EP1994300A1 - Method for fault detection in an actuator - Google Patents

Method for fault detection in an actuator

Info

Publication number
EP1994300A1
EP1994300A1 EP07712278A EP07712278A EP1994300A1 EP 1994300 A1 EP1994300 A1 EP 1994300A1 EP 07712278 A EP07712278 A EP 07712278A EP 07712278 A EP07712278 A EP 07712278A EP 1994300 A1 EP1994300 A1 EP 1994300A1
Authority
EP
European Patent Office
Prior art keywords
actuator
measured
signal
movement
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07712278A
Other languages
German (de)
French (fr)
Inventor
Florian Schneider
Thomas JÄGER
Roland Mair
Bernd Apfelbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP1994300A1 publication Critical patent/EP1994300A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/51Relating safety
    • F16D2500/5108Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70605Adaptive correction; Modifying control system parameters, e.g. gains, constants, look-up tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/708Mathematical model
    • F16D2500/7082Mathematical model of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1284Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1288Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24083Detect if actuators are correct, react

Definitions

  • the invention relates to a method for Fehiererkennung on an actuator ator according to the closer defined in the preamble of claim 1.
  • a method for fault diagnosis on a Kuppiungsaktuator is known.
  • a manipulated variable is applied to an input of the Kuppiungsaktuators.
  • a corresponding electrical signal for the measured actuator position is generated by an sensor at an output of the Kuppiungsaktuators.
  • an actuator position to be expected is calculated by an actuator model unit and provided at the output of the actuator model unit.
  • the signals for the measured actuator position and the expected actuator position are compared with one another in a comparison unit.
  • the signal present at the output of the comparison unit is fed to a computing unit which generates a corresponding status signal at its output.
  • the arithmetic unit concludes, based on an evaluation algorithm, on a functioning coupling actuator and a functional sensor for determining the position of the coupling actuator. For large deviations between the signals for the measured and the expected actuator position is against to a fault of the clutch actuator and / or the sensor for determining the position of the clutch actuator closed.
  • the measured actuator position is compared with a model-based actuator position. Since the model for calculating the actuator position deviates from reality because, for example, the behavior of the system can not be modeled exactly, a deviation occurs between the actual and the calculated and thus expected position of the clutch actuator for each calculation step.
  • the output signal of the calibration unit which is formed from the measured and the calculated actuator position, is fed back to the input of the actuator model unit and evaluated.
  • a clutch model is usually based on the fact that the position change due to a valve control continuously calculated and this calculated size is integrated. Since this coupling model is calculated by a digital computer, position changes occur only at discrete times. These position changes refer to the period between two calculation steps. This makes it necessary to perform summation instead of integrating the position change. In order to be able to solve this equation with a digital computer, the differential equation must be converted into a difference equation. Since the coupling Modeli usually deviates from reality, because, for example, the behavior of the system can not be accurately modeled, results in each calculation step, a deviation between the actual and the calculated position of the clutch actuator. This shows that, in principle, there is a difference between the calculated position and the measured position, which accumulates over time.
  • the object of the present invention is to present a method for detecting faults on an actuator, which ensures reliable monitoring of the position of the actuator and eliminates the disadvantages of the prior art.
  • the object underlying the invention is achieved by a, including the characterizing features of the main claim exhibiting, generic method for error detection on an actuator.
  • a manipulated variable is applied simultaneously to an input of an actuator and to an input of a Modeilhen
