EP1978131B2 - Means for manufacturing corrosion protection coats on metal surfaces - Google Patents

Means for manufacturing corrosion protection coats on metal surfaces Download PDF

Info

Publication number
EP1978131B2
EP1978131B2 EP07105237.7A EP07105237A EP1978131B2 EP 1978131 B2 EP1978131 B2 EP 1978131B2 EP 07105237 A EP07105237 A EP 07105237A EP 1978131 B2 EP1978131 B2 EP 1978131B2
Authority
EP
European Patent Office
Prior art keywords
solution
composition according
metal
range
comp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07105237.7A
Other languages
German (de)
French (fr)
Other versions
EP1978131B1 (en
EP1978131A1 (en
Inventor
Udo Dr. Hofmann
Hermann Donsbach
Jörg UNGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38222536&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1978131(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Priority to ES07105237T priority Critical patent/ES2388302T5/en
Priority to EP07105237.7A priority patent/EP1978131B2/en
Priority to KR1020097020409A priority patent/KR101493458B1/en
Priority to CN2008800104018A priority patent/CN101668881B/en
Priority to US12/593,632 priority patent/US8764916B2/en
Priority to PCT/EP2008/053346 priority patent/WO2008119675A1/en
Priority to JP2010500230A priority patent/JP5279811B2/en
Priority to BRPI0809299-0A2A priority patent/BRPI0809299A2/en
Publication of EP1978131A1 publication Critical patent/EP1978131A1/en
Publication of EP1978131B1 publication Critical patent/EP1978131B1/en
Publication of EP1978131B2 publication Critical patent/EP1978131B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/04Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/06Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly alkaline liquids

Definitions

  • the present invention relates to compositions for the production of anticorrosive coatings on metal surfaces, to processes for the preparation of such compositions and to their use.
  • compositions of the invention are used in particular for the production of corrosion-protective conversion layers or passivation layers on metal surfaces, such as the surfaces of pure metal substrates such as zinc, aluminum, magnesium or their alloys and galvanically produced surfaces of zinc or their alloys.
  • Metal parts are coated to protect against corrosion, for example, galvanically with base metals, such.
  • base metals such as zinc, nickel, chromium, aluminum, magnesium and alloys of the aforementioned, and the corrosion resistance of the metal coating by forming a conversion layer, often a passivation layer further improved.
  • the metal surfaces are often treated with solutions containing chromium (VI).
  • chromium (VI) compounds due to the high toxicity and carcinogenicity of chromium (VI) compounds, more recent attempts have been made to prepare such conversion layers with chromium (III) -containing solutions. These chromium (III) -containing treatment liquids are added to increase the corrosion protection effect of the prepared conversion layers many times high amounts of cobalt (II) compounds.
  • Recent processes produce protective layers with an organosilicon-based binder system to which corrosion inhibiting additives based on molybdenum, tungsten, titanium, zirconium, vanadium and other metals are added.
  • the US-A-6,524,403 describes a chromium-free composition for improving the corrosion resistance of zinc or zinc alloy surfaces, which composition contains a source of titanium ions or titanates, an oxidizer and fluorides, and Group II metal compounds, and the composition is substantially free of silicates and silica. Strontium is used in particular as Group II metal.
  • the EP 0 760 401 discloses an anticorrosive composition containing an oxidizing agent, a silicate and / or silica and metal cations selected from Ti, Zr, Ce, Sr, V, W and Mo, oxime metal anions thereof and / or fluorometal anions thereof.
  • the previously known chromium-free corrosion inhibitors have the disadvantage that they either do not provide sufficient corrosion protection properties of the conversion layers or are not sufficiently stable to use them in a continuous process or both.
  • the object of the present invention was to overcome the disadvantages of the known in the prior art means for producing anticorrosive layers or conversion layers on metal surfaces, in particular surfaces of zinc, aluminum, magnesium or their alloys, wherein the means free of chromium and cobalt should be.
  • the agent according to the invention is characterized inter alia by containing in situ generated nanoparticles which are stable or at least metastable.
  • a conversion layer or passivation layer is formed in the treatment of metal surfaces with the agent according to the invention.
  • the nanoparticles generated in situ in the treatment solution are incorporated into the conversion layer during the formation of the conversion layer, thereby resulting in a particularly high corrosion protection effect of the treated metal surfaces.
  • these nanoparticles are generated in situ by hydrolysis or oxidation of the substances contained in the starting solution. The nanoparticles are not added to the solution as already existing nanoparticulate particles from outside.
  • inventively generated in situ nanoparticles are better incorporated into the conversion layers and thereby these layers are denser and thus more corrosion resistant than those which can be produced by applying a corrosion protection solution were added to the nanoparticles from the outside, for example in the form of a Silica or silicate solution.
  • the nanoparticles in the agent according to the invention are carried out in situ produces physical and / or chemical treatment of the starting solution, resulting in a colloidal solution.
  • a Tyndall lamp By means of a Tyndall lamp, the formation of nanoparticles can be easily detected.
  • the nanoparticles have an average particle diameter ⁇ 500 nm.
  • the nanoparticles are formed from the halogen complex anions and / or oxo cations by hydrolysis or oxidation.
  • the nanoparticles thus consist essentially of the oxides of the metals or metalloids.
  • the formation of nanoparticles in situ by the physical and / or chemical treatment is carried out by bringing the initially present equilibrium state of the starting solution in an imbalance state and the system in a stabilized metastable state.
  • the transition from the equilibrium state to an imbalance state can be effected by changing the temperature, changing the ion concentration, changing the pH, changing the pressure, supersaturating the solution, stirring the solution, adding an oxidizing agent and / or adding a reducing agent.
  • the formation of the nanoparticles takes place in situ by supersaturation of the solution and / or stirring of the solution.
  • composition of the invention may be provided in various forms and stages of completion prior to the treatment of metal surfaces as a commercial product.
  • the agent of the invention is provided as a concentrate which is to be diluted before use.
  • the product according to the invention is suitable as a commercial product as soon as the aqueous solution containing oxo-cations and halogen complex anions has been prepared according to step A) and the nanoparticles according to B) have been formed in situ.
  • an oxidative substance is added selected from hydrogen peroxide, organic peroxides, alkali metal peroxides, persulfates, perborates, nitrates and mixtures thereof, the addition of hydrogen peroxide as oxidative substance is particularly preferred.
  • the addition of the oxidative substance is expediently carried out before the use of the agent according to the invention for the production of anticorrosion coatings, wherein the agent according to the invention can already be provided with the oxidative substance contained therein or the oxidative substance is added shortly before the use of the agent according to the invention at the manufacturer of the anticorrosive coatings ,
  • the addition of the oxidative substance before the use of the agent according to the invention for the production of anticorrosive coatings causes, inter alia, a pre-passivation of the metallic surface, in particular a zinc or zinc alloy surface, which is advantageous because the treatment solution can be extremely aggressive against the metallic surface and dissolve it at least partially could.
  • the pH is adjusted by means of an acid or base to a value in the range from 0.5 to 5.0, preferably in the range from 1.0 to 3.0, more preferably adjusted in the range of 1.3 to 2.0.
  • a value in the range from 0.5 to 5.0 preferably in the range from 1.0 to 3.0, more preferably adjusted in the range of 1.3 to 2.0.
  • the agent according to the invention is prepared by the formation of nanoparticles according to step B) at a temperature in the range of room temperature to 100 ° C, preferably in the range of 30 ° C to 80 ° C, more preferably in the range from 35 ° C to 50 ° C is performed.
  • a temperature in the range of room temperature to 100 ° C, preferably in the range of 30 ° C to 80 ° C, more preferably in the range from 35 ° C to 50 ° C is performed.
  • a temperature in the range of room temperature to 100 ° C, preferably in the range of 30 ° C to 80 ° C, more preferably in the range from 35 ° C to 50 ° C is performed.
  • a temperature in the range of room temperature to 100 ° C, preferably in the range of 30 ° C to 80 ° C, more preferably in the range from 35 ° C to 50 ° C is performed.
  • Too low a temperature nanoparticles are formed at an uneconomically slow rate.
  • the agent is prepared by adding the halogen complex anions b) to the aqueous solution in step A) in the form of their metal salts, preferably their alkali metal salts, more preferably their sodium and potassium salts.
  • their metal salts preferably their alkali metal salts, more preferably their sodium and potassium salts.
  • halogen complex anions b) fluoroanions selected from BF4 ⁇ 1->, TiF6 ⁇ 2->, ZrF6 ⁇ 2->, SiF6 ⁇ 2->, AIF6 ⁇ 3-> and mixtures thereof.
  • further metal salts are added to the aqueous solution in stage A), preferably salts of the metals B, Ti, Zr, Si and / or Al.
  • the metals are added in the form of the metal halides, metal nitrates and / or metal sulfates.
  • the aqueous solution prepared in step A) contains the oxo cations in a concentration of 0.1 to 0.5 wt .-%, preferably in a concentration of 0.1 to 0.3 wt. -%.
  • the aqueous solution prepared in step A) contains the halogen complex anions in a concentration of 0.1 to 3.0 wt .-%, preferably in a concentration of 0.5 to 2.0% by weight.
  • the agent of the invention may be provided as a concentrate to be diluted before use.
  • the agent according to the invention can already be provided in the concentration or dilution suitable for the application.
  • the solution obtained in step B) is expediently diluted with water in a ratio of 1: 3 to 1: 5 before or after the addition of an oxidative substance in step C).
  • composition according to the invention for the production of anticorrosive coatings is carried out by direct treatment of the metal surfaces with the agent, preferably by immersing or pivoting the objects with metal surfaces in the or the agent.
  • Application by dipping or panning is preferably carried out at a temperature of the treatment bath in the range of 20 to 100 ° C, preferably 30 to 70 ° C, more preferably 40 to 60 ° C, and most preferably about 50 ° C.
  • the most suitable treatment time for the production of anticorrosive coatings by immersing or pivoting the objects with metal surfaces in the treatment or the treatment varies depending on various parameters, such as.
  • the composition of the treatment solution, the treatment temperature, the type of metal surface and the degree of corrosion protection desired is in the range of 10 to 120 seconds, preferably in the range of 20 to 60 seconds.
  • compositions according to the invention and comparative compositions an aqueous solution of oxo anions a) is prepared.
  • the halogen complex anion component b in this example a fluoroanion component
  • this solution is subjected to physical and / or chemical treatment by vigorous stirring (propeller stirrer, 700 to 1000 rpm).
  • the formation of nanoparticles is checked by means of a Tyndall lamp.
  • the solution obtained is made up to 1 l with water.
  • Table 1 shows that without treatment of the solutions by stirring (solutions 1b to 11b) no Tyndall effect was observed and thus no formation of nanoparticles was achieved. The same was observed when the fluoroanion component was used in the form of its free acid with and without stirring (solutions 2a, 2b, 4a, 4b, 7a, 7b, 9a, 9b, 11a and 11b).
  • Galvanized sheets were treated with the previously prepared and shown in Table 1 treatment solutions by immersion in the solutions for 60 seconds at 50 ° C. The sheets were then rinsed with water and subjected to a corrosion test according to DIN 50021 SS (salt spray test) for drumware and the duration of occurrence of i) first signs of corrosion and ii) 5% white rust compared. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

