EP1997158A1 - Gas phase infiltration of luminous substances into the pore system of inverse opals - Google Patents

Gas phase infiltration of luminous substances into the pore system of inverse opals

Info

Publication number
EP1997158A1
EP1997158A1 EP07722983A EP07722983A EP1997158A1 EP 1997158 A1 EP1997158 A1 EP 1997158A1 EP 07722983 A EP07722983 A EP 07722983A EP 07722983 A EP07722983 A EP 07722983A EP 1997158 A1 EP1997158 A1 EP 1997158A1
Authority
EP
European Patent Office
Prior art keywords
phosphor
precursors
cavities
inverse opal
photonic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07722983A
Other languages
German (de)
French (fr)
Inventor
Holger Winkler
Ulrich Kynast
Marina Lezhnina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP1997158A1 publication Critical patent/EP1997158A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/779Halogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77922Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention relates to a method for incorporation of phosphors into the pore system of inverse opals by means of gas phase infiltration (also called gas phase loading) and corresponding illumination means.
  • red lines emitting phosphors such as. B. Y 2 O 3 --Eu 3+ or derivatives thereof which contain as luminescent ion Eu 3+ ion.
  • Such phosphors are used in fluorescent lamps and other systems for illumination, wherein the phosphor is excited with wavelengths less than 300 nm.
  • the excitation is particularly intense at a wavelength of 254 nm (Hg plasma) or smaller.
  • these phosphors can also be excited very efficiently, e.g. in CRTs (cathode ray tubes, i.e. television tubes).
  • CRTs cathode ray tubes, i.e. television tubes.
  • phosphors were efficient at blue wavelengths, e.g. Excitable at 450-470 nm, these could be added to white LEDs in addition to the existing green to orange light emitting phosphors and would allow a warm white light with a very high efficiency (> 150 Im / W) and a very good color quality ( CRI> 90).
  • the abovementioned phosphors can be incorporated into the interior of a photonic crystal having the structure of an inverse opal and can efficiently excite the phosphors therein with blue light.
  • blue light penetrating into the inverse opal ie the light which is composed of the electroluminescent semiconductor, usually of GaN or InGaN or AlInGaN or ZnO materials, or in the case of OLEDs or PLEDs of blue electroluminescent polymers
  • the electroluminescent semiconductor usually of GaN or InGaN or AlInGaN or ZnO materials, or in the case of OLEDs or PLEDs of blue electroluminescent polymers
  • the phosphor in the inverse opal can be used in a blue LED in combination with garnet or silicate phosphors to produce highly efficient and superior quality white light.
  • LEDs and OLEDs from 2010 will replace the existing lighting technology, such as light bulb, halogen bulb or fluorescent lamp.
  • Phosphors can be incorporated into the interior of an inverse opal by various technological processes.
  • DE 102006008879.4 describes two methods in which the incorporation of the bulbs into inverse opals by solution impregnation or dispersion infiltration is done. Besides the advantage, such as however, this method also has disadvantages with regard to equipment, which is due to the fact that impurities or interfering substances can be incorporated by solvents into the inverse opals. Furthermore, some phosphor precursors can not be incorporated into the inverse opal by solution impregnation because of decomposition or insolubility.
  • the present invention therefore provides a process for producing a photonic material having regularly arranged cavities containing at least one phosphor, wherein a) opalt template spheres are arranged regularly, b) the interspaces between the spheres are filled with one or more precursors for the wall material, c) d) the phosphor is introduced into the cavities, volatile precursors for the phosphor being introduced into the cavities of the inverse opal by means of gas phase infiltration utilizing pore diffusion, e) the volatile precursors be transferred in a subsequent step in the phosphor.
  • Photonic materials comprising arrays of cavities having a substantially monodisperse size distribution in the sense of the present invention are materials which have three-dimensional photonic structures.
  • three-dimensional photonic structures i. a. Systems understood that have a regular, three-dimensional modulation of the dielectric constant (and thereby also the refractive index). If the periodic modulation length corresponds approximately to the wavelength of the (visible) light, the structure interacts with the light in the manner of a three-dimensional diffraction grating, which manifests itself in angle-dependent color phenomena.
  • An advantage of such inverse structures over the normal structures is the emergence of photonic band gaps at already much lower dielectric constant contrast (Busch, K., et al., Phys. Rev. Letters E, 198, 50, 3896).
  • Photonic materials having cavities must therefore have a solid wall.
  • Suitable wall materials according to the invention are those which have dielectric properties and, as such, are substantially non-absorbing for the wavelength of an absorption band of the respective phosphor and are substantially transparent to the wavelength of an emission of the phosphor excitable by the absorption wavelength.
  • the wall material of the photonic material should pass the radiation of the wavelength of the absorption band of the phosphor at least 95%.
  • the matrix essentially consists of a radiation-stable organic polymer, which is preferably crosslinked, for example an epoxy resin.
  • the matrix around the cavities consists essentially of an inorganic material, preferably a metal chalcogenide or Metallpnictid consist, in particular Silciumdioxid, alumina, zirconia, iron oxides, titanium dioxide, ceria, gallium nitride, boron and aluminum nitride and silicon and phosphorus nitride or Mixtures thereof are mentioned.
  • the wall of the photonic material consists essentially of an oxide or mixed oxide of silicon, titanium, zirconium and / or aluminum, preferably of silicon dioxide.
  • Three-dimensional inverse structures ie microoptical systems to be used according to the invention with regular arrangements of cavities can be produced, for example, by a template synthesis:
  • Unitary colloidal spheres are used as primary building blocks for the construction of inverse opals (pt.1 in Fig. 1). In addition to other characteristics, the balls must obey the narrowest possible size distribution (5% size deviation is tolerable). According to the invention, monodisperse PMMA spheres having a diameter in the sub- ⁇ m range and produced by aqueous emulsion polymerization are preferred.
  • the uniform colloidal spheres are placed in a three-dimensional regular opal structure after isolation and centrifugation or sedimentation (section 2 in Fig. 1). This template structure corresponds to a densest sphere packing, ie 74% of the space is filled with balls and 26% of the space is empty (gussets or hollow volumes).
  • the cavities of the template are filled with a substance which forms the walls of the later inverse opal.
  • the substance may be, for example, a solution of a precursor (preferably tetraethoxysilane).
  • the precursor is solidified by calcination and the template beads also removed by calcination (point 4 in Fig. 1). This is possible if the spheres are polymers and the precursor is, for example, capable of carrying out a sol-gel reaction (transformation of eg silica esters into SiO 2).
  • a replica of the template the so-called inverse opal, is obtained.
  • core-shell particles whose shell forms a matrix and the core is substantially solid and has a substantially monodisperse size distribution as a template for the preparation of inverse opal structures and a method for producing inverse opal-like structures using such core-shell particles is described in International Patent Application WO 2004/031102.
  • the moldings described with homogeneous, regularly arranged cavities preferably have walls of metal oxides or of elastomers. Consequently, the moldings described are either hard and brittle or exhibit elastomeric character.
  • the removal of the regularly arranged template cores can be done in different ways. If the cores are made of suitable inorganic materials, they can be removed by etching. Preferably, for example, silicon dioxide cores can be removed with HF, in particular dilute HF solution.
  • the cores in the core-shell particles are composed of a UV-degradable material, preferably a UV-degradable organic polymer
  • the nuclei are removed by UV irradiation. With this procedure, too, it may again be preferred if crosslinking of the jacket takes place before or after the removal of the cores.
  • Suitable core materials are then in particular poly (tert-butyl methacrylate), poly (methyl methacrylate), poly (n-butyl methacrylate) or copolymers containing one of these polymers.
  • the degradable core is thermally degradable and consists of polymers that are either thermally depolymerizable, i. under the influence of temperature decompose into their monomers or the core consists of polymers which decompose on decomposition into low molecular weight components which are different from the monomers.
  • Suitable polymers can be found, for example, in the "Thermal Degradation of Polymers" table in Brandrup, J. (Ed.): Polymer Handbook Chichester Wiley 1966, pp. V-6 - V-10, where all polymers are volatile The content of this table belongs expressly to the disclosure of the present application.
  • poly (styrene) and derivatives such as poly ( ⁇ -methylstyrene) or poly (styrene) derivatives, which carry substituents on the aromatic ring, in particular partially or perfluorinated derivatives, poly (acrylate) - and Poly (methacrylate) derivatives and their esters, particularly preferably poly (methyl methacrylate) or Poly (cyclohexyl methacrylate), or copolymers of these polymers with other degradable polymers, such as preferably styrene-ethyl acrylate copolymers or methyl methacrylate-ethyl acrylate copolymers, and polyolefins, Polyolefinoxiden, polyethylene terephthalate, polyformaldehyde, polyamides, polyvinyl acetate, polyvinyl chloride or polyvinyl alcohol.
  • poly (styrene) and derivatives such as poly ( ⁇ -methylstyrene) or poly (sty
  • the average diameter of the cavities in the photonic material is in the range of about 150-600 nm, preferably in the range of 250-450 nm.
  • the shaped bodies of the inverse opal are obtained in the corresponding process either directly in powder form or can be comminuted by grinding. The resulting particles can then be further processed in accordance with the invention.
  • the structure of the inverse opal has a porosity of 74%, whereby it can be easily loaded with other substances.
  • the pore system of the inverse opal consists of spherical cavities (corresponding to the spheres of the template), which are connected in three dimensions by a channel system (corresponding to the previous contact points of the template spheres). Phosphors or fluorescent precursors can now be introduced into the interior of the opal structure, which can pass through the connection channels ("linking channel", FIG. 2).
  • the introduction of the phosphors or phosphor precursors into the pore systems of the inverse opal powder takes place by means of a gas-phase infiltration, taking advantage of capillary effects.
  • the loading or filling level of the cavities with phosphors or fluorescent precursors is an important criterion. According to the invention, it is preferable to repeat the loading steps several times. It has been shown that excessively high fill levels of the cavities influence the photonic properties. Therefore, it is preferred according to the invention if the cavities of the photonic material are filled to at least 1% by volume and at most 50% by volume with the at least one phosphor, the cavities being particularly preferably at least 3% by volume and not more than 30% Vol .-% are filled with the at least one phosphor.
  • the at least one phosphor is 5 to 75 wt .-% of the photonic material, wherein the at least one phosphor preferably 25 to 66 wt. % of the photonic material.
  • the nanoscale phosphors can be infiltrated into the inverse opals described above if the particle size of the phosphor particles is smaller than the diameter of the interconnecting channels between the cavities of the inverse opals.
  • the phosphor can be introduced into the cavities after removal of the opalt template balls by means of gas-phase infiltration. This is achieved by the fact that the photonic material or the inverse opal with regularly arranged cavities with a volatile phosphor precursor such. Acetylacetonates or Fluoroacetylacetonaten rare earths and depending on the phosphor the corresponding volatile compounds (alternatively with carrier gases) in a heated, evacuated inverse opal in a dynamic vacuum and elevated temperatures of the inner pore system of the inverse opal is adsorbed.
  • the precursors are converted to the phosphors.
  • a gas such as nitrogen or argon
  • thermolysis and / or photolysis the precursors are converted to the phosphors.
  • the choice of the suitable gas is dependent on the type and chemical composition of the phosphor and the inverse opal, which is known or familiar to the person skilled in the art.
  • the infiltration of the inverse opal is carried out in a static vacuum, depending on the type of precursors, in such a way that a system, preferably a closed system, consisting of the baked inverse opal and the precursor is heated, so that the precursor is in the Gaspshase passes and reaches the pores of the inverse opal by means of pore diffusion.
  • a system preferably a closed system, consisting of the baked inverse opal and the precursor is heated, so that the precursor is in the Gaspshase passes and reaches the pores of the inverse opal by means of pore diffusion.
  • the system is vented and converted to the inverse opal loaded with phosphor by thermal treatment at higher temperatures and possibly in a reactive gas atmosphere (eg, oxygen, forming gas or CO) or inert gas atmosphere (argon or nitrogen).
  • a reactive gas atmosphere eg, oxygen, forming gas or CO
  • inert gas atmosphere argon or nitrogen
  • CVD Chemical Vapor Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • PVD Physical Vapor Deposition
  • the coating material is heated in a high vacuum until the transition from solid to liquid to gaseous state.
  • the direct transition can also be fixed-gaseous. (Sublimation) occur.
  • the necessary heating is supplied via electrical resistance heaters, by high-energy electrons or by laser bombardment.
  • the process of arc evaporation in which the electrode material is vaporized by igniting an arc between two electrodes, is becoming increasingly important.
  • Non-conductive materials can also be sputtered using RF sputtering.
  • the most commonly used techniques include plasma-assisted vapor deposition or ion-plating, in which the surface is bombarded during the layer growth with inert gas ions.
  • MOCVD Metal Organic Chemical Vapor deposition
  • a reaction vessel eg GaMe ß and ASH 3 or ZnEt 2 and Te (C 3 H 7 ) 2
  • the semiconductor material eg GaAs or ZnTe
  • Photo-MOCVD the MOCVD method is preferred, ie the precursor for the phosphor is converted into the gas phase by chemical processes and thus incorporated as a phosphor into the inverse opal.
  • the advantage of the gas phase loading according to the invention is in particular due to the easier diffusion of the vapor or the volatile precursors into the pore system of the inverse opal compared to the above-mentioned.
  • Method e.g., solution impregnation
  • step c) of the process according to the invention is a calcination, preferably above 200 ° C., particularly preferably above 400 ° C.
  • a reactive gas is added in step e) of the process according to the invention in addition to the calcination, preferably above 200 0 C, particularly preferably above 400 0 C 1 nor a gas, preferably.
  • a reactive gas for example H 2 S, H 2 / N 2 , O 2 , CO, etc. can be used as the reactive gases.
  • suitable gas depends on the type and chemical composition of the phosphor and the inverse opal, which is known or familiar to the person skilled in the art.
  • the phosphors according to the invention are preferably nanoscale phosphor particles.
  • the phosphors are chemically usually composed of a host material and one or more dopants.
  • the host material may preferably contain compounds from the group of sulfides, selenides, sulfoselenides, oxysulfides, borates, aluminates, gallates, silicates, germanates, phosphates, halophosphates, oxides, arsenates, vanadates, niobates, tantalates, sulfates, tungstates, molybdates, alkali halates , Nitrides, nitridosilicates, oxynitridosilicates, fluorides, oxifluorides and other halides.
  • the host materials are alkali, alkaline earth or rare earth compounds.
  • the phosphor is preferably present in nanoparticulate form.
  • Preferred particles show an average particle size of less than 50 nm, determined as the hydraulic diameter by means of dynamic light scattering, and it is particularly preferred if the mean particle diameter is less than 25 nm.
  • the light of blue light sources should be supplemented by red components.
  • the phosphor in a preferred embodiment of the present invention is an emitter for radiation in the range of 550 to 700 nm.
  • the preferred dopants include in particular with europium, samarium, terbium or praseodymium, preferably with triply positively charged Europium ion doped rare earth compounds.
  • a coordinated dopant pair for example cerium and terbium, may preferably be used with good energy transfer, if necessary per desired fluorescence color, one acting as an energy absorber, in particular as a UV light absorber and the other as a fluorescence light emitter.
  • the following compounds can be selected as the material for the doped nanoparticles, wherein in the following notation the host compound is listed to the left of the colon and one or more doping elements to the right of the colon. When chemical elements are separated and bracketed by commas, they can optionally be used. Depending on the desired fluorescence property of the nanoparticles, one or more of the compounds selected can be used:
  • BaAl 2 O 4 Eu 2+ , BaAl 2 S 4 : Eu 2+ , BaB 8 O, 3 : Eu 2+ , BaF 2 , BaFBrEu 2+ , BaFChEu 2+ , BaFChEu 2+ , Pb 2+ , BaGa 2 S 4 ) Ce 3+ , BaGa 2 S 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Sn 2+ , Ba 2 Li 2 Si 2 O 7 : Sn 2+ , Mn 2+ , BaMgAl, O 0 17 : Ce 3+ , BaMgAh 0 Oi 7 : Eu 2+ , BaMgAl 10 Oi 7 : Eu 2+ , Mn 2+ , Ba 2 Mg 3 F 10 ) Eu 2+ , BaMg 3 F 8: Eu 2+, Mn 2+, Ba 2 MgSi 2 O 7: Eu 2+
  • Sr 3 (PO 4) 2 Sn 2+, Sr ß-3 ( PO 4 ) 2 : Sn 2+ , Mn 2+ (Al) 1 SrS) Ce 3+ , SrS) Eu 2+ , SrS) Mn 2+ , SrS: Cu + , Na, SrSO 4 ) Bi, SrSO 4 ) Ce 3+ , SrSO 4 ) Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ , Sr 5 Si 4 O 10 Cl 6 ) Eu 2+ , Sr 2 SiO 4 : Eu 2+ , SrTiO 3 Pr 3+ , SrTiO 3 : Pr 3+ , Al 3+ , Sr 3 WO 6 : U, SrY 2 O 3 : Eu 3+ , ThO 2 : Eu 3+ , ThO 2 Pr 3+ , ThO 2 ) Tb 3+ , YAI 3 B 4 O 12 ) Bi 3+ , YAl
  • Such phosphors are either commercially available or can be obtained by, from the literature, known manufacturing processes.
  • the preparation of the fluoride and oxifluoride-containing phosphors is described, for example, in G. Malandrino et al. Synthesis, characterization, and mass-transport properties of two novel gadolinium (III) hexafluoroacetylacetonate polyethers adducts: promising precursors for MOCVD of GdF 3 films. Chem. Mater. 1996, 8, 1292-1297.
  • L, L 1 and L 11 may be identical or different from each other
  • R, R 1 and R are -H, -alkyl, -phenyl, -benzyl, -naphthyl, -pyridyl, -furyl, -
  • R, R 1 and R 11 may be identical or different from each other with the
  • hexafluoroacetylacetone, phenyltrifluoroacetylacetone or thenyltrifluoroacetylacetone are used as the diketonato ligands L 1 L 1 , L 11 in the formula I.
  • the diketonato complexes additionally contain multidentate co-ligands, these having oxygen and / or nitrogen as the coordinating atom.
  • co-ligands are responsible for an increased vapor pressure and thus greater volatility of the complexes, which thereby defines them as well-defined
  • Precursors can be stored in the cavities of the inverted opals.
  • bidentate or tridentate co-ligands e.g. Bipyridine, bipyridine N-oxides, phenanthrolines or polyether used.
  • the phosphor precursors consisting of the diketonato complexes are then converted completely or partially into fluorides or oxifluorides of the rare earths by thermolysis and / or photolysis.
  • thermolysis and / or photolysis Compared to pure thermolysis, a combination of photolysis and thermolysis is preferred according to the invention, since the latter method leads to even higher emission intensities of the excited phosphors.
  • the temperature of the thermolysis must be below the temperature at which the structure of the inverse opal collapses.
  • This temperature is for example inverse opals of silica between 600 and 800 0 C, with corresponding materials of zirconium or aluminum oxides at> 1000 0 C.
  • a further subject of the present invention is a lighting means comprising at least one light source, which is characterized in that it comprises at least one photonic material prepared by the process of the invention contains.
  • the illumination means is a light-emitting diode (LED), an organic light-emitting diode (OLED), a polymeric light-emitting diode (PLED) or a fluorescent lamp.
  • LED light-emitting diode
  • OLED organic light-emitting diode
  • PLED polymeric light-emitting diode
  • LDs Laser diodes
  • Fabrication methods for LEDs and LDs are well known to those skilled in the art.
  • a photonic structure can be coupled to a light emitting diode or an array of light emitting diodes are in a support frame or surface mounted LEDs.
  • Such photonic structures are useful in all configurations of lighting systems that include a primary radiation source, including, but not limited to, discharge lamps, fluorescent lamps, LEDs, LDs (laser diodes), OLEDs, and x-ray tubes.
  • a primary radiation source including, but not limited to, discharge lamps, fluorescent lamps, LEDs, LDs (laser diodes), OLEDs, and x-ray tubes.
  • the term "radiation” includes radiation in the UV and IR range and in the visible range of the electromagnetic spectrum.
  • the use of PLEDs-OLEDs with polymeric electroluminescent compounds- may be preferred.
  • monodisperse PMMA nanospheres are produced. This is done by means of an emulsifier-free, aqueous emulsion polymerization.
  • the formation of the latex particles can be recognized by the onset of turbidity.
