu der Erfahrung des Benutzers sein würde, der typischerweise Schallquellen nur von vorne wahrnimmt.
  • Ferner stellt das erfindungsgemäße Konzept sicher, dass das Umgebungssignal ein durchgehendes ununterbrochenes diffuses Tonsignal ist, da ein unterbrochener umgebungs-artiger Ton, der beispielsweise erhalten wird, wenn Transienten einfach komplett eliminiert werden würden, vom Benutzer als unangenehm oder sogar als Fehler im Hochmisch-Prozess wahrgenommen werden würde.
  • Bei einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung wird, um einen Direkt-Ambience-Typ eines Upmix-Prozesses zu erreichen, ein ambience-artiges Signal für die hinteren Kanäle aus dem Stereosignal extrahiert. Um dies zu erreichen, wird beispielsweise nur auf die unkorrelierten Signalkomponenten oder als einfache Lösung einfach auf die Differenz zwischen dem ursprünglichen rechten und linken Kanal zurückgegriffen. Wenn die hinteren Kanäle derart erzeugt werden, haben sie oft transienten-artige Komponenten von Direktschallquellen. Diese Transienten können Töne sein, wie beispielsweise Notenanfänge oder Teile von perkussiven Instrumenten. Ein Transient, der hinter dem Zuhörer wahrgenommen wird, während eine Direktschallquelle (zu der der Transient typischerweise gehört) vor dem Zuhörer positioniert ist, hat eine negative Auswirkung auf die Lokalisierung der Direktschallquelle. Die Direktschallquelle erscheint somit entweder breiter als das Original oder wird, was noch schädlicher ist, als unabhängige Direkt-schallquelle hinter dem Benutzer wahrgenommen, wobei beide Effekte insbesondere für das Direkt-Ambience-Konzept sehr unerwünscht sind.
  • Erfindungsgemäß wird diese Problematik dadurch angegangen, dass Transienten im umgebungsartigen Signal unterdrückt werden, und dass die Auswirkung dieser Unterdrückung auf das restliche Signal minimiert wird, d.h. dass die Kontinuität des Signals bewahrt wird, indem nur begrenzte Intensitäts-Variationen für den Transientenzeitraum zugelassen werden.
  • Beim bevorzugten Ausführungsbeispiel der vorliegenden Erfindung wird das für den Transientenzeitraum erzeugte Signal, bevor es durch den Signalsubstituierer verwendet wird, mit dem ursprünglich im Transientenzeitraum vorhandenen Signal gemischt, was beispielsweise durch eine überlappende Verarbeitung erreicht wird. Alternativ oder zusätzlich kann, um die Diskontinuitäten an den Rändern des Transientenzeitraums zu unterdrücken bzw. wenigstens zu reduzieren, ein Überblenden vorgenommen werden, um in einem Überblendbereich langsam von dem Signal vor dem Transientenzeitraum in das Signal im Transientenzeitraum überzublenden oder um aus dem Transientenzeitraum wieder langsam auszublenden.
  • Insbesondere die Ausblendung vom Transientenzeitraum in das ursprüngliche Signal, wenn kein Transient mehr detektiert wird, ist für einen artefaktfreien Höreindruck bevorzugt, da sichergestellt werden soll, dass dann, wenn ein Nicht-Artefakt-behaftetes Untersuchungssignal vorliegt, durch den Übergang vom Synthesesignal in das ursprüngliche Untersuchungssignal kein Knacken oder etwas Ähnliches entsteht.
  • Bei weiteren bevorzugten Ausführungsbeispielen der vorliegenden Erfindung wird eine Manipulation des Signals im Transientenzeitraum im Frequenzbereich vorgenommen, indem Vorzeichen von Spektralwerten oder allgemeiner gesagt Phasen von Spektralwerten randomisiert werden, was unweigerlich zu einer Glättung der zeitlichen Feinstruktur dieses im Frequenzbereich manipulierten Signals führt. Eine weitere Spektralverarbeitung besteht darin, eine Prädiktion über der Frequenz der Spektralwerte durchzuführen und dann die Prädiktionsspektralwerte als Spektralwerte des Synthesesignals zu verwenden, da die Prädiktion über der Frequenz zu einer Glättung des korrespondierenden Zeitsignals führt.
  • Zur Unterdrückung von Transienten bei gleichzeitiger Beibehaltung oder nur geringer Beeinflussung, es wird bevorzugt, die Intensität des Transientenzeitraums um höchstens plus oder minus 50% zu ändern, bestehen darin, die Änderung der Spektralwerte von einem Block zu einem nächsten zu limitieren, wobei diese Limitierung global, also für alle Spektralwerte gleich oder selektiv, also nur für bestimmte Spektralwerte, die eine besonders große Änderung haben, erfolgen kann.
  • Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:
  • Fig. 1
    ein Blockschaltbild eines Teils der erfindungsgemäßen Vorrichtung zum Erzeugen eines Umgebungssignals;
    Fig. 2a
    eine schematische Darstellung der Blockverarbeitung bei nicht-überlappenden Blöcken, jedoch mit Überblendbereich;
    Fig. 2b
    eine schematische Darstellung der Synthesesignalerzeugung bei überlappenden Blöcken;
    Fig. 3
    eine spezielle Implementierung einer Überblendung mit einer Einblendfunktion und einer Ausblendfunktion, die für Fig. 2a oder Fig. 2b eingesetzt werden kann;
    Fig. 4
    ein Blockschaltbild einer bevorzugten Implementierung mit einer Verarbeitung im Frequenzbereich;
    Fig. 5a
    eine alternative Implementierung der Frequenzbereichsverarbeitung;
    Fig. 5b
    eine wieder alternative Frequenzbereichsverarbeitung;
    Fig. 5c
    eine bevorzugte Implementierung einer Intensitäts-basierten Verarbeitung;
    Fig. 6
    eine Implementierung zur Erhaltung tonaler Bereiche im Synthesesignal;
    Fig. 7
    ein Blockschaltbild einer bevorzugten Ausführungsform basierend auf dem Hochfrequenzgehalt HFC;
    Fig. 8
    eine Implementierung der erfindungsgemäßen Vorrichtung mit zusätzlicher Funktionalität zum Erzeugen der Direktschallkanäle L, R, C;
    Fig. 9
    ein Stereo-Wiedergabe-Szenario;
    Fig. 10
    ein Multikanal-Wiedergabe-Szenario, bei dem alle Direktschallquellen durch die vorderen Kanäle wiedergegeben werden; und
    Fig. 11
    ein Multikanal-Wiedergabe-Szenario, bei dem Schallquellen auch durch hintere Kanäle wiedergebeben werden können.
  • Fig. 1 zeigt einen Teil der erfindungsgemäßen Vorrichtung, zum Erzeugen eines Umgebungssignals 10 das zur Ausstrahlung über Lautsprecher geeignet ist, für die kein eigenes Lautsprechersignal übertragen worden ist. Solche Lautsprecher sind typischerweise die hinteren Lautsprecher oder Surround-Lautsprecher, wie sie bei Ls, Rs in Fig. 10 und Fig. 11 beispielsweise gezeigt sind.
  • Die in Fig. 1 gezeigte Vorrichtung umfasst einen Transienten-Detektor 11 zum Detektieren eines Transientenzeitraums (bei 20 in Fig. 2 gezeigt), in dem ein Untersuchungssignal einen transienten Bereich aufweist. Obgleich hier einige Implementierungen des Transienten-Detektors beschreiben sind, sei darauf hingewiesen, dass auch beliebige andere Methoden zur Transientendetektion eingesetzt werden können, wie sie beispielsweise in einem MPEG4-Audiocodierer anzutreffen sind, bei dem abhängig von einer Transientendetektion von kurzen auf lange Fenster umgeschaltet wird. Auch in anderen Gebieten der Audiosignalverarbeitung werden Transienten-Detektoren eingesetzt, die schnelle und starke Änderungen der Hüllkurve eines Zeitsignals detektieren können. Beispielhafte zu detektierende Größenordnungen sind Änderungen der Hüllkurve, die in einem Zeitraum von 1 ms Änderungen von gleich oder über 100 % der Amplitude der Hüllkurve betreffen.
  • Der Transienten-Detektor 11 ist mit einem Synthesesignalgenerator 12 gekoppelt, der ausgebildet ist, um ein Synthesesignal 13 zu erzeugen, das die beiden Bedingungen erfüllt, nämlich einerseits die Transientenbedingung und andererseits die Kontinuitätsbedingung. Die Transientenbedingung besteht darin, dass das Synthesesignal einen flacheren zeitlichen Verlauf als das Untersuchungssignal in dem transienten Bereich aufweist, während die Kontinuitätsbedingung darin besteht, dass die Intensität des Synthesesignals im transienten Bereich von einer Intensität eines vorhergehenden oder nachfolgenden Abschnitts des Untersuchungssignals um weniger als eine voreingestellte Schwelle abweicht. Vorzugsweise ist die Schwelle eine relative Schwelle und liegt bei einem Wert = 2,5, wobei Werte = 1,5 sogar bevorzugt werden. Dies bedeutet, dass die Intensität des Signals im transienten Bereich höchstens das 1,5-fache oder das 0,66-fache der Intensität eines vorausgehenden nicht-transienten Abschnitts oder nachfolgenden nicht-transienten Abschnitts des Untersuchungssignals ist. Damit wird sichergestellt, dass eine Transientenunterdrückung nicht zu einer störenden Amplituden-Variation bzw. Intensitätsvariation führen wird.