Die vorliegende Erfindung betrifft Mittel zur Herstellung von Korrosionsschutzschichten auf Metalloberflächen, Verfahren zur Herstellung solcher Mittel und deren Verwendung.The present invention relates to compositions for the production of anticorrosive coatings on metal surfaces, to processes for the preparation of such compositions and to their use.

Die erfindungsgemäßen Mittel dienen insbesondere der Erzeugung von korrosionsschützenden Konversionsschichten bzw. Passivierungsschichten auf Metalloberflächen, wie den Oberflächen reiner Metallsubstrate wie Zink, Aluminium, Magnesium oder deren Legierungen und galvanisch erzeugten Oberflächen aus Zink oder deren Legierungen.The compositions of the invention are used in particular for the production of corrosion-protective conversion layers or passivation layers on metal surfaces, such as the surfaces of pure metal substrates such as zinc, aluminum, magnesium or their alloys and galvanically produced surfaces of zinc or their alloys.

Hintergrund der ErfindungBackground of the invention

Metallteile werden zum Schutz vor Korrosion beispielsweise galvanisch mit unedlen Metallen beschichtet, wie z. B. Zink, Nickel, Chrom, Aluminium, Magnesium und Legierungen der vorgenannten, und die Korrosionsbeständigkeit der Metallbeschichtung durch Erzeugung einer Konversionsschicht, häufig einer Passivierungsschicht, weiter verbessert. Zur Erzeugung einer Passivierungsschicht werden die Metalloberflächen vielfach mit Chrom(VI) enthaltenden Lösungen behandelt. Aufgrund der hohen Toxizität und Kanzerogenität von Chrom(VI)-Verbindungen ist man in jüngerer Zeit jedoch dazu übergegangen, derartige Konversionsschichten mit Chrom(III)-haltigen Lösungen herzustellen. Diesen Chrom(III)-haltigen Behandlungsflüssigkeiten werden zur Erhöhung der Korrosionsschutzwirkung der hergestellten Konversionsschichten vielfach hohe Mengen an Kobalt(II)-Verbindungen zugegeben. Allerdings stellen auch diese Behandlungslösungen ein Problem dar, da sowohl Chrom(III) als auch Kobalt(II) hinsichtlich ihrer Toxizität nicht unbedenklich sind und aufgrund von analytischen Problemen nicht sichergestellt werden kann, daß die Konversionsschichten frei von Chrom(VI) sind. Daher besteht ein dringender Bedarf, vollständig chrom- und kobaltfreie Korrosionsschutzschichten herzustellen.Metal parts are coated to protect against corrosion, for example, galvanically with base metals, such. As zinc, nickel, chromium, aluminum, magnesium and alloys of the aforementioned, and the corrosion resistance of the metal coating by forming a conversion layer, often a passivation layer further improved. To produce a passivation layer, the metal surfaces are often treated with solutions containing chromium (VI). However, due to the high toxicity and carcinogenicity of chromium (VI) compounds, more recent attempts have been made to prepare such conversion layers with chromium (III) -containing solutions. These chromium (III) -containing treatment liquids are added to increase the corrosion protection effect of the prepared conversion layers many times high amounts of cobalt (II) compounds. However, these treatment solutions are also a problem, since both chromium (III) and cobalt (II) are not acceptable in terms of their toxicity and can not be ensured due to analytical problems that the conversion layers are free of chromium (VI). Therefore, there is an urgent need to produce completely chromium and cobalt-free anticorrosive coatings.