  • the polymerization reaction is followed thermally, with a slight increase in temperature being observed by the reaction enthalpy. After 2 hours, the temperature has stabilized again at 80 0 C, indicating the end of the reaction. After cooling, the mixture is filtered through glass wool. Examination of the dried dispersion with the SEM shows uniform, spherical particles of average diameter 317 nm.
  • the dispersion resulting from the emulsion polymerization is directly spun or centrifuged to order the particles to settle, the supernatant liquid removed and the residue, as described below, further processed.
  • dispersion or sedimentation of the spheres in the dispersion resulting from the emulsion polymerization can also be slowly evaporated. Further processing as described below.
  • the filter cake is wetted with 10 ml of a precursor solution consisting of 3 ml of ethanol, 4 ml of tetraethoxysilane, 0.7 ml of concentrated HCl in 2 ml of deionized water while maintaining the suction vacuum. After switching off the suction vacuum, the filter cake is dried for 1 h and then calcined in air in a corundum container in a tube furnace. The calcination is carried out according to the following temperature ramps: a) keep in 2h from RT to 100 0 C temperature, 2 h at 100 0 C. b) in 4 hours from 100 ° C to 350 ° C temperature, 2 h at 350 0 C.
  • the resulting inverse opal powder has an average pore diameter of about 275 nm (see Fig. 1).
  • the powder particles of the inverse opal have an irregular shape with a spherical equivalent diameter of 100 to 300 ⁇ m.
  • the cavities have a diameter of about 300 nm and are interconnected by about 60 nm openings.
  • Example 2 Gas phase loading of an inverse opal with Y 2 O 3 : Eu 3+
  • MOCVD plant consisting of an evaporator chamber (with inert gas introduction of nitrogen), which on a Temperature of> 200 0 C can be heated and a tube furnace with a quartz glass tube in which there is a boat for receiving the inverse opal powder and after the furnace two cooled by liquid nitrogen cold traps and a vacuum pump connected behind (rotary vane pump).
  • the evaporator unit is charged with the two precursors 2 g (0.052 mol) of yttrium (III) acetylacetonate and 0.02 g (10 "5 mol) of europium (III) acetylacetonate (ratio of 99: 1) which in the shuttle 200 mg of dried inverse opal powder of SiO 2 are provided, heated to a temperature of 500 0 C and the vacuum pump activated.
  • the volatile precursor mixture in the static or dynamic vacuum infiltrated the volatile precursor mixture in the inverse opal and therein for Y 2 O 3
  • the volatile precursor mixture may alternatively be infiltrated into the inverse opal and thermally converted into Y 2 O 3 : Eu in a dynamic vacuum with introduction of nitrogen carrier gas.
  • Example 3 Gas phase loading of an inverse opal with ⁇ -diketonato complexes of the rare earths (eg mixed Eu 34 VGd 3+ complex)
  • 0.05-0.2 g of inverse opal are dried in vacuo (10 -3 mbar) at 250 ° C. for 3 hours, then in a glass ampoule (volume 25 ml) under argon with an amount of 0.25-1 g of Eu x Gd (I- x) (hfa) a digly The ampoule is then melted under vacuum (10 -3 mbar) and heated to 120 0 C over 15 hours.
  • Example 3 The prepared according to Example 3 with ß-diketonate complexes loaded inverse opal is in a 400 - 600 0 C spent a preheated tube furnace and dry oxygen for 0.5 - 2 h heated in this temperature regime.
  • the decomposition can be achieved with comparable results in a preheated to 550 0 C chamber furnace. However, decomposition in air leads to considerably lower emission intensities (see Fig. 2 b).
  • EDX energy dispersive X-ray fluorescence analysis
  • the associated X-ray diffractogram (XRD) indicates hexagonal LnF 3 .
  • the formation of fluorides continues to result from the emission spectra of the compounds typical for europium oxifluorides (see Fig. 2).
  • Example 3 loaded with ß-diketonate complexes inverse opal is placed in a preheated to 700 0 C chamber furnace and preheated within 0.5 - 2 h at this temperature, and calcined at 600 0 C for a further 3 -.
  • the conversion can also be carried out from the corresponding fluorides (see Example 4).
  • the XRD shows a mixture of LnOF and LnF 3 after the pre-heating stage (700 0 C). After 5 hours of recalcining, tetragonal LnOF is found, after 15 hours of calcination with rhombohedral LnOF (XRD).
  • XRD rhombohedral LnOF
  • the formation of the oxifluorides continues to result from the emission spectra of the compounds typical of europiumoxifluorides (FIG. 3a).
  • Example 6 Preparation of rare earth oxyfluorides with higher oxyfluoride content by multiple loading of the inverse opal
  • the decomposition of the complexes is carried out as described in Example 5.
  • the multiple loadings can likewise be carried out from the corresponding fluorides (see Example 4).
  • Example 7 Preparation of rare earth oxyfluorides in inverse opals with higher oxyfluoride content by photolysis support
  • 0.5-1 mm 3 of a complex-containing inverse opal prepared as described in Example 3 is carefully comminuted in a mortar (0.5-1 mm 3 ), from which an approx. 1 mm thin layer is produced, which is under UV Radiation (150W UV lamp TQ-150) is photolyzed within 5 h.
  • the further decomposition takes place at 700 ° C in a preheated oven at 700 0 C for 1 -20h.
  • the increase in levels by photolysis support can be achieved by repeating the procedures of Examples 3 to 5.
  • the increase in the oxifluoride content is indicated by the increased emission intensity of the products (see Fig. 3c).
  • Example 8 Preparation of rare earth oxide fluorides in inverse opals with higher oxide fluoride content by upstream ligand exchange
  • ß-diketonat complex-containing, inverse opal (0.5-1.5 g) is passed in a glass tube at 80 0 C for 5 h saturated with trifluoroacetic oxygen flow, whereby a conversion to rare earth trifluoroacetates Ln (tfa) 3 is effected (ligand exchange).
  • Ln (tfa) 3 is effected (ligand exchange).
  • the conversion is done by IR spectra, Luminescence spectra and DTG analysis tracked.
  • the decomposition of the thus obtained Ln (tfa) 3 complexes to fluorides or oxyfluorides is carried out as before in the chamber furnace at 500 0 C to 600 0 C without preheating within 20 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The invention relates to a method for incorporating volatile luminous substances into the pore system of inverse opals by means of gas phase infiltration, and corresponding illuminants.

Description

Gasphasen-Infiltrierung von Leuchtstoffen in das Porensystem von inversen OpalenGas-phase infiltration of phosphors into the pore system of inverse opals
Die Erfindung betrifft ein Verfahren zum Einbau von Leuchtstoffen in das Porensystem von inversen Opalen mittels Gasphasen-Infiltrierung (auch Gasphasenbeladung genannt) sowie entsprechende Beleuchtungsmittel.The invention relates to a method for incorporation of phosphors into the pore system of inverse opals by means of gas phase infiltration (also called gas phase loading) and corresponding illumination means.
Es gibt hoch effiziente rote Linien emittierende Leuchtstoffe, wie z. B. Y2O3--Eu3+ oder Derivate davon, welche als lumineszenzaktives Ion Eu3+ enthalten.There are highly efficient red lines emitting phosphors, such as. B. Y 2 O 3 --Eu 3+ or derivatives thereof which contain as luminescent ion Eu 3+ ion.
Solche Leuchtstoffe werden in Fluoreszenzlampen und anderen Systemen zur Beleuchtung eingesetzt, wobei der Leuchtstoff mit Wellenlängen kleiner als 300 nm angeregt wird. Besonders intensiv ist die Anregung bei einer Wellenlänge von 254 nm (Hg-Plasma) oder kleiner. Im Elektronenstrahl können diese Leuchtstoffe auch sehr effizient angeregt werden, z.B. in CRTs (Kathodenstrahlröhren, d.h. Fernsehröhren). Wären solche Leuchtstoffe allerdings effizient bei blauen Wellenlängen, z.B. bei 450 - 470 nm anregbar, so könnten diese in weiße LEDs zusätzlich zu den vorhandenen, grünes bis oranges Licht emittierenden Leuchtstoffen hinzugegeben werden und würden ein warmes Weißlicht ermöglichen mit einer sehr hohen Effizienz (> 150 Im/W) und einer sehr guten Farbqualität (CRI > 90).Such phosphors are used in fluorescent lamps and other systems for illumination, wherein the phosphor is excited with wavelengths less than 300 nm. The excitation is particularly intense at a wavelength of 254 nm (Hg plasma) or smaller. In the electron beam these phosphors can also be excited very efficiently, e.g. in CRTs (cathode ray tubes, i.e. television tubes). However, if such phosphors were efficient at blue wavelengths, e.g. Excitable at 450-470 nm, these could be added to white LEDs in addition to the existing green to orange light emitting phosphors and would allow a warm white light with a very high efficiency (> 150 Im / W) and a very good color quality ( CRI> 90).
Jetzt wurde überraschend gefunden, dass sich die o.g. Leuchtstoffe in das Innere eines photonischen Kristalls mit der Struktur eines inversen Opals einbauen lassen und die darin befindlichen Leuchtstoffe effizient mit blauem Licht anregen lassen. Dies kommt daher, dass in den inversen Opal eindringendes blaues Licht (d.h. das Licht, welches von dem elektrolumineszenten Halbleiter, meist aus GaN bzw. InGaN oder AIInGaN oder ZnO-Materialien aufgebaut ist, oder im Falle von OLEDs oder PLEDs aus blau elektrolumineszierenden Polymeren) dort hin- und herreflektiert wird und somit eine sehr lange Aufenthaltsdauer im inversen Opal aufweist. Dadurch ergeben sich eine um mehrere Potenzen höhere Wechselwirkungshäufigkeit des blauen Lichts im Opal mit den Leuchtstoffen im inversen Opal als im Gegensatz zum reinen Leuchtstoff. D.h. der Leuchtstoff im inversen Opal kann in einer blauen LED in Kombination mit Granat- oder Silicat-Leuchtstoffen zur Herstellung von hoch effizientem und qualitativ überragendem weißen Licht verwendet werden.It has now surprisingly been found that the abovementioned phosphors can be incorporated into the interior of a photonic crystal having the structure of an inverse opal and can efficiently excite the phosphors therein with blue light. This is because blue light penetrating into the inverse opal (ie the light which is composed of the electroluminescent semiconductor, usually of GaN or InGaN or AlInGaN or ZnO materials, or in the case of OLEDs or PLEDs of blue electroluminescent polymers) There reflected back and forth and thus has a very long residence time in the inverse opal. This results in an interaction frequency of the blue light in the opal with the phosphors in the inverse opal which is higher by several powers than in contrast to the pure phosphor. That is, the phosphor in the inverse opal can be used in a blue LED in combination with garnet or silicate phosphors to produce highly efficient and superior quality white light.
Solche Lichteigenschaften sind die Voraussetzung dafür, dass LEDs (und OLEDs) ab 2010 die vorhandene Lichttechnologie, wie Glühbirne, Halogenbirne oder Fluoreszenzlampe substituieren werden.Such light properties are the prerequisite for the fact that LEDs (and OLEDs) from 2010 will replace the existing lighting technology, such as light bulb, halogen bulb or fluorescent lamp.
Leuchtstoffe können durch verschiedene technologische Verfahren in das Innere eines inversen Opals eingebaut werden.Phosphors can be incorporated into the interior of an inverse opal by various technological processes.
Die DE 102006008879.4 beschreibt zwei Verfahren, bei denen der Einbau der Leuchtmittel in inverse Opale durch Lösungsimprägnierung oder Dispersionsinfiltration geschieht. Neben dem Vorteil wie z.B. geringer apparativer Aufwand hat diese Methode allerdings auch Nachteile, die dadurch enstehen, dass Verunreinigungen oder störende Substanzen durch Lösungsmittel in die inversen Opale eingebaut werden können. Desweiteren sind manche Leuchtstoff-Precursoren wegen Zersetzung oder Nichtlöslichkeit gar nicht über Lösungsimprägnierung in den inversen Opal einbaubar.DE 102006008879.4 describes two methods in which the incorporation of the bulbs into inverse opals by solution impregnation or dispersion infiltration is done. Besides the advantage, such as however, this method also has disadvantages with regard to equipment, which is due to the fact that impurities or interfering substances can be incorporated by solvents into the inverse opals. Furthermore, some phosphor precursors can not be incorporated into the inverse opal by solution impregnation because of decomposition or insolubility.
Aufgabe der vorliegenden Erfindung war es daher, ein weiteres Verfahren zum Einbau von Leuchtstoffen in inverse Opale zur Verfügung zu stellen, welches die Nachteile der o.g. Verfahren vermeidet.It was therefore an object of the present invention to provide a further process for incorporating phosphors into inverse opals, which has the disadvantages of the above-mentioned. Procedure avoids.
Überraschend konnte diese Aufgabe durch ein Verfahren gelöst werden, welches auf der sogenanten Gasphasen-Infiltrierung basiert. Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung eines photonischen Materials mit regelmäßig angeordneten Kavitäten, enthaltend mindestens einen Leuchtstoff, wobei a) Opaltemplat-Kugeln regelmäßig angeordnet werden, b) die Kugelzwischenräume mit einem oder mehreren Precursoren für das Wandmaterial gefüllt werden, c) das Wandmaterial gebildet wird und die Opaltemplat-Kugeln entfernt werden, d) der Leuchtstoff in die Kavitäten eingebracht wird, wobei flüchtige Precursoren für den Leuchtstoff mittels Gasphasen-Infiltrierung unter Ausnutzung von Porendiffusion in die Kavitäten des inversen Opals eingebracht werden, e) die flüchtigen Precursoren in einem anschließenden Schritt in den Leuchtstoff überführt werden.Surprisingly, this problem could be solved by a method which is based on the so-called gas phase infiltration. The present invention therefore provides a process for producing a photonic material having regularly arranged cavities containing at least one phosphor, wherein a) opalt template spheres are arranged regularly, b) the interspaces between the spheres are filled with one or more precursors for the wall material, c) d) the phosphor is introduced into the cavities, volatile precursors for the phosphor being introduced into the cavities of the inverse opal by means of gas phase infiltration utilizing pore diffusion, e) the volatile precursors be transferred in a subsequent step in the phosphor.
Photonische Materialien aus Anordnungen von Kavitäten mit einer im wesentlichen monodispersen Größenverteilung im Sinne der vorliegenden Erfindung sind Materialien, die dreidimensionale photonische Strukturen aufweisen. Unter dreidimensionalen photonischen Strukturen werden i. a. Systeme verstanden, die eine regelmäßige, dreidimensionale Modulation der Dielektrizitätskonstanten (und dadurch auch des Brechungsindex) aufweisen. Entspricht die periodische Modulationslänge in etwa der Wellenlänge des (sichtbaren) Lichtes, so tritt die Struktur mit dem Licht nach Art eines dreidimensionalen Beugungsgitters in Wechselwirkung, was sich in winkelabhängigen Farberscheinungen äußert.Photonic materials comprising arrays of cavities having a substantially monodisperse size distribution in the sense of the present invention are materials which have three-dimensional photonic structures. Under three-dimensional photonic structures i. a. Systems understood that have a regular, three-dimensional modulation of the dielectric constant (and thereby also the refractive index). If the periodic modulation length corresponds approximately to the wavelength of the (visible) light, the structure interacts with the light in the manner of a three-dimensional diffraction grating, which manifests itself in angle-dependent color phenomena.
Die inverse Struktur zur Opalstruktur (= Anordnung von Kavitäten mit einer im wesentlichen monodispersen Größenverteilung) entsteht gedanklich dadurch, dass in einem massiven Material regelmäßige sphärische Hohlvolumina in einer dichtesten Packung angeordnet werden. Ein Vorteil von derartigen inversen Strukturen gegenüber den normalen Strukturen ist das Entstehen von photonischen Bänderlücken bei bereits viel geringeren Dielektrizitätskonstantenkontrasten (K. Busch et al. Phys. Rev. Letters E, 198, 50, 3896).The inverse structure to the opal structure (= arrangement of cavities with a substantially monodisperse size distribution) is conceived in that in a solid material regular spherical hollow volumes are arranged in a densest packing. An advantage of such inverse structures over the normal structures is the emergence of photonic band gaps at already much lower dielectric constant contrast (Busch, K., et al., Phys. Rev. Letters E, 198, 50, 3896).
Photonische Materialien, welche Kavitäten aufweisen, müssen folglich eine feste Wand besitzen. Erfindungsgemäß geeignet sind solche Wandmaterialien, die dielektrische Eigenschaften aufweisen und als solche im wesentlichen nicht absorbierend für die Wellenlänge einer Absorptionsbande des jeweiligen Leuchtstoffs wirken und im wesentlichen transparent sind für die Wellenlänge einer durch die Absorptionswellenlänge anregbaren Emission des Leuchtstoffs. Das Wandmaterial des photonischen Materials sollte als solches die Strahlung der Wellenlänge der Absorptionsbande des Leuchtstoffes zu mindestens 95% passieren lassen.Photonic materials having cavities must therefore have a solid wall. Suitable wall materials according to the invention are those which have dielectric properties and, as such, are substantially non-absorbing for the wavelength of an absorption band of the respective phosphor and are substantially transparent to the wavelength of an emission of the phosphor excitable by the absorption wavelength. As such, the wall material of the photonic material should pass the radiation of the wavelength of the absorption band of the phosphor at least 95%.
Dabei besteht die Matrix im wesentlichen aus einem strahlungsstabilen organischen Polymeren, das vorzugsweise vernetzt ist, beispielsweise einem Epoxidharz. In einer anderen Erfindungsvariante besteht die Matrix um die Kavitäten im wesentlichen aus einem anorganischen Material, vorzugsweise einem Metallchalcogenid oder Metallpnictid bestehen, wobei insbesondere Silciumdioxid, Aluminiumoxid, Zirkonoxid, Eisenoxide, Titandioxid, Cerdioxid, Galliumnitrid, Bor- und Aluminiumnitrid sowie Silicium- und Phosphornitrid oder Mischungen davon zu nennen sind. Dabei ist es erfindungsgemäß insbesondere bevorzugt, wenn die Wand des photonischen Materials im wesentlichen aus einem Oxid oder Mischoxid von Silicium, Titan, Zirkonium und/oder Aluminium, vorzugsweise aus Siliciumdioxid besteht.The matrix essentially consists of a radiation-stable organic polymer, which is preferably crosslinked, for example an epoxy resin. In another variant of the invention, the matrix around the cavities consists essentially of an inorganic material, preferably a metal chalcogenide or Metallpnictid consist, in particular Silciumdioxid, alumina, zirconia, iron oxides, titanium dioxide, ceria, gallium nitride, boron and aluminum nitride and silicon and phosphorus nitride or Mixtures thereof are mentioned. In this case, it is particularly preferred according to the invention if the wall of the photonic material consists essentially of an oxide or mixed oxide of silicon, titanium, zirconium and / or aluminum, preferably of silicon dioxide.