  • Die Schwelle kann auch durch ein Vertrauensintervall von 80% oder weniger, das anhand der Vergangenheitswerte bestimmt wird, realisiert werden.
  • Intensitätsmaße, die für die vorliegende Erfindung eingesetzt werden können, umfassen die Energie, die durch Addition der Abtastwert-Quadrate oder Spektralwert-Quadrate eines Blocks erhalten wird, oder ein Leistungsmaß, das unter Berücksichtigung der zeitlichen Blocklänge erhalten werden kann, oder auch ein Maß, das Beträge von Spektralwerten in einem Band gewichtet oder ungewichtet aufaddiert, wobei dieses spezielle Maß, das ebenfalls eine Intensität darstellt, auch als Hochfrequenzgehalt bezeichnet wird, wenn das Band, in dem aufaddiert wird, das obere Frequenzband des Untersuchungssignals ist oder allgemein höhere Frequenzen gegenüber niedrigeren Frequenzen stärker gewichtet werden bzw. einen stärkeren Einfluss auf das Endergebnis haben.
  • Der Synthesesignalgenerator erzeugt dann ein Synthesesignal, das von einem Signalsubstituierer 14 verwendet wird, um das Synthesesignal statt des entsprechenden Bereichs des ursprünglichen Untersuchungssignals zu verwenden, um schließlich das Umgebungssignal 10 zu liefern. Der Signalsubstituierer 14 erhält somit neben dem Synthesesignal über die Leitung 13 auch das Untersuchungssignal über eine Leitung 15, wie es in Fig. 1 angedeutet ist. Der Transienten-Detektor 11 erhält über eine Eingangsleitung 16 das Untersuchungssignal und liefert über eine Ausgangsleitung 17 eine Transienten-Information zum Synthesesignalgenerator 12, damit dieser unter Verwendung des Untersuchungssignals, das ihm über eine Leitung 18 bereitgestellt wird, das Synthesesignal erzeugt.
  • Bei speziellen Ausführungsbeispielen der vorliegenden Erfindung wird eine nicht-überlappende Blockverarbeitung, wie in Fig. 2a dargestellt oder eine überlappende Blockverarbeitung wie in Fig. 2b dargestellt eingesetzt. Bei der nicht-überlappenden Blockverarbeitung in Fig. 2a wird ein Untersuchungssignal 21 in vorzugsweise gleich lange Blöcke einer speziellen Blocklänge eingeteilt. Der Transienten-Detektor erfasst dann einen Transienten 22 in dem Transientenzeitraum 20. Der Transient 22 liegt somit im Transientenzeitraum 20 von Fig. 2a, was dazu führt, dass der Transienten-Detektor 11 ein Ausgangssignal über seine Ausgangsleitung 17 liefert, die dem Synthesesignalgenerator 12 mitteilt, dass er nun mit einer Signalsynthese beginnen muss. Während die dem Transientenzeitraum 20 vorausgehenden und nachfolgenden Blöcke bis auf eine Überblendung in einem Überblendbereich 23 unmittelbar die entsprechenden Teile des Umgebungssignals 10 darstellen, wird nunmehr der Block des Untersuchungssignals, der dem Transientenzeitraum 20 entspricht, durch den Synthesesignalgenerator synthetisiert und dann durch den Signalsubstituierer 14 anstatt des ursprünglichen Blocks des Untersuchungssignals im Umgebungssignal verwendet.
  • Bei den bevorzugten Ausführungsbeispielen wird, wie es später noch dargestellt wird, eine Verarbeitung des Blocks des Untersuchungssignals vorgenommen, die im Frequenzbereich stattfindet. Dies führt dazu, dass an einer Blockgrenze das Synthesesignal einen Abtastwert hat, der sich von einem Abtastwert, der der letzte Abtastwert des vorausgehenden Blocks im Untersuchungssignal ist, deutlich unterscheiden kann. Um solche Blockgrenzen-Artefakte, die auftreten können, zu eliminieren, wird es bei dem in Fig. 2a gezeigten Ausführungsbeispiel bevorzugt, von einem Block vor einem Transientenzeitraum in das Synthesesignal im Transienten-zeitraum überzublenden, indem beispielsweise der erste Abtastwert des generierten Synthesesignals zu den z.B. letzten 10 Abtastwerte des vorhergehenden Blocks, die gemäße der Ausblendfunktion gewichtet sind, hinzuaddiert wird, und zwar beispielsweise gemäß der Einblendfunktion in Fig. 3. Gleichzeitig wird der letzte Abtastwert des vorhergehenden Blocks noch gemäß der Ausblendfunktion in Fig. 3 zu dem ersten bzw. den dem ersten Abtastwert folgenden Abtastwerten des synthetisierten Blocks die gemäße der Einblendfunktion gewichtet sind, im Transientenzeitraum hinzuaddiert, um eine Überblendung zu schaffen. Entsprechend kann im hinteren Überblendbereich, wenn also vom Transientenzeitraum wieder zurück in den nicht- Transienten-behafteten Block des Umgebungssignals übergegangen wird, vorgegangen werden.
  • Um solche Blockgrenzen-Artefakte noch weiter zu reduzieren, wird, wie es in Fig. 2b gezeigt ist, eine überlappende Verarbeitung bevorzugt. Der Transienten-Detektor detektiert dann bei dem in Fig. 2b gezeigten Ausführungsbeispiel Blockbereiche, die mit eingeringelten Zahlen (1), (2), (3), (4), (5), (6) dargestellt sind. Ein Transient wird bei 22 detektiert. Dies führt dazu, dass es im Vergleich zu Fig. 2a einen größeren Transienten-Zeitraum 20 gibt, da der Transient an der Position 22 sowohl im Block 4 als auch im Block 5 detektiert worden ist. Daher wird der Synthesesignalgenerator 12 von Fig. 1 Synthesesignale sowohl für den Block 4 als auch für den Block 5 erzeugen. Während für die den drei Transientenzeitraum-Bereichen A, B, C vorausgehenden Blöcke das Untersuchungssignal keine Transienten hat und somit unmittelbar in das Umgebungssignal übernommen wird, werden die Bereiche A, B, C durch den Signalsubstituierer 14 von Fig. 1 ersetzt, und zwar durch die von den Synthesesignalgeneratoren erzeugten Abschnitte A, B, C. Der Abschnitt A wird durch die Addition der zweiten Hälfte des nicht-Transienten-behafteten Blocks 3 des Untersuchungssignals mit der ersten Hälfte des für den Block 4 erzeugten Synthesesignals erzeugt. Der zweite Teil B des Transientenzeitraums 20 wird durch Addition der zweiten Hälfte des Synthesesignals, das für den Block 4 erzeugt worden ist, mit der ersten Hälfte des Synthesesignals, das für den Block 5 erzeugt worden ist, geliefert und vom Signalsubstituierer als entsprechender Abschnitt des Umgebungssignals 10 substituiert. Der dritte Teil C des Transientenzeitraums 20 wird durch Addition der zweiten Hälfte des vom Synthesesignalgenerator erzeugten Blocks Nr. 5 mit der ersten Hälfte des Blocks Nr. 6, der nicht mehr Transienten-behaftet ist, erzeugt und vom Signalsubstituierer 14 in das Umgebungssignal geschrieben.
  • Die in Fig. 3 gezeigte Ausblendfunktion wird nachfolgend detaillierter erläutert. So kann diese Ausblendfunktion dazu verwendet werden, um bei der Blockverarbeitung mit nicht-überlappenden Blöcken einen weichen Blockübergang von einem nicht-synthetisierten Block zu einem synthetisierten Block zu schaffen und ferner einen weichen Übergang von einem synthetisierten Block wieder in einen nicht-synthetisierten Block zu schaffen. Alternativ kann eine entsprechende Überblendfunktion auch dazu verwendet werden, um insbesondere dann, wenn durch eine bestimmte spezifizierte Anzahl von Blöcken ein Synthesesignal erzeugt worden ist, wieder zurück zum ursprünglichen Untersuchungssignal überzublenden. Nachdem die Wahrscheinlichkeit gegeben ist, dass das Synthesesignal sich aufgrund der Extrapolation relativ weit von dem Untersuchungssignal entfernt hat, würde ein abruptes Zurückkehren zum Untersuchungssignal in bestimmten Fällen zu hörbaren Artefakten führen. Daher wird es bevorzugt, langsam gemäß der Einblend-/Ausblend-Funktion von Fig. 3 überzublenden, indem für einen Block, in dem bereits kein Transient mehr detektiert worden ist, ein Synthesesignal erzeugt wird, das zu 90% aus dem letzten synthetisierten Block und zu 10% aus dem aktuellen Untersuchungsblock besteht. Im nächsten Block könnte das Verhältnis dann auf 80%:20% umgeändert werden, bis dann nach einer bestimmten Anzahl von Blöcken das Synthesesignal vollständig ausgeblendet ist und das aktuelle nicht-Transientenbehaftete Untersuchungssignal wieder vollständig eingeblendet ist.