  • the manipulated variable is generated by a control unit, for example, from the control unit of an automatic or automated manual transmission or an automated clutch.
  • expected actuator movements can be calculated for all possible manipulated variables for the actuator.
  • a corresponding electrical signal is generated at an output of the actuator by a sensor. This signal corresponds to the measured actuator position and is forwarded to a signal conditioning unit.
  • the actual position change of the actuator ie the Actual actuator movement, determined.
  • the position change of the actuator ie the actuator movement
  • the model-based siere position change and tafsumbleliche position change of the actuator are applied to inputs of a computing unit.
  • the model-based and the actual position change of the actuator are compared with each other and evaluated by a corresponding algorithm.
  • a corresponding status signal is output.
  • a status signal is output at the output of the arithmetic unit, by means of which the functionality of the Aktuafor and the sensor for determining the Aktuatorposifion is signaled. If there is a greater deviation between the measured and the calculated actuator movement, it is possible to conclude that the actuator and / or the sensor have failed.
  • the advantage of this method is that the actuator movement on the sensor and the actuator movement of the model are determined only over a defined period of time, whereby drifting apart of the measured and the calculated actuator position is prevented.
  • This period is not too large and therefore includes about 10 to 20 computational cycles.
  • the occurring error is limited to 10 to 20 times the error of a computing cycle.
  • This maximum occurring error is taken into account when comparing the position change of sensor and model, whereby a fault of the actuator and / or the sensor for determining the actuator position is reliably detected. A return of the measured actuator position in the model unit is therefore no longer necessary.
  • the single figure shows a block diagram of an embodiment of the invention for monitoring an actuator.
  • the block diagram 10 of the figure consists of an actuator 2, a modeling unit 3, a signal conditioning unit 5 and a computing unit 8.
  • a control unit such as an automatic gearbox, which is not shown here, for actuating the actuator 2
  • a corresponding manipulated variable 1 both As a function of the applied manipulated variable 1, a corresponding electrical signal is generated by an sensor at an output of the actuator 2.
  • This signal which represents the measured actuator position 4
  • the signal conditioning unit 5 In the signal conditioning unit 5, the position change of the actuator, ie the actuator movement, is derived from the position signal of the sensor.
  • the measured actuator movement 6 is now provided.
  • the manipulated variable 1 is also applied to the model unit 3. Depending on the applied manipulated variable 1, an expected actuator movement is calculated in the model unit 3.
  • the calculated actuator movement 7 is provided at the output of the model unit 3.
  • the measured actuator movement 6 and the calculated actuator movement 7 are applied to inputs of a computing unit 8, compared with each other in the arithmetic unit 8 and evaluated by a corresponding algorithm.
  • a corresponding status signal 9 is output. If a greater deviation results from the comparison of the measured actuator movement 8 with the calculated actuator movement 7, then an error of the actuator 2 and / or of the sensor for determining the actuator position 4, or an error in the measurement data acquisition can be deduced.
  • a status signal 9 is output at the output of the arithmetic unit 8, by means of which the functionality of the actuator 2 and of the sensor for determining the actuator position 4 is signaled,
  • the measured actuator movement 6 on the sensor and the calculated actuator movement 7 of the model are detected only over a defined period, which is not too large.
  • a typical period for the detection of the actuator movements 6, 7 comprises, for example, 10 to 20 computing cycles.
  • the occurring error is limited to 10 to 20 times the error of a computing cycle. This maximum occurring error is taken into account when comparing the position changes of sensor and model, whereby a fault of the actuator 2 and / or the sensor for determining the actuator 4 can be signaled safe.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Transmission Device (AREA)