Dreidimensionale inverse Strukturen d. h. erfindungsgemäß einzusetzende mikrooptische Systeme mit regelmäßigen Anordnungen von Kavitäten können beispielsweise durch eine Templatsynthese hergestellt werden: Three-dimensional inverse structures ie microoptical systems to be used according to the invention with regular arrangements of cavities can be produced, for example, by a template synthesis:
Als primäre Bausteine zum Aufbau von inversen Opalen werden einheitliche kolloide Kugeln verwendet (Pkt.1 in Abb. 1). Die Kugeln müssen neben weiteren Charakteristika einer möglichst engen Größenverteilung gehorchen (5% Größenabweichung ist tolerabel). Erfindungsgemäß bevorzugt sind dabei, durch wässrige Emulsionspolymerisation hergestellte, monodisperse PMMA-Kugeln mit einem Durchmesser im sub-μm-Bereich. Im zweiten Schritt werden die einheitlichen Kolloidkugeln nach Isolierung und Zentrifugation oder Sedimentation in eine dreidimensionale regelmäßige Opal-Struktur angeordnet (Pkt. 2 in Abb. 1). Diese Templat-Struktur entspricht einer dichtesten Kugelpackung, d.h. 74% des Raumes sind mit Kugeln befüllt und 26% des Raumes sind leer (Zwickel oder Hohlvolumina). Sie kann dann durch Temperierung verfestigt werden. Im folgenden Arbeitsschritt (Pkt. 3 in Abb. 1) werden die Hohlräume des Templates mit einer Substanz befüllt, welche die Wände des späteren inversen Opals ausbildet. Bei der Substanz kann es sich beispielsweise um eine Lösung eines Precursors (vorzugsweise Tetraethoxysilan) handeln. Danach wird der Precursor durch Kalzinierung verfestigt und die Templatkugeln ebenfalls durch Kalzinierung entfernt (Pkt. 4 in Abb. 1). Dies ist dann möglich, wenn es sich bei den Kugeln um Polymere handelt und der Precursor beispielsweise in der Lage ist, eine Sol-Gel-Reaktion durchzuführen (Transformation von z.B. Kieselestern in SiOa). Erhalten wird nach vollständiger Kalzinierung eine Replik des Templates, der sog. inverse Opal.Unitary colloidal spheres are used as primary building blocks for the construction of inverse opals (pt.1 in Fig. 1). In addition to other characteristics, the balls must obey the narrowest possible size distribution (5% size deviation is tolerable). According to the invention, monodisperse PMMA spheres having a diameter in the sub-μm range and produced by aqueous emulsion polymerization are preferred. In the second step, the uniform colloidal spheres are placed in a three-dimensional regular opal structure after isolation and centrifugation or sedimentation (section 2 in Fig. 1). This template structure corresponds to a densest sphere packing, ie 74% of the space is filled with balls and 26% of the space is empty (gussets or hollow volumes). It can then be solidified by tempering. In the following step (section 3 in Fig. 1), the cavities of the template are filled with a substance which forms the walls of the later inverse opal. The substance may be, for example, a solution of a precursor (preferably tetraethoxysilane). Thereafter, the precursor is solidified by calcination and the template beads also removed by calcination (point 4 in Fig. 1). This is possible if the spheres are polymers and the precursor is, for example, capable of carrying out a sol-gel reaction (transformation of eg silica esters into SiO 2). After complete calcination, a replica of the template, the so-called inverse opal, is obtained.
In der Literatur sind viele solcher Verfahren bekannt, die zur Herstellung von Hohlraumstrukturen zum Einsatz gemäß der vorliegenden Erfindung genutzt werden können (z.B. S. G. Romanov et al., Handbook of Nanostructered Materials and Nanotechnology, Vol. 4, 2000, 231 ff.; V. Colvin et al. Adv. Mater. 2001, 13, 180; De La Rue et al. Synth. Metals, 2001 , 116, 469; M. Martinelli et al. Optical Mater. 2001 , 17, 11 ; A. Stein et al. Science, 1998, 281 , 538). Kern-Mantel Partikeln, deren Mantel eine Matrix bildet und deren Kern im wesentlichen fest ist und eine im wesentlichen monodisperse Größenverteilung aufweist, sind in der DE-A- 10145450 beschrieben. Die Verwendung solcher Kern-Mantel-Partikel, deren Mantel eine Matrix bildet und deren Kern im wesentlichen fest ist und eine im wesentlichen monodisperse Größenverteilung aufweist als Template zur Herstellung inverser Opalstrukturen und ein Verfahren zur Herstellung inverser opalartiger Strukturen unter Einsatz solcher Kern- Mantel-Partikel ist in der Internationalen Patentanmeldung WO 2004/031102 beschrieben. Die beschriebenen Formkörper mit homogenen, regelmäßig angeordneten Kavitäten besitzen vorzugsweise Wände aus Metalloxiden oder aus Elastomeren. Folglich sind die beschriebenen Formkörper entweder hart und spröde oder zeigen elastomeren Charakter. Die Entfernung der regelmäßig angeordneten Templat-Kerne kann auf verschiedenen Wegen erfolgen. Wenn die Kerne aus geeigneten anorganischen Materialien bestehen, können diese durch Ätzen entfernt werden. Vorzugsweise können zum Beispiel Siliciumdioxid-Kerne mit HF, insbesondere verdünnter HF-Lösung entfernt werden.Many such methods are known in the literature which can be used to make void structures for use in accordance with the present invention (eg SG Romanov et al., Handbook of Nanostructured Materials and Nanotechnology, Vol. 4, 2000, 231 et seq .; Colvin et al., Adv., Mater., 2001, 13, 180; De La Rue et al., Synth. Metals, 2001, 116, 469; M. Martinelli et al., Optical Mater., 2001, 17, 11; A. Stein et al Science, 1998, 281, 538). Core-shell particles whose shell forms a matrix and whose core is essentially solid and has a substantially monodisperse size distribution are described in DE-A-10145450. The use of such core-shell particles whose shell forms a matrix and the core is substantially solid and has a substantially monodisperse size distribution as a template for the preparation of inverse opal structures and a method for producing inverse opal-like structures using such core-shell particles is described in International Patent Application WO 2004/031102. The moldings described with homogeneous, regularly arranged cavities preferably have walls of metal oxides or of elastomers. Consequently, the moldings described are either hard and brittle or exhibit elastomeric character. The removal of the regularly arranged template cores can be done in different ways. If the cores are made of suitable inorganic materials, they can be removed by etching. Preferably, for example, silicon dioxide cores can be removed with HF, in particular dilute HF solution.
Wenn die Kerne in den Kern-Mantel-Partikeln aus einem mit UV-Strahlung abbaubaren Material, vorzugsweise einem UV-abbaubaren organischen Polymeren aufgebaut sind, erfolgt die Entfernung der Kerne durch UV- Bestrahlung. Auch bei diesem Vorgehen kann es wiederum bevorzugt sein, wenn vor oder nach der Entfernung der Kerne eine Vernetzung des Mantels erfolgt. Geeignete Kernmaterialien sind dann insbesondere Poly(tert-butylmethacrylat), Poly(methylmethacrylat), Poly(n-butylmeth- acrylat) oder Copolymere, die eines dieser Polymere enthalten.When the cores in the core-shell particles are composed of a UV-degradable material, preferably a UV-degradable organic polymer, the nuclei are removed by UV irradiation. With this procedure, too, it may again be preferred if crosslinking of the jacket takes place before or after the removal of the cores. Suitable core materials are then in particular poly (tert-butyl methacrylate), poly (methyl methacrylate), poly (n-butyl methacrylate) or copolymers containing one of these polymers.
Weiter kann es insbesondere bevorzugt sein, wenn der abbaubare Kern thermisch abbaubar ist und aus Polymeren besteht, die entweder thermisch depolymerisierbar sind, d.h. unter Temperatureinwirkung in ihre Monomere zerfallen oder der Kern aus Polymeren besteht, die beim Abbau in niedermolekulare Bestandteile zerfallen, die von den Monomeren verschieden sind. Geeignete Polymere finden sich beispielsweise in der Tabelle „Thermal Degradation of Polymers" in Brandrup, J. (Ed.).: Polymer Handbook. Chichester Wiley 1966, S. V-6 - V-10, wobei alle Polymere geeignet sind, die flüchtige Abbauprodukte liefern. Der Inhalt dieser Tabelle gehört ausdrücklich zur Offenbarung der vorliegenden Anmeldung.Further, it may be particularly preferred if the degradable core is thermally degradable and consists of polymers that are either thermally depolymerizable, i. under the influence of temperature decompose into their monomers or the core consists of polymers which decompose on decomposition into low molecular weight components which are different from the monomers. Suitable polymers can be found, for example, in the "Thermal Degradation of Polymers" table in Brandrup, J. (Ed.): Polymer Handbook Chichester Wiley 1966, pp. V-6 - V-10, where all polymers are volatile The content of this table belongs expressly to the disclosure of the present application.
Bevorzugt ist dabei der Einsatz von Poly(styrol) und Derivaten, wie Poly(α- methylstyrol) bzw. Poly(styrol)-derivate, die am aromatischen Ring Substituenten tragen, wie insbesondere teil- oder perfluorierte Derivaten, Poly(acrylat)- und Poly(methacrylat)-derivaten sowie deren Estern, insbesondere bevorzugt Poly(methylmethacrylat) oder Poly(cyclohexylmethacrylat), bzw. Copolymeren dieser Polymere mit anderen abbaubaren Polymeren, wie vorzugsweise Styrol-Ethylacrylat- Copolymeren oder Methylmethacrylat-Ethylacrylat-Copolymeren, und Polyolefinen, Polyolefinoxiden, Polyethylenterephthalat, Polyformaldehyd, Polyamiden, Polyvinylacetat, Polyvinylchlorid oder Polyvinylalkohol.Preference is given to the use of poly (styrene) and derivatives, such as poly (α-methylstyrene) or poly (styrene) derivatives, which carry substituents on the aromatic ring, in particular partially or perfluorinated derivatives, poly (acrylate) - and Poly (methacrylate) derivatives and their esters, particularly preferably poly (methyl methacrylate) or Poly (cyclohexyl methacrylate), or copolymers of these polymers with other degradable polymers, such as preferably styrene-ethyl acrylate copolymers or methyl methacrylate-ethyl acrylate copolymers, and polyolefins, Polyolefinoxiden, polyethylene terephthalate, polyformaldehyde, polyamides, polyvinyl acetate, polyvinyl chloride or polyvinyl alcohol.
Hinsichtlich der Beschreibung der resultierenden Formkörper und der Herstellverfahren für Formkörper wird auf die WO 2004/031102 verwiesen, deren Offenbarung ausdrücklich zum Inhalt der vorliegenden Anmeldung gehört.With regard to the description of the resulting moldings and the production process for moldings, reference is made to WO 2004/031102, the disclosure of which expressly belongs to the content of the present application.
Insbesondere bevorzugt ist es erfindungsgemäß, wenn der mittlere Durchmesser der Kavitäten in dem photonischen Material im Bereich von etwa 150 - 600 nm, bevorzugt im Bereich von 250 - 450 nm liegt.It is particularly preferred according to the invention if the average diameter of the cavities in the photonic material is in the range of about 150-600 nm, preferably in the range of 250-450 nm.
Die Formkörper des inversen Opals fallen bei den entsprechenden Verfahren entweder direkt in Pulverform an oder können durch Mahlen zerkleinert werden. Die resultierenden Partikel können dann im erfindungsgemäßen Sinne weiter verarbeitet werden.The shaped bodies of the inverse opal are obtained in the corresponding process either directly in powder form or can be comminuted by grinding. The resulting particles can then be further processed in accordance with the invention.
Wie schon erwähnt, besitzt die Struktur des inversen Opals eine Porosität von 74 %, wodurch sie leicht mit weiteren Substanzen beladen werden kann. Das Porensystem des inversen Opals besteht aus kugelförmigen Kavitäten (entsprechend den Kugeln des Templates), welche durch ein Kanalsystem (entspricht den vorherigen Berührungspunkten der Templatkugeln miteinander) dreidimensional miteinander verbunden sind. In das Innere der Opalstruktur können nun Leuchtstoffe oder Leuchtstoffprecursoren eingebracht werden, welche die Verbindungskanäle ("Linking Channel", Abb. 2) passieren können. As already mentioned, the structure of the inverse opal has a porosity of 74%, whereby it can be easily loaded with other substances. The pore system of the inverse opal consists of spherical cavities (corresponding to the spheres of the template), which are connected in three dimensions by a channel system (corresponding to the previous contact points of the template spheres). Phosphors or fluorescent precursors can now be introduced into the interior of the opal structure, which can pass through the connection channels ("linking channel", FIG. 2).
Das Einbringen der Leuchtstoffe oder Leuchtstoffprecursoren in die Porensysteme des inversen Opalpulvers erfolgt durch eine Gasphasen- Infiltrierung und zwar unter Ausnutzung kapillarer Effekte.The introduction of the phosphors or phosphor precursors into the pore systems of the inverse opal powder takes place by means of a gas-phase infiltration, taking advantage of capillary effects.
Dabei ist der Beladungs- oder Füllgrad der Kavitäten mit Leuchtstoffen oder Leuchtstoffprecursoren ein wichtiges Kriterium. Erfindungsgemäß bevorzugt ist es, die Beladungsschritte mehrfach zu wiederholen. Dabei hat sich gezeigt, dass zu hohe Füllgrade der Kavitäten die photonischen Eigenschaften beeinflussen. Daher ist erfindungsgemäß bevorzugt, wenn die Kavitäten des photonischen Materials zu mindestens 1 Vol.-% und maximal zu 50 Vol.-% mit dem mindestens einem Leuchtstoff befüllt sind, wobei die Kavitäten insbesondere bevorzugt zu mindestens 3 Vol.-% und maximal zu 30 Vol.-% mit dem mindestens einem Leuchtstoff befüllt sind.The loading or filling level of the cavities with phosphors or fluorescent precursors is an important criterion. According to the invention, it is preferable to repeat the loading steps several times. It has been shown that excessively high fill levels of the cavities influence the photonic properties. Therefore, it is preferred according to the invention if the cavities of the photonic material are filled to at least 1% by volume and at most 50% by volume with the at least one phosphor, the cavities being particularly preferably at least 3% by volume and not more than 30% Vol .-% are filled with the at least one phosphor.
Für erfindungsgemäß bevorzugt einzusetzende Leuchtstoffe, welche eine Dichte von etwa 4 g/cm3 aufweisen, gilt daher, dass der mindestens eine Leuchtstoff 5 bis 75 Gew.-% des photonischen Materials ausmacht, wobei das mindestens eine Leuchtstoff vorzugsweise 25 bis 66 Gew.-% des photonischen Materials ausmacht. Die nanoskaligen Leuchtstoffe können in die oben beschriebenen inversen Opale infiltriert werden, wenn die Partikelgröße der Leuchtstoffpartikel kleiner als der Durchmesser der Verbindungskanäle zwischen den Kavitäten der inversen Opale ist.For phosphors preferably used according to the invention, which have a density of about 4 g / cm 3 , therefore, the at least one phosphor is 5 to 75 wt .-% of the photonic material, wherein the at least one phosphor preferably 25 to 66 wt. % of the photonic material. The nanoscale phosphors can be infiltrated into the inverse opals described above if the particle size of the phosphor particles is smaller than the diameter of the interconnecting channels between the cavities of the inverse opals.
Dabei kann der Leuchtstoff in einer bevorzugten Verfahrensvariante nach Entfernung der Opaltemplat-Kugeln mittels Gasphasen-Infiltrierung in die Kavitäten eingebracht werden. Dies gelingt dadurch, dass das photonische Material bzw. der inverse Opal mit regelmäßig angeordneten Kavitäten mit einem flüchtigen Leuchtstoffprecursor wie z.B. Acetylacetonaten oder Fluoroacetylacetonaten der Seltenen Erden und je nach Leuchtstoff die entsprechenden flüchtigen Verbindungen (alternativ auch mit Trägergasen) in einem ausgeheizten, evakuierten inversen Opal im dynamischen Vakuum und erhöhten Temperaturen vom inneren Porensystem des inversen Opals adsorbiert wird. Dann erfolgt entweder durch Einleiten eines Gases (wie z.B. Stickstoff oder Argon), gefolgt von einer Thermolyse und/oder Photolyse die Umwandlung der Precursoren in die Leuchtstoffe. Dabei ist die Wahl des geeigneten Gases abhängig von der Art und chemischen Zusammensetzung des Leuchtstoffes und des inversen Opals, was dem Fachmann bekannt bzw. geläufig ist.In a preferred variant of the method, the phosphor can be introduced into the cavities after removal of the opalt template balls by means of gas-phase infiltration. This is achieved by the fact that the photonic material or the inverse opal with regularly arranged cavities with a volatile phosphor precursor such. Acetylacetonates or Fluoroacetylacetonaten rare earths and depending on the phosphor the corresponding volatile compounds (alternatively with carrier gases) in a heated, evacuated inverse opal in a dynamic vacuum and elevated temperatures of the inner pore system of the inverse opal is adsorbed. Then, either by introducing a gas (such as nitrogen or argon) followed by thermolysis and / or photolysis, the precursors are converted to the phosphors. In this case, the choice of the suitable gas is dependent on the type and chemical composition of the phosphor and the inverse opal, which is known or familiar to the person skilled in the art.
Erfindungsgemäß wird die Infiltrierung des inversen Opals in Abhängigkeit von der Art der Precursoren im statischen Vakuum durchgeführt, in der Art, dass ein System, vorzugsweise ein geschlossenes System, bestehend aus dem ausgeheizten inversen Opal und dem Precursor erhitzt wird, so dass der Precursor in die Gaspshase übergeht und mittels Porendiffusion in die Poren des inversen Opals gelangt. Nach Erreichen des erforderlichen Beladungsgrades wird das System belüftet und durch thermische Behandlung bei höheren Temperaturen und eventuell in einer Reaktivgasatmosphäre (z. B. Sauerstoff, Formiergas oder CO) oder Inertgasatmosphäre (Argon oder Stickstoff) in den mit Leuchtstoff beladenen inversen Opal umgewandelt. Bei der Gasphasentechnologie zur Beschichtung von Substraten mit Funktionsmaterialien (z.B. die Herstellung von GaN-basierten Chips für LEDs und zukünftige ZnO-basierte Chips für LEDs) unterscheidet man zwischen CVD (=Chemical Vapour Deposition), MOCVD (=Metal Organic chemical Vapour Deposition), MOVPE (= Metal Organic Vapour Phase Epitaxy) oder PVD (=Physical Vapour Deposition).According to the invention, the infiltration of the inverse opal is carried out in a static vacuum, depending on the type of precursors, in such a way that a system, preferably a closed system, consisting of the baked inverse opal and the precursor is heated, so that the precursor is in the Gaspshase passes and reaches the pores of the inverse opal by means of pore diffusion. Upon reaching the required level of loading, the system is vented and converted to the inverse opal loaded with phosphor by thermal treatment at higher temperatures and possibly in a reactive gas atmosphere (eg, oxygen, forming gas or CO) or inert gas atmosphere (argon or nitrogen). In the gas phase technology for coating substrates with functional materials (eg the production of GaN-based chips for LEDs and future ZnO-based chips for LEDs), a distinction is made between CVD (= Chemical Vapor Deposition), MOCVD (= Metal Organic Chemical Vapor Deposition), MOVPE (= Metal Organic Vapor Phase Epitaxy) or PVD (= Physical Vapor Deposition).
Bei der CVD-Gasphasenabscheidung zur Erzeugung dünner Schichten oder von Partikeln laufen chemische Prozesse ab, im Gegensatz zum PVD-Verfahren. Die Temperaturen liegen bei diesem Prozess zwischen 200° u. 2000°. Je nach der Art der Energiezufuhr spricht man von thermischer, plasma-, photonen- od. laser-aktivierten Gasphasenabscheidung. Die einzelnen Gaskomponenten werden mit einem inerten Trägergas, z.B. Argon, bei Drucken zwischen 10 mbar und 1 bar durch eine Reaktionskammer geleitet, in der die ehem. Reaktion stattfindet und sich die dabei gebildeten Festkörperkomponenten als dünne Schicht oder Partikel abscheiden. Die flüchtigen Nebenprodukte werden mit dem Trägergas abgeführt. Mit der Gasphasenabscheidung. lassen sich Substrate (vorausgesetzt, sie sind bei den Temperaturen stabil) mit zahlreichen Metallen, Halbleitern, Karbiden, Nitriden, Boriden, Suiziden u. Oxiden beschichten.In CVD vapor deposition for the production of thin films or particles chemical processes take place, in contrast to the PVD process. The temperatures are in this process between 200 ° u. 2000 °. Depending on the type of energy supply is called thermal, plasma, photon od. Laser-activated vapor deposition. The individual gas components are reacted with an inert carrier gas, e.g. Argon, at pressures between 10 mbar and 1 bar passed through a reaction chamber in which the former reaction takes place and deposited the solid components formed as a thin layer or particles. The volatile by-products are removed with the carrier gas. With the vapor deposition. can substrates (provided that they are stable at temperatures) with numerous metals, semiconductors, carbides, nitrides, borides, suicides u. Coat oxides.
Unter dem PVD-Verfahren werden Vakuum-Beschichtungs-Verfahren zur Herstellung dünner Schichten oder von Partikeln zusammengefaßt, bei denen das Beschichtungsmaterial durch rein physikalische Methoden in die Gasphase überführt wird, um dann auf dem Substrat abgeschieden zu werden. Im wesentlichen unterscheidet man drei Verfahrenstechniken:Under the PVD process vacuum coating processes for the production of thin layers or particles are summarized, in which the coating material is transferred by purely physical methods in the gas phase, and then deposited on the substrate. Essentially, one differentiates between three process techniques:
1. Beim Aufdampfen wird das Beschichtungsmaterial im Hochvakuum bis zum Übergang vom festen über den flüssigen in den gasförmigen Zustand erhitzt. Je nach Material kann auch der direkte Übergang fest-gasf. (Sublimation) auftreten. Die notwendige Erwärmung wird über elektrische Widerstandsheizungen, durch hochenergetische Elektronen oder durch Laserbeschuß zugeführt. Neben diesen bewährten Heiztechniken gewinnt das Verfahren des Bogenverdampfens, bei dem durch Zünden eines Lichtbogens zwischen zwei Elektroden das Elektrodenmaterial verdampft wird, immer mehr an Bedeutung.1. In vapor deposition, the coating material is heated in a high vacuum until the transition from solid to liquid to gaseous state. Depending on the material, the direct transition can also be fixed-gaseous. (Sublimation) occur. The necessary heating is supplied via electrical resistance heaters, by high-energy electrons or by laser bombardment. In addition to these proven heating techniques, the process of arc evaporation, in which the electrode material is vaporized by igniting an arc between two electrodes, is becoming increasingly important.