  • Nachfolgend wird eine bevorzugte Implementierung eines Teils des Synthesesignalgenerators 12 anhand von Fig. 4 gestellt. Hierzu wird das Zeitsignal, das einen Block des Untersuchungssignals darstellt, in eine Frequenzbereichsdarstellung oder eine Subband-Darstellung durch einen Umsetzer 40 umgesetzt, der eine Transformation oder eine Analyse-Filterbank umfassen kann. Die spektrale Darstellung in Form von Spektralkoeffizienten oder die Subband-Signale werden dann, wie es bei 41 dargestellt ist, gegebenenfalls um Informationen über eine extrapolierte spektrale Darstellung bzw. extrapolierte Subband-Signale ersetzt, wenn es sich um einen Block des Zeitsignals handelt, in dem ein Transient detektiert worden ist. Hierauf wird die spektrale Darstellung gegebenenfalls unter Verwendung von zusätzlichen Informationen aufgrund einer Extrapolation einem Glätter 42 zugeführt, der die Spektralwerte derart beeinflusst, dass der zeitliche Verlauf des zugrunde liegenden Signals geglättet wird. Im Falle einer Filterbank wird der Glätter 42 die Subband-Signale so beeinflussen, dass der zeitliche Verlauf des den Subband-Signalen zugrunde liegenden Signals glatter als vor der Glättung ist. Dann, in einem Block 43 findet eine inverse Umsetzung in den Zeitbereich statt, wobei entweder eine Rücktransformation oder eine Synthese-Filterbank eingesetzt wird, um schließlich zu einem Zeitsignal 44 zu kommen, das einen glatteren Verlauf hat als das Zeitsignal am Eingang der Stufe 40, das jedoch eine Energie hat, die durch die Glättung nicht erheblich beeinflusst worden ist. Ferner ist die Glättung so vorgenommen worden, dass die Energie des geglätteten Zeitsignals 44 sich von der Energie des vorherigen Zeitsignals nicht mehr als die Schwelle unterscheidet.
  • So kann bei der vorliegenden Erfindung eine insgesamte E-nergiemanipulation der Energie des Zeitsignals zwar stattfinden. So wird jedoch lediglich der Transient gedämpft, während die tonalen Anteile weiterlaufen bzw. aus der Vergangenheit synthetisiert werden, indem das Signal im Transientenzeitraum durch eine Prädiktion unter Verwendung eines nicht transienten Signals aus der Vergangenheit synthetisiert wird.
  • Wenn die Energie - wie bei der Randomisierung oder spektralen Prädiktion - jedoch nicht angetastet wird, hat die Glättung dazu geführt, dass die Energie über dem Block gleichmäßiger verteilt wird, so dass ein glatterer zeitlicher Verlauf erzeugt worden ist, ohne jedoch die Energie des Blocks von Abtastwerten des Untersuchungssignals erheblich zu ändern. Dies ist in den meisten Fällen ausreichend und stellt sicher, dass der Benutzer ein Untersuchungssignal hört, das die Kontinuitätsbedingung immer erfüllt. Erst wenn die Transiente zu einer erheblichen Energiezunahme auf den ganzen Block betrachtet führt, wird die Glättung allein, also die gleichmäßigere Verteilung der Energie über dem Block, nicht mehr ausreichend sein und es kann dann eine gesteuerte Signalbegrenzung vorgenommen werden.
  • Bekannte Verfahren, die darin bestehen, eine Lokalisierung von Direktschallquellen in den hinteren Kanälen zu vermeiden, bestehen darin, die hinteren Kanäle ein paar Millisekunden zu verzögern. Diese Lösung führt zu keiner Transientenunterdrückung, versucht jedoch die Transienten durch Verwenden des Präzedenz-Effekts zu "maskieren". Der Präzedenz-Effekt besteht darin, dass das Ohr dort eine Schallquelle vermutet, wo es zuerst etwas von dieser Schallquelle hört, wobei das, was man dann von dieser Schallquelle hört, durchaus lauter oder von einer anderen Richtung kommen kann. Nachteilhaft an dieser Lösung ist jedoch, dass sehr kurze Schallereignisse mit scharfen Transienten oft immer noch hörbar sind und dann zweimal wahrgenommen werden, und zwar durch einen vorderen Lautsprecher und einige Millisekunden später durch die hinteren Kanäle, was einen unangenehmen Höreindruck bewirkt.
  • Kommerziell verfügbare Matrix-Decodierer, wie beispielsweise Dolby Pro Logic II oder Logic 7 haben die Fähigkeit, nicht vorverarbeitete 2-Kanal-Stereo-Dateien in Multikanal-Surround-Dateien hochzumischen (upmixen), obwohl sie unmittelbar nicht für diese Aufgabe entworfen worden sind. Diese Matrix-Decodierer sind oft nicht in der Lage, transiente Töne in den hinteren Kanälen zu unterdrücken, was in einem Signal resultiert, das die Anforderungen nach Transientenfreiheit und Amplituden- bzw. Intensitäts-Kontinuität nicht erfüllt.
  • Erfindungsgemäß werden dagegen Kanalbereiche, wo Transienten auftreten, erfasst und gedämpft. Eine einfache Dämpfung des gesamten Signals zu diesen Zeitbereichen würde jedoch in einer Amplitudenmodulation des Umgebungssignals resultieren und es würde als unangenehme oder sogar als Artefakt wahrgenommen werden. Dies würde daher das Qualitätsempfinden des extrahierten oder verarbeiteten Umgebungssignals verschlechtern. Um diesen unangenehmen Amplitudenmodulationseffekt zu überwinden, wird erfindungsgemäß eine Transientenunterdrückung ohne Beeinträchtigung der Kontinuität des Synthesesignals bzw. Umgebungssignals erzeugt. Hierzu wird ein Eingangssignal, das z.B. ein hochgemischtes Signal, wie es durch einen Matrix-Hochmischer erhalten wird, für die hinteren Kanäle, oder es wird ein Signal mit ähnlichen Charakteristika und einem ähnlichen Anwendungsbereich analysiert, um zu erfassen, ob eine Transiente vorhanden ist.
  • Wenn eine Transiente erfasst wird, wird der gegenwärtig verarbeitete Block durch ein Substitutionssignal ersetzt, das eine flache (nicht-transiente) zeitliche Hüllkurve hat. Dieses Substitutionssignal wird entweder von vorhergehenden Signalabschnitten, in denen keine Transiente vorhanden war, erzeugt oder wird von dem gegenwärtig verarbeiteten Block durch einen Verarbeitungsschritt erzeugt, der die zeitliche Hüllkurve bzw. Feinstruktur des Signals flacher macht oder wird von einer Kombination beider Verfahren erzeugt.
  • Das Substitutionssignal, das von vorhergehenden Abschnitten erzeugt wird, wird beispielsweise durch Extrapolation vorheriger Energiepegel des Signals oder durch Kopieren/Wiederholen von vorherigen Signalabschnitten ohne einen transienten Bereich des Signals erzeugt.
  • Ein Abflachen oder "Flattening" der zeitlichen Feinstruktur oder des feinen Zeitsignals auf der Basis des gegenwärtig verarbeiteten Blocks kann beispielsweise derart durchgeführt werden, wie es nachfolgend bezugnehmend auf die Figuren 5a, 5b oder 5c dargestellt ist.
  • So können die Absolutwerte der Spektralkoeffizienten innerhalb eines begrenzten Bereichs, der sich um die extrapolierten Spektralkoeffizienten oder Beträge derselben erstreckt, randomisiert werden, wie es später noch in Verbindung mit Fig. 5c dargestellt wird.
  • Alternativ oder zusätzlich können die Phasen bzw. Vorzeichen der Spektralkoeffizienten des verarbeiteten Blocks, in dem sich der Transient befindet, durch einen Randomisierer 50 randomisiert werden. Hierzu wird ein Kurzzeitspektrum des betrachteten Blocks des Untersuchungssignals erzeugt, und die dort erhaltenen komplexen Spektralwerte werden nach Betrag und Phase berechnet, um dann die Phasen der Spektralwerte zu randomisieren. Wird eine Transformation eingesetzt, die nur Phasen von +/-180° auflösen kann, die also Spektralwerte nur mit positiven und negativen Vorzeichen liefern kann, so können auch die Vorzeichen randomisiert werden, um ein Kurzzeitspektrum mit randomisierten Phasen/Vorzeichen zu erhalten, das einen flacheren zeitlichen Verlauf des korrespondierenden Zeitsignals hat.