Neuere Verfahren erzeugen Schutzschichten mit einem Bindemittelsystem auf organischer bzw. siliziumorganischer Basis, denen korrosionshemmende bzw. schichtverstärkende Zusatzstoffe auf Basis von Molybdän, Wolfram, Titan, Zirkonium, Vanadium und anderen Metallen zugegeben werden.Recent processes produce protective layers with an organosilicon-based binder system to which corrosion inhibiting additives based on molybdenum, tungsten, titanium, zirconium, vanadium and other metals are added.

Die US-A-6,524,403 beschreibt eine chromfreie Zusammensetzung zur Verbesserung der Korrosionsbeständigkeit von Zink- oder Zinklegierungsoberflächen, wobei die Zusammensetzung eine Quelle für Titanionen oder Titanaten, ein Oxidationsmittel und Fluoride sowie Verbindungen von Metallen der Gruppe II enthält und die Zusammensetzung im wesentlichen frei von Silikaten und Siliziumdioxid ist. Als Metall der Gruppe II wird insbesondere Strontium eingesetzt.The US-A-6,524,403 describes a chromium-free composition for improving the corrosion resistance of zinc or zinc alloy surfaces, which composition contains a source of titanium ions or titanates, an oxidizer and fluorides, and Group II metal compounds, and the composition is substantially free of silicates and silica. Strontium is used in particular as Group II metal.

Die EP 0 760 401 offenbart eine Korrosionsschutzzusammensetzung, die ein Oxidationsmittel, ein Silikat und/oder Siliziumdioxid und Metallkationen, ausgewählt unter Ti, Zr, Ce, Sr, V, W und Mo, Oximetallanionen davon und/oder Fluorometallanionen davon enthält.The EP 0 760 401 discloses an anticorrosive composition containing an oxidizing agent, a silicate and / or silica and metal cations selected from Ti, Zr, Ce, Sr, V, W and Mo, oxime metal anions thereof and / or fluorometal anions thereof.

Die bislang bekannten chromfreien Korrosionsschutzmittel haben den Nachteil, daß sie entweder keine hinreichenden Korrosionsschutzeigenschaften der Konversionsschichten liefern oder nicht ausreichend stabil sind, um sie in einem kontinuierlichen Verfahren einzusetzen oder beides.The previously known chromium-free corrosion inhibitors have the disadvantage that they either do not provide sufficient corrosion protection properties of the conversion layers or are not sufficiently stable to use them in a continuous process or both.

Aufgabe der ErfindungObject of the invention

Die Aufgabe der vorliegenden Erfindung bestand darin, die Nachteile der im Stand der Technik bekannten Mittel zur Herstellung von Korrosionsschutzschichten bzw. Konversionsschichten auf Metalloberflächen, insbesondere Oberflächen von Zink, Aluminium, Magnesium oder deren Legierungen, zu überwinden, wobei die Mittel frei von Chrom und Kobalt sein sollen.The object of the present invention was to overcome the disadvantages of the known in the prior art means for producing anticorrosive layers or conversion layers on metal surfaces, in particular surfaces of zinc, aluminum, magnesium or their alloys, wherein the means free of chromium and cobalt should be.

Beschreibung der ErfindungDescription of the invention

Gelöst wird diese Aufgabe durch ein Mittel zur Herstellung von Korrosionsschutzschichten auf Metalloberflächen, hergestellt durch die folgenden Stufen:

  1. A) Herstellen einer wässrigen Lösung, die wenigstens folgendes enthält:
    1. a) Oxo-Kationen VO<2+>,
    2. b) Halogen-Komplexanionen der Struktur MXa<b->, wobei M unter B, Ti, Zr, Si, Al ausgewählt ist, X unter F, Cl, Br, I ausgewählt ist, a eine ganze Zahl von 3 bis 6 ist und b eine ganze Zahl von 1 bis 4 ist,
  2. B) Bildung von Nanopartikeln mit einem mittleren Teilchendurchmesser < 500 nm in der Lösung in situ durch physikalische und/oder chemische Behandlung der Lösung, wobei die physikalische und/oder chemische Behandlung ausgewählt ist unter Veränderung der Temperatur, Veränderung der Ionen-Konzentration, Veränderung des pH-Wertes, Veränderung des Drucks, Übersättigung der Lösung, Rühren der Lösung, Zugabe eines Oxidationsmittels und/oder Zugabe eines Reduktionsmittels.
This object is achieved by a means for the production of corrosion protection layers on metal surfaces, produced by the following steps:
  1. A) preparing an aqueous solution containing at least:
    1. a) oxo cations VO <2+>,
    2. b) halogen complex anions of the structure MXa <b->, wherein M is selected from B, Ti, Zr, Si, Al, X is selected from F, Cl, Br, I, a is an integer from 3 to 6, and b is an integer from 1 to 4,
  2. B) formation of nanoparticles with an average particle diameter <500 nm in the solution in situ by physical and / or chemical treatment of the solution, wherein the physical and / or chemical treatment is selected by changing the temperature, changing the ion concentration, changing the pH, change in pressure, supersaturation of the solution, stirring of the solution, addition of an oxidizing agent and / or addition of a reducing agent.

Das erfindungsgemäße Mittel zeichnet sich unter anderem dadurch aus, daß es in situ erzeugte Nanopartikel enthält, die stabil oder wenigstens metastabil sind. Bei der Behandlung von Metalloberflächen mit dem erfindungsgemäßen Mittel wird eine Konversionsschicht bzw. Passivierungsschicht gebildet. Die in der Behandlungslösung in situ erzeugten Nanopartikel werden bei der Bildung der Konversionsschicht in diese eingebaut und bewirken dadurch eine besonders hohe Korrosionsschutzwirkung der behandelten Metalloberflächen. Bei dem erfindungsgemä-ßen Mittel werden diese Nanopartikel in situ durch Hydrolyse oder Oxidation der in der Ausgangslösung enthaltenen Stoffe erzeugt. Die Nanopartikel werden der Lösung nicht als bereits vorhandene nanopartikuläre Teilchen von außen zugesetzt. Es hat sich überraschenderweise gezeigt, daß die erfindungsgemäß in situ erzeugten Nanopartikel besser in die Konversionsschichten eingebaut werden und hierdurch diese Schichten dichter und somit korrosionsbeständiger werden als solche, die durch Aufbringen einer Korrosionsschutzlösung herstellbar sind, der Nanopartikel von außen zugegeben wurden, beispielsweise in Form einer Silica- oder Silikatlösung.The agent according to the invention is characterized inter alia by containing in situ generated nanoparticles which are stable or at least metastable. In the treatment of metal surfaces with the agent according to the invention, a conversion layer or passivation layer is formed. The nanoparticles generated in situ in the treatment solution are incorporated into the conversion layer during the formation of the conversion layer, thereby resulting in a particularly high corrosion protection effect of the treated metal surfaces. In the agent according to the invention, these nanoparticles are generated in situ by hydrolysis or oxidation of the substances contained in the starting solution. The nanoparticles are not added to the solution as already existing nanoparticulate particles from outside. It has surprisingly been found that the inventively generated in situ nanoparticles are better incorporated into the conversion layers and thereby these layers are denser and thus more corrosion resistant than those which can be produced by applying a corrosion protection solution were added to the nanoparticles from the outside, for example in the form of a Silica or silicate solution.