2. Beim Zerstäuben kommt es durch Beschüß eines Targets, das aus dem gewünschten Beschichtungsmaterial besteht, mit energiereichen Edelgas- Ionen zur Zerstäubung der Oberfläche. Als lonenquelle dient meist ein Edelgasplasma. Je nachdem, ob dieses durch ein Gleich- oder Wechselstromfeld angeregt wird, spricht man vom DC-sputtern bzw. RF- sputtern. Mit RF-sputtern können auch nichtleitende Materialien zerstäubt werden.2. When sputtering occurs by bombarding a target, which consists of the desired coating material, with high-energy noble gas ions to atomize the surface. The source of ions is usually a noble gas plasma. Depending on whether this is excited by a DC or AC field, this is called DC sputtering or RF sputtering. Non-conductive materials can also be sputtered using RF sputtering.
3. Auch mit lonenstrahlen kann die Oberfläche des Targetmaterials abgetragen werden. Diese Technik erlaubt sehr genaue Abtrag- und entsprechend genaue Aufwachsraten auf dem Substrat.3. Even with ion beams, the surface of the target material can be removed. This technique allows very accurate removal and correspondingly accurate growth rates on the substrate.
Häufig werden die genannten Verfahren kombiniert verwendet. Zu den gebräuchlichsten Techniken gehören dabei das Plasma-unterstützte Aufdampfen oder das lonen-lmplattieren, bei dem die Oberfläche während des Schichtwachstums mit Edelgas-Ionen beschossen wird.Frequently, the methods mentioned are used in combination. The most commonly used techniques include plasma-assisted vapor deposition or ion-plating, in which the surface is bombarded during the layer growth with inert gas ions.
Das modernere MOCVD-Verfahren zur Herstellung dünner Schichten oder Partikel eines Materials auf einem Substrat wird seit einigen Jahren besonders zur Herstellung von epitaktischen Halbleiterschichten eingesetzt. Dabei werden metallorganische Verbindungen und Hydride als Gase in ein Reaktionsgefäß geleitet (z.B. GaMeß und ASH3 oder ZnEt2 und Te(C3H7)2) und auf einem geheizten Substrat zersetzt, so dass sich dort das Halbleitermaterial abscheidet (z.B. GaAs oder ZnTe). Erfolgt die Zersetzung der Materialien zusätzlich unter dem Einfluss von UV-Licht, so spricht man von Photo-MOCVD. Generell können alle oben genannten Beschichtungsverfahren erfindungsgemäß eingesetzt werden. Erfindungsgemäß bevorzugt ist jedoch das MOCVD-Verfahren, d.h. der Precursor für den Leuchtstoff wird durch chemische Prozesse in die Gasphase überführt und somit als Leuchtstoff in den inversen Opal eingebaut.The more modern MOCVD process for producing thin layers or particles of a material on a substrate has been used for some years, especially for the production of epitaxial semiconductor layers. Here are organometallic compounds and hydrides are passed as gases in a reaction vessel (eg GaMe ß and ASH 3 or ZnEt 2 and Te (C 3 H 7 ) 2 ) and decomposed on a heated substrate, so that there deposits the semiconductor material (eg GaAs or ZnTe). If the decomposition of the materials is additionally under the influence of UV light, this is known as Photo-MOCVD. In general, all of the abovementioned coating methods can be used according to the invention. According to the invention, however, the MOCVD method is preferred, ie the precursor for the phosphor is converted into the gas phase by chemical processes and thus incorporated as a phosphor into the inverse opal.
Der Vorteil der erfindungsgemäßen Gasphasenbeladung besteht insbesondere durch die leichtere Eindiffusion des Dampfes bzw. der flüchtigen Precursoren in das Porensystem des inversen Opals gegenüber den o.g. Verfahren (z.B. Lösungimprägnierung) aus dem Stand der Technik.The advantage of the gas phase loading according to the invention is in particular due to the easier diffusion of the vapor or the volatile precursors into the pore system of the inverse opal compared to the above-mentioned. Method (e.g., solution impregnation) of the prior art.
Erfindungsgemäß bevorzugt ist es, wenn im Schritt b) des Verfahrens zur Herstellung eines photonischen Materials neben den Precursoren für das Wandmaterial zusätzlich eine oder mehrere Precursoren für Leuchtstoff und/oder nanopartikuläre Leuchtstoffe in die Kugelzwischenräume gefüllt werden.According to the invention it is preferred if in step b) of the method for producing a photonic material in addition to the precursors for the wall material additionally one or more precursors for phosphor and / or nanoparticulate phosphors are filled in the ball gaps.
Weiterhin bevorzugt ist es, dass es sich bei Schritt c) des erfindungsgemäßen Verfahrens um eine Kalzinierung, vorzugsweise oberhalb 200 0C, insbesondere bevorzugt oberhalb 400 0C handelt.It is further preferred that step c) of the process according to the invention is a calcination, preferably above 200 ° C., particularly preferably above 400 ° C.
Außerdem kann es insbesondere bevorzugt sein, wenn im Schritt e) des erfindungsgemäßen Verfahrens neben der Kalzinierung, vorzugsweise oberhalb 2000C , insbesondere bevorzugt oberhalb 400 0C1 noch ein Gas, vorzugsweise ein reaktives Gas zugesetzt wird. Als reaktive Gase können je nach verwendeten Leuchtstoff-Partikeln z.B. H2S, H2/N2, O2, CO etc. eingesetzt werden. Dabei ist die Wahl des geeigneten Gases abhängig von der Art und chemischen Zusammensetzung des Phosphors und des inversen Opals, was dem Fachmann bekannt bzw. geläufig ist. Bei dem erfindungsgemäßen Leuchtstoffen handelt es sich vorzugsweise um nanoskalige Phosphorpartikel. Dabei sind die Leuchtstoffe chemisch in der Regel aus einem Wirtsmaterial und einem oder mehreren Dotierstoffen zusammengesetzt.It may also be particularly preferred if a reactive gas is added in step e) of the process according to the invention in addition to the calcination, preferably above 200 0 C, particularly preferably above 400 0 C 1 nor a gas, preferably. Depending on the phosphor particles used, for example H 2 S, H 2 / N 2 , O 2 , CO, etc. can be used as the reactive gases. The choice of suitable gas depends on the type and chemical composition of the phosphor and the inverse opal, which is known or familiar to the person skilled in the art. The phosphors according to the invention are preferably nanoscale phosphor particles. The phosphors are chemically usually composed of a host material and one or more dopants.
In bevorzugter Weise kann das Wirtsmaterial Verbindungen aus der Gruppe der Sulfide, Selenide, Sulfoselenide, Oxysulfide, Borate, Aluminate, Gallate, Silikate, Germanate, Phosphate, Halophosphate, Oxide, Arsenate, Vanadate, Niobate, Tantalate, Sulfate, Wolframate, Molybdate, Alkalihalogenate, Nitride, Nitridosilikate, Oxynitridosilikate, Fluoride, Oxifluoride sowie andere Halogenide enthalten. Vorzugsweise handelt es sich bei den Wirtsmaterialien dabei um Alkali-, Erdalkali- oder Seltenerdverbindungen.The host material may preferably contain compounds from the group of sulfides, selenides, sulfoselenides, oxysulfides, borates, aluminates, gallates, silicates, germanates, phosphates, halophosphates, oxides, arsenates, vanadates, niobates, tantalates, sulfates, tungstates, molybdates, alkali halates , Nitrides, nitridosilicates, oxynitridosilicates, fluorides, oxifluorides and other halides. Preferably, the host materials are alkali, alkaline earth or rare earth compounds.
Dabei liegt das Leuchtstoff vorzugsweise in nanopartikulärer Form vor. Bevorzugte Partikel zeigen dabei eine mittlere Teilchengröße von weniger als 50 nm, bestimmt als hydraulischer Durchmesser mittels dynamischer Lichtstreuung, wobei es insbesondere bevorzugt ist, wenn der mittlere Partikeldurchmesser bei weniger als 25 nm liegt.The phosphor is preferably present in nanoparticulate form. Preferred particles show an average particle size of less than 50 nm, determined as the hydraulic diameter by means of dynamic light scattering, and it is particularly preferred if the mean particle diameter is less than 25 nm.
In einer Erfindungsvariante soll das Licht blauer Lichtquellen um rote Anteile ergänzt werden. In diesem Fall handelt es sich bei dem Leuchtstoff in einer bevorzugten Ausführungsform der vorliegenden Erfindung um einen Emitter für Strahlung im Bereich von 550 bis 700 nm. Zu den bevorzugten Dotierstoffen gehören dabei insbesondere mit Europium, Samarium, Terbium oder Praseodym, vorzugsweise mit dreifach positiv geladenen Europium-Ionen dotierte Seltenerdverbindungen.In a variant of the invention, the light of blue light sources should be supplemented by red components. In this case, the phosphor in a preferred embodiment of the present invention is an emitter for radiation in the range of 550 to 700 nm. The preferred dopants include in particular with europium, samarium, terbium or praseodymium, preferably with triply positively charged Europium ion doped rare earth compounds.
Des weiteren werden gemäß einem Aspekt der vorliegenden Erfindung als Dotierung ein oder mehrere Elemente aus einer Menge enthaltend Elemente der Hauptgruppen 1a, 2a oder AI, Cr, Tl, Mn, Ag, Cu, As, Nb, Ni, Ti, In, Sb, Ga, Si, Pb, Bi, Zn, Co und oder Elemente der sogenannten Seltenerdmetalle verwendet.Furthermore, according to one aspect of the present invention, one or more elements from an amount comprising elements of the main groups 1a, 2a or Al, Cr, T1, Mn, Ag, Cu, As, Nb, Ni, Ti, In, Sb, Ga, Si, Pb, Bi, Zn, Co and or elements of the so-called rare earth metals.
Bevorzugt kann, ggf. pro gewünschter Fluoreszenzfarbe, ein aufeinander abgestimmtes Dotandenpärchen, beispielsweise Cer und Terbium, mit gutem Energieübertrag verwendet werden, wobei der eine als Energieabsorber, insbesondere als UV- Lichtabsorber und der andere als Fluoreszenzlichtemitter wirkt.A coordinated dopant pair, for example cerium and terbium, may preferably be used with good energy transfer, if necessary per desired fluorescence color, one acting as an energy absorber, in particular as a UV light absorber and the other as a fluorescence light emitter.
Generell können als Material für die dotierten Nanopartikel folgende Verbindungen ausgewählt werden, wobei in der folgenden Notation links vom Doppelpunkt die Wirtsverbindung und rechts vom Doppelpunkt ein oder mehrere Dotierelemente aufgeführt sind. Wenn chemische Elemente durch Kommata voneinander getrennt und eingeklammert sind, können sie wahlweise verwendet werden. Je nach gewünschter Fluoreszenzeigenschaft der Nanopartikel können eine oder auch mehrere der zur Auswahl gestellten Verbindungen herangezogen werden:In general, the following compounds can be selected as the material for the doped nanoparticles, wherein in the following notation the host compound is listed to the left of the colon and one or more doping elements to the right of the colon. When chemical elements are separated and bracketed by commas, they can optionally be used. Depending on the desired fluorescence property of the nanoparticles, one or more of the compounds selected can be used:
BaAI2O4:Eu2+, BaAI2S4:Eu2+, BaB8O,3:Eu2+, BaF2, BaFBrEu2+, BaFChEu2+, BaFChEu2+, Pb2+, BaGa2S4)Ce3+, BaGa2S4:Eu2+, Ba2Li2Si2 O7:Eu2+, Ba2Li2Si2 O7:Sn2+, Ba2Li2Si2 O7:Sn2+, Mn2+, BaMgAI,0O17:Ce3+, BaMgAh 0Oi7: Eu2+, BaMgAI10Oi7:Eu2+, Mn2+, Ba2Mg3F10)Eu2+, BaMg3F8:Eu2+,Mn2+, Ba2MgSi2O7IEu2+, BaMg2Si207:Eu2+, Ba5(PO4)3CI:Eu2+, Ba5(PO-O3CLU1 Ba3(PO4)2:Eu2+, BaS:Au,K, BaSO4:Ce3+, BaSO4:Eu2+, Ba2Si04:Ce3+,Li+,Mn2+, Ba5Si04CI6:Eu2+, BaSi2O5)Eu2+, Ba2Si04:Eu2+, BaSi2O5Pb2+, BaxSrii-xF2:Eu2+, BaSrMgSi2O7:Eu2+, BaTiP2O7, (Ba1Ti)2P2O7Ti, Ba3WO6:U, BaY2F8 Er3+,Yb+, Be2SiO4)Mn2+, Bi4Ge3O12, CaAI2O4)Ce3+, CaLa4O7)Ce3+, CaAI2O4)Eu2+, CaAI2O4)Mn2+, CaAI4O7:Pb2+,Mn2+, CaAI2O4)Tb3+, Ca3AI2Si3O12)Ce3+, Ca3AI2Si3Oi2)Ce3+, Ca3AI2Si3O12)Eu2+, Ca2B5O9BrEu2+, Ca2B5O9CI)Eu2+, Ca2B5O9CI)Pb2+, CaB2O4)Mn2+, Ca2B2O5)Mn2+, CaB2O4)Pb2+, CaB2P2O9)Eu2+, Ca5B2SiO10)Eu3+, Cao.5Ba0 5AI12O19:Ce3+,Mn2+, Ca2Ba3(PO4)3CI:Eu2+, CaBr2)Eu2+ in SiO2, CaCI2)Eu2+ in SiO2, CaCI2:Eu2+,Mn2+ in SiO2, CaF2)Ce3+, CaF2:Ce3+,Mn2+, CaF2:Ce3+,Tb3+, CaF2: Eu2+, CaF2:Mn2+, CaF2: U, CaGa2O4)Mn2+, CaGa4O7:Mn2+, CaGa2S4:Ce3+, CaGa2S4:Eu2+, CaGa2S4:Mn2+, CaGa2S4:Pb2+, CaGeO3:Mn2+, Cal2:Eu2+ in SiO2, Cal2:Eu2+,Mn2+ in SiO2, CaLaBO4:Eu3+, CaLaB3O7:Ce3+,Mn2+, Ca2La2BO6.5:Pb2+, Ca2MgSi2O7, Ca2MgSi2O7Oe3+, CaMgSi2O6)Eu2+, Ca3MgSi2O8:Eu2+, Ca2MgSi2O7)Eu2+, CaMgSi2O6:Eu2+,Mn2+, Ca2MgSi2O7:Eu2+,Mn2+, CaMoO4, CaMoO4)Eu3+, CaO:Bi3+, CaO:Cd2+, CaOiCu+, CaO:Eu3+, CaO:Eu3+, Na+, CaOiMn2+, CaOPb2+, CaOiSb3+, CaOiSm3+, CaOiTb3+, CaOiTI, CaOZn2+, Ca2P2O7:Ce3+, α-Ca3(PO4)2:Ce3\ ß-Ca3(PO4)2:Ce3+, Ca5(PO4)3CI:Eu2+, Ca5(PO4)3CI:Mn2+, Ca5(PO4)3CI:Sb3+, Ca5(PO4)3CI:Sn2+, ß-Ca3(PO4)2:Eu2+,Mn2+, Ca5(PO4)3F:Mn2+, Cas(PO4)3F:Sb3+, Cas(PO4)3F:Sn2+, α-Ca3(PO4)2:Eu2+, ß-Ca3(PO4)2:Eu2+, Ca2P2O7:Eu2+, Ca2P2O7:Eu2+,Mn2+, CaP2O6:Mn2+, α-Ca3(PO4)2:Pb2+, α- Ca3(PO4)2:Sn2+, ß-Ca3(PO4)2:Sn2+, ß-Ca2P2O7iSn,Mn, α-Ca3(PO4)2:Tr, CaSiBi3+, CaS:Bi3+,Na, CaSiCe3+, CaSiEu2+, CaS:Cu+,Na+, CaSiLa3+, CaSiMn2+, CaSO4:Bi, CaSO4:Ce3+, CaSO4:Ce3+,Mn2+, CaSO4:Eu2+, CaSO4:Eu2+,Mn2+, CaSO4:Pb2+, CaSiPb2+, CaS:Pb2+,CI, CaS:Pb2+,Mn2+, CaS:Pr3+,Pb2+,CI, CaSiSb3+, CaS:Sb3+,Na, CaSiSm3+, CaSiSn2+, CaS:Sn2+,F, CaSiTb3+, CaS:Tb3+,CI, CaSiY3+, CaSiYb2+, CaS:Yb2+,CI, CaSiO3:Ce3+, Ca3SiO4CI2:Eu2+, Ca3SiO4CI2:Pb2+, CaSiO3:Eu2+, CaSiO3:Mn2+,Pb, CaSiO3:Pb2+, CaSiO3:Pb2+,Mn2+, CaSiO3:Ti4+, CaSr2(PO4)2:Bi3+, ß-(Ca,Sr)3(PO4)2:Sn2+Mn2+, CaTi0.9AI0.iO3:Bi3+, CaTiO3:Eu3+, CaTiO3:Pr3+, Ca5(VO4)3CI, CaWO4, CaWO4Pb2+, CaWO4:W, Ca3WO6:U, CaYAIO4:Eu3+, CaYBO4:Bi3+, CaYBO4:Eu3+, CaYBo.8O3.7:Eu3+, CaY2ZrO6: Eu3+, (Ca1Zn, Mg)3(PO4)2:Sn, CeF3, (Ce1Mg)BaAI11OiSiCe, (Ce1Mg)SrAI11OiSiCe, CeMgAlnO19:Ce:Tb, Cd2B6OnMn2+, CdS:Ag+,Cr, CdSiIn, CdSiIn, CdSiIn1Te, CdSiTe, CdWO4, CsF1 CsI1 CsIiNa+, CsIiTI, (ErCI3)o.25(BaCI2)0.75, GaNiZn, Gd3Ga5012:Cr3+, Gd3Ga5O^Cr1Ce1 GdNbO4:Bi3+, Gd2O2SiEu3+, Gd2O2Pr3*, Gd2O2SiPr1Ce1F, Gd2O2SiTb3+, Gd2SiO5:Ce3+, KAInO1TiTI+, KGa11O17Mn2+, K2La2Ti3O10: Eu, KMgF3:Eu2+, KMgF3:Mn2+, K2SiF6:Mn4\ LaAI3B4O12: Eu3+, LaAIB2O6: Eu3+, LaAIO3:Eu3+, LaAI03:Sm3+, LaAsO4:Eu3+, LaBr3:Ce3+, LaBO3:Eu3+, (La1Ce,Tb)PO4:Ce:Tb, LaCI3:Ce3+, La2O3:Bi3+, LaOBrTb3+, LaOBnTm3+, LaOCIiBi3+, LaOCIiEu3+, LaOFiEu3+, La2O3:Eu3+, La2O3:Pr3+, La2O2SiTb3+, LaPO4:Ce3+, LaPO4:Eu3+, LaSiO3CIiCe3+, LaSiO3CIiCe3+Jb3+, LaVO4:Eu3+, La2W3O12: Eu3+, LiAIF4:Mn2+, LiAI5O8Pe3+, LiAIO2Pe3+, LiAIO2:Mn2+, LiAI5O8:Mn2+, Li2CaP2θ7:Ce3+,Mn2+, LiCeBa4Si4Oi4IMn2+, LiCeSrBa3Si4Oi4)Mn2+, LilnO2:Eu3+, LilnO2:Sm3+, LiLaO2:Eu3+, LuAIO3:Ce3+, (Lu,Gd)2Si05:Ce3+, Lu2SiO5)Ce3+, Lu2Si2O7)Ce3+, LuTaO4)Nb5+, Lui-xYxAIO3:Ce3+, MgAI2O4)Mn2+, MgSrAIi0Oi7)Ce, MgB2O4)Mn2+, MgBa2(PO4J2)Sn2+, MgBa2(PO4)2:U, MgBaP2O7)Eu2+, MgBaP2O7:Eu2+,Mn2+, MgBa3Si2O8)Eu2+, MgBa(SO4J2)Eu2+, Mg3Ca3(PO4J4)Eu2+, MgCaP2O7)Mn2+, Mg2Ca(SO4J3)Eu2+, Mg2Ca(SO4)3:Eu2+,Mn2, MgCeAInO19)Tb3+, Mg4(F)GeO6)Mn2+, Mg4(F)(Ge1Sn)O6)Mn2+, MgF2)Mn2+, MgGa2O4)Mn2+, Mg8Ge2OnF2)Mn4+, MgS)Eu2+, MgSiO3)Mn2+, Mg2SiO4)Mn2+, Mg3SiO3F4)Ti4+, MgSO4)Eu2+, MgSO4)Pb2+, MgSrBa2Si2O7)Eu2+, MgSrP2O7)Eu2+, MgSr5(PO4J4)Sn2+, MgSr3Si208:Eu2+,Mn2+, Mg2Sr(SO4J3)Eu2+, Mg2TiO4)Mn4+, MgWO4, MgYBO4)Eu3+, Na3Ce(PO4J2)Tb3+, NaI)TI1 Nai.23K0.42Euo.i2TiSi4On:Eu3+, Nai.23K0.42Euo.i2TiSi5Oi3 xH2O:Eu3+, Nai.29K0.46Er0.o8TiSi4Oii:Eu3+, Na2Mg3AI2Si2O10)Tb, Na(Mg2-χMnx)LiSi4O10F2:Mn, NaYF4)Er3+, Yb3+, NaYO2)Eu3+, P46(70%) + P47 (30%), SrAh2O19)Ce3+, Mn2+, SrAI2O4)Eu2+, SrAI4O7)Eu3+, SrAI12O19)Eu2+, SrAI2S4)Eu2+, Sr2B5O9CI)Eu2+, SrB4O7)Eu2+(F1CI1Br), SrB4O7)Pb2+, SrB4O7)Pb2+, Mn2+, SrB8O13)Sm2+, SrxBaxCIzAI2O4-ZZ2: Mn2+, Ce3+, SrBaSiO4)Eu2+, Sr(CI1Br1I)2)Eu2+ in SiO2, SrCI2)Eu2+ in SiO2, Sr5CI(PO4)3:Eu, SrwFxB4O6 5:Eu2+, SrwFxByOz:Eu2+,Sm2+, SrF2)Eu2+, SrGa12O19)Mn2+, SrGa2S4)Ce3+, SrGa2S4)Eu2+, SrGa2S4)Pb2+, SrIn2O4)Pr3+, Al3+, (Sr,Mg)3(PO4)2:Sn, SrMgSi2O6)Eu2+, Sr2MgSi2O7)Eu2+, Sr3MgSi2O8)Eu2+, SrMoO4)U1 SrO-3B2O3:Eu2+,CI, ß-SrO-3B2O3:Pb2+, ß- SrO SB2O3 :Pb2+,Mn2+, α-SrO-3B2O3:Sm2+, Sr6P5BO20)Eu, Sr5(PO4)3CI:Eu2+, Sr5(PO4J3CI: Eu2+, Pr3+, Sr5(PO4)3CI:Mn2+, Sr5(PO4)3CI:Sb3+, Sr2P2O7)Eu2+, ß-Sr3(PO4)2:Eu2+, Sr5(PO4)3F:Mn2+, Sr5(PO4)3F:Sb3+, Sr5(PO4)3F:Sb3+,Mn2+, Sr5(PO4)3F:Sn2+, Sr2P2O7)Sn2+, ß- Sr3(PO4)2:Sn2+, ß-Sr3(PO4)2:Sn2+,Mn2+(AI)1 SrS)Ce3+, SrS)Eu2+, SrS)Mn2+, SrS:Cu+,Na, SrSO4)Bi, SrSO4)Ce3+, SrSO4)Eu2+, SrSO4:Eu2+,Mn2+, Sr5Si4O10CI6)Eu2+, Sr2SiO4:Eu2+, SrTiO3Pr3+, SrTiO3:Pr3+,AI3+, Sr3WO6:U, SrY2O3:Eu3+, ThO2:Eu3+, ThO2Pr3+, ThO2)Tb3+, YAI3B4O12)Bi3+, YAI3B4O12)Ce3+, YAI3B4O12:Ce3+,Mn, YAI3B4O12)Ce3+Jb3+, YAI3B4O12)Eu3+, YAI3B4O12: Eu3+,Cr3+, YAI3B4O12:Th4+,Ce3+,Mn2+, YAIO3:Ce3+, Y3AI5O12)Ce3+, Y3AI5O12)Cr3+, YAIO3:Eu3+, Y3AI5O12)Eu3', Y4AI2O9)Eu3+, Y3AI5O12Mn4+, YAIO3:Sm3+, YAIO3Tb3+, Y3AI5O12Tb3+, YAsO4:Eu3+, YBO3:Ce3+, YBO3:Eu3+, YF3: Er3+, Yb3+, YF3:Mn2+, YF3:Mn2+,Th4+, YF3:Tm3+,Yb3+, (Y,Gd)BO3:Eu, (Y,Gd)BO3:Tb, (Y,Gd)2O3:Eu3+, Yi 34Gd0 6OO3(Eu1Pr), Y2O3:Bi3+, YOBr:Eu3+, Y2O3:Ce, Y2O3:Er3+, Y2O3: Eu3+(YOE), Y2O3:Ce3+,Tb3+, YOCI:Ce3+, YOCI:Eu3+, YOF:Eu3+, YOFTb3+, Y2O3:Ho3+, Y2O2SiEu3+, Y2O2SiPr3+, Y2O2STb3+, Y2O3Tb3+, YPO4:Ce3+, YPO4:Ce3+,Tb3+, YPO4:Eu3+, YPO4: Mn2+Jh4+, YPO4:V5+, Y(P,V)O4:Eu, Y2SiO5:Ce3+, YTaO4, YTaO4:Nb5+, YVO4Oy3+, YVO4:Eu3+, ZnAI2O4:Mn2+, ZnB2O4:Mn2+, ZnBa2S3:Mn2+, (Zn,Be)2SiO4:Mn2+, Zn0 4Cd06S:Ag, Zn06Cd0.4S:Ag, (Zn,Cd)S:Ag,CI, (Zn,Cd)S:Cu, ZnF2:Mn2+, ZnGa2O4, ZnGa2O4:Mn2+, ZnGa2S4:Mn2+, Zn2GeO4:Mn2+, (Zn,Mg)F2:Mn2+, ZnMg2(PO4)2:Mn2+, (Zn,Mg)3(PO4)2:Mn2+, ZnO:AI3+,Ga3+, ZnO:Bi3+, ZnO:Ga3+, ZnO:Ga, ZnO-CdO:Ga, ZnO:S, ZnO:Se, ZnO:Zn, ZnS:Ag+,CI", ZnSrAg1Cu1CI, ZnS:Ag,Ni, ZnS:Au,ln, ZnS-CdS (25-75), ZnS-CdS (50-50), ZnS-CdS (75-25), ZnS-CdS:Ag, Br1Ni, ZnS-CdS:Ag+,CI, ZnS-CdS:Cu,Br, ZnS-CdS:Cu,l, ZnSrCI", ZnS:Eu2+, ZnS:Cu, ZnS:Cu+,AI3+, ZnS:Cu+,Cr, ZnS:Cu,Sn, ZnS:Eu2+, ZnS:Mn2+, ZnS:Mn,Cu, ZnS: Mn2+Je2+, ZnS:P, ZnS:P3",CI", ZnSrPb2+, ZnS:Pb2+,CI", ZnS:Pb,Cu, Zn3(PO4)2:Mn2+, Zn2SiO4:Mn2+, Zn2SiO4:Mn2+,As5+, Zn2SiO4:Mn,Sb2O2) Zn2SiO4:Mn2+,P, Zn2SiO4Ti4+, ZnS:Sn2+, ZnS:Sn,Ag, ZnS:Sn2+,Li+, ZnSTe1Mn, ZnS- ZnTe:Mn2+, ZnSe:Cu+,CI, ZnWO4 BaAl 2 O 4 : Eu 2+ , BaAl 2 S 4 : Eu 2+ , BaB 8 O, 3 : Eu 2+ , BaF 2 , BaFBrEu 2+ , BaFChEu 2+ , BaFChEu 2+ , Pb 2+ , BaGa 2 S 4 ) Ce 3+ , BaGa 2 S 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Sn 2+ , Ba 2 Li 2 Si 2 O 7 : Sn 2+ , Mn 2+ , BaMgAl, O 0 17 : Ce 3+ , BaMgAh 0 Oi 7 : Eu 2+ , BaMgAl 10 Oi 7 : Eu 2+ , Mn 2+ , Ba 2 Mg 3 F 10 ) Eu 2+ , BaMg 3 F 8: Eu 2+, Mn 2+, Ba 2 MgSi 2 O 7: Eu 2+, BaMg 2 Si 2 0 7: Eu 2+, Ba 5 (PO 4) 3 Cl: Eu 2+, Ba 5 (PO-O 3 CLU 1 Ba 3 (PO 4 ) 2 : Eu 2+ , BaS: Au, K, BaSO 4 : Ce 3+ , BaSO 4 : Eu 2+ , Ba 2 Si0 4 : Ce 3+ , Li + , Mn 2+ , Ba 5 Si0 4 Cl 6 : Eu 2+ , BaSi 2 O 5 ) Eu 2+ , Ba 2 Si0 4 : Eu 2+ , BaSi 2 O 5 Pb 2+ , Ba x Srii -x F 2 : Eu 2+ , BaSrMgSi 2 O 7 : Eu 2+ , BaTiP 2 O 7 , (Ba 1 Ti) 2 P 2 O 7 Ti, Ba 3 WO 6 : U, BaY 2 F 8 Er 3+ , Yb + , Be 2 SiO 4 ) Mn 2+ , Bi 4 Ge 3 O 12 , CaAl 2 O 4 ) Ce 3+ , CaLa 4 O 7 ) Ce 3+ , CaAl 2 O 4 ) Eu 2+ , CaAl 2 O 4 ) Mn 2+ , CaAl 4 O 7 : Pb 2+ , Mn 2+ , CaAl 2 O 4 ) Tb 3+ , Ca 3 Al 2 Si 3 O 12 ) Ce 3+ , Ca 3 Al 2 Si 3 Oi 2 ) Ce 3 +, Ca 3 Al 2 Si 3 O 12) Eu 2+, Ca 2 B 5 O 9 Breu 2+, Ca 2 B 5 O 9 CI) Eu 2+, Ca 2 B 5 O 9 CI) Pb 2+, CaB 2 O 4 ) Mn 2+ , Ca 2 B 2 O 5 ) Mn 2+ , CaB 2 O 4 ) Pb 2+ , CaB 2 P 2 O 9 ) Eu 2+ , Ca 5 B 2 SiO 10 ) Eu 3+ , Cao. 5 Ba 0 5 Al 12 O 19 : Ce 3+ , Mn 2+ , Ca 2 Ba 3 (PO 4) 3 Cl: Eu 2+ , CaBr 2 ) Eu 2+ in SiO 2 , CaCl 2 ) Eu 2+ in SiO 2 , CaCl 2 : Eu 2+ , Mn 2+ in SiO 2 , CaF 2 ) Ce 3+ , CaF 2 : Ce 3+ , Mn 2+ , CaF 2 : Ce 3+ , Tb 3+ , CaF 2 : Eu 2+ , CaF 2 : Mn 2+ , CaF 2 : U, CaGa 2 O 4 ) Mn 2+ , CaGa 4 O 7 : Mn 2+ , CaGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Eu 2+ , CaGa 2 S 4 : Mn 2+ , CaGa 2 S 4 : Pb 2+ , CaGeO 3 : Mn 2 + , Cal 2 : Eu 2+ in SiO 2 , Cal 2 : Eu 2+ , Mn 2+ in SiO 2 , CaLaBO 4 : Eu 3+ , CaLaB 3 O 7 : Ce 3+ , Mn 2+ , Ca 2 La 2 BO 6 .5: Pb 2+ , Ca 2 MgSi 2 O 7 , Ca 2 MgSi 2 O 7 Oe 3+ , CaMgSi 2 O 6 ) Eu 2+ , Ca 3 MgSi 2 O 8 : Eu 2+ , Ca 2 MgSi 2 O 7 ) Eu 2+ , CaMgSi 2 O 6 : Eu 2+ , Mn 2+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ , CaMoO 4 , CaMoO 4 ) Eu 3+ , CaO: Bi 3+ , CaO: Cd 2+ , CaOiCu + , CaO: Eu 3+ , CaO: Eu 3+ , Na + , CaOiMn 2+ , CaOPb 2+ , CaOiSb 3+ , CaOiSm 3+ , CaOiTb 3+ , CaOiTI, CaOZn 2+ , Ca 2 P 2 O 7 : Ce 3+ , α-Ca 3 (PO 4 ) 2 : Ce 3 β-Ca 3 (PO 4 ) 2 : Ce 3+ , Ca 5 (PO 4 ) 3 Cl: Eu 2 + , Ca 5 (PO 4 ) 3 Cl: Mn 2+ , Ca 5 (PO 4 ) 3 Cl: Sb 3+ , Ca 5 (PO 4 ) 3 Cl: Sn 2+ , β-Ca 3 (PO 4 ) 2 : Eu 2+ , Mn 2+ , Ca 5 (PO 4 ) 3 F: Mn 2+ , Ca s (PO 4 ) 3 F: Sb 3+ , Ca s (PO 4 ) 3 F: Sn 2+ , α- Ca 3 (PO 4 ) 2 : Eu 2+ , β-Ca 3 (PO 4 ) 2 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Ca 2 P 2 O 7 : Eu 2+ , Mn 2+ , CaP 2 O 6 : Mn 2+ , α-Ca 3 (PO 4 ) 2 : Pb 2+ , α-Ca 3 (PO 4 ) 2 : Sn 2+ , β-Ca 3 (PO 4 ) 2 : Sn 2+ , β-Ca 2 P 2 O 7 iSn, Mn, α-Ca 3 (PO 4 ) 2 : Tr, CaSiBi 3+ , CaS: Bi 3+ , Na, CaSiCe 3+ , CaSiEu 2+ , CaS: Cu + , Na + , CaSiLa 3+ , CaSiMn 2+ , CaSO 4 : Bi, CaSO 4 : Ce 3+ , CaSO 4 : Ce 3+ , Mn 2+ , CaSO 4 : Eu 2+ , CaSO 4 : Eu 2+ , Mn 2+ , CaSO 4 : Pb 2+ , CaSiPb 2+ , CaS: Pb 2+ , CI, CaS: Pb 2+ , Mn 2+ , CaS: Pr 3+ , Pb 2+ , CI, CaSiSb 3+ , CaS: Sb 3+ , Na , CaSiSm 3+ , CaSiSn 2+ , CaS: Sn 2+ , F, CaSiTb 3+ , CaS: Tb 3+ , CI, CaSiY 3+ , CaSiYb 2+ , CaS: Yb 2+ , CI, CaSiO 3 : Ce 3 + , Ca 3 SiO 4 Cl 2 : Eu 2+ , Ca 3 SiO 4 Cl 2 : Pb 2+ , CaSiO 3 : Eu 2+ , CaSiO 3 : Mn 2+ , Pb, CaSiO 3 : Pb 2+ , CaSiO 3 : Pb 2+ , Mn 2+ , CaSiO 3 : Ti 4+ , CaSr 2 (PO 4 ) 2 : Bi 3+ , β- (Ca, Sr) 3 (PO 4 ) 2 : Sn 2+ Mn 2+ , CaTi 0 , 9 Al 0 .iO 3 : Bi 3+ , CaTiO 3 : Eu 3+ , CaTiO 3 : Pr 3+ , Ca 5 (VO 4 ) 3 Cl, CaWO 4 , CaWO 4 Pb 2+ , CaWO 4 : W, Ca 3 WO 6 : U, CaYAIO 4 : Eu 3+ , CaYBO 4 : Bi 3+ , CaYBO 4 : Eu 3+ , CaYBo. 8 O 3 . 7: Eu 3+, CaY 2 ZrO 6: Eu 3+, (Ca 1 Zn, Mg) 3 (PO 4) 2: Sn, CeF 3, (Ce 1 Mg) BaAl 11 Oi S ICE (Ce 1 Mg) SrAI 11 Oi S ICE CeMgAlnO 19: Ce: Tb, Cd 2 B 6 OnMn 2+, CdS: Ag +, Cr, CdSiIn, CdSiIn, CdSiIn 1 Te, CdSiTe, CdWO 4, CsF 1 CsI 1 CsIiNa +, CsIiTI, (ErCI 3 ) o. 25 (BaCl 2 ) 0 . 7 5, GaNiZn, Gd 3 Ga 5 O 12 : Cr 3+ , Gd 3 Ga 5 O 1 Cr 1 Ce 1 GdNbO 4 : Bi 3+ , Gd 2 O 2 SiEu 3+ , Gd 2 O 2 Pr 3 * , Gd 2 O 2 SiPr 1 Ce 1 F, Gd 2 O 2 SiTb 3+ , Gd 2 SiO 5 : Ce 3+ , KAInO 1T iTI + , KGa 11 O 17 Mn 2+ , K 2 La 2 Ti 3 O 10 : Eu, KMgF 3 : Eu 2+ , KMgF 3 : Mn 2+ , K 2 SiF 6 : Mn 4 \ LaAl 3 B 4 O 12 : Eu 3+ , LaAIB 2 O 6 : Eu 3+ , LaAIO 3 : Eu 3+ , LaAlO 3 : Sm 3+ , LaAsO 4 : Eu 3+ , LaBr 3 : Ce 3+ , LaBO 3 : Eu 3+ , (La 1 Ce, Tb) PO 4 : Ce: Tb, LaCl 3 : Ce 3+ , La 2 O 3 : Bi 3+ , LaOBrTb 3+ , LaOBnTm 3+ , LaOCliBi 3+ , LaOClEu 3+ , LaOFiEu 3+ , La 2 O 3 : Eu 3+ , La 2 O 3 : Pr 3+ , La 2 O 2 SiTb 3+ , LaPO 4 : Ce 3+ , LaPO 4 : Eu 3+ , LaSiO 3 CliCe 3+ , LaSiO 3 CliCe 3+ Jb 3+ , LaVO 4 : Eu 3+ , La 2 W 3 O 12 : Eu 3+ , LiAIF 4 : Mn 2+ , LiAl 5 O 8 Pe 3+ , LiAIO 2 Pe 3+ , LiAIO 2 : Mn 2+ , LiAl 5 O 8 : Mn 2+ , Li 2 CaP 2 O 7 : Ce 3+ , Mn 2+ , LiCeBa 4 Si 4 Oi 4 IMn 2+ , LiCeSrBa 3 Si 4 O 4 ) Mn 2+ , LilnO 2 : Eu 3+ , LilnO 2 : Sm 3+ , LiLaO 2 : Eu 3+ , LuAIO 3 : Ce 3+ , (Lu, Gd) 2 SiO 5 : Ce 3+ , Lu 2 SiO 5 ) Ce 3+ , Lu 2 Si 2 O 7 ) Ce 3+ , LuTaO 4 ) Nb 5 + , Lui -x Y x AIO 3 : Ce 3+ , MgAl 2 O 4 ) Mn 2+ , MgSrAl 0 Oi 7 ) Ce, MgB 2 O 4 ) Mn 2+ , MgBa 2 (PO 4 J 2 ) Sn 2+ , MgBa 2 (PO 4 ) 2 : U, MgBaP 2 O 7 ) Eu 2+ , MgBaP 2 O 7 : Eu 2+ , Mn 2+ , MgBa 3 Si 2 O 8 ) Eu 2+ , MgBa (SO 4 J 2 ) Eu 2+ , Mg 3 Ca 3 (PO 4 J 4 ) Eu 2+ , MgCaP 2 O 7 ) Mn 2+ , Mg 2 Ca (SO 4 J 3 ) Eu 2+ , Mg 2 Ca (SO 4 ) 3 Eu 2+ , Mn 2 , MgCeAl n O 19 ) Tb 3+ , Mg 4 (F) GeO 6 ) Mn 2+ , Mg 4 (F) (Ge 1 Sn) O 6 ) Mn 2+ , MgF 2 ) Mn 2 + , MgGa 2 O 4 ) Mn 2+ , Mg 8 Ge 2 OnF 2 ) Mn 4+ , MgS) Eu 2+ , MgSiO 3 ) Mn 2+ , Mg 2 SiO 4 ) Mn 2+ , Mg 3 SiO 3 F 4 ) Ti 4+ , MgSO 4 ) Eu 2+ , MgSO 4 ) Pb 2+ , MgSrBa 2 Si 2 O 7 ) Eu 2+ , MgSrP 2 O 7 ) Eu 2+ , MgSr 5 (PO 4 J 4 ) Sn 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Mg 2 Sr (SO 4 J 3 ) Eu 2+ , Mg 2 TiO 4 ) Mn 4+ , MgWO 4 , MgYBO 4 ) Eu 3+ , Na 3 Ce (PO 4 J 2 ) Tb 3+ , NaI) TI 1 Nai. 23 K 0th 42 Euo.i 2 TiSi 4 On: Eu 3+ , Nai. 23 K 0th 42 Euo.i 2 TiSi 5 Oi 3 xH 2 O: Eu 3+ , Nai. 29 K 0 . 