  • Dieser Ansatz basiert darauf, dass eine schnelle Änderung in einem Zeitsignal nur dann möglich ist, wenn die Phasen der diesem transienten Bereich zugrunde liegenden Grundwelle und zugehörigen Oberwellen in einem ganz bestimmten Verhältnis sind. Wird eine Randomisierung der Phasen erreicht, so führt dies dazu, dass der transiente Bereich geglättet wird, da das genaue Zusammenspiel der Phasen der einzelnen Sinusschwingungen, die durch die Spektralwerte abgebildet werden, nicht mehr vorhanden ist.
  • Eine alternative Implementierung ist in Fig. 5b anhand eines Prädiktors 51 dargestellt, der ausgebildet ist, um eine Prädiktion des Kurzzeitspektrums über der Frequenz durchzuführen. Ein solcher Prädiktor ist in J. Herre, J.D. Johnston: "Exploiting Both Time and Frequency Structure in a System that Uses an Analysis/Synthesis Filterbank with High Frequency Resolution", 103rd AES Convention, New York 1997, Preprint 4519 dargestellt.
  • Wieder wird ein Kurzzeitspektrum erzeugt, das in seinem zugeordneten Zeitsignal einen transienten Verlauf hat. Typischerweise unter Verwendung eines Open-Loop-Prädiktors wird ein aktueller Spektralwert des Kurzzeitspektrums mittels eines vorherigen oder einer Mehrzahl von vorherigen Spektralwerten vorhergesagt, wobei dann der vorhergesagte Spektralwert von dem tatsächlichen Spektralwert subtrahiert werden könnte, um einen spektralen Restwert zu erhalten. Während der spektrale Restwert einer typischen Prädiktion über der Frequenz den Wert darstellt, der von Interesse ist und zusammen mit Koeffizienten eines Prädiktionsfilters informationstragend ist, wird erfindungsgemäß ein bestimmtes Prädiktionsfilter voreingestellt, und werden die Spektralwerte des Kurzzeitspektrums durch die unter Verwendung dieses Prädiktionsfilters prädizierten Spektralwerte ersetzt, während das Prädiktionsfehlersignal nicht weiter verwendet wird.
  • Die damit erhaltenen eigentlich fehlerhaften Prädiktikons-Spektralwerte haben jedoch nunmehr einen flacheren zeitlichen Verlauf als das ursprüngliche Kurzzeitspektrum, haben jedoch noch annähernd soviel Energie, so dass sowohl die Transientenbedingung als auch die Kontinuitätsbedingung, wie sie in Verbindung mit dem Synthesesignalgenerator 12 von Fig. 1 dargestellt worden ist, erfüllt ist. Eine bevorzugte einfache Ausgestaltung des Prädiktionsfilters besteht einfach darin, dass ein Wert einer im Index niedrigeren Spektrallinie als Prädiktionswert für eine aktuelle Spektrallinie verwendet wird.
  • Allgemein kann das extrapolierte Signal mit dem ursprünglichen Signal nach einer spezifizierten Zeitdauer übergeblendet werden, anstatt einer harten Umschaltung, um Langzeit-Extrapolationsartefakte zu vermeiden.
  • Ferner wird es bevorzugt, wie es anhand von Fig. 6 dargestellt ist, tonale Anteile/Bänder durch einen Detektor 60 zu detektieren und durch den Synthesesignalgenerator nicht zu beeinflussen, sondern in einem Mischer/Kombinierer 61 mit Synthesesignalen für transiente Bänder zu kombinieren, um dann, nach einer Transformation bzw. Umsetzung in den Zeitbereich, die im Block 61 stattfinden könnte, ein Zeitsignal mit flacherem zeitlichem Verlauf zu erhalten, das jedoch noch die tonalen Bänder, also Anteile, die nicht transient waren, in unveränderter Gestalt umfasst.
  • Somit werden stationäre/tonale Frequenzkomponenten im Eingangssignal, die während der Zeitdauer des Transienten beispielsweise in lediglich Teilen des Spektrums vorhanden waren, erfasst und es wird ein Substitutionssignal erzeugt, das aus einer Extrapolation der vergangenen stationären/tonalen Signalkomponenten und den im aktuellen Block erfassten stationären/tonalen Frequenzkomponenten besteht.
  • Nachfolgend wird anhand von Fig. 5c eine Implementierung der vorliegenden Erfindung, die durch einen impliziten und nicht mehr expliziten Transienten-Detektor auskommt, dargestellt. Hierzu ist eine Einrichtung 53 zum Berechnen der Intensität eines Blocks und eines vorherigen Blocks in Fig. 5c gezeigt. Ein Maß für die Intensität eines verarbeiteten Signalblocks ist beispielsweise die Energie oder der Hochfrequenzgehalt (HFC) oder ein anderes Maß, das auf der Basis der Spektralwerte, zeitlichen Abtastwerte, der Energie, der Leistung oder einem anderen Amplituden-bezogenen Maß des Signals basiert. Hierauf wird in einer Einrichtung 54 festgestellt, ob eine Intensität von einem Block zum nächsten über einer Schwelle ansteigt. Wenn dies der Fall ist, werden die Spektralwerte des verarbeiteten Blocks so begrenzt, dass ihre Intensität die Intensität des vorhergehenden Signalblocks nicht mehr als um die bestimmte relative oder absolute Schwelle überschreitet, derart, dass zumindest die insgesamte Dominanz von Transienten reduziert wird. Diese Begrenzung findet in einer Einrichtung 55 statt, die ausgebildet ist, um dann, wenn ein Bedarf nach einer Begrenzung erfasst worden ist, wenn also implizit ein Transient detektiert worden ist, entweder Spektralwerte individuell oder global zu begrenzen. Eine individuelle Begrenzung würde darin bestehen, dass für Spektralwerte oder für Bänder ein Energieanstieg berechnet wird und die Spektralwerte bzw. die Energiebänder nur bis zu einem maximalen Energieanstieg ansteigen und darüber hinausgehende Werte abgeschnitten werden.
  • Die Einrichtung 55 zum Begrenzen der Spektralwerte begrenzt also individuell oder global die Spektralwerte, wobei eine individuelle Begrenzung darin besteht, dass nur die Spektralwerte, die oberhalb einer Schwelle ansteigen, begrenzt und vorzugsweise auf diese Schwelle begrenzt werden, während die anderen Spektralwerte, die nicht so stark ansteigen, nicht beeinflusst werden. Alternativ wird es jedoch in bestimmten Fällen günstiger sein und im Hinblick auf den Rechenaufwand einfacher sein, dann, wenn eine zu starke Zunahme festgestellt worden ist, sämtliche Spektralwerte um dasselbe absolute oder relative Maß zu begrenzen.
  • Hierauf wird es noch bevorzugt, eine Nachverarbeitung der begrenzten Spektralwerte mittels einer Einrichtung 56 zum Nachverarbeiten vorzunehmen, wobei diese Nachverarbeitung in einer Randomisierung, wie es in Fig. 5a beschrieben worden ist, oder auch in einer Prädiktion, wie es in Fig. 5b beschrieben worden ist, bestehen kann. Die Reihenfolge der Verarbeitung durch die Einrichtungen 55 und 56 kann auch umgekehrt werden, derart, dass zunächst eine Randomisierung bzw. eine Prädiktionsverarbeitung mit einem Block durchgeführt wird, für den eine Transiente delektiert worden ist, wobei erst dann eine Intensitäts-Limitierung bzw. Begrenzung gemäß der Verarbeitung im Block 55 vorgenommen wird.
  • Im Hinblick auf Fig. 5c sei noch darauf hingewiesen, dass der Block Z/F eine Zeit/Frequenzbereich-Umsetzung 57 darstellt, wobei eine Umsetzung vom Zeit- in den Frequenzbereich auch eine Filterung mittels einer Analyse-Filterbank sein kann, derart, dass in diesem Fall die Spektraldarstellung aus Subbandsignalen und nicht einzelnen Spektralkomponenten besteht.
  • Nachfolgend wird ein speziell bevorzugtes Ausführungsbeispiel der vorliegenden Erfindung anhand von Fig. 7 dargelegt. Der Transientendetektor, wie er bei 11 in Fig. 1 gezeigt worden ist, umfasst bei diesem Ausführungsbeispiel eine Einrichtung 71 zum Berechnen des Hochfrequenz-Inhalts (HFC) für jeden Block, der eine Einrichtung zum Berechnen des Langzeit-HFC-72 nachgeschaltet ist. Ein Komparator 73 erfasst dann, ob es einen Transienten gibt, bzw. ob es einen Transienten-Zeitraum gibt, in dem ein Transient vorhanden ist. Insbesondere ist die Einrichtung 71 ausgebildet, um den gewichteten Hochfrequenz-Inhalt (HFC) für jeden Block des ursprünglichen linken Signals und des ursprünglichen rechten Signals zu berechnen. Alternativ kann auch ein HFC für jeden Kanal für sich berechnet werden. Der HFC ist die gewichtete Summe der Absolutwerte aller Frequenzlinien in einem Block, mit zunehmenden Gewichtungsfaktoren von niedrigeren zu höheren Frequenzen. Der HFC berechnet sich folgendermaßen: HFC = Summe X f w f ,