Die Nanopartikel in dem erfindungsgemäßen Mittel werden in situ durch physikalische und/oder chemische Behandlung der Ausgangslösung erzeugt, wobei eine kolloide Lösung entsteht. Mittels einer Tyndall-Lampe läßt sich die Bildung der Nanopartikel leicht nachweisen. Die Nanopartikel haben einen mittleren Teilchendurchmesser < 500 nm.The nanoparticles in the agent according to the invention are carried out in situ produces physical and / or chemical treatment of the starting solution, resulting in a colloidal solution. By means of a Tyndall lamp, the formation of nanoparticles can be easily detected. The nanoparticles have an average particle diameter <500 nm.

Die Nanopartikel entstehen aus den Halogen-Komplexanionen und/oder Oxo-Kationen durch Hydrolyse oder Oxidation. Die Nanopartikel bestehen somit im wesentlichen aus den Oxiden der Metalle oder Metalloide.The nanoparticles are formed from the halogen complex anions and / or oxo cations by hydrolysis or oxidation. The nanoparticles thus consist essentially of the oxides of the metals or metalloids.

Ohne daß sich die Anmelderin hiermit an eine Theorie bindet, wird angenommen, daß die Bildung von Nanopartikeln in situ durch die physikalische und/oder chemische Behandlung dadurch erfolgt, daß man den zunächst vorliegenden Gleichgewichtszustand der Ausgangslösung in einen Ungleichgewichtszustand überführt und das System sich in einem metastabilen Zustand stabilisiert. Die Überführung aus dem Gleichgewichtszustand in einen Ungleichgewichtszustand kann durch Veränderung der Temperatur, Veränderung der Ionen-Konzentration, Veränderung des pH-Wertes, Veränderung des Drucks, Übersättigung der Lösung, Rühren der Lösung, Zugabe eines Oxidationsmittels und/oder Zugabe eines Reduktionsmittels erfolgen. In einer bevorzugten Ausführungsform der Erfindung erfolgt die Bildung der Nanopartikel in situ durch Übersättigung der Lösung und/oder Rühren der Lösung.Without the applicant hereby binding to a theory, it is assumed that the formation of nanoparticles in situ by the physical and / or chemical treatment is carried out by bringing the initially present equilibrium state of the starting solution in an imbalance state and the system in a stabilized metastable state. The transition from the equilibrium state to an imbalance state can be effected by changing the temperature, changing the ion concentration, changing the pH, changing the pressure, supersaturating the solution, stirring the solution, adding an oxidizing agent and / or adding a reducing agent. In a preferred embodiment of the invention, the formation of the nanoparticles takes place in situ by supersaturation of the solution and / or stirring of the solution.

Das erfindungsgemäße Mittel kann in verschiedenen Formen und Fertigstellungsstufen vor der Behandlung von Metalloberflächen als Handelsprodukt bereitgestellt werden. Vorzugsweise wird das erfindungsgemäße Mittel als ein Konzentrat bereitgestellt, das vor der Verwendung noch zu verdünnen ist. Als Handelsprodukt geeignet ist das erfindungsgemäße Mittel, sobald die Oxo-Kationen und Halogen-Komplexanionen enthaltende wäßrige Lösung gemäß Stufe A) hergestellt und die Nanopartikel gemäß B) in situ gebildet sind.The composition of the invention may be provided in various forms and stages of completion prior to the treatment of metal surfaces as a commercial product. Preferably, the agent of the invention is provided as a concentrate which is to be diluted before use. The product according to the invention is suitable as a commercial product as soon as the aqueous solution containing oxo-cations and halogen complex anions has been prepared according to step A) and the nanoparticles according to B) have been formed in situ.

In einer bevorzugten Ausführungsform der Erfindung wird in einer weiteren Stufe C) der gemäß B) hergestellten Lösung eine oxidative Substanz zugegeben, ausgewählt unter Wasserstoffperoxid, organischen Peroxiden, Alkalimetallperoxiden, Persulfaten, Perboraten, Nitraten und Gemischen davon, wobei die Zugabe von Wasserstoffperoxid als oxidative Substanz besonders bevorzugt ist. Die Zugabe der oxidativen Substanz erfolgt zweckmäßigerweise vor der Verwendung des erfindungsgemäßen Mittels zur Herstellung von Korrosionsschutzschichten, wobei das erfindungsgemäße Mittel bereits mit der darin enthaltenen oxidativen Substanz bereitgestellt werden kann oder die oxidative Substanz erst kurz vor der Verwendung des erfindungsgemäßen Mittels beim Hersteller der Korrosionsschutzschichten zugegeben wird.In a preferred embodiment of the invention, in a further stage C) of the solution prepared according to B) an oxidative substance is added selected from hydrogen peroxide, organic peroxides, alkali metal peroxides, persulfates, perborates, nitrates and mixtures thereof, the addition of hydrogen peroxide as oxidative substance is particularly preferred. The addition of the oxidative substance is expediently carried out before the use of the agent according to the invention for the production of anticorrosion coatings, wherein the agent according to the invention can already be provided with the oxidative substance contained therein or the oxidative substance is added shortly before the use of the agent according to the invention at the manufacturer of the anticorrosive coatings ,

Die Zugabe der oxidativen Substanz vor der Verwendung des erfindungsgemäßen Mittels zur Herstellung von Korrosionsschutzschichten bewirkt u.a. eine Vorpassivierung der metallischen Oberfläche, insbesondere einer Zink- oder Zinklegierungsoberfläche, was vorteilhaft ist, da die Behandlungslösung äußerst aggressiv gegen die metallische Oberfläche sein kann und diese wenigstens teilweise auflösen könnte.The addition of the oxidative substance before the use of the agent according to the invention for the production of anticorrosive coatings causes, inter alia, a pre-passivation of the metallic surface, in particular a zinc or zinc alloy surface, which is advantageous because the treatment solution can be extremely aggressive against the metallic surface and dissolve it at least partially could.