46 Er 0 .o 8 TiSi 4 Oii: Eu 3+ , Na 2 Mg 3 Al 2 Si 2 O 10 ) Tb, Na (Mg 2- Mn x ) LiSi 4 O 10 F 2 : Mn, NaYF 4 ) Er 3+ , Yb 3+ , NaYO 2 ) Eu 3+ , P46 (70%) + P47 (30%), SrAh 2 O 19 ) Ce 3+ , Mn 2+ , SrAl 2 O 4 ) Eu 2+ , SrAl 4 O 7 ) Eu 3+ , SrAl 12 O 19 ) Eu 2+ , SrAl 2 S 4 ) Eu 2+ , Sr 2 B 5 O 9 Cl) Eu 2+ , SrB 4 O 7 ) Eu 2+ (F 1 Cl 1 Br) , SrB 4 O 7 ) Pb 2+ , SrB 4 O 7 ) Pb 2+ , Mn 2+ , SrB 8 O 13 ) Sm 2+ , Sr x Ba x ClzAl 2 O 4 -ZZ 2 : Mn 2+ , Ce 3+ , SrBaSiO 4 ) Eu 2+ , Sr (CI 1 Br 1 I) 2 ) Eu 2+ in SiO 2 , SrCl 2 ) Eu 2+ in SiO 2 , Sr 5 Cl (PO 4 ) 3 : Eu, Sr w F x B 4 O 6 5 : Eu 2+ , Sr w F x B y O z : Eu 2+ , Sm 2+ , SrF 2 ) Eu 2+ , SrGa 12 O 19 ) Mn 2+ , SrGa 2 S 4 ) Ce 3 + , SrGa 2 S 4 ) Eu 2+ , SrGa 2 S 4 ) Pb 2+ , SrIn 2 O 4 ) Pr 3+ , Al 3+ , (Sr, Mg) 3 (PO 4 ) 2 : Sn, SrMgSi 2 O 6 ) Eu 2+ , Sr 2 MgSi 2 O 7 ) Eu 2+ , Sr 3 MgSi 2 O 8 ) Eu 2+ , SrMoO 4 ) U 1 SrO-3B 2 O 3 : Eu 2+ , Cl, β-SrO- 3B 2 O 3 : Pb 2+ , β-SrO SB 2 O 3 : Pb 2+ , Mn 2+ , α-SrO-3B 2 O 3 : Sm 2+ , Sr 6 P 5 BO 20 ) Eu, Sr 5 ( PO 4 ) 3 CI: Eu 2+ , Sr 5 (PO 4 J 3 Cl: Eu 2+ , Pr 3+ , Sr 5 (PO 4 ) 3 Cl: Mn 2+ , Sr 5 (PO 4 ) 3 Cl: Sb 3+ , Sr 2 P 2 O 7 ) Eu 2+ , β-Sr 3 (PO 4 ) 2 : Eu 2+ , Sr 5 (PO 4 ) 3 F: Mn 2+ , Sr 5 (PO 4 ) 3 F: Sb 3+ , Sr 5 (PO 4 ) 3 F: Sb 3+, Mn 2+, Sr 5 (PO 4) 3 F: Sn 2+, Sr 2 P 2 O 7) Sn 2+, .beta. Sr 3 (PO 4) 2: Sn 2+, Sr ß-3 ( PO 4 ) 2 : Sn 2+ , Mn 2+ (Al) 1 SrS) Ce 3+ , SrS) Eu 2+ , SrS) Mn 2+ , SrS: Cu + , Na, SrSO 4 ) Bi, SrSO 4 ) Ce 3+ , SrSO 4 ) Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ , Sr 5 Si 4 O 10 Cl 6 ) Eu 2+ , Sr 2 SiO 4 : Eu 2+ , SrTiO 3 Pr 3+ , SrTiO 3 : Pr 3+ , Al 3+ , Sr 3 WO 6 : U, SrY 2 O 3 : Eu 3+ , ThO 2 : Eu 3+ , ThO 2 Pr 3+ , ThO 2 ) Tb 3+ , YAI 3 B 4 O 12 ) Bi 3+ , YAl 3 B 4 O 12 ) Ce 3+ , YAl 3 B 4 O 12 : Ce 3+ , Mn, YAl 3 B 4 O 12 ) Ce 3+ Jb 3+ , YAl 3 B 4 O. 12 ) Eu 3+ , YAl 3 B 4 O 12 : Eu 3+ , Cr 3+ , YAl 3 B 4 O 12 : Th 4+ , Ce 3+ , Mn 2+ , YAIO 3 : Ce 3+ , Y 3 Al 5 O 12 ) Ce 3+ , Y 3 Al 5 O 12 ) Cr 3+ , YAIO 3 : Eu 3+ , Y 3 Al 5 O 12 ) Eu 3 ', Y 4 Al 2 O 9 ) Eu 3+ , Y 3 Al 5 O 12 Mn 4+ , YAIO 3 : Sm 3+ , YAIO 3 Tb 3+ , Y 3 Al 5 O 12 Tb 3+ , YAsO 4 : Eu 3+ , YBO 3 : Ce 3+ , YBO 3 : Eu 3+ , YF 3 : Er 3+ , Yb 3+ , YF 3 : Mn 2+ , YF 3 : Mn 2+ , Th 4+ , YF 3 : Tm 3+ , Yb 3+ , (Y, Gd) BO 3 : Eu, (Y, Gd) BO 3 : Tb, (Y, Gd) 2 O 3 : Eu 3+ , Yi 34 Gd 0 6O O 3 (Eu 1 Pr), Y 2 O 3 : Bi 3+ , YOBr: Eu 3+ , Y 2 O 3 : Ce, Y 2 O 3 : Er 3+ , Y 2 O 3 : Eu 3+ (YOE), Y 2 O 3 : Ce 3+ , Tb 3 + , YOCl: Ce 3+ , YOCl: Eu 3+ , YOF: Eu 3+ , YOFTb 3+ , Y 2 O 3 : Ho 3+ , Y 2 O 2 SiEu 3+ , Y 2 O 2 SiPr 3+ , Y. 2 O 2 STb 3+ , Y 2 O 3 Tb 3+ , YPO 4 : Ce 3+ , YPO 4 : Ce 3+ , Tb 3+ , YPO 4 : Eu 3+ , YPO 4 : Mn 2+ Jh 4+ , YPO 4 : V 5+ , Y (P, V) O 4 : Eu, Y 2 SiO 5 : Ce 3+ , YTaO 4 , YTaO 4 : Nb 5+ , YVO 4 O y 3+ , YVO 4 : Eu 3+ , ZnAl 2 O 4 : Mn 2+ , ZnB 2 O 4 : Mn 2+ , ZnBa 2 S 3 : Mn 2+ , (Zn, Be) 2 SiO 4 : Mn 2+ , Zn 0 4 Cd 06 S: Ag, Zn 06 Cd 0.4 S: Ag, (Zn, Cd) S: Ag, Cl, (Zn, Cd) S: Cu, ZnF 2 : Mn 2+ , ZnGa 2 O 4 , ZnGa 2 O 4 : Mn 2+ , ZnGa 2 S 4 : Mn 2+ , Zn 2 GeO 4 : Mn 2+ , (Zn, Mg) F 2 : Mn 2+ , ZnMg 2 (PO 4 ) 2 : Mn 2+ , (Zn, Mg) 3 (PO 4 ) 2: Mn 2+, ZnO: Al 3+, Ga 3+, ZnO: Bi 3+, ZnO: Ga 3+, ZnO: Ga, ZnO-CdO: Ga, ZnO: S, ZnO: Se, ZnO: Zn, ZnS: Ag + , CI " , ZnSrAg 1 Cu 1 Cl, ZnS: Ag, Ni, ZnS: Au, In, ZnS-CdS (25-75), ZnS-CdS (50-50), ZnS-CdS (75-25), ZnS-CdS: Ag, Br 1 Ni, ZnS-CdS: Ag + , Cl, ZnS-CdS: Cu, Br, ZnS-CdS: Cu, l, ZnSrCl " , ZnS: Eu 2+ , ZnS: Cu, ZnS: Cu + , Al 3+ , ZnS: Cu + , Cr, ZnS: Cu, Sn, ZnS: Eu 2+ , ZnS: Mn 2+ , ZnS: Mn, Cu, ZnS: Mn 2+ Je 2+ , ZnS: P, ZnS: P 3 " , CI " , ZnSrPb 2+ , ZnS: Pb 2+ , CI " , ZnS: Pb, Cu, Zn 3 (PO 4 ) 2 : Mn 2+ , Zn 2 SiO 4 : Mn 2+ , Zn 2 SiO 4 : Mn 2+ , As 5+ , Zn 2 SiO 4 : Mn, Sb 2 O 2) Zn 2 SiO 4 : Mn 2+ , P, Zn 2 SiO 4 Ti 4+ , ZnS: Sn 2+ , ZnS: Sn, Ag, ZnS: Sn 2+ , Li + , ZnSTe 1 Mn, ZnS-ZnTe: Mn 2+ , ZnSe: Cu + , Cl, ZnWO 4
Gemäß einer weiteren Auswahlliste handelt es sich bei dem Leuchtstoff vorzugsweise um mindestens eine Verbindung M'2O3:MM mit M1 = Y1 Sc, I Gd, Lu und M11 = Eu, Pr, Ce, Nd, Tb, Dy, Ho, Er, Tm, Yb.According to a further selection list is at the phosphor is preferably at least one compound M '2 O 3: M M M 1 = Y 1 Sc, I Gd, Lu and M 11 = Eu, Pr, Ce, Nd, Tb, Dy , Ho, Er, Tm, Yb.
Gemäß einer weiteren Auswahlliste handelt es sich bei dem Leuchtstoff vvoorrzzuuggsswweeiissee uumm mmiinncdestens eine Verbindung MmMlvOF oder MMlvF3 mit M1", Mιv = Eu1 Gd, Tb.According to another list of choices, the phosphor vvoorrzzuuggsswweeiissee uumm mmiinncstesten is a compound M m M lv OF or M M lv F 3 with M 1 ", M ιv = Eu 1 Gd, Tb.
Derartige Leuchtstoffe sind entweder im Handel erhältlich oder können nach, aus der Literatur, bekannten Herstellverfahren erhalten werden. Die Herstellung der fluorid- und oxifluorid-haltigen Leuchtstoffe wird z.B. in G. Malandrino et al. Synthesis, characterisation, and mass-transport properties of two novel gadolinium(lll) hexafluoroacetylacetonate polyether adducts: promising precursors for MOCVD of GdF3 films. Chem. Mater. 1996, 8, 1292-1297 beschrieben.Such phosphors are either commercially available or can be obtained by, from the literature, known manufacturing processes. The preparation of the fluoride and oxifluoride-containing phosphors is described, for example, in G. Malandrino et al. Synthesis, characterization, and mass-transport properties of two novel gadolinium (III) hexafluoroacetylacetonate polyethers adducts: promising precursors for MOCVD of GdF 3 films. Chem. Mater. 1996, 8, 1292-1297.
In einer bevorzugten Verfahrensvariante wird der Leuchtstoff insbesondere bei fluorid- und/oder oxifluoridhaltigen Leuchtstoffen über einen flüchtigen Precursor bestehend aus einer Komplexverbindung aus der Klasse der Diketonate MLL1L" mit M = Eu1 Gd, Tb und L, L1, L11 =Diketonatoliganden der allgemeinen FormelIn a preferred process variant, the phosphor is in particular fluoride and / or oxifluoridhaltigen phosphors via a volatile precursor consisting of a complex compound of the class of diketonates MLL 1 L "with M = Eu 1 Gd, Tb and L, L 1 , L 11 Diketonato ligands of the general formula
wobeiin which
L, L1 und L11 identisch oder verschieden voneinander sein können,L, L 1 and L 11 may be identical or different from each other,
R, R1 und R" -H, -Alkyl, -Phenyl, -Benzyl, -Naphtyl, - Pyridyl, -Furyl, -R, R 1 and R "are -H, -alkyl, -phenyl, -benzyl, -naphthyl, -pyridyl, -furyl, -
Thenyl, Fluoralkyl, -Perfluoralkyl,Thenyl, fluoroalkyl, perfluoroalkyl,
R, R1 und R11 identisch oder verschieden voneinander sein können mit derR, R 1 and R 11 may be identical or different from each other with the
Bedingung, das sie nicht alle gemeinsam -H sein können, sowie weiteren co-Liganden, die vorzugsweise mehrzähnig sind, eingesetzt wird.Condition that they can not all be together -H, and other co-ligands, which are preferably polydentate, is used.
Der Einsatz dieser, vorzugsweise fluorhaltigen, Diketonato-Komplexe als Precursor für die Leuchtstoffe hat den Vorteil, dass sie in folgenden Schritten thermolytisch oder photolytisch oder durch eine Kombination von beiden Methoden vollständig zunächst zu den entsprechenden Fluoriden, bei Wahl einer entsprechenden Temperatur und Gasatmosphäre (z.B. O2, hhO-gesättigte Luft) auch zu den Oxifluoriden zersetzt werden können. Besonders die Oxifluoride und Mischungen aus Oxifluoriden und Fluoriden erweisen sich hinsichtlich ihrer optischen Eigenschaften als vorteilhaft. Insbesondere bevorzugt ist es, wenn als Diketonatoliganden L1 L1, L11 in der Formel I Hexafluoroacteylaceton, Phenyltrifluoracetylaceton oder Thenyl- trifluoracetylaceton eingesetzt werden.The use of these, preferably fluorine-containing, diketonato complexes as precursor for the phosphors has the advantage that they in the following steps thermolytically or photolytically or by a combination of both methods completely first to the corresponding fluorides, upon selection of a corresponding temperature and gas atmosphere (eg O 2 , hhO-saturated air) can also be decomposed to the oxifluorides. In particular, the oxifluorides and mixtures of oxifluorides and fluorides prove to be advantageous in terms of their optical properties. It is particularly preferred if hexafluoroacetylacetone, phenyltrifluoroacetylacetone or thenyltrifluoroacetylacetone are used as the diketonato ligands L 1 L 1 , L 11 in the formula I.
Erfindungsgemäß ist es ferner bevorzugt, wenn die Diketonato-Komplexe zusätzlich noch mehrzähnige co-Liganden enthalten, wobei diese als koordinierendes Atom Sauerstoff und/oder Stickstoff aufweisen.According to the invention, it is further preferred if the diketonato complexes additionally contain multidentate co-ligands, these having oxygen and / or nitrogen as the coordinating atom.
Diese co-Liganden sind verantwortlich für einen erhöhten Dampfdruck und somit größere Flüchtigkeit der Komplexe, die dadurch als wohldefinierteThese co-ligands are responsible for an increased vapor pressure and thus greater volatility of the complexes, which thereby defines them as well-defined
Precursoren in den Kavitäten der invertierten Opale eingelagert werden können.Precursors can be stored in the cavities of the inverted opals.
Besonders bevorzugt werden dabei zwei- oder dreizähnige co-Liganden wie z.B. Bipyridine, Bipyridin-N-oxide, Phenanthroline oder Polyether eingesetzt.Particularly preferred are bidentate or tridentate co-ligands, e.g. Bipyridine, bipyridine N-oxides, phenanthrolines or polyether used.
Die aus den Diketonato-Komplexen bestehenden Leuchtstoff-Precursoren werden dann durch Thermolyse und/oder Photolyse ganz oder teilweise in Fluoride oder Oxifluoride der Seltenen Erden umgewandelt. Gegenüber der reinen Thermolyse ist eine Kombination aus Photolyse und Thermolyse erfindungsgemäß bevorzugt, da letztere Methode zu noch höheren Emissionsintensitäten der angeregten Leuchtstoffe führt.The phosphor precursors consisting of the diketonato complexes are then converted completely or partially into fluorides or oxifluorides of the rare earths by thermolysis and / or photolysis. Compared to pure thermolysis, a combination of photolysis and thermolysis is preferred according to the invention, since the latter method leads to even higher emission intensities of the excited phosphors.
Die Thermolysetemperatur muss unterhalb der Temperatur liegen, bei der die Struktur des inversen Opals kollabiert. Diese Temperatur liegt z.B. bei inversen Opalen aus Siliciumdioxid zwischen 600 und 8000C, bei entsprechenden Materialien aus Zirkonium- oder Aluminiumoxiden bei > 10000C.The temperature of the thermolysis must be below the temperature at which the structure of the inverse opal collapses. This temperature is for example inverse opals of silica between 600 and 800 0 C, with corresponding materials of zirconium or aluminum oxides at> 1000 0 C.
Gemäß dieser Aufgabenstellung ist ein weiterer Gegenstand der vorliegenden Erfindung ein Beleuchtungsmittel enthaltend mindestens eine Lichtquelle, welches dadurch gekennzeichnet ist, dass es mindestens ein photonisches Material, hergestellt nach dem erfindungsgemäßen Verfahren, enthält.According to this task, a further subject of the present invention is a lighting means comprising at least one light source, which is characterized in that it comprises at least one photonic material prepared by the process of the invention contains.
Bei dem Beleuchtungsmittel handelt es sich in bevorzugten Ausführungsformen der vorliegenden Erfindung um eine Leuchtdiode (LED), eine organische Leuchtdiode (OLED), eine polymere Leuchtdiode (PLED) oder eine Fluoreszenzlampe.In the preferred embodiments of the present invention, the illumination means is a light-emitting diode (LED), an organic light-emitting diode (OLED), a polymeric light-emitting diode (PLED) or a fluorescent lamp.
Für die erfindungsgemäß bevorzugte Anwendung in Leuchtdioden ist es dabei vorteilhaft, wenn Strahlung ausgewählt aus dem Wellenlängenbereich von 250 bis 500 nm in dem photonischen Material gespeichert wird.For the preferred use according to the invention in light-emitting diodes, it is advantageous if radiation selected from the wavelength range of 250 to 500 nm is stored in the photonic material.
Zu den blauen bis violetten Leuchtdioden, die für die hier beschriebene Erfindung besonders geeignet sind, gehören Halbleiterbauteile auf GaN- Basis (InAIGaN). Geeignete GaN-Halbleitermaterialien zur Herstellung Licht-emittierender Komponenten werden durch die allgemeine Formel InjGajAlkN beschrieben, wobei 0 < i, 0 < j, 0 < k und i+j+k=1. Zu diesen Nitrid-Halbleitermaterialien gehören also auch Stoffe wie IndiumGalliumNitrid und GaN. Diese Halbleitermaterialien können mit Spuren weiterer Stoffe dotiert sein, beispielsweise um die Intensität zu erhöhen oder die Farbe des emittierten Lichts nachzujustieren. Auch Leuchtdioden auf Zinkoxid-, Zinkselenid- und Siliciumcarbid-Basis können erfindungsgemäß eingesetzt werden.The blue to violet light-emitting diodes which are particularly suitable for the invention described here include GaN-based semiconductor devices (InAIGaN). Suitable GaN semiconductor materials for producing light-emitting components are described by the general formula InjGa j Al k N, where 0 <i, 0 <j, 0 <k and i + j + k = 1. These nitride semiconductor materials also include substances such as indium gallium nitride and GaN. These semiconductor materials may be doped with traces of other substances, for example to increase the intensity or readjust the color of the emitted light. Also light-emitting diodes based on zinc oxide, zinc selenide and silicon carbide can be used according to the invention.