Abstract

The invention comprises a method for fault detection in an actuator (2). On account of an actuating variable (1) which is present at an input of the actuator (2) and is generated by a control unit, for example an automatic or automated change-speed gearbox or an automated clutch, a signal for the measured actuator position (4) is generated at the output of the actuator (2). The signal for the measured actuator position (4) is applied to an input of a signal conditioning unit (5) which determines a measured actuator movement (6) from it. The actuating variable (1) is also applied to an input of a modelling unit (3) which calculates an actuator movement which is to be expected from it. The measured actuator movement (6) and the calculated actuator movement (7) are supplied to a computing unit (8) which generates a status signal (9) at its output, which status signal (9) corresponds to the functionality of the actuator (2) and the functionality of the sensor for determining the actuator position (4).

Description

Verfahren zur Fehlererkennunα an einem Aktuafor Method for fault detection on an actuator gate
Die Erfindung betrifft ein Verfahren zur Fehiererkennung an einem Aktu- ator nach der im Oberbegriff von Anspruch 1 näher definierten Art.The invention relates to a method for Fehiererkennung on an actuator ator according to the closer defined in the preamble of claim 1. Art.
Im Zusammenhang mit automatischen bzw. automatisierten Schaftgetrieben oder Kupplungen ist es bekannt, mittels Sensoren eine Messgröße abzuleiten, weiche die Position eines Aktuators anzeigt Da jedoch ein Sensor zur Erfassung der Position eines Aktuators ausfallen kann, ist die vom Sensor angezeigte Aktuatorposition nicht unbedingt zuverlässig. Eine Überwachung der Akfuatorposition ist daher im Zusammenhang mil der Sicherheitsüberwachung bei automatischen bzw. automatisierten Schaltgetrieben äußerst ratsam.In the context of automatic or automated shaft gears or clutches, it is known to derive by means of sensors a measured variable which indicates the position of an actuator. However, since a sensor for detecting the position of an actuator may fail, the actuator position indicated by the sensor is not necessarily reliable. Monitoring the position of the actuator is therefore highly recommended in the context of safety monitoring in automatic or automated manual transmissions.
Aus der DE 101 37 597 A1 ist ein Verfahren zur Fehlerdiagnose an einem Kuppiungsaktuator bekannt. Bei diesem Verfahren wird eine Stellgröße an einen Eingang des Kuppiungsaktuators angelegt. In Abhängigkeit von dieser Stellgröße wird an einem Ausgang des Kuppiungsaktuators von einem Sensor ein entsprechendes elektrisches Signal für die gemessene Aktuatorposifion erzeugt. Durch dieselbe Stellgröße wird durch eine Aktuatormodelleinheit eine zu erwartende Aktuatorposition berechnet und am Ausgang der Aktuatormodel- leinheif bereitgestellt. Die Signale für die gemessene Aktuatoφosition und die erwartete Aktuatorposition werden in einer Vergleichseinheit miteinander verglichen, Das am Ausgang der Vergleichseinheit anliegende Signal wird einer Recheneinheit zugeführt, welche an ihrem Ausgang ein entsprechendes Statussignal erzeugt. Bei einer näherungsweisen Obereinstimmung der Signale für die gemessene und die geschätzte Aktuatorposition wird von der Recheneinheit aufgrund eines AuswerteaSgorithmus auf einen funktionsfähigen Kuppiungsaktuator und einen funktionsfähigen Sensor zur Ermittlung der Position des Kuppiungsaktuators geschlossen. Bei großen Abweichungen zwischen den Signalen für die gemessene und die erwartete Aktuatorposition wird dagegen auf einen Fehler des Kupplungsaktuators und/oder des Sensors zur Ermittlung der Position des Kupplungsaktuators geschlossen.From DE 101 37 597 A1 a method for fault diagnosis on a Kuppiungsaktuator is known. In this method, a manipulated variable is applied to an input of the Kuppiungsaktuators. Depending on this manipulated variable, a corresponding electrical signal for the measured actuator position is generated by an sensor at an output of the Kuppiungsaktuators. By the same manipulated variable, an actuator position to be expected is calculated by an actuator model unit and provided at the output of the actuator model unit. The signals for the measured actuator position and the expected actuator position are compared with one another in a comparison unit. The signal present at the output of the comparison unit is fed to a computing unit which generates a corresponding status signal at its output. When the signals for the measured and the estimated actuator position are approximately matched, the arithmetic unit concludes, based on an evaluation algorithm, on a functioning coupling actuator and a functional sensor for determining the position of the coupling actuator. For large deviations between the signals for the measured and the expected actuator position is against to a fault of the clutch actuator and / or the sensor for determining the position of the clutch actuator closed.