In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Mittels wird in einer weiteren Stufe D) der pH-Wert mittels einer Säure oder Base auf einen Wert im Bereich von 0,5 bis 5,0, vorzugsweise im Bereich von 1,0 bis 3,0, besonders bevorzugt im Bereich von 1,3 bis 2,0 eingestellt. Dies ist besonders vorteilhaft, wenn das erfindungsgemäße Mittel zur Herstellung von Korrosionsschutzschichten auf Zink- oder Zinklegierungsoberflächen verwendet wird. Die Einstellung des erfindungsgemäß bevorzugten sauren pH-Wertes gewährleistet einen ausreichenden Abtrag des metallischen Untergrundes, so daß die Metalloberfläche im wesentlichen vollständig von anhaftenden Verunreinigungen befreit wird und sich die Korrosionsschutzschicht anschließend vollständig und lückenlos über die gesamte Oberfläche ausbilden kann.In a further preferred embodiment of the agent according to the invention, in a further stage D) the pH is adjusted by means of an acid or base to a value in the range from 0.5 to 5.0, preferably in the range from 1.0 to 3.0, more preferably adjusted in the range of 1.3 to 2.0. This is particularly advantageous when the composition according to the invention is used for the production of anticorrosive coatings on zinc or zinc alloy surfaces. The setting of the invention preferred acidic pH ensures sufficient removal of the metallic substrate, so that the metal surface is substantially completely freed of adhering impurities and the corrosion protection layer can then form completely and completely over the entire surface.

In einer weitere bevorzugten Ausführungsform der Erfindung wird das erfindungsgemäße Mittel hergestellt, indem die Bildung von Nanopartikeln gemäß Stufe B) bei einer Temperatur im Bereich von Raumtemperatur bis 100 °C, vorzugsweise im Bereich von 30 °C bis 80 °C, besonders bevorzugt im Bereich von 35 °C bis 50 °C durchgeführt wird. Bei einer zu niedrigen Temperatur erfolgt die Bildung von Nanopartikeln in einer unwirtschaftlich langsamen Geschwindigkeit. Darüber hinaus besteht die Gefahr, daß sich die Teilchen zusammenlagern und der nanopartikuläre Charakter verloren geht. Eine zu hohe Temperatur hat den Nachteil, daß der metastabile Zustand nicht erreicht wird und keine Nanopartikel gebildet werden.In a further preferred embodiment of the invention, the agent according to the invention is prepared by the formation of nanoparticles according to step B) at a temperature in the range of room temperature to 100 ° C, preferably in the range of 30 ° C to 80 ° C, more preferably in the range from 35 ° C to 50 ° C is performed. At too low a temperature, nanoparticles are formed at an uneconomically slow rate. In addition, there is a risk that the particles accumulate and the nanoparticulate character is lost. Too high a temperature has the disadvantage that the metastable state is not reached and no nanoparticles are formed.

In einer weiteren bevorzugten Ausführungsform der Erfindung wird das Mittel hergestellt, indem die Halogen-Komplexanionen b) der wäßrigen Lösung in Stufe A) in der Form ihrer Metallsalze, vorzugsweise ihrer Alkalimetallsalze, besonders bevorzugt ihrer Natrium- und Kaliumsalze zugegeben werden. Ganz besonders bevorzugt ist die Zugabe der Feststoffe, indem man zunächst eine wäßrige Lösung der Oxo-Kationen a) bereitstellt und den die Halogen-Komplexanionen enthaltenden Feststoff zugibt und löst.In a further preferred embodiment of the invention, the agent is prepared by adding the halogen complex anions b) to the aqueous solution in step A) in the form of their metal salts, preferably their alkali metal salts, more preferably their sodium and potassium salts. Very particular preference is given to the addition of the solids by initially preparing an aqueous solution of the oxo cations a) and adding and dissolving the solid containing the halogen complex anions.

Erfindungsgemäß ganz besonders bevorzugt sind die Halogen-Komplexanionen b) Fluoroanionen, die unter BF4<1->, TiF6<2->, ZrF6<2->, SiF6<2->, AIF6<3-> und Gemischen davon ausgewählt sind.Very particular preference according to the invention is given to the halogen complex anions b) fluoroanions selected from BF4 <1->, TiF6 <2->, ZrF6 <2->, SiF6 <2->, AIF6 <3-> and mixtures thereof.

In einer weiteren erfindungsgemäß bevorzugten Ausführungsform werden der wäßrigen Lösung in Stufe A) weitere Metallsalze zugegeben, vorzugsweise Salze der Metalle B, Ti, Zr, Si und/oder Al. Vorzugsweise werden die Metalle in der Form der Metallhalogenide, Metallnitrate und/oder Metallsulfate zugegeben. Hierdurch kann die farbliche Gestaltung der Schutzschicht verändert und/oder der Korrosionsschutz erhöht werden.In a further preferred embodiment according to the invention, further metal salts are added to the aqueous solution in stage A), preferably salts of the metals B, Ti, Zr, Si and / or Al. Preferably, the metals are added in the form of the metal halides, metal nitrates and / or metal sulfates. As a result, the color design of the protective layer can be changed and / or the corrosion protection can be increased.

In einer weiteren bevorzugten Ausführungsform der Erfindung enthält die in Stufe A) hergestellte wäßrige Lösung die Oxo-Kationen in einer Konzentration von 0,1 bis 0,5 Gew.-%, vorzugsweise in einer Konzentration von 0,1 bis 0,3 Gew.-%.In a further preferred embodiment of the invention, the aqueous solution prepared in step A) contains the oxo cations in a concentration of 0.1 to 0.5 wt .-%, preferably in a concentration of 0.1 to 0.3 wt. -%.

In einer weiteren bevorzugten Ausführungsform der Erfindung enthält die in der Stufe A) hergestellte wäßrige Lösung die Halogen-Komplexanionen in einer Konzentration von 0,1 bis 3,0 Gew.-%, vorzugsweise in einer Konzentration von 0,5 bis 2,0 Gew.-%.In a further preferred embodiment of the invention, the aqueous solution prepared in step A) contains the halogen complex anions in a concentration of 0.1 to 3.0 wt .-%, preferably in a concentration of 0.5 to 2.0% by weight.

Wie oben bereits ausgeführt wurde, kann das erfindungsgemäße Mittel als ein Konzentrat bereitgestellt werden, das vor der Anwendung zu verdünnen ist. Alternativ kann das erfindungsgemäße Mittel bereits in der für die Anwendung geeigneten Konzentration bzw. Verdünnung bereitgestellt werden. In diesem Fall wird die in Stufe B) erhaltene Lösung zweckmäßigerweise vor oder nach der Zugabe einer oxidativen Substanz in Stufe C) mit Wasser in einem Verhältnis von 1:3 bis 1:5 verdünnt.As stated above, the agent of the invention may be provided as a concentrate to be diluted before use. Alternatively, the agent according to the invention can already be provided in the concentration or dilution suitable for the application. In this case, the solution obtained in step B) is expediently diluted with water in a ratio of 1: 3 to 1: 5 before or after the addition of an oxidative substance in step C).