Laserdioden (LDs) sind in ähnlicher Weise aus einer Anordnung von GaN- Schichten aufgebaut. Herstellverfahren für LEDs und LDs sind Fachleuten auf diesem Gebiet wohlbekannt.Laser diodes (LDs) are similarly constructed of an array of GaN layers. Fabrication methods for LEDs and LDs are well known to those skilled in the art.
Mögliche Konfigurationen, bei denen eine photonische Struktur mit einer Leuchtdiode oder einer Anordnung von Leuchtdioden gekoppelt werden kann, sind in einem Halterahmen oder auf der Oberfläche montierte LEDs. Derartige photonische Strukturen sind in allen Konfigurationen von Beleuchtungssystemen nützlich, die eine Primärstrahlungsquelle enthalten, einschließlich, aber nicht beschränkt auf, Entladungslampen, Fluoreszenzlampen, LEDs, LDs (Laserdioden), OLEDs und Röntgenröhren. In diesem Text umfasst der Ausdruck „Strahlung" Strahlung im UV- und IR-Bereich und im sichtbaren Bereich des elektromagnetischen Spektrums. Unter den OLEDs kann insbesondere die Verwendung von PLEDs - OLEDs mit polymeren elektroluminescenten Verbindungen - bevorzugt sein.Possible configurations in which a photonic structure can be coupled to a light emitting diode or an array of light emitting diodes are in a support frame or surface mounted LEDs. Such photonic structures are useful in all configurations of lighting systems that include a primary radiation source, including, but not limited to, discharge lamps, fluorescent lamps, LEDs, LDs (laser diodes), OLEDs, and x-ray tubes. In this text, the term "radiation" includes radiation in the UV and IR range and in the visible range of the electromagnetic spectrum. Among the OLEDs, in particular the use of PLEDs-OLEDs with polymeric electroluminescent compounds-may be preferred.
Ein Beispiel für eine Konstruktion eines solchen Beleuchtungssystems ist ausführlich in EP 050174853 (Merck Patent GmbH) beschrieben, deren Offenbarung ausdrücklich zum Inhalt der vorliegenden Anmeldung gehört.An example of a construction of such an illumination system is described in detail in EP 050174853 (Merck Patent GmbH), the disclosure of which is expressly included in the content of the present application.
Die folgenden Beispiele sollen die vorliegende Erfindung verdeutlichen. Sie sind jedoch keinesfalls als limitierend zu betrachten. Alle Verbindungen oder Komponenten, die in den Zubereitungen verwendet werden können, sind entweder bekannt und käuflich erhältlich oder können nach bekannten Methoden synthetisiert werden. The following examples are intended to illustrate the present invention. However, they are by no means to be considered limiting. Any compounds or components that can be used in the formulations are either known and commercially available or can be synthesized by known methods.
BeispieleExamples
Beispiel 1 : Herstellung einer photonischen Hohlraumstruktur mit SiO2-Wand und Stopband im blau-grünen Bereich des SpektrumsExample 1 Production of a Photonic Cavity Structure with an SiO 2 Wall and Stopband in the Blue-Green Region of the Spectrum
Zunächst werden monodisperse PMMA-Nanokugeln hergestellt. Dies geschieht mit Hilfe einer emulgatorfreien, wässrigen Emulsionspolymerisation. Dazu wird ein 2-l-Doppelmantelrührgefäß mit Ankerrührer (300 U/min Rührerdrehzahl) und Rückflusskühler mit 1260 ml deionisiertem Wasser und 236 ml Methylmethycrylat beschickt und die Mischung auf 80°C temperiert. In die Mischung wird 1 h lang schwach Stickstoff eingeleitet, welches über ein Überdruckventil auf dem Rückflusskühler entweichen kann, bevor 1 ,18 g Azodiisobutyramidindihydrochlorid als Radikalinitiator hinzugegeben wird. Die Bildung der Latexpartikel kann durch die sofort einsetzende Trübung erkannt werden. Die Polymerisationsreaktion wird thermisch verfolgt, wobei ein leichtes Ansteigen der Temperatur durch die Reaktionsenthalpie beobachtet wird. Nach 2 Stunden hat sich die Temperatur wieder auf 800C stabilisiert, wodurch das Ende der Reaktion angezeigt wird. Nach Abkühlen wird die Mischung über Glaswolle filtriert. Die Untersuchung der eingetrockneten Dispersion mit dem SEM zeigt einheitliche, kugelförmige Partikel eines mittleren Durchmessers von 317 nm.First, monodisperse PMMA nanospheres are produced. This is done by means of an emulsifier-free, aqueous emulsion polymerization. For this purpose, a 2-l Doppelmantelrührgefäß with anchor stirrer (300 rpm stirrer speed) and reflux condenser with 1260 ml of deionized water and 236 ml Methylmethycrylat charged and the mixture is heated to 80 ° C. Nitrogen is sparingly introduced into the mixture for 1 h, which can escape via a pressure relief valve on the reflux condenser before 1.18 g of azodiisobutyramidine dihydrochloride are added as a free radical initiator. The formation of the latex particles can be recognized by the onset of turbidity. The polymerization reaction is followed thermally, with a slight increase in temperature being observed by the reaction enthalpy. After 2 hours, the temperature has stabilized again at 80 0 C, indicating the end of the reaction. After cooling, the mixture is filtered through glass wool. Examination of the dried dispersion with the SEM shows uniform, spherical particles of average diameter 317 nm.
Diese Kugeln werden als Templat zur Herstellung der photonischen Struktur verwendet. Hierzu werden 10 g getrocknete PMMA-Kugeln in deionisiertem Wasser aufgeschlämmt und über einem Büchnertrichter abgesaugt.These spheres are used as templates for the preparation of the photonic structure. For this purpose, 10 g of dried PMMA balls are slurried in deionized water and filtered with suction through a Buchner funnel.
Variante: Alternativ wird die aus der Emulsionspolymerisation resultierende Dispersion direkt geschleudert oder zentrifugiert, um die Partikel geordnet absetzen zu lassen, die überstehende Flüssigkeit entfernt und der Rückstand, wie nachfolgend beschrieben, weiter verarbeitet.Variant: Alternatively, the dispersion resulting from the emulsion polymerization is directly spun or centrifuged to order the particles to settle, the supernatant liquid removed and the residue, as described below, further processed.
Weitere Variante: Alternativ kann die aus der Emulsionspolymerisation resultierende Dispersion oder Sedimentation der Kugeln in der Dispersion auch langsam eingedampft werden. Weitere Verarbeitung wie nachfolgend beschrieben.Another variant: Alternatively, the dispersion or sedimentation of the spheres in the dispersion resulting from the emulsion polymerization can also be slowly evaporated. Further processing as described below.
Der Filterkuchen wird mit 10 ml einer Precursorlösung, bestehend aus 3 ml Ethanol, 4 ml Tetraethoxysilan, 0,7 ml HCl konz in 2 ml deionisiertem Wasser, unter Aufrechterhaltung des Saugvakuums benetzt. Nach Abschalten des Saugvakuums wird der Filterkuchen für 1 h getrocknet und danach in einem Korundbehälter in einem Rohrofen an Luft kalziniert. Die Kalzinierung erfolgt nach den folgenden Temperaturrampen: a) in 2h von RT auf 1000C Temperatur, 2 h bei 1000C halten. b) in 4h von 100°C auf 350°C Temperatur, 2 h bei 3500C halten. c) in 3h von 350°C auf 550°C Temperatur. d) das Material wird weitere 14 Tage bei 55O0C behandelt, anschließend e) mit 10°C/min von 550°C auf RT ( in 1 h von 550°C auf RT) abgekühlt.The filter cake is wetted with 10 ml of a precursor solution consisting of 3 ml of ethanol, 4 ml of tetraethoxysilane, 0.7 ml of concentrated HCl in 2 ml of deionized water while maintaining the suction vacuum. After switching off the suction vacuum, the filter cake is dried for 1 h and then calcined in air in a corundum container in a tube furnace. The calcination is carried out according to the following temperature ramps: a) keep in 2h from RT to 100 0 C temperature, 2 h at 100 0 C. b) in 4 hours from 100 ° C to 350 ° C temperature, 2 h at 350 0 C. c) in 3 h from 350 ° C to 550 ° C temperature. d) the material is treated for another 14 days at 55O 0 C, then e) at 10 ° C / min from 550 ° C to RT (in 1 h from 550 ° C to RT) cooled.
Das resultierende inverse Opalpulver besitzt einen mittleren Porendurchmesser von ca. 275 nm (vgl. Fig. 1). Die Pulverteilchen des inversen Opals haben eine unregelmäßige Form mit einem sphärischen Äquivalentdurchmesser von 100 bis 300 μm. Die Hohlräume haben einen Durchmesser von etwa 300 nm und sind untereinander durch etwa 60 nm große Öffnungen verbunden.The resulting inverse opal powder has an average pore diameter of about 275 nm (see Fig. 1). The powder particles of the inverse opal have an irregular shape with a spherical equivalent diameter of 100 to 300 μm. The cavities have a diameter of about 300 nm and are interconnected by about 60 nm openings.
Beispiel 2: Gasphasenbeladung eines inversen Opals mit Y2O3:Eu3+ Example 2: Gas phase loading of an inverse opal with Y 2 O 3 : Eu 3+
Es wird eine MOCVD-Anlage verwendet, bestehend aus einer Verdampferkammer (mit Inertgaseinleitung von Stickstoff), welche auf eine Temperatur von > 2000C erhitzt werden kann und einem Rohrofen mit einem Quarzglasrohr, in dem sich ein Schiffchen befindet für die Aufnahme des inversen Opalpulvers und nach dem Ofen zwei mittels flüssigem Stickstoff gekühlten Kühlfallen und einer dahinter geschalteten Vakuumpumpe (öldrehschieberpumpe).It is a MOCVD plant used, consisting of an evaporator chamber (with inert gas introduction of nitrogen), which on a Temperature of> 200 0 C can be heated and a tube furnace with a quartz glass tube in which there is a boat for receiving the inverse opal powder and after the furnace two cooled by liquid nitrogen cold traps and a vacuum pump connected behind (rotary vane pump).
Die Verdampfereinheit wird mit den beiden Precursoren 2 g (0.052 mol) Yttrium(lll)-acetylacetonat und 0.02 g (10"5 mol) Europium(lll)acetyl- acetonat (Verhältnis von 99:1) befüllt. Danach wird der Rohrofen, in dem sich in dem Schiffchen 200 mg getrocknetes inverses Opalpulver aus SiO2 befinden, auf eine Temperatur von 5000C temperiert und die Vakuumpumpe aktiviert. Anschließend wird im statischen oder dynamischen Vakuum die flüchtige Precursormischung in den inversen Opal infiltriert und darin zum Y2O3: Eu thermisch umgesetzt. Bezüglich des letzten Verfahrenschrittes kann alternativ auch im dynamischen Vakuum unter Einleitung von Stickstoffträgergas die flüchtige Precursorenmischung in den inversen Opal infiltriert und darin zum Y2O3:Eu thermisch umgesetzt werden.The evaporator unit is charged with the two precursors 2 g (0.052 mol) of yttrium (III) acetylacetonate and 0.02 g (10 "5 mol) of europium (III) acetylacetonate (ratio of 99: 1) which in the shuttle 200 mg of dried inverse opal powder of SiO 2 are provided, heated to a temperature of 500 0 C and the vacuum pump activated. Subsequently, in the static or dynamic vacuum infiltrated the volatile precursor mixture in the inverse opal and therein for Y 2 O 3 With regard to the last process step, the volatile precursor mixture may alternatively be infiltrated into the inverse opal and thermally converted into Y 2 O 3 : Eu in a dynamic vacuum with introduction of nitrogen carrier gas.
Beispiel 3: Gasphasenbeladung eines inversen Opals mit ß- Diketonato-Komplexen der Seltenen Erden (z.B. gemischter Eu34VGd3+- Komplex)Example 3: Gas phase loading of an inverse opal with β-diketonato complexes of the rare earths (eg mixed Eu 34 VGd 3+ complex)
EuxGd(I _x)(hfa)a -digly (x = 0 - 1 , hfa = hexafluoroacetylaceton, digly = Diethylenglycoldimethylether) wird in Analogie zu [1] (Gd(hfa)a digly) hergestellt.Eu x Gd ( I- x) (hfa) a -digly (x = 0-1, hfa = hexafluoroacetylacetone, digly = diethylene glycol dimethyl ether) is prepared in analogy to [1] (Gd (hfa) a digly).
0,05 - 0,2 g inverser Opal werden im Vakuum (10"3 mbar) bei 250 0C über 3 Stunden getrocknet, dann in einer Glasampulle (Volumen 25 ml) unter Argon mit einer Menge von 0,25 - 1 g EuxGd(I _x)(hfa)a digly versetzt. Die Ampule wird sodann unter Vakuum (10"3 mbar) abgeschmolzen und über 15 Stunden auf 120 0C erhitzt. 0.05-0.2 g of inverse opal are dried in vacuo (10 -3 mbar) at 250 ° C. for 3 hours, then in a glass ampoule (volume 25 ml) under argon with an amount of 0.25-1 g of Eu x Gd (I- x) (hfa) a digly The ampoule is then melted under vacuum (10 -3 mbar) and heated to 120 0 C over 15 hours.
Die so erhaltenen Produkte sind exemplarisch für eine Zusammensetzung von EuO iGdo 9(hfa)3 • digly in Abb 1 dargestellt.The products thus obtained are shown by way of example for a composition of Eu O iGdo 9 (hfa) 3 • digly in FIG.
* Die Maximalmenge des Komplexes berechnet sich nach' pKompie* • Vfrei mit pκompieχ= 1 ,912 g/ml [1], Vfreι = freies Volumen des ausgewogenen inversen Opals * The maximum amount of the complex is calculated according to 'p K o m pie * • V fre i with pκompieχ = 1, 912 g / ml [1], V fre = free volume of the balanced inverse opal
[1] G Malandπno et al Synthesis, characteπsation, and mass-transport properties of two novel gadolιnιum(lll) hexafluoroacetylacetonate polyether adducts promisiπg precursors for MOCVD of GdF3 films Chem Mater 1996, 8, 1292-1297 Beispiel 4: Herstellung der Fluoride der Seltenen Erden in Kavitäten des inversen Opals[1] G Malandπno et al Synthesis, characterization, and mass-transport properties of two novel gadolinium (III) hexafluoroacetylacetonates. Polyether adducts promisiπg precursors for MOCVD of GdF 3 films Chem Mater 1996, 8, 1292-1297 Example 4: Preparation of the rare earth fluorides in cavities of the inverse opal
Der nach Beispiel 3 hergestellte mit ß-Diketonat-Komplexen beladene inverse Opal wird in einen auf 400 - 600 0C vorgeheizten Röhrenofen verbracht und unter trockenen Sauerstoff für 0,5 - 2 h in diesem Temperaturregime erhitzt. Die Zersetzung kann mit vergleichbaren Resultaten auch in einem auf 550 0C vorgeheizten Kammerofen erzielt werden. Die Zersetzung unter Luft führt allerdings zu beträchtlich geringeren Emissionsintensitäten (s. Abb. 2 b).The prepared according to Example 3 with ß-diketonate complexes loaded inverse opal is in a 400 - 600 0 C spent a preheated tube furnace and dry oxygen for 0.5 - 2 h heated in this temperature regime. The decomposition can be achieved with comparable results in a preheated to 550 0 C chamber furnace. However, decomposition in air leads to considerably lower emission intensities (see Fig. 2 b).
Ein aus 5.5 mmol Euo,iGdo,g(hfa)a digly pro 1 g SiO2 nhkO und bei 600 0C zersetztes Produkt weist nach Analyse mittels energiedispersiver Röntgenfluoreszenzanalyse (EDX) folgende Zusammensetzung entsprechend LnFa -6.4SiO2 nH2O (Ln : Si = 1 : 6.4). Das zugehörige Röntgendiffraktogramm (XRD) weist hiernach hexagonales LnF3 aus. Die Bildung der Fluoride ergibt sich neben den XRD - Befunden weiterhin aus den für Europiumoxifluoride typischen Emissionspektren der Verbindungen (s. Abb. 2). A mixture consisting of 5.5 mmol EUO I GDO, g (hfa) a digly per 1 g of SiO 2 nhkO and decomposed at 600 0 C product has after analysis by energy dispersive X-ray fluorescence analysis (EDX) following composition according LnFa -6.4SiO 2 nH 2 O (Ln: Si = 1: 6.4). The associated X-ray diffractogram (XRD) indicates hexagonal LnF 3 . In addition to the XRD findings, the formation of fluorides continues to result from the emission spectra of the compounds typical for europium oxifluorides (see Fig. 2).
Beispiel 5: Herstellung der Oxifluoride der Seltenen Erden in Kavitäten des inversen OpalsExample 5: Preparation of the rare earth oxifluorides in cavities of the inverse opal
Der, nach Beispiel 3, mit ß-Diketonat-Komplexen beladene inverse Opal wird in einen auf 700 0C vorgeheizten Kammerofen verbracht und innerhalb 0,5 - 2 h bei dieser Temperatur vorgeheizt, sowie weitere 3 - 2O h bei 600 0C nachkalziniert.The, in Example 3, loaded with ß-diketonate complexes inverse opal is placed in a preheated to 700 0 C chamber furnace and preheated within 0.5 - 2 h at this temperature, and calcined at 600 0 C for a further 3 -.
Die Umwandlung kann ebenfalls aus den entsprechenden Fluoriden erfolgen (s. Beispiel 4).The conversion can also be carried out from the corresponding fluorides (see Example 4).
Im XRD ist nach der Vorheizstufe (700 0C) eine Mischung LnOF und LnF3 zu erkennen. Nach 5-stündigem Nachkalzinieren wird tetragonales LnOF, nach 15-stündigem Nachkalzinieren rhomboedrisches LnOF gefunden (XRD). Die Bildung der Oxifluoride ergibt sich neben den XRD - Befunden weiterhin aus den für Europiumoxifluoride typischen Emissionspektren der Verbindungen (Abb.3a). Analytisch (EDX) handelt es sich um ein Produkt der Zusammensetzung LnOF • 3.2 SiÜ2 * nh^O (Ln :Si = 1 : 3.2; Ausgangszusammensetzung ist 5.5 mmol Eu0.iGdo g(hfa)3 • digly pro 1 g SiO2 * nH2O) (Abb. 5).The XRD shows a mixture of LnOF and LnF 3 after the pre-heating stage (700 0 C). After 5 hours of recalcining, tetragonal LnOF is found, after 15 hours of calcination with rhombohedral LnOF (XRD). In addition to the XRD findings, the formation of the oxifluorides continues to result from the emission spectra of the compounds typical of europiumoxifluorides (FIG. 3a). Analytical (EDX) is a product of the composition LnOF • 3.2SiO 2 * nh ^ O (Ln: Si = 1: 3.2; starting composition is 5.5 mmol Eu 0. iGdo g (hfa) 3 • digly per 1 g SiO 2 * nH 2 O) (Fig. 5).
Beispiel 6: Herstellung von Seltenerdoxifluoriden mit höheren Oxifluoridgehalt durch Mehrfachbeladungen des inversen OpalsExample 6: Preparation of rare earth oxyfluorides with higher oxyfluoride content by multiple loading of the inverse opal
0, 1 g der, wie in Beispiel 5 erhaltenen Oxifluorid-Probe (Ln:Si = 1 : 3,2) wird zur Vermeidung von Rehydratation umgehend aus dem heißen Ofen mit 0.1616 g (5.53 10'4 mol) Euo.iGdO 9(hfa)3 -digly versetzt und wie unter Beispiel 3 beschrieben in einer abgeschmolzenen Ampulle erneut beladen. Die Zersetzung der Komplexen erfolgt wie unter Beispiel 5 beschrieben. Die Mehrfachbeladungen können ebenfalls aus den entsprechenden Fluoriden erfolgen (s. Beispiel 4).0, 1 g of, as obtained in Example 5 oxyfluoride sample (Ln: Si = 1: 3.2) is used to avoid rehydration immediately from the hot furnace with 0.1616 g (5:53 10 -4 mol) Eu O o .iGd 9 (hfa) 3 -digly and re-loaded as described in Example 3 in a molten ampoule. The decomposition of the complexes is carried out as described in Example 5. The multiple loadings can likewise be carried out from the corresponding fluorides (see Example 4).