    Figure imgb0001
    wobei X(f) die Spektralkoeffizienten für bestimmte Frequenzen sind, und wobei w(f) Gewichtungsfaktoren für bestimmte Frequenzen sind.
  • Dadurch, dass die Gewichtungsfaktoren von niedrigen zu höheren Frequenzen ansteigen, wird sichergestellt, dass im HFC-Wert die Energie in den höheren Frequenzkomponenten im Vergleich zu der Energie in den niedrigeren Frequenzkomponenten gewichtet wird. Eine Energie in höheren Spektralkomponenten ist nämlich ein besseres Indiz für einen Transient als eine Energie in niedrigeren Spektralkomponenten. In der Implementierung kann zur Berechnung des HFC auf sämtliche Spektralkomponenten zurückgegriffen werden. Alternativ kann die Berechnung des HFC auch ausgehend von einem Grenzwert durchgeführt werden, der etwa im mittleren Bereich des Spektrums liegt, so dass die niedrigen Spektralkoeffizienten in der Berechnung des HFC keine Rolle spielen.
  • Ferner wird ein Langzeit-HFC-Mittelwert, der als HFC' bezeichnet wird, über wenigstens drei und vorzugsweise fünf vorausgehende Blöcke berechnet. Wird dann in der Einrichtung 73 bestimmt, dass der HFC im aktuellen Block um einen Faktor mehr als einen konstanten Faktor c von dem Langzeit-Mittelwert HFC' abweicht, wobei als konstanter Faktor c eine Zahl > oder = 1,0 verwendet wird, so wird ein Transient detektiert. Die Schwelle hängt von der Art des gleitenden Mittelwerts ab. Ist der gleitende Mittelwert eine Mittelwert, in dem die Vergangenheit gegenüber dem aktuelleren Block stärker gewichtet ist, also ein langsamer Mittelwert, so ist die Schwelle näher bei Eins als in dem Fall, in dem die Vergangenheit weniger stark in den gleitenden Mittelwert eingeht. Hier würde die Schwell weiter weg von Eins liegen.
  • Wenn ein Transient detektiert wird, wie es einer Einrichtung 74 zum Berechnen des Mittelwerts von der Einrichtung 73 signalisiert wird, wird der Mittelwert der vergangenen Absolutwerte jeder Frequenzlinie (Spektralkoeffizient) über einem definierten Zeitintervall, wie beispielsweise fünf Blöcken, berechnet. Zusätzlich wird ein Prädiktions-Zulässigkeits-Intervall Δmax für die extrapolierten Absolutzufällig innerhalb dieses Intervalls Δmax. Um dies zu erreichen, wird eine Berechnung gemäß einer Gleichung durchgeführt, wie sie bei der Einrichtung 75 in Fig. 7 gezeigt ist. RN steht für Zufallszahl, Δmax stellt das Zulässigkeitsintervall dar, SW ist ein Spektralwert, wie er durch die Einrichtung 75 zum Berechnen berechnet wird, und SWm ist der Spektralwert, der sich als Mittelwert aus mehreren vergangenen Blöcken ergibt, wie er durch den Block 74 berechnet worden ist. Die Einrichtung 75 ist daher ausgebildet, um folgende Gleichung auszuwerten: SW = SW m + RN Δ max .
    Figure imgb0002
  • Um Wiederholungseffekte zu vermeiden, die auftreten können, wenn ein detektierter Transient zu lang ist, werden die extrapolierten Werte mit den ursprünglichen Werten übergeblendet, und zwar dann, wenn ein festes Zeitintervall verstrichen ist, wie beispielsweise, dass drei Blöcke von Synthesesignalen vorhanden waren, von denen dann wieder auf das ursprüngliche Signal zurückgegangen werden muss. Wird der Transientenzeitraum jedoch kürzer als drei Blöcke sein, so wird es bevorzugt, das Überblenden nicht durchzuführen, da dann davon ausgegangen wird, dass sich die extrapolierten Signale noch nicht so stark von den ursprünglichen Signalen entfernt haben. Das Überblenden kann entweder vor einer Umsetzung in den Zeitbereich oder vorzugsweise nach einer Umsetzung in den Zeitbereich stattfinden, wie es bei 76 in Fig. 7 dargestellt ist, um das Synthesesignal zu erhalten.
  • In einer Implementierung kann das erfindungsgemäße Konzept in einen Extraktionsprozess eines Umgebungssignals integriert werden oder als separater Nachverarbeitungsschritt unter Verwendung eines existierenden Umgebungssignals verwendet werden, das jedoch immer noch vor der erfindungsgemäßen Verarbeitung unerwünschte Transienten umfasst.
  • Die erfindungsgemäßen Verarbeitungsschritte können im Frequenzbereich pro Frequenzlinie oder in Subbändern durchgeführt werden. Sie können jedoch auch nur teilweise im Frequenzbereich typischerweise oberhalb eines bestimmten Frequenzlimits vorgenommen werden, oder aber auch im Zeitbereich ausschließlich oder in einer Kombination von Zeit-und Frequenzbereich durchgeführt werden.
  • Fig. 8 zeigt ein bevorzugtes Ausführungsbeispiel der vorliegenden Erfindung, bei dem die Vorrichtung zum Erzeugen eines Umgebungssignals nicht nur ausgebildet ist, um Umgebungssignale für einen Ausgang 80 für einen linken Umgebungskanal und einen Ausgang 81 für einen rechten Umgebungskanal zu erzeugen. Die erfindungsgemäße Vorrichtung umfasst ferner zusätzlich einen Hochmischer 82 zum Erzeugen von Signalen für den linken Kanal L, den rechten Kanal R, den Mitten-Kanal C und vorzugsweise auch noch für den LFE-Kanal, wie es in Fig. 8 gezeigt ist. Sowohl die Kombination aus Transienten-Detektor 12, Synthesegenerator 14 und Signalsubstituierer 16, also der Hochmischer 82 werden von einem Decodierer 84 gespeist. Der Decodierer 84 ist ausgebildet, um einen Bitstrom 85 zu empfangen und zu verarbeiten, um ausgangsseitig ein Mono-Signal oder ein Stereo-Signal 86 zu liefern. Der Bitstrom kann ein MP3-Bitstrom oder eine MP3-Datei sein, oder er kann eine AAC-Datei sein, oder kann auch eine Darstellung eines parametrisch codierten Multikanalsignals sein. So könnte der Bitstrom 85 beispielsweise eine parametrische Darstellung des linken Kanals, des rechten Kanals und des Center-Kanals sein, wobei ein Übertragungskanal und mehrere Cues für den zweiten und den dritten Kanal enthalten sind, wobei diese Verarbeitung aus der BCC-Multikanalverarbeitung bekannt ist. Dann wäre der Decodierer 84 ein BCC-Decodierer, der nicht nur ein Mono- oder ein Stereo-Signal liefert, sondern der sogar ein 3-Kanal-Signal liefert, das jedoch noch keine Daten über die beiden Surround-Kanäle Ls, Rs umfasst. In einer Implementierung wird das Untersuchungssignal somit in diesem Fall ein Mono-Signal, ein Stereo-Signal oder sogar ein Multikanal-Signal sein, das jedoch keine eigenen Lautsprechersignale für die Surround-Kanäle Ls, Rs umfasst.
  • Es sei darauf hingewiesen, dass man entweder dasselbe Ambience-Signal für beide Surround-Kanäle oder für jeden Surround-Kanal ein eigenes Signal berechnen kann. Im ersten Fall wird z. B. das Untersuchungssignal bzw. das Umgebungssignal von einer Summe aus linkem und rechten Kanal abgeleitet. Im anderen Fall wird z. B. vom linken Kanal das Umgebungssignal für den linken Surround-Kanal berechnet und wird vom rechten Kanal das Umgebungssignal für den rechten Kanal berechnet.
  • Abhängig von der Gegebenheit, kann das erfindungsgemäße Verfahren in Hardware oder in Software implementiert werden. Die Implementierung kann auf einem digitalen Speichermedium, insbesondere einer Diskette oder CD mit elektronisch auslesbaren Steuersignalen erfolgen, die so mit einem programmierbaren Computersystem zusammenwirken können, dass das Verfahren ausgeführt wird. Allgemein besteht die Erfindung somit auch in einem Computer-Programm-Produkt mit einem auf einem maschinenlesbaren Träger gespeicherten Programmcode zur Durchführung des erfindungsgemäßen Verfahrens, wenn das Computer-Programm-Produkt auf einem Rechner abläuft. In anderen Worten ausgedrückt, kann die Erfindung somit als ein Computer-Programm mit einem Programmcode zur Durchführung des Verfahrens realisiert werden, wenn das Computer-Programm auf einem Computer abläuft.