Bei dem beschriebenen Verfahren zur Fehlerdiagπose wird die gemessene Aktuatorposition mit einer modellbasierten Aktuatorposition verglichen. Da das Modell zur Berechnung der Aktuatorposition von der Realität abweicht, weil beispielsweise das Verhalten des Systems nicht exakt modelliert werden kann, ergibt sich bei jedem Berechnungsschritt eine Abweichung zwischen der tatsächlichen und der berechneten und damit erwarteten Position des Kupplungsaktuators. Um hierbei ein zunehmendes Auseinanderdriften der tatsächlichen und der berechneten Aktuatorpositionen zu vermeiden wird in der DE 101 37 597 A1 das Ausgangssignal der Vergieichseinheit welches sich aus der gemessenen und der berechneten Aktuatorposition bildet, zum Eingang der Aktuatormodelleinheit zurückgeführt und ausgewertet.In the described method for fault diagnosis, the measured actuator position is compared with a model-based actuator position. Since the model for calculating the actuator position deviates from reality because, for example, the behavior of the system can not be modeled exactly, a deviation occurs between the actual and the calculated and thus expected position of the clutch actuator for each calculation step. In order to avoid an increasing drifting apart of the actual and the calculated actuator positions, in DE 101 37 597 A1, the output signal of the calibration unit, which is formed from the measured and the calculated actuator position, is fed back to the input of the actuator model unit and evaluated.
Tritt nun eine Störung der gemessenen Aktuatorposition auf, so wird diese durch die Rückführung des Ausgangssignals der Vergieichseinheit in das Aktuatormodell und somit auf die berechnete Aktuatorposition übertragen. Der Nachteil hierbei ist, dass die gestörte Aktuatorposition durch die Rückführung zum Aktuatormodell im Modellwert enthalten ist und dadurch Störungen der gemessenen Aktuatorposition eventuell nicht erkannt werden.If a disturbance of the measured actuator position now occurs, this is transmitted by the feedback of the output signal of the comparison unit into the actuator model and thus to the calculated actuator position. The disadvantage here is that the faulty actuator position is included in the model value by the feedback to the actuator model and thus disturbances of the measured actuator position may not be detected.
Ein Kupplungsmodell beruht üblicherweise darauf, dass die Positionsänderung aufgrund einer Ventilansteuerung kontinuierlich berechnet und diese berechnete Größe integriert wird. Da dieses Kupplungsmodell von einem Digitalrechner berechnet wird, liegen Positionsänderungen nur zu diskreten Zeitpunkten vor. Diese Positionsänderungen beziehen sich auf den Zeitraum zwischen zwei Berechnungsschritten. Dadurch wird es notwendig, statt dem Integrieren der Positionsänderung ein Aufsummieren durchzuführen. Um diese Gleichung mit einem Digitalrechner lösen zu können, muss die Differenziaiglei- chung in eine Differenzengleichung umgewandelt werden. Da das Kuppluπgs- modeli üblicherweise von der Realität abweicht, weil beispielsweise das Verhalten des Systems nicht exakt modelliert werden kann, ergibt sich bei jedem Berechnungsschritt eine Abweichung zwischen der tatsächlichen und der berechneten Position des Kupplungsaktuators. Hierdurch wird ersichtlich, dass sich prinzipbedingt ein Unterschied zwischen der berechneten und der gemessenen Position einstellt, weicher sich mit der Zeit aufsummiert.A clutch model is usually based on the fact that the position change due to a valve control continuously calculated and this calculated size is integrated. Since this coupling model is calculated by a digital computer, position changes occur only at discrete times. These position changes refer to the period between two calculation steps. This makes it necessary to perform summation instead of integrating the position change. In order to be able to solve this equation with a digital computer, the differential equation must be converted into a difference equation. Since the coupling Modeli usually deviates from reality, because, for example, the behavior of the system can not be accurately modeled, results in each calculation step, a deviation between the actual and the calculated position of the clutch actuator. This shows that, in principle, there is a difference between the calculated position and the measured position, which accumulates over time.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Fehlererkennung an einem Aktuator darzustellen, weiches eine zuverlässige Überwachung der Position des Aktuators gewährleistet und die Nachteile des Standes der Technik beseitigt.The object of the present invention is to present a method for detecting faults on an actuator, which ensures reliable monitoring of the position of the actuator and eliminates the disadvantages of the prior art.
Die der Erfindung zugrunde liegende Aufgabe wird durch ein, auch die kennzeichnenden Merkmale des Hauptanspruchs aufweisendes, gattungsgemäßes Verfahren zur Fehiererkennung an einem Aktuator gelöst.The object underlying the invention is achieved by a, including the characterizing features of the main claim exhibiting, generic method for error detection on an actuator.