Die Anwendung des erfindungsgemäßen Mittels zur Herstellung von Korrosionsschutzschichten erfolgt durch direkte Behandlung der Metalloberflächen mit dem Mittel, vorzugsweise durch Eintauchen oder Schwenken der Gegenstände mit Metalloberflächen in das bzw. dem Mittel. Die Anwendung durch Eintauchen oder Schwenken erfolgt vorzugsweise bei einer Temperatur des Behandlungsbades im Bereich von 20 bis 100°C, vorzugsweise von 30 bis 70°C, bevorzugter von 40 bis 60°C und besonders bevorzugt bei etwa 50°C.The application of the composition according to the invention for the production of anticorrosive coatings is carried out by direct treatment of the metal surfaces with the agent, preferably by immersing or pivoting the objects with metal surfaces in the or the agent. Application by dipping or panning is preferably carried out at a temperature of the treatment bath in the range of 20 to 100 ° C, preferably 30 to 70 ° C, more preferably 40 to 60 ° C, and most preferably about 50 ° C.

Die geeignetste Behandlungsdauer zur Herstellung von Korrosionsschutzschichten durch Eintauchen oder Schwenken der Gegenstände mit Metalloberflächen in das bzw. dem Behandlungsbad variiert in Abhängigkeit von verschiedenen Parametern, wie z. B. der Zusammensetzung der Behandlungslösung, der Behandlungstemperatur, der Art der Metalloberfläche und dem Grad des gewünschten Korrosionsschutzes. Bei Metalloberflächen aus Zink oder Zinklegierung liegt eine geeignete Behandlungsdauer im Bereich von 10 bis 120 Sekunden, vorzugsweise im Bereich von 20 bis 60 Sekunden.The most suitable treatment time for the production of anticorrosive coatings by immersing or pivoting the objects with metal surfaces in the treatment or the treatment varies depending on various parameters, such as. As the composition of the treatment solution, the treatment temperature, the type of metal surface and the degree of corrosion protection desired. For metal surfaces of zinc or zinc alloy, a suitable treatment time is in the range of 10 to 120 seconds, preferably in the range of 20 to 60 seconds.

Weitere Vorteile, Merkmale und Ausführungsformen der vorliegenden Erfindung werden anhand der nachfolgenden Beispiele deutlich.Further advantages, features and embodiments of the present invention will become apparent from the following examples.

Beispiele und VergleichsbeispieleExamples and Comparative Examples

Zur Herstellung erfindungsgemäßer Mittel und von Vergleichszusammensetzungen wird eine wäßrige Lösung von Oxo-Anionen a) hergestellt. Unter leichtem Rühren wird anschließend die Halogen-Komplexanionen-Komponente b), in diesem Beispiel eine Fluoroanionen-Komponente, als Feststoff in 800 ml der zuvor hergestellten Lösung gelöst. Anschließend wird diese Lösung einer physikalischen und/oder chemischen Behandlung durch starkes Rühren (Propellerrührer, 700 bis 1000 Upm) unterzogen. Die Bildung von Nanopartikeln wird mittels einer Tyndall-Lampe überprüft. Anschließend wird die erhaltene Lösung mit Wasser auf 1 I aufgefüllt.For the preparation of compositions according to the invention and comparative compositions, an aqueous solution of oxo anions a) is prepared. With gentle stirring, the halogen complex anion component b), in this example a fluoroanion component, is then dissolved as a solid in 800 ml of the previously prepared solution. Subsequently, this solution is subjected to physical and / or chemical treatment by vigorous stirring (propeller stirrer, 700 to 1000 rpm). The formation of nanoparticles is checked by means of a Tyndall lamp. Subsequently, the solution obtained is made up to 1 l with water.

Die zuvor hergestellte Lösung wird vor der Verwendung zur Herstellung von Korrosionsschutzschichten im Verhältnis 1 zu 4 mit Wasser verdünnt (1 I Lösung plus 3 I Wasser). Anschließend wird 1 Liter 10 %-ige H2O2-Lösung hinzugefügt und der pH-Wert mit NaOH oder HNO3 auf einen Wert von 1,5 bis 1,8 eingestellt. Die einzelnen Komponenten der hergestellten Lösungen (5 Liter Lösung je Ansatz) und die physikalischen und/oder chemischen Behandlungen sind in der nachfolgenden Tabelle 1 wiedergegeben. Tabelle 1 Behandlungs-Lsg. Nr. Oxo-Anionen a) (Gew.-%) Fluoroanionen-Komponente b) physikalische und/oder chemische Behandlung Tyndall-Effekt 1a (Erfindung) VOSO4 0,25 Gew.-% K2TiF6 13,6 g Rühren, 40°C, 30 min positiv 1b (Vgl.-Bsp.) VOSO4 0,25 Gew.-% K2TiF6 13,6 g Stehen, 40°C, 30 min negativ 2a (Vgl.-Bsp.) VOSO4 0,25 Gew.-% H2TiF6 9,1 g Rühren, 40°C, 30 min negativ 2b (Vgl.-Bsp.) VOSO4 0,25 Gew.-% H2TiF6 9,1 g Stehen, 40°C, 30 min negativ 3a (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% K2TiF6 13,6 g Rühren, 40°C, 30 min positiv 3b (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% K2TiF6 13,6 g Stehen, 40°C, 30 min negativ 4a (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% H2TiF6 9,1 g Rühren, 40°C, 30 min negativ 4b (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% H2TiF6 9,1 g Stehen, 40°C, 30 min negativ 5a (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% K2AlF6 14,2 g Rühren, 40°C, 30 min positiv 5b (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% K2AlF6 14,2 g Stehen, 40°C, 30 min negativ 6a (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% K2SiF6 12,5 g Rühren, 40°C, 30 min positiv 6b (Vgl.-Bsp.) TiOS04 0,25 Gew.-% K2SiF6 12,5 g Stehen, 40°C, 30 min negativ 7a (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% H2SiF6 7,9 g Rühren, 40°C, 30 min negativ 7b (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% H2SiF6 7,9 g Stehen, 40°C, 30 min negativ 8a (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% K2ZrF6 16,0 g Rühren, 40°C, 30 min positiv 8b (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% K2ZrF6 16,0 g Stehen, 40°C, 30 min negativ 9a (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% H2ZrF6 9,7 g Rühren, 40°C, 30 min negativ 9b (Vgl.-Bsp.) TiOSO4 0,25 Gew.-% H2ZrF6 9,7 g Stehen, 40°C, 30 min negativ 10a (Vgl.-Bsp.) ZrOSO4 0,25 Gew.-% K2TiF6 13,6 g Rühren, 40°C, 30 min positiv 10b (Vgl.-Bsp.) ZrOSO4 0,25 Gew.-% K2TiF6 13,6 g Stehen, 40°C, 30 min negativ 11a (Vgl.-Bsp.) ZrOSO4 0,25 Gew.-% H2TiF6 9,1 g Rühren, 40°C, 30 min negativ 11b (Vgl.-Bsp.) ZrOSO4 0,25 Gew.-% H2TiF6 9,1 g Stehen, 40°C, 30 min negativ The previously prepared solution is diluted 1 to 4 with water (1 liter of solution plus 3 liters of water) before use for the preparation of anticorrosion coatings. Subsequently, 1 liter of 10% H2O2 solution is added and the pH is adjusted to 1.5 to 1.8 with NaOH or HNO3. The individual components of the prepared solutions (5 liters of solution per batch) and the Physical and / or chemical treatments are given in Table 1 below. Table 1 Treatment soln. No oxo anions a) (wt.%) Fluoroanion component b) physical and / or chemical treatment Tyndall effect 1a (invention) VOSO4 0.25% by weight K2TiF6 13.6 g stirring, 40 ° C, 30 min positive 1b (Comp. Ex.) VOSO4 0.25 wt% K2TiF6 13.6 g standing, 40 ° C, negative for 30 min 2a (Comp. Ex.) VOSO4 0.25 wt% H2TiF6 9.1 g stirring, 40 ° C, negative for 30 min 2b (Comp. Ex.) VOSO4 0.25 wt% H2TiF6 9.1 g standing, 40 ° C, negative for 30 min 3a (Comp. Ex.) TiOSO4 0.25 wt% K2TiF6 13.6 g stirring, 40 ° C, 30 min positive 3b (Comp. Ex.) TiOSO4 0.25 wt% K2TiF6 13.6 g standing, 40 ° C, negative for 30 min 4a (Comp. Ex.) TiOSO4 0.25 wt% H2TiF6 9.1 g stirring, 40 ° C, negative for 30 min 4b (Comp. Ex.) TiOSO4 0.25 wt% H2TiF6 9.1 g standing, 40 ° C, negative for 30 min 5a (Comp. Ex.) TiOSO4 0.25 wt% K2AlF6 14.2 g stirring, 40 ° C, positive for 30 min 5b (Comp. Ex.) TiOSO4 0.25 wt% K2AlF6 14.2 g standing, 40 ° C, negative for 30 min 6a (Comp. Ex.) TiOSO4 0.25 wt% K2SiF6 12.5 g stirring, 40 ° C, 30 min positive 6b (Comp. Ex.) TiOS04 0.25 wt% K2SiF6 12.5 g standing, 40 ° C, negative for 30 min 7a (Comp. Ex.) TiOSO4 0.25% by weight H2SiF6 7.9 g stirring, 40 ° C, negative for 30 min 7b (Comp. Ex.) TiOSO4 0.25 wt% H2SiF6 7.9 g standing, 40 ° C, negative for 30 min 8a (Comp. Ex.) TiOSO4 0.25 wt% K2ZrF6 16.0 g stirring, 40 ° C, 30 min positive 8b (Comp. Ex.) TiOSO4 0.25 wt% K2ZrF6 16.0 g standing, 40 ° C, negative for 30 min 9a (Comp. Ex.) TiOSO4 0.25% by weight H2ZrF6 9.7 g stirring, 40 ° C, negative for 30 min 9b (Comp. Ex.) TiOSO4 0.25 wt% H2ZrF6 9.7 g standing, 40 ° C, negative for 30 min 10a (Comp. Ex.) ZrOSO4 0.25 wt% K2TiF6 13.6 g stirring, 40 ° C, 30 min positive 10b (Comp. Ex.) ZrOSO4 0.25 wt% K2TiF6 13.6 g standing, 40 ° C, negative for 30 min 11a (Comp. Ex.) ZrOSO4 0.25 wt% H2TiF6 9.1 g stirring, 40 ° C, negative for 30 min 11b (Comp. Ex.) ZrOSO4 0.25 wt% H2TiF6 9.1 g standing, 40 ° C, negative for 30 min