Analytisch (XRD) ergibt sich nun eine Zusammensetzung LnOF -2.3SiO2 *nH2O (Ln : Si = 1 : 2,3) erhalten. Die Erhöhung des Oxifluoridgehalts ist weiterhin an der erhöhten Emissionsintensität der Produkte erkenntlich (s. Abb. 3b).Analytical (XRD) results in a composition LnOF -2.3SiO 2 * nH 2 O (Ln: Si = 1: 2,3). The increase of the oxifluoride content is further indicated by the increased emission intensity of the products (see Fig. 3b).
Beispiel 7: Herstellung von Seltenerdoxifluoriden in inversen Opalen mit höherem Oxifluoridgehalt durch PhotolyseunterstützungExample 7: Preparation of rare earth oxyfluorides in inverse opals with higher oxyfluoride content by photolysis support
0,5-1 mm3 eines, wie in Beispiel 3 beschrieben, hergestellten, komplex- haltigen inversen Opals wird im Mörser vorsichtig zerkleinert (0,5-1 mm3), woraus eine ca. 1mm dünne Schicht erzeugt wird, die unter UV-Strahlung (150W UV-Lampe TQ-150) innerhalb 5 h photolysiert wird. Die weitere Zersetzung erfolgt bei 700 °C im vorgeheizten Ofen bei 7000C über 1 -20h. Die Erhöhung der Gehalte durch Photolyseunterstützung kann durch Wiederholung der Prozeduren gemäß Beispielen 3 bis 5 erzielt werden. Analytisch weist das Produkt eine Zusammensetzung entsprechend LnOF * 2SiO2 * nH2O auf (Ln : Si = 1 :2). Die Erhöhung des Oxifluoridgehalts ist an der erhöhten Emissionsintensität der Produkte erkenntlich (s. Abb. 3c).0.5-1 mm 3 of a complex-containing inverse opal prepared as described in Example 3 is carefully comminuted in a mortar (0.5-1 mm 3 ), from which an approx. 1 mm thin layer is produced, which is under UV Radiation (150W UV lamp TQ-150) is photolyzed within 5 h. The further decomposition takes place at 700 ° C in a preheated oven at 700 0 C for 1 -20h. The increase in levels by photolysis support can be achieved by repeating the procedures of Examples 3 to 5. Analytically, the product has a composition corresponding to LnOF * 2SiO 2 * nH 2 O (Ln: Si = 1: 2). The increase in the oxifluoride content is indicated by the increased emission intensity of the products (see Fig. 3c).
Beispiel 8: Herstellung von Seltenerdoxidfluoriden in inversen Opalen mit höherem Oxidfluoridgehalt durch vorgelagerten Liganden- austauschExample 8: Preparation of rare earth oxide fluorides in inverse opals with higher oxide fluoride content by upstream ligand exchange
Über den in einem Glasrohr befindlichen, ß-Diketonat-Komplex-haltigen, inversen Opal (0.5-1.5 g) wird in einem Glasrohr bei 80 0C über 5 h ein mit Trifluoroessigsäure gesättigter Sauerstoffstrom geleitet, wodurch eine Umwandlung zu Seltenerdtrifluoracetaten Ln(tfa)3 bewirkt wird (Ligandenaustausch). Die Umwandlung wird durch IR-Spektren, Lumineszenzspektren und DTG-Analyse verfolgt. Die Zersetzung der so erhaltenen Ln(tfa)3 Komplexen zu Fluoriden bzw. Oxyfluoriden wird wie zuvor im Kammerofen bei 500 0C bis 600 0C ohne Vorheizung innerhalb 20 h durchgeführt. About the in a glass tube, ß-diketonat complex-containing, inverse opal (0.5-1.5 g) is passed in a glass tube at 80 0 C for 5 h saturated with trifluoroacetic oxygen flow, whereby a conversion to rare earth trifluoroacetates Ln (tfa) 3 is effected (ligand exchange). The conversion is done by IR spectra, Luminescence spectra and DTG analysis tracked. The decomposition of the thus obtained Ln (tfa) 3 complexes to fluorides or oxyfluorides is carried out as before in the chamber furnace at 500 0 C to 600 0 C without preheating within 20 h.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines photonischen Materials mit regelmäßig angeordneten Kavitäten, enthaltend mindestens einen Leuchtstoff, dadurch gekennzeichnet, dass a) Opaltemplat-Kugeln regelmäßig angeordnet werden, b) die Kugelzwischenräume mit einem oder mehreren Precursoren für ein Wandmaterial gefüllt werden, c) das Wandmaterial gebildet wird und die Opaltemplat-Kugeln entfernt werden, d) der Leuchtstoff in die Kavitäten eingebracht wird, wobei flüchtige Precursoren für den Leuchtstoff mittels Gasphasen-Infiltrierung unter Ausnutzung von Porendiffusion in die Kavitäten des inversen Opals eingebracht werden, e) die flüchtigen Precursoren in einem anschließenden Schritt in den Leuchtstoff überführt werden.1. A process for producing a photonic material having regularly arranged cavities, comprising at least one phosphor, characterized in that a) opalt template spheres are arranged regularly, b) the interspaces between the spheres are filled with one or more precursors for a wall material, c) the wall material d) the phosphor is introduced into the cavities, volatile precursors for the phosphor being introduced by means of gas phase infiltration by utilizing pore diffusion into the cavities of the inverse opal, e) the volatile precursors in one subsequent step are transferred to the phosphor.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass im Schritt b) neben den Precursoren für das Wandmaterial zusätzlich ein oder mehrere Precursoren für Leuchtstoffe und/oder nanopartikuläre Leuchtstoffe in die Kugelzwischenräume gefüllt werden.2. The method according to claim 1, characterized in that in step b) in addition to the precursors for the wall material additionally one or more precursors for phosphors and / or nanoparticulate phosphors are filled in the ball gaps.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass es sich bei Schritt c) um eine Kalzinierung, vorzugsweise oberhalb 200 0C, insbesondere bevorzugt oberhalb 400 0C handelt.3. The method according to any one of claims 1 or 2, characterized in that it is a calcination, preferably above 200 0 C, more preferably above 400 0 C in step c).
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Precursoren für den Leuchtstoff bei Temperaturen oberhalb Raumtemperatur und vermindertem Druck flüchtig sind. 4. The method according to at least one of claims 1 to 3, characterized in that the precursors for the phosphor are volatile at temperatures above room temperature and reduced pressure.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Schritt d) der Precursor für den Leuchtstoff durch chemische Prozesse in die Gasphase (MOCVD-Verfahren) überführt wird.5. The method according to at least one of claims 1 to 4, characterized in that in step d) the precursor for the phosphor by chemical processes in the gas phase (MOCVD method) is transferred.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei Schritt e) um eine Kalzinierung, vorzugsweise oberhalb 2000C, insbesondere bevorzugt oberhalb 400 0C handelt, wobei zusätzlich noch ein Gas zugegeben werden kann.6. The method according to at least one of claims 1 to 5, characterized in that it is a calcination, preferably above 200 0 C, more preferably above 400 0 C in step e), wherein additionally a gas can be added.
7. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Wand des photonischen Materials im wesentlichen aus einem Oxid oder Mischoxid von Silicium, Titan, Zirkonium und/oder Aluminium, vorzugsweise aus Siliciumdioxid besteht.7. The method according to at least one of the preceding claims, characterized in that the wall of the photonic material consists essentially of an oxide or mixed oxide of silicon, titanium, zirconium and / or aluminum, preferably of silicon dioxide.
8. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Kavitäten des photonischen Materials einen Durchmesser im Bereich von 150 bis 600 nm aufweisen.8. The method according to at least one of the preceding claims, characterized in that the cavities of the photonic material have a diameter in the range of 150 to 600 nm.
9. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Kavitäten des photonischen Materials zu mindestens 1 Vol.-% und maximal zu 50 Vol.-% mit mindestens einem Leuchtstoff befüllt sind, wobei die Kavitäten vorzugsweise zu mindestens 3 Vol.-% und maximal zu 30 Vol.-% mit mindestens einem Leuchtstoff befüllt sind.9. The method according to at least one of the preceding claims, characterized in that the cavities of the photonic material are filled to at least 1 vol .-% and at most 50 vol .-% with at least one phosphor, wherein the cavities preferably at least 3 vol. -% and a maximum of 30 vol .-% are filled with at least one phosphor.
10.Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Leuchtstoff 5 bis 75 Gew.-% des photonischen Materials ausmacht, wobei der mindestens eine Leuchtstoff vorzugsweise 25 bis 66 Gew.-% des photonischen Materials ausmacht. 10.A method according to at least one of the preceding claims, characterized in that the at least one phosphor is 5 to 75 wt .-% of the photonic material, wherein the at least one phosphor preferably 25 to 66 wt .-% of the photonic material.
11.Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als photonisches Material ein Leuchtstoff bestehend aus einem Emitter für Strahlung im Bereich 550 bis 700 nm, wobei es sich um eine mit Europium, Samarium, Terbium oder Praseodym dotierte Seltenerdverbindung handelt, eingesetzt wird.11.A method according to at least one of the preceding claims, characterized in that the photonic material is a phosphor consisting of an emitter for radiation in the range 550 to 700 nm, which is a doped with europium, samarium, terbium or praseodymium rare earth compound used becomes.
12. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als Leuchtstoff mindestens eine Verbindung IvV2O3IM1 mit M1 = Y, Sc, La, Gd, Lu und M11 = Eu, Pr, Ce, Nd, Tb, Dy, Ho1 Er, Tm, Yb in den inversen Opal eingebaut wird.12. The method according to at least one of the preceding claims, characterized in that as the phosphor at least one compound IvV 2 O 3 IM 1 with M 1 = Y, Sc, La, Gd, Lu and M 11 = Eu, Pr, Ce, Nd, Tb, Dy, Ho 1 Er, Tm, Yb is incorporated into the inverse opal.
13. Verfahren nach mindestens einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass als Leuchtstoff mindestens eine Verbindung M'"MIVOF oder M"'MIVF3 mit M1", Mιv = Eu, Gd, Tb in den inversen Opal eingebaut wird.13. The method according to at least one of claims 1 to 11, characterized in that as phosphor at least one compound M '"M IV OF or M"' M IV F 3 with M 1 ", M ιv = Eu, Gd, Tb in the inverse opal is incorporated.
14. Verfahren nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass als flüchtiger Precursor für den Leuchtstoff mindestens eine Verbindung mit Komplexen aus der Klasse der Diketonate MLL1L" mit M = Eu1 Gd, Tb und L1 L1 , L11 = Diketonatoliganden der allgemeinen Formel I14. The method according to at least one of claims 1 to 11, characterized in that as volatile precursor for the phosphor at least one compound with complexes of the class of diketonate MLL 1 L "with M = Eu 1 Gd, Tb and L 1 L 1 , L 11 = diketonato ligands of the general formula I.
(I) wobei(I) where
L, L1 und L11 identisch oder verschieden voneinander sein können, R, R1 und R" -H, -Alkyl, -Phenyl, -Benzyl, -Naphtyl, - Pyridyl, -Furyl, -Thenyl,L, L 1 and L 11 may be identical or different, R, R 1 and R "are -H, -alkyl, -phenyl, -benzyl, -naphthyl, -pyridyl, -furyl, -thenyl,
-Fluoralkyl, -Perfluoralkyl, R1 R1 und R11 identisch oder verschieden voneinander sein können mit der-Fluoralkyl, perfluoroalkyl, R 1 R 1 and R 11 may be identical or different from each other with the
Bedingung, das sie nicht alle gemeinsam -H sein können, sowie weiteren co-Liganden, die vorzugsweise mehrzähnig sind, eingesetzt wird.Condition that they can not all be -H together, and other co-ligands, which are preferably polydentate, is used.
15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass als Diketonatoliganden L, L1 und l_" Hexafluoracetylaceton, Phenyltri acetylaceton oder Thenyltrifluoracetylaceton eingesetzt werden.15. The method according to claim 13, characterized in that are used as Diketonatoliganden L, L 1 and l_ "hexafluoroacetylacetone, phenyltri acetylacetone or Thenyltrifluoracetylacetone.
16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass als mehrzähnige co-Liganden zwei- oder dreizähnige Liganden aus der Gruppe der Bipyridine, Bipyridin-N-Oxide, Phenanthroline oder Polyether eingesetzt werden.16. The method according to claim 13, characterized in that are used as multidentate co-ligands bidentate or tridentate ligands from the group of bipyridines, bipyridine N-oxides, phenanthrolines or polyethers.
17. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Diketonato- Komplexe der Precursoren für den Leuchtstoff durch Thermolyse und/oder Photolyse ganz oder teilweise in Fluoride oder Oxifluoride der Seltenen Erden umgewandelt werden.17. The method according to claim 13, characterized in that the diketonato complexes of the precursors for the phosphor are completely or partially converted by thermolysis and / or photolysis into fluorides or oxifluorides of the rare earths.
18. Beleuchtungsmittel enthaltend mindestens eine Lichtquelle, dadurch gekennzeichnet, dass es mindestens ein photonisches Material, hergestellt nach einem Verfahren nach mindestens einem der Ansprüche 1 bis 17, enthält.18. Lighting means comprising at least one light source, characterized in that it contains at least one photonic material prepared by a process according to any one of claims 1 to 17.
19. Beleuchtungsmittel nach Anspruch 18, dadurch gekennzeichnet, dass es sich bei der Lichtquelle um ein IndiumAluminiumGalliumNitrid, insbesondere der Formel lniGajAlkN, wobei 0 < i, 0 < j, 0 < k, und i+j+k=1 handelt.Illuminating means according to claim 18, characterized in that the light source is an indium-aluminum gallium nitride, in particular of the formula I ni Ga J Al k N, where 0 <i, 0 <j, 0 <k, and i + j + k = 1 is.
20. Beleuchtungsmittel nach Anspruch 18 und/oder 19, dadurch gekennzeichnet, dass es sich bei der Lichtquelle um eine auf ZnO basierende Verbindung handelt. 20. Lighting means according to claim 18 and / or 19, characterized in that it is the light source is a ZnO-based compound.
21. Beleuchtungsmittel nach mindestens einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass es sich bei dem Beleuchtungsmittel um eine Leuchtdiode (LED), eine organische Leuchtdiode (OLED), eine polymere Leuchtdiode (PLED) oder eine Fluoreszenzlampe handelt. 21. Lighting means according to at least one of claims 18 to 20, characterized in that it is the illumination means to a light emitting diode (LED), an organic light emitting diode (OLED), a polymeric light emitting diode (PLED) or a fluorescent lamp.
EP07722983A 2006-03-22 2007-02-28 Gas phase infiltration of luminous substances into the pore system of inverse opals Withdrawn EP1997158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013055A DE102006013055A1 (en) 2006-03-22 2006-03-22 Gas-phase infiltration of phosphors into the pore system of inverse opals
PCT/EP2007/001733 WO2007107226A1 (en) 2006-03-22 2007-02-28 Gas phase infiltration of luminous substances into the pore system of inverse opals

Publications (1)

Publication Number Publication Date
EP1997158A1 true EP1997158A1 (en) 2008-12-03

Family

ID=38050041

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07722983A Withdrawn EP1997158A1 (en) 2006-03-22 2007-02-28 Gas phase infiltration of luminous substances into the pore system of inverse opals

Country Status (9)

Country Link
US (1) US20090242839A1 (en)
EP (1) EP1997158A1 (en)
JP (1) JP2009530452A (en)
KR (1) KR20090026250A (en)
CN (1) CN101405877A (en)
CA (1) CA2646580A1 (en)
DE (1) DE102006013055A1 (en)
TW (1) TW200801161A (en)
WO (1) WO2007107226A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007027671A1 (en) 2007-06-05 2008-12-11 Merck Patent Gmbh Luminescence activation of inverse opals through intricate multilayer structures
DE102007026492A1 (en) 2007-06-05 2008-12-11 Merck Patent Gmbh Inverse opals based on luminescent materials
KR100974629B1 (en) 2008-11-11 2010-08-10 국민대학교산학협력단 White LED device
JP5574646B2 (en) * 2009-09-09 2014-08-20 株式会社東芝 Amorphous light emitting material and light emitting element using amorphous light emitting material
CA2790696A1 (en) * 2010-02-23 2011-09-01 Franky So Microcavity oleds for lighting
TWI523278B (en) * 2011-08-05 2016-02-21 晶元光電股份有限公司 Wavelength conversion structure, manufacturing methods thereof, and lighting emitting device including the wavelength conversion structure
NL2008810C2 (en) * 2012-05-14 2013-11-18 Univ Delft Tech Electroluminescent composition.
WO2013171659A1 (en) * 2012-05-14 2013-11-21 Koninklijke Philips Electronics N.V. Electroluminescent compound comprising a metal-organic framework
DE102012212086A1 (en) * 2012-07-11 2014-01-16 Osram Opto Semiconductors Gmbh METHOD FOR PRODUCING A COMPONENT OF AN OPTOELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING AN OPTOELECTRONIC COMPONENT
TWI448538B (en) 2012-10-23 2014-08-11 Ind Tech Res Inst Phosphor and uv light emitting device utilizing the same
CN103146387B (en) * 2013-03-19 2015-04-08 山东大学 Process for preparing porous rare-earth luminescent material by freeze-drying method
CN105408102B (en) * 2013-06-28 2019-10-22 哈佛学院院长及董事 The functional material coated structure of high surface area
WO2016086204A1 (en) * 2014-11-26 2016-06-02 Jaiswal Supriya Materials, components, and methods for use with extreme ultraviolet radiation in lithography and other applications
DE102015106757A1 (en) 2015-04-30 2016-11-03 Osram Opto Semiconductors Gmbh Radiation-emitting optoelectronic component
US11192796B2 (en) 2016-04-01 2021-12-07 President And Fellows Of Harvard College Formation of high quality titania, alumina and other metal oxide templated materials through coassembly
JP6941600B2 (en) 2016-04-15 2021-09-29 株式会社小糸製作所 Nanocomposite and manufacturing method of nanocomposite
CN111447995A (en) 2017-09-29 2020-07-24 哈佛学院院长及董事 Enhanced catalytic materials with partially embedded catalytic nanoparticles
JP7244233B2 (en) * 2018-08-08 2023-03-22 東京インキ株式会社 Method for producing polymethyl methacrylate particles, method for producing colloidal crystals, and water suspension
CN112133811B (en) * 2019-06-25 2022-03-29 成都辰显光电有限公司 Display panel, display device and preparation method of display panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245848A1 (en) * 2002-09-30 2004-04-01 Merck Patent Gmbh Process for the production of inverse opal structures
EP1660415A2 (en) * 2003-09-04 2006-05-31 MERCK PATENT GmbH Use of core-shell particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007107226A1 *

Also Published As

Publication number Publication date
CA2646580A1 (en) 2007-09-27
WO2007107226A1 (en) 2007-09-27
US20090242839A1 (en) 2009-10-01
DE102006013055A1 (en) 2007-09-27
CN101405877A (en) 2009-04-08
TW200801161A (en) 2008-01-01
KR20090026250A (en) 2009-03-12
JP2009530452A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
WO2007107226A1 (en) Gas phase infiltration of luminous substances into the pore system of inverse opals
EP2401342B1 (en) Nitridosilicates co-doped with zirconium and hafnium
WO2007017049A1 (en) Photonic material with regularly arranged cavities
EP1989578A1 (en) Method for incorporating nanophosphors in microoptical structures
EP2616523B1 (en) Silicophosphate luminophores
EP2324096B1 (en) Codoped 1-1-2 nitrides
WO2008058620A1 (en) Phosphor body based on platelet-shaped substrates
EP2454340A1 (en) Co-doped silicooxynitrides
WO2013159857A1 (en) Silicate phosphors
EP2999767A1 (en) Phosphors
WO2014067609A1 (en) Eu-activated luminophores
WO2017092849A1 (en) Mn-activated phosphors
WO2018069195A1 (en) Mn4+-activated luminescence material as conversion luminescent material for led solid state light sources
WO2008148454A1 (en) Inverse opals on the basis of luminescent materials
WO2019053242A1 (en) Multi-component luminophores as color converters for solid-state light sources
EP3119852A1 (en) Europium or samarium-doped terbium molybdates
EP3728515B1 (en) Alkaline earth metal silicate luminophore and method for improving the long-term stability of an alkaline earth metal silicate luminophore
WO2008148453A1 (en) Luminescent activation of inverse opals by multi-layer structures contained in the walls
WO2014032760A1 (en) Method for producing europium-doped phosphors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091013