Bei dem erfindungsgemäßen Verfahren zur Fehiererkennung an einem Aktuator wird eine Stellgröße gleichzeitig an einen Eingang eines Aktuators und an einen Eingang einer Modeileinheit angelegt Die Stellgröße wird von einer Steuereinheit erzeugt, beispielsweise von der Steuereinheit eines automatischen bzw. automatisierten Schaltgetriebes oder einer automatisierten Kupplung. In der Modelleinheit können für alle möglichen Stellgrößen für den Aktuator erwartete Aktuatorbewegungen berechnet werden. In Abhängigkeit von der am Eingang angelegten Stellgröße wird an einem Ausgang des Aktuators von einem Sensor ein entsprechendes elektrisches Signal erzeugt Dieses Signal entspricht der gemessenen Aktuatorposition und wird an eine Signalaufbereitungseinheit weitergeieitet Über diese Signalaufbereitungseinheit wird mittels der gemessenen Aktuatorposition die tatsächliche Positionsänderung des Aktuators, also die tatsächliche Aktuatorbewegung, bestimmt. In der Modelleinheit wird anhand der am Eingang angelegten Stellgröße die Positionsänderung des Aktuators, also die Aktuatorbewegung, modellbasiert berechnet. Die modellba- sierte Positionsänderung und die tafsächliche Positionsänderung des Aktuators werden an Eingänge einer Recheneinheit angelegt. In dieser Recheneinheit werden die modellbasierte und die tatsächliche Positionsänderung des Aktuators miteinander verglichen und über einen entsprechenden Algorithmus ausgewertet. Am Ausgang der Recheneinheit wird ein entsprechendes Statussignal ausgegeben. Bei einer näherungsweisen Übereinstimmung der Signale für die gemessene und die berechnete Positionsänderung wird am Ausgang der Recheneinheit ein Statussignal ausgegeben, durch welches die Funktionsfä- higkeit des Aktuafors und des Sensors zur Ermittlung der Aktuatorposifion signalisiert wird. Ergibt sich zwischen der gemessenen und der berechneten Aktu- atorbewegung eine größere Abweichung, so kann auf einen Fehler des Aktuators und/oder des Sensors geschlossen werden.In the inventive method for Fehiererkennung on an actuator a manipulated variable is applied simultaneously to an input of an actuator and to an input of a Modeileinheit The manipulated variable is generated by a control unit, for example, from the control unit of an automatic or automated manual transmission or an automated clutch. In the model unit, expected actuator movements can be calculated for all possible manipulated variables for the actuator. Depending on the manipulated variable applied to the input, a corresponding electrical signal is generated at an output of the actuator by a sensor. This signal corresponds to the measured actuator position and is forwarded to a signal conditioning unit. By means of the measured actuator position, the actual position change of the actuator, ie the Actual actuator movement, determined. In the model unit, the position change of the actuator, ie the actuator movement, is calculated model-based on the basis of the manipulated variable applied to the input. The model-based sierte position change and tafsächliche position change of the actuator are applied to inputs of a computing unit. In this arithmetic unit, the model-based and the actual position change of the actuator are compared with each other and evaluated by a corresponding algorithm. At the output of the arithmetic unit, a corresponding status signal is output. When the signals for the measured and the calculated position change are approximately identical, a status signal is output at the output of the arithmetic unit, by means of which the functionality of the Aktuafor and the sensor for determining the Aktuatorposifion is signaled. If there is a greater deviation between the measured and the calculated actuator movement, it is possible to conclude that the actuator and / or the sensor have failed.
Der Vorteil dieses Verfahrens besteht darin, dass die Aktuatorbewegung am Sensor und die Aktuatorbewegung des Modells nur über einen definierten Zeitraum ermittelt werden, wodurch ein Auseinanderdriften der gemessenen und der berechneten Aktuatorposition verhindert wird. Dieser Zeitraum wird nicht zu groß gewählt und umfasst daher etwa 10 bis 20 Rechenzykien. Durch das Aufsummieren der Bewegungen über typischerweise 10 bis 20 Rechenzyk- len beschränkt sich der auftretende Fehler auf das 10 bis 20 fache des Fehlers eines Rechenzyklus. Dieser maximal auftretende Fehler wird beim Vergleich der Positionsänderung von Sensor und Modell berücksichtigt, wodurch eine Störung des Aktuators und/oder des Sensors zur Ermittlung der Aktuatorposition sicher erkannt wird. Eine Rückführung der gemessenen Aktuatorposition in die Modelleinheit ist somit nicht mehr notwendig.The advantage of this method is that the actuator movement on the sensor and the actuator movement of the model are determined only over a defined period of time, whereby drifting apart of the measured and the calculated actuator position is prevented. This period is not too large and therefore includes about 10 to 20 computational cycles. By accumulating the movements over typically 10 to 20 calculation cycles, the occurring error is limited to 10 to 20 times the error of a computing cycle. This maximum occurring error is taken into account when comparing the position change of sensor and model, whereby a fault of the actuator and / or the sensor for determining the actuator position is reliably detected. A return of the measured actuator position in the model unit is therefore no longer necessary.
Im Folgenden wird das Grundprinzip der Erfindung an Hand einer Zeichnung beispielhaft näher erläutert.In the following, the basic principle of the invention is explained in more detail by way of example with reference to a drawing.