Tabelle 1 zeigt, daß ohne Behandlung der Lösungen durch Rühren (Lösungen 1b bis 11b) kein Tyndall-Effekt beobachtet und somit keine Bildung von Nanopartikeln erzielt wurde. Das gleiche wurde beobachtet, wenn die Fluoroanionen-Komponente in der Form ihrer freien Säure mit und ohne Rühren verwendet wurde (Lösungen 2a, 2b, 4a, 4b, 7a, 7b, 9a, 9b, 11a und 11b).Table 1 shows that without treatment of the solutions by stirring (solutions 1b to 11b) no Tyndall effect was observed and thus no formation of nanoparticles was achieved. The same was observed when the fluoroanion component was used in the form of its free acid with and without stirring (solutions 2a, 2b, 4a, 4b, 7a, 7b, 9a, 9b, 11a and 11b).

Galvanisch verzinkte Bleche wurden mit den zuvor hergestellten und in Tabelle 1 angegebenen Behandlungslösungen durch Eintauchen in die Lösungen für 60 Sekunden bei 50°C behandelt. Anschließend wurden die Bleche mit Wasser gespült und einem Korrosionstest nach DIN 50021 SS (Salzsprühtest) für Trommelware unterzogen und die Dauer bis zum Auftreten von i) ersten Korrosionserscheinungen und ii) 5% Weißrost verglichen. Die Ergebnisse sind in Tabelle 2 wiedergegeben. Tabelle 2 Behandlungs-Lsg. Nr. erste Korrosionserscheinungen 5% Weißrost 1a (Erfindung) 8 h 24 h 1b (Vgl.-Bsp.) 3 h 8 h 2a (Vgl.-Bsp.) 2 h 7 h 2b (Vgl.-Bsp.) 2 h 7 h 3a (Vgl.-Bsp.) 24 h 72 h 3b (Vgl.-Bsp.) 4 h 10 h 4a (Vgl.-Bsp.) 3 h 10 h 4b (Vgl.-Bsp.) 8 h 24 h 5a (Vgl.-Bsp.) 12 h 48 h 5b (Vgl.-Bsp.) 4 h 12 h 6a (Vgl.-Bsp.) 120 h 168 h 6b (Vgl.-Bsp.) 5 h 28 h 7a (Vgl.-Bsp.) 5 h 20 h 7b (Vgl.-Bsp.) 8 h 24 h 8a (Vgl.-Bsp.) 48 h 96 h 8b (Vgl.-Bsp.) 3 h 16 h 9a (Vgl.-Bsp.) 4 h 12 h 9b (Vgl.-Bsp.) 8 h 24 h 10a (Vgl.-Bsp.) 72 h 120 h 10b (Vgl.-Bsp.) 8 h 28 h 11a (Vgl.-Bsp.) 5 h 24 h 11b (Vgl.-Bsp.) 5 h 24 h Galvanized sheets were treated with the previously prepared and shown in Table 1 treatment solutions by immersion in the solutions for 60 seconds at 50 ° C. The sheets were then rinsed with water and subjected to a corrosion test according to DIN 50021 SS (salt spray test) for drumware and the duration of occurrence of i) first signs of corrosion and ii) 5% white rust compared. The results are shown in Table 2. Table 2 Treatment soln. No. first signs of corrosion 5% white rust 1a (invention) 8 h 24 h 1b (Comp. Ex.) 3 h 8 h 2a (Comp. Ex.) 2 h 7 h 2b (Comp. Ex.) 2 h 7 h 3a (Comp. Ex.) 24 h 72 h 3b (Comp. Ex.) 4 h 10 h 4a (Comp. Ex.) 3 h 10 h 4b (Comp. Ex.) 8 h 24 h 5a (Comp. Ex.) 12 h 48 h 5b (Comp. Ex.) 4 h 12 h 6a (Comp. Ex.) 120 h 168 h 6b (Comp. Ex.) 5 h 28 h 7a (Comp. Ex.) 5 h 20 h 7b (Comp. Ex.) 8 h 24 h 8a (Comp. Ex.) 48 h 96 h 8b (Comp. Ex.) 3 h 16 h 9a (Comp. Ex.) 4 h 12 h 9b (Comp. Ex.) 8 h 24 h 10a (Comp. Ex.) 72 h 120 h 10b (Comp. Ex.) 8 h 28 h 11a (Comp. Ex.) 5 h 24 h 11b (Comp. Ex.) 5 h 24 h