Claims (15)

  1. Vorrichtung zum Erzeugen eines Umgebungssignals, das zur Ausstrahlung über Lautsprecher (Ls, Rs) geeignet ist, für die kein geeignetes Lautsprechersignal vorhanden ist, und zum Erzeugen von Signalen für einen linken Kanal (L), einen rechten Kanal (R) und einen Mitten-Kanal (C) in einem Multikanal-Szenario, mit folgenden Merkmalen:
    einem Transienten-Detektor (11) zum Detektieren eines Transientenzeitraums (20), in dem ein Untersuchungssignal einen transienten Bereich (22) aufweist;
    einem Synthesesignalgenerator (12) zum Erzeugen eines Synthesesignals für den Transientenzeitraum (20), wobei der Synthesesignalgenerator (12) ausgebildet ist, um ein Synthesesignal zu erzeugen, das einen flacheren zeitlichen Verlauf als das Untersuchungssignal in dem Transientenzeitraum (20) aufweist, und dessen Intensität von einer Intensität eines vorangehenden oder nachfolgenden Abschnitts des Untersuchungssignals um weniger als eine vorbestimmte Schwelle abweicht;
    einem Signalsubstituierer (14) zum Substituieren des Untersuchungssignals im Transientenzeitraum durch das Synthesesignal, um das Umgebungssignal zu erhalten; und
    einem Hochmischer (82) zum Erzeugen von Signalen für den linken Kanal (L), den rechten Kanal (R) und den Mitten-Kanal (C) aus einem Mono-Signal, einem Stereo-Signal oder einer Darstellung eines parametrisch codierten Multikanalsignals,
    wobei das Untersuchungssignal das Mono-Signal, das Stereo-Signal, das Multikanalsignal, ein bereits extrahiertes Umgebungssignal oder ein synthetisiertes Umgebungssignal ist.
  2. Vorrichtung nach Anspruch 1, die für eine Blockverarbeitung bei überlappenden oder nicht überlappenden Blöcken ausgebildet ist.
  3. Vorrichtung nach Anspruch 2, bei der der Transienten-Detektor (11) ausgebildet ist, um für aufeinander folgende Blöcke Intensitätswerte zu berechnen, und um einen Transientenzeitraum (20) zu detektieren, wenn ein Intensitätswert eines Blocks von einem vorausgehenden oder nachfolgenden Intensitätswert um mehr als eine vorbestimmte Transientenschwelle unterschiedlich ist.
  4. Vorrichtung nach Anspruch 3, bei der der Synthesesignalgenerator (12) ausgebildet ist, um für einen Block im Transientenzeitraum (20) eine Mehrzahl von Spektralwerten, die ein Kurzzeitspektrum des Blocks darstellen, so zu begrenzen, dass ihre Intensität von der Intensität eines vorausgehenden oder nachfolgenden Blocks um weniger als die vorbestimmte Transientenschwelle unterschiedlich ist.
  5. Vorrichtung nach Anspruch 3 oder 4, bei der der Synthesesignalgenerator (12) ausgebildet ist, um komplexe Spektralwerte, die ein Kurzzeitspektrum des Blocks, der den Transientenzeitraum (20) umfasst, darstellen, im Hinblick auf ihre Phase oder ihr Vorzeichen zu randomisieren.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche,
    bei der der Synthesesignalgenerator (12) ausgebildet ist, um das Synthesesignal aus Signalabschnitten des Untersuchungssignals vor oder nach dem Transienten-zeitraum, aus dem Untersuchungssignal im Transienten-zeitraum nach Glättung des zeitlichen Verlaufs desselben oder aus einer Kombination der Signalabschnitte des Untersuchungssignals und dem Untersuchungssignals nach einer Glättung zu berechnen.
  7. Vorrichtung nach Anspruch 6,
    bei der der Synthesesignalgenerator (12) ausgebildet ist, um Signalabschnitte des Untersuchungssignals vor oder nach dem Transientenzeitraum zu kopieren.
  8. Vorrichtung nach Anspruch 6,
    bei der der Synthesesignalgenerator (12) ausgebildet ist, um extrapolierte Spektralwerte, die aus dem Untersuchungssignal außerhalb des Transientenzeitraums abgeleitet sind, in einem vorbestimmten Bereich zu randomisieren.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche,
    bei der der Signalsubstituierer (14) ausgebildet ist, um von einem Abschnitt vor dem Transientenzeitraum in den Transientenzeitraum gemäß einer Überblendfunktion überzublenden, oder um von dem Transientenzeitraum in einen Abschnitt nach dem Transientenzeitraum gemäß einer Überblendfunktion überzublenden.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche,
    bei der der Synthesesignalgenerator (12) ausgebildet ist, um ein Kurzzeitspektrum des Synthesesignals mit Spektralwerten zu berechnen (40, 41, 42),
    um das Kurzzeitspektrum in eine zeitliche Darstellung umzusetzen (43), die das Synthesesignal (44) darstellt.
  11. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der der Synthesesignalgenerator (12) ausgebildet ist, um das Synthesesignal so zu erzeugen, dass die vorbestimmte Schwelle kleiner oder gleich einem Faktor 2 ist.
  12. Vorrichtung nach einem der vorhergehenden Ansprüche,
    bei der der Synthesesignalgenerator (12) ausgebildet ist, um als die vorbestimmte Schwelle eine bandselektive voreingestellte Schwelle oder eine einzige Schwelle für das gesamte Spektrum zu verwenden.
  13. Vorrichtung nach einem der vorhergehenden Ansprüche, die ferner folgendes Merkmal aufweist:
    wobei der Synthesesignalgenerator (12) ausgebildet ist, um das gleiche Umgebungssignal für einen hinteren linken Kanal oder einen hinteren rechten Kanal zu liefern, oder um das Untersuchungssignal zu skalieren, so dass für den hinteren linken Kanal und den hinteren rechten Kanal unterschiedlich skalierte Versionen des Umgebungssignals ermittelt werden, oder um für zwei Umgebungs-Kanäle zwei eigene Umgebungssignale zu berechnen.
  14. Verfahren zum Erzeugen eines Umgebungssignals, das zur Ausstrahlung über Lautsprecher (Ls, Rs) geeignet ist, für die kein geeignetes Lautsprechersignal vorhanden ist, und zum Erzeugen von Signalen für einen linken Kanal (L), einen rechten Kanal (R) und einen Mitten-Kanal (C) in einem Multikanal-Szenario, mit folgenden Schritten:
    Detektieren (11) eines Transientenzeitraums (20), in dem ein Untersuchungssignal einen transienten Bereich (22) aufweist;
    Erzeugen (12) eines Synthesesignals für den Transientenzeitraum (20), um ein Synthesesignal zu erzeugen, das einen flacheren zeitlichen Verlauf als das Untersuchungssignal in dem Transientenzeitraum (20) aufweist, und dessen Intensität von einer Intensität eines vorangehenden oder nachfolgenden Abschnitts des Untersuchungssignals um weniger als eine vorbestimmte Schwelle abweicht;
    Substituieren (14) des Untersuchungssignals im Transientenzeitraum (20) durch das Synthesesignal, um das Umgebungssignal zu erhalten; und
    Erzeugen, durch einen Hochmischer (82), von Signalen für den linken Kanal (L), den rechten Kanal (R) und den Mitten-Kanal (C) aus einem Mono-Signal, einem Stereo-Signal oder einer Darstellung eines parametrisch codierten Multikanalsignals,
    wobei das Untersuchungssignal das Mono-Signal, das Stereo-Signal, das Multikanalsignal, ein bereits extrahiertes Umgebungssignal oder ein synthetisiertes Umgebungssignal ist.
  15. Computerprogramm zum Ausführen eines Verfahrens gemäß Patentanspruch 14, wenn das Verfahren auf einem Computer läuft.
EP07703145.8A 2006-04-12 2007-01-30 Vorrichtung und verfahren zum erzeugen eines umgebungssignals Active EP2005421B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11182960.2A EP2402942B1 (de) 2006-04-12 2007-01-30 Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals
EP11182965.1A EP2402943B1 (de) 2006-04-12 2007-01-30 Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US74471806P 2006-04-12 2006-04-12
DE102006017280A DE102006017280A1 (de) 2006-04-12 2006-04-12 Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals
PCT/EP2007/000791 WO2007118533A1 (de) 2006-04-12 2007-01-30 Vorrichtung und verfahren zum erzeugen eines umgebungssignals