Die einzige Figur zeigt ein Blockschaltbild einer Ausführungsform der Erfindung zur Überwachung eines Aktuators. Das Blockschaltbild 10 der Figur besteht aus einem Aktuator 2, einer Modelieinheit 3, einer Signalaufbereitungseinheit 5 und einer Recheneinheit 8. Durch eine Steuereinheit, beispielsweise eines automatischen Schaltgetriebes, welche hier nicht dargestellt ist, wird zur Betätigung des Aktuators 2 eine entsprechende Stellgröße 1 sowohl an den Aktuator 2 als auch an die Modelieinheit 3 angelegt, In Abhängigkeit von der angelegten Stellgröße 1 wird an einem Ausgang des Aktuators 2 von einem Sensor ein entsprechendes elektrisches Signal erzeugt Dieses Signal, welches die gemessene Aktuatorposition 4 darstellt, wird erfindungsgemäß an eine Signalaufbereitungseinheit 5 angelegt. In der Signalaufbereitungseinheit 5 wird aus dem Positionssignal des Sensors die Positionsänderung des Aktuators, also die Aktuatorbewegung, abgeleitet. Am Ausgang der Signalaufbereitungseinheit 5 wird nun die gemessene Aktuatorbewegung 6 bereitgestellt. Die Stellgröße 1 wird ebenso an die Modelleinheit 3 angelegt. In Abhängigkeit der angelegten Stellgröße 1 wird in der Modelleinheit 3 eine zu erwartende Aktuatorbewegung berechnet. Die berechnete Aktuatorbewegung 7 wird am Ausgang der Modelleinheit 3 zu Verfügung gestellt. Die gemessene Aktuatorbewegung 6 und die berechnete Aktuatorbewegung 7 werden an Eingänge einer Recheneinheit 8 angelegt, in der Recheneinheit 8 miteinander verglichen und über einen entsprechenden Algorithmus ausgewertet. Am Ausgang der Recheneinheit 8 wird ein entsprechendes Statussignal 9 ausgegeben. Ergibt sich beim Vergleich der gemessenen Aktuatorbewegung 8 mit der berechneten Aktuatorbewegung 7 eine größere Abweichung, so kann auf einen Fehler des Aktuators 2 und/oder des Sensors zur Ermittlung der Aktuatorposition 4, bzw, auf einen Fehler der Messdatenerfassung geschlossen werden. Bei einer näherungsweisen Übereinstimmung der Signale für die gemessene und die berechnete Aktuatorbewegung 6, 7 wird am Ausgang der Recheneinheit 8 ein Statussignai 9 ausgegeben, durch welches die Funktionsfähigkeit des Aktuators 2 und des Sensors zur Ermittlung der Aktuatorposition 4 signalisiert wird, Die gemessene Aktuatorbewegung 6 am Sensor und die berechnete Aktuatorbewegung 7 des Modells werden dabei nur über einen definierten Zeitraum erfasst, welcher nicht zu groß gewählt wird. Ein typischer Zeitraum für die Erfassung der Aktuatorbewegungen 6, 7 umfasst beispielsweise 10 bis 20 Rechenzyklen. Durch das Aufsummieren der Aktuatorbewegungen 6, 7 über einen Zeitraum von 10 bis 20 Rechenzyklen beschränkt sich der auftretende Fehler auf das 10 bis 20 fache des Fehlers eines Rechenzyklus. Dieser maximal auftretende Fehler wird beim Vergleich der Positionsänderungen von Sensor und Modell berücksichtigt, wodurch eine Störung des Aktuators 2 und/oder des Sensors zur Ermittlung der Aktuatorposition 4 sicher signalisiert werden kann. The single figure shows a block diagram of an embodiment of the invention for monitoring an actuator. The block diagram 10 of the figure consists of an actuator 2, a modeling unit 3, a signal conditioning unit 5 and a computing unit 8. By a control unit, such as an automatic gearbox, which is not shown here, for actuating the actuator 2, a corresponding manipulated variable 1 both As a function of the applied manipulated variable 1, a corresponding electrical signal is generated by an sensor at an output of the actuator 2. This signal, which represents the measured actuator position 4, is applied to a signal conditioning unit 5 , In the signal conditioning unit 5, the position change of the actuator, ie the actuator movement, is derived from the position signal of the sensor. At the output of the signal conditioning unit 5, the measured actuator movement 6 is now provided. The manipulated variable 1 is also applied to the model unit 3. Depending on the applied manipulated variable 1, an expected actuator movement is calculated in the model unit 3. The calculated actuator movement 7 is provided at the output of the model unit 3. The measured actuator movement 6 and the calculated actuator movement 7 are applied to inputs of a computing unit 8, compared with each other in the arithmetic unit 8 and evaluated by a corresponding algorithm. At the output of the arithmetic unit 8, a corresponding status signal 9 is output. If a greater deviation results from the comparison of the measured actuator movement 8 with the calculated actuator movement 7, then an error of the actuator 2 and / or of the sensor for determining the actuator position 4, or an error in the measurement data acquisition can be deduced. When the signals for the measured and the calculated actuator movement 6, 7 are approximately identical, a status signal 9 is output at the output of the arithmetic unit 8, by means of which the functionality of the actuator 2 and of the sensor for determining the actuator position 4 is signaled, The measured actuator movement 6 on the sensor and the calculated actuator movement 7 of the model are detected only over a defined period, which is not too large. A typical period for the detection of the actuator movements 6, 7 comprises, for example, 10 to 20 computing cycles. By summing up the actuator movements 6, 7 over a period of 10 to 20 computing cycles, the occurring error is limited to 10 to 20 times the error of a computing cycle. This maximum occurring error is taken into account when comparing the position changes of sensor and model, whereby a fault of the actuator 2 and / or the sensor for determining the actuator 4 can be signaled safe.
BezuαszeichenBezuαszeichen
1 Stellgröße1 manipulated variable
2 Aktuator2 actuator
3 Modelleinheit3 model unit
4 gemessene Aktuatorpositioπ4 measured Aktuatorpositioπ
5 Signalaufbereitungseinheit5 signal conditioning unit
6 gemessene Aktuatorbewegung6 measured actuator movement
7 berechnete Aktuatorbewegung7 calculated actuator movement
8 Recheneinheit8 arithmetic unit
9 Statussignai9 status signal
10 Blockschaltbild 10 block diagram

Claims

Patentansprüche claims
1. Verfahren zur Fehlererkenπung an einem Aktuatαr (2), wobei aufgrund einer an einem Eingang des Aktuators (2) anliegenden Stellgröße (1 ), welche von einer Steuereinheit, beispielsweise eines automatischen bzw. automatisierten Schaltgetriebes oder einer automatisierten Kupplung, erzeugt wird, am Ausgang des Aktuators (2) ein Signa! für die gemessene Aktuatorposition (4) erzeugt wird und die Stellgröße (1) auch an einen Eingang einer Modeileinheit (3) angelegt wird, dadurch gekennzeichnet, dass das Signal für die gemessene Aktuatorposition (4) an eine Signalaufbereitungseinheit (5) angelegt wird, weiche daraus eine gemessene Aktuatorbewegung (6) ermittelt und die Modeileinheit (3) eine zu erwartende Aktuatorbewegung (7) berechnet, wobei die gemessene Aktuatorbewegung (8) sowie die berechnete Aktuatorbewegung (7) über einen definierten Zeitraum erfasst und einer Recheneinheit (8) zugeführt werden, weiche an ihrem Ausgang ein für die Funktionsfähigkeit des Aktuators (2) und die Funktionsfähigkeit des Sensors zur Ermittlung der Aktuatorposition (4) entsprechendes Sfatussignal (9) erzeugt1. A method for Fehlererkenπung on an Aktuatαr (2), wherein due to a at an input of the actuator (2) applied control variable (1), which is generated by a control unit, such as an automatic or automated manual transmission or an automated clutch, on Output of the actuator (2) a Signa! is generated for the measured actuator position (4) and the manipulated variable (1) is also applied to an input of a Modeileinheit (3), characterized in that the signal for the measured actuator position (4) to a signal conditioning unit (5) is applied, soft therefrom a measured actuator movement (6) determined and the Modeileinheit (3) calculates an expected actuator movement (7), the measured actuator movement (8) and the calculated actuator movement (7) over a defined period of time and a computing unit (8) are supplied , which generates at its output a Sfatussignal (9) corresponding to the operability of the actuator (2) and the operability of the sensor for determining the actuator position (4)
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei einer näherungsweisen Übereinstimmung des Signals für die gemessene Aktuatorbewegung (6) und des Signals für die berechnete Aktuatorbewegung (7) von der Recheneinheit (8) ein Statussignal (9) erzeugt wird, weiches die Funktionsfähigkeit des Aktuators (2) und die Funktionsfähigkeit des Sensors zur Ermittlung der Aktuatorposition (4) signalisiert.2. The method according to claim 1, characterized in that when an approximate match of the signal for the measured actuator movement (6) and the signal for the calculated actuator movement (7) from the arithmetic unit (8), a status signal (9) is generated, the soft Operability of the actuator (2) and the operability of the sensor for determining the actuator position (4) signals.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass beim Überschreiten einer vorgegebenen zulässigen Abweichung zwischen dem Signal für die gemessene Aktuatorbewegung (6) und dem Signal für die berechnete Aktuatorbewegung (7) von der Recheneinheit (8) ein Statussig- nai (9) erzeugt wird, welches einen Fehler des Aktuators (2) und/oder des Sensors zur Ermittlung der Aktuatorposition (4) signalisiert.3. The method according to claim 1, characterized in that when exceeding a predetermined allowable deviation between the signal for the measured actuator movement (6) and the signal for the calculated actuator movement (7) from the arithmetic unit (8) a Statussign nai (9) is generated, which signals a fault of the actuator (2) and / or the sensor for determining the actuator position (4).
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Zeitraum zur Ermittlung der tatsächlichen und der berechneten Aktuatorbewegung (8, 7} etwa 10 bis 20 Rechenzyklen aulweist, 4. The method according to any one of claims 1 to 3, characterized in that the period for determining the actual and the calculated actuator movement (8, 7} has approximately 10 to 20 computing cycles,
EP07712278A 2006-03-15 2007-02-21 Method for fault detection in an actuator Ceased EP1994300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006011807A DE102006011807A1 (en) 2006-03-15 2006-03-15 Method for fault detection on an actuator
PCT/EP2007/051679 WO2007104631A1 (en) 2006-03-15 2007-02-21 Method for fault detection in an actuator

Publications (1)

Publication Number Publication Date
EP1994300A1 true EP1994300A1 (en) 2008-11-26

Family

ID=37993925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07712278A Ceased EP1994300A1 (en) 2006-03-15 2007-02-21 Method for fault detection in an actuator

Country Status (4)