Related Child Applications (4)

Application Number Title Priority Date Filing Date
EP11182960.2A Division EP2402942B1 (de) 2006-04-12 2007-01-30 Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals
EP11182965.1A Division EP2402943B1 (de) 2006-04-12 2007-01-30 Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals
EP11182960.2 Division-Into 2011-09-27
EP11182965.1 Division-Into 2011-09-27

Publications (2)

Publication Number Publication Date
EP2005421A1 EP2005421A1 (de) 2008-12-24
EP2005421B1 true EP2005421B1 (de) 2013-06-26

Family

ID=38514551

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11182960.2A Active EP2402942B1 (de) 2006-04-12 2007-01-30 Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals
EP07703145.8A Active EP2005421B1 (de) 2006-04-12 2007-01-30 Vorrichtung und verfahren zum erzeugen eines umgebungssignals
EP11182965.1A Active EP2402943B1 (de) 2006-04-12 2007-01-30 Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11182960.2A Active EP2402942B1 (de) 2006-04-12 2007-01-30 Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11182965.1A Active EP2402943B1 (de) 2006-04-12 2007-01-30 Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals

Country Status (11)

Country Link
US (2) US8577482B2 (de)
EP (3) EP2402942B1 (de)
JP (1) JP4664431B2 (de)
CN (1) CN101421779B (de)
CA (1) CA2643862C (de)
DE (1) DE102006017280A1 (de)
ES (1) ES2604133T3 (de)
HK (1) HK1124951A1 (de)
PL (1) PL2402943T3 (de)
WO (1) WO2007118533A1 (de)
ZA (1) ZA200809604B (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154875B2 (en) * 2005-12-13 2015-10-06 Nxp B.V. Device for and method of processing an audio data stream
GB2437337A (en) * 2006-04-21 2007-10-24 Snell & Wilcox Ltd Measuring block artefacts in video data using an auto-correlation function
US8379868B2 (en) * 2006-05-17 2013-02-19 Creative Technology Ltd Spatial audio coding based on universal spatial cues
JP2007316254A (ja) * 2006-05-24 2007-12-06 Sony Corp オーディオ信号補間方法及びオーディオ信号補間装置
ES2619277T3 (es) * 2007-08-27 2017-06-26 Telefonaktiebolaget Lm Ericsson (Publ) Detector de transitorio y método para soportar la codificación de una señal de audio
DE102007048973B4 (de) 2007-10-12 2010-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Erzeugen eines Multikanalsignals mit einer Sprachsignalverarbeitung
KR101230479B1 (ko) * 2008-03-10 2013-02-06 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 트랜지언트 이벤트를 갖는 오디오 신호를 조작하기 위한 장치 및 방법
EP2272169B1 (de) * 2008-03-31 2017-09-06 Creative Technology Ltd. Adaptive dekomposition von audiosignalen aus der näheren umgebung
MX2011006186A (es) * 2008-12-11 2011-08-04 Ten Forschung Ev Fraunhofer Aparato para generar una señal de audio multicanal.
EP2214165A3 (de) 2009-01-30 2010-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Verfahren und Computerprogramm zur Änderung eines Audiosignals mit einem Transientenereignis
CN102157151B (zh) * 2010-02-11 2012-10-03 华为技术有限公司 一种多声道信号编码方法、解码方法、装置和***
JP5307770B2 (ja) * 2010-07-09 2013-10-02 シャープ株式会社 音声信号処理装置、方法、プログラム、及び記録媒体
US8489391B2 (en) * 2010-08-05 2013-07-16 Stmicroelectronics Asia Pacific Pte., Ltd. Scalable hybrid auto coder for transient detection in advanced audio coding with spectral band replication
KR102037691B1 (ko) * 2013-02-05 2019-10-29 텔레폰악티에볼라겟엘엠에릭슨(펍) 오디오 프레임 손실 은폐
DE102014214143B4 (de) * 2014-03-14 2015-12-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Verarbeiten eines Signals im Frequenzbereich
US9820073B1 (en) 2017-05-10 2017-11-14 Tls Corp. Extracting a common signal from multiple audio signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076969A (en) * 1975-04-07 1978-02-28 Singer & Singer Impulse noise reduction system
US20050114128A1 (en) * 2003-02-21 2005-05-26 Harman Becker Automotive Systems-Wavemakers, Inc. System for suppressing rain noise