Country Link
US (1) US7827001B2 (en)
EP (1) EP1994300A1 (en)
DE (1) DE102006011807A1 (en)
WO (1) WO2007104631A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7970583B2 (en) * 2007-12-28 2011-06-28 United Technologies Corporation Degraded actuator detection
DE102009046342B4 (en) * 2009-11-03 2022-09-29 Zf Friedrichshafen Ag Method of operating a power train
JP5489708B2 (en) * 2009-12-28 2014-05-14 ナブテスコ株式会社 Actuator control system
US9116516B2 (en) * 2011-07-21 2015-08-25 Abb Technology Ag System and method for actuator control
EP3126920A4 (en) * 2014-04-02 2018-01-03 Sikorsky Aircraft Corporation System and method for heatlh monitoring of servo-hydraulic actuators
JP6408374B2 (en) * 2014-12-24 2018-10-17 日立オートモティブシステムズ株式会社 Actuator control apparatus and control method
JP6581833B2 (en) * 2015-07-30 2019-09-25 アズビル株式会社 Actuator failure detection device, control device and method
GB2541948B (en) * 2015-09-07 2020-02-12 Jaguar Land Rover Ltd A verification module for verifying accuracy of a controller
US10030765B2 (en) * 2016-03-22 2018-07-24 GM Global Technology Operations LLC Pre-remedial fault control in a transmission
CN107991901B (en) * 2017-12-04 2020-12-25 中国科学院国家天文台南京天文光学技术研究所 Voice coil motor displacement actuator simulation platform
EP3539728A1 (en) * 2018-03-17 2019-09-18 Tata Consultancy Services Limited System and method for fault detection in robotic actuation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355358A (en) * 1980-08-26 1982-10-19 United Technologies Corporation Adaptive aircraft actuator fault detection
AU8431698A (en) * 1997-05-30 1998-12-30 Luk Getriebe-Systeme Gmbh Method and device for controlling a clutch
GB2369869B (en) * 1997-05-30 2002-07-24 Luk Getriebe Systeme Gmbh Method and device for controlling a clutch
DE50008364D1 (en) * 2000-02-24 2004-11-25 Siemens Ag AUTOMATIC VEHICLE CLUTCH AND METHOD FOR CONTROLLING A MOTOR VEHICLE CLUTCH
DE10137597A1 (en) * 2000-08-30 2002-03-14 Luk Lamellen & Kupplungsbau Method of diagnosing fault in motor vehicle clutch involves producing clutch actuator position signal for comparison to estimated signal
DE10326557A1 (en) 2003-06-12 2005-01-05 Robert Bosch Gmbh Fault diagnosis method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007104631A1 *

Also Published As

Publication number Publication date
WO2007104631A1 (en) 2007-09-20
US7827001B2 (en) 2010-11-02
US20090099810A1 (en) 2009-04-16
DE102006011807A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
EP1994300A1 (en) Method for fault detection in an actuator
EP2425308B1 (en) Device and method for the residual analysis of a residuum to detect system errors in the system behavior of an aircraft
EP1607192B1 (en) Method and system for estimating the wear of robot arm joints
DE19723650C2 (en) Method and device for monitoring an actuator
DE102012202903A1 (en) Method for determining an operating state of a form-locking switching element of a transmission device
DE102012213232A1 (en) Method for calibrating a selected gear sensor
DE102010002504B4 (en) Method and device for checking an electronic device
DE10242128A1 (en) Redundant sensor system monitoring arrangement in which a monitoring signal equal to the difference between the two sensor signals is compared with a variable threshold function that is derived from the two sensor signals
DE4429157A1 (en) Method for monitoring the function of a control and regulating system
DE102012016403B4 (en) Method for parameterizing a field device and corresponding field device and system for parameterization
DE10318171C5 (en) Method for functionally monitored determination of a valve position and a valve position sensor usable in this method and use thereof
DE19642174A1 (en) Circuit arrangement for detecting the position of a movable element in a motor vehicle
EP2747049B1 (en) Measuring assembly for the determination of a measurement value and method for generating an output signal
DE10355022B4 (en) Method for monitoring a technical system
DE10120899B4 (en) Method and arrangement for monitoring and monitoring of the result of the monitoring dependent setting of an electronically-hydraulically controlled automatic vehicle transmission
EP1528447B1 (en) Diagnostic method and device for monitoring the functioning of a control loop
EP1747380B1 (en) Method for fault localisation and diagnosis in a fluidic installation
DE102011004007B4 (en) Input device for a field device for process instrumentation and method for detecting the actuation of a key of such an input device
DE102013005579B3 (en) Method for fail-safe operation of a network-capable control system
DE102007034199A1 (en) Process for determination or testing of a coupling position of a vehicle engine connecting rod coupling useful for incremental path measurements of a vehicle engine connecting rod coupling gives more consistent results than past processes
EP1887244A2 (en) Method for checking the position of a clutch automatically actuated by an actuator
DE102018114710B4 (en) Detect poor seat integrity in a control valve
WO2019141475A1 (en) Method for checking a time-discrete signal value of a sensor for freedom from errors
DE102004008251A1 (en) Process control device for automation system, has logic-module evaluating data from sensors and actuators, and selecting data to be transferred based on evaluation, where sensors, actuators and module are integrated as one component
WO2016091257A1 (en) Pressure-measuring device and clutch actuator device having a hydraulic path

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

18R Application refused

Effective date: 20101223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

R18R Application refused (corrected)

Effective date: 20100914