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819269A (en) * 1987-07-21 1989-04-04 Hughes Aircraft Company Extended imaging split mode loudspeaker system
JPH0715800A (ja) * 1993-06-21 1995-01-17 Toshiba Corp サラウンド回路
US5610986A (en) * 1994-03-07 1997-03-11 Miles; Michael T. Linear-matrix audio-imaging system and image analyzer
US5886276A (en) 1997-01-16 1999-03-23 The Board Of Trustees Of The Leland Stanford Junior University System and method for multiresolution scalable audio signal encoding
US7231060B2 (en) * 1997-08-26 2007-06-12 Color Kinetics Incorporated Systems and methods of generating control signals
US6928169B1 (en) * 1998-12-24 2005-08-09 Bose Corporation Audio signal processing
KR100809310B1 (ko) * 2000-07-19 2008-03-04 코닌클리케 필립스 일렉트로닉스 엔.브이. 스테레오 서라운드 및/또는 오디오 센터 신호를 구동하기 위한 다중-채널 스테레오 컨버터
CN1669358A (zh) * 2002-07-16 2005-09-14 皇家飞利浦电子股份有限公司 音频编码
SG108862A1 (en) 2002-07-24 2005-02-28 St Microelectronics Asia Method and system for parametric characterization of transient audio signals
US7353169B1 (en) * 2003-06-24 2008-04-01 Creative Technology Ltd. Transient detection and modification in audio signals
JP2007505346A (ja) * 2003-09-09 2007-03-08 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. 遷移のオーディオ信号成分の符号化
US7970144B1 (en) * 2003-12-17 2011-06-28 Creative Technology Ltd Extracting and modifying a panned source for enhancement and upmix of audio signals
SE0400997D0 (sv) * 2004-04-16 2004-04-16 Cooding Technologies Sweden Ab Efficient coding of multi-channel audio
US7876909B2 (en) * 2004-07-13 2011-01-25 Waves Audio Ltd. Efficient filter for artificial ambience

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076969A (en) * 1975-04-07 1978-02-28 Singer & Singer Impulse noise reduction system
US20050114128A1 (en) * 2003-02-21 2005-05-26 Harman Becker Automotive Systems-Wavemakers, Inc. System for suppressing rain noise

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEUTSCH, W.A., NOLL, A.: "Restoration of historical recordings by means of Digital Signal Processing", PREPRINTS OF THE 75TH CONVENTION OF THE AES, 30 March 1984 (1984-03-30), pages 1 - 8 *

Also Published As

Publication number Publication date
JP4664431B2 (ja) 2011-04-06
PL2402943T3 (pl) 2017-02-28
ZA200809604B (en) 2010-03-31
WO2007118533A1 (de) 2007-10-25
EP2402943A2 (de) 2012-01-04
EP2402943B1 (de) 2016-08-24
DE102006017280A1 (de) 2007-10-18
US20120195434A1 (en) 2012-08-02
HK1124951A1 (en) 2009-07-24
CN101421779B (zh) 2013-04-17
US9326085B2 (en) 2016-04-26
JP2009533910A (ja) 2009-09-17
CA2643862A1 (en) 2007-10-25
EP2005421A1 (de) 2008-12-24
EP2402942A3 (de) 2012-05-23
EP2402942B1 (de) 2016-06-01
US8577482B2 (en) 2013-11-05
CA2643862C (en) 2014-12-16
EP2402942A2 (de) 2012-01-04
US20070242833A1 (en) 2007-10-18
ES2604133T3 (es) 2017-03-03
EP2402943A3 (de) 2012-06-20
CN101421779A (zh) 2009-04-29

Similar Documents

Publication Publication Date Title
EP2005421B1 (de) Vorrichtung und verfahren zum erzeugen eines umgebungssignals
EP2206113B1 (de) Vorrichtung und verfahren zum erzeugen eines multikanalsignals mit einer sprachsignalverarbeitung
DE102006050068B4 (de) Vorrichtung und Verfahren zum Erzeugen eines Umgebungssignals aus einem Audiosignal, Vorrichtung und Verfahren zum Ableiten eines Mehrkanal-Audiosignals aus einem Audiosignal und Computerprogramm
DE69731677T2 (de) Verbessertes Kombinationsstereokodierverfahren mit zeitlicher Hüllkurvenformgebung
DE602004002390T2 (de) Audiocodierung
EP2036400B1 (de) Erzeugung dekorrelierter signale
DE69933659T2 (de) Verfahren und system zur räumlichen kodierung mit niedriger bitrate
EP1763870B1 (de) Erzeugung eines codierten multikanalsignals und decodierung eines codierten multikanalsignals
EP1145227B1 (de) Verfahren und vorrichtung zum verschleiern eines fehlers in einem codierten audiosignal und verfahren und vorrichtung zum decodieren eines codierten audiosignals
EP1854334B1 (de) Vorrichtung und verfahren zum erzeugen eines codierten stereo-signals eines audiostücks oder audiodatenstroms
EP1687809B1 (de) Vorrichtung und verfahren zur wiederherstellung eines multikanal-audiosignals und zum erzeugen eines parameterdatensatzes hierfür
DE60206390T2 (de) Effiziente und skalierbare parametrische stereocodierung für anwendungen mit niedriger bitrate
DE602004004168T2 (de) Kompatible mehrkanal-codierung/-decodierung
DE602005005186T2 (de) Verfahren und system zur schallquellen-trennung
DE69827775T2 (de) Tonkanalsmischung
DE102005014477A1 (de) Vorrichtung und Verfahren zum Erzeugen eines Datenstroms und zum Erzeugen einer Multikanal-Darstellung
WO2001043503A2 (de) Verfahren und vorrichtung zum verarbeiten eines stereoaudiosignals
DE10148351B4 (de) Verfahren und Vorrichtung zur Auswahl eines Klangalgorithmus
DE4335739A1 (de) Verfahren zur Steuerung des Signal-/Rausch-Abstandes bei rauschbehafteten Tonaufnahmen
DE4445983C2 (de) Verfahren zur Rauschunterdrückung und Vorrichtungen zur Durchführung der Verfahren
EP1719128A1 (de) Vorrichtung und verfahren zum beschreiben einer audio-cd und audio-cd

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1124951

Country of ref document: HK

17Q First examination report despatched

Effective date: 20090917

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 619006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007011951

Country of ref document: DE

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130927

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130926

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1124951

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131026

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

26N No opposition filed

Effective date: 20140327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007011951

Country of ref document: DE

Effective date: 20140327

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 619006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 18

Ref country code: GB

Payment date: 20240124

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240124

Year of fee payment: 18