Claims (11)

  1. Composition for producing anti-corrosion layers on metal surfaces, which is produced by the following steps:
    A) producing an aqueous solution which comprises at least the following:
    a) oxo cations VO<2+>,
    b) halogen complex anions of the structure MXa<b->, where M is selected from B, Ti, Zr, Si and Al, X is selected from F, Cl, Br and I, a is an integer from 3 to 6 and b is an integer from 1 to 4,
    B) forming nanoparticles having a mean particle diameter < 500 nm in the solution in situ by physical and/or chemical treatment of the solution, where the physical and/or chemical treatment is selected from change in the temperature, change in the ion concentration, change in the pH, change in the pressure, supersaturating the solution, agitating the solution, adding an oxidizing agent and/or adding a reducing agent.
  2. Composition according to Claim 1, characterized by the further step in which
    C) there is added, to the solution produced in accordance with step B), an oxidative substance selected from hydrogen peroxide, organic peroxides, alkali metal peroxides, persulfates, perborates, nitrates and mixtures thereof.
  3. Composition according to Claim 2, characterized by the further step in which
    D) the pH of the solution produced in accordance with step C) is adjusted by means of an acid or a base to a value in the range from 0.5 to 5.0, preferably in the range from 1.0 to 3.0, particularly preferably in the range from 1.3 to 2.0.
  4. Composition according to any of Claims 1 to 3, characterized in that the formation of nanoparticles in accordance with step B) is accomplished by supersaturating the solution with halogen complex anions b) and/or by agitating the solution.
  5. Composition according to any of Claims 1 to 4, characterized in that the formation of nanoparticles in accordance with step B) is carried out at a temperature in the range from room temperature to 100°C, preferably in the range from 30°C to 80°C, particularly preferably in the range from 35°C to 50°C.
  6. Composition according to any of Claims 1 to 5, characterized in that the halogen complex anions b) are added to the aqueous solution in step A) in the form of their metal salts, preferably their alkali metal salts, particularly preferably their sodium and potassium salts.
  7. Composition according to any of Claims 1 to 6, characterized in that there are added, to the aqueous solution in step A), further metal salts, preferably salts of the metals B, Ti, Zr, Si and/or Al, and preferably in the form of the metal halides, metal nitrates and/or metal sulfates.
  8. Composition according to any of Claims 1 to 7, characterized in that the aqueous solution produced in step A) comprises the oxo cations in a concentration of 0.1 to 0.5% by weight, preferably in a concentration of 0.1 to 0.3% by weight.
  9. Composition according to any of Claims 1 to 8, characterized in that the aqueous solution produced in step A) comprises the halogen complex anions in a concentration of 0.1 to 3.0% by weight, preferably in a concentration of 0.5 to 2.0% by weight.
  10. Composition according to any of Claims 2 to 9, characterized in that the solution obtained in step B) is diluted with water in a ratio from 1:3 to 1:5 prior to the addition of an oxidative substance in step C).
  11. Composition according to any of Claims 1 to 10, characterized in that the halogen complex anions b) are selected from BF4<1->, TiF6<2->, ZrF6<2->, SiF6<2->, AlF6<3-> and mixtures thereof.
EP07105237.7A 2007-03-29 2007-03-29 Means for manufacturing corrosion protection coats on metal surfaces Active EP1978131B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES07105237T ES2388302T5 (en) 2007-03-29 2007-03-29 Agents for manufacturing corrosion protection layers on metal surfaces
EP07105237.7A EP1978131B2 (en) 2007-03-29 2007-03-29 Means for manufacturing corrosion protection coats on metal surfaces
JP2010500230A JP5279811B2 (en) 2007-03-29 2008-03-20 Agent that forms an anti-corrosion layer on metal surfaces
CN2008800104018A CN101668881B (en) 2007-03-29 2008-03-20 Agent for the production of anticorrosive layers on metal surfaces
US12/593,632 US8764916B2 (en) 2007-03-29 2008-03-20 Agent for the production of anti-corrosion layers on metal surfaces
PCT/EP2008/053346 WO2008119675A1 (en) 2007-03-29 2008-03-20 Agent for the production of anticorrosive layers on metal surfaces
KR1020097020409A KR101493458B1 (en) 2007-03-29 2008-03-20 Agent for the production of anti-corrosion layers on metal surfaces
BRPI0809299-0A2A BRPI0809299A2 (en) 2007-03-29 2008-03-20 AGENT FOR PRODUCTION OF ANTI-CORROSION LAYERS ON METAL SURFACES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07105237.7A EP1978131B2 (en) 2007-03-29 2007-03-29 Means for manufacturing corrosion protection coats on metal surfaces

Publications (3)

Publication Number Publication Date
EP1978131A1 EP1978131A1 (en) 2008-10-08
EP1978131B1 EP1978131B1 (en) 2012-06-06
EP1978131B2 true EP1978131B2 (en) 2019-03-06

Family

ID=38222536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07105237.7A Active EP1978131B2 (en) 2007-03-29 2007-03-29 Means for manufacturing corrosion protection coats on metal surfaces

Country Status (8)

Country Link
US (1) US8764916B2 (en)
EP (1) EP1978131B2 (en)
JP (1) JP5279811B2 (en)
KR (1) KR101493458B1 (en)
CN (1) CN101668881B (en)
BR (1) BRPI0809299A2 (en)
ES (1) ES2388302T5 (en)
WO (1) WO2008119675A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209407A (en) * 2008-03-04 2009-09-17 Mazda Motor Corp Agent for chemical conversion treatment and surface-treated metal
EP2309027B1 (en) 2009-09-23 2011-09-21 ATOTECH Deutschland GmbH Treatment solution for generating chrome and cobalt-free black conversion coatings
ES2924127T3 (en) 2012-08-29 2022-10-04 Ppg Ind Ohio Inc Lithium-containing zirconium pretreatment compositions, associated methods for treating metal substrates, and related coated metal substrates
BR112015004358B1 (en) 2012-08-29 2021-05-25 Ppg Industries Ohio, Inc method for coating a metal substrate and pretreatment composition for treating a metal substrate
US20160068957A1 (en) * 2013-04-12 2016-03-10 Haydn N.G. Wadley Corrosion resistant metal and metal alloy coatings containing supersaturated concentrations of corrosion inhibiting elements and methods and systems for making the same
CN103205739B (en) * 2013-04-28 2015-04-08 东南大学 Surface chemical treatment method for improving abrasive resistance of steel material
DE102013107506A1 (en) 2013-07-16 2015-01-22 Thyssenkrupp Rasselstein Gmbh Method for passivation of band-shaped black plate
DE102015113878B4 (en) 2015-08-21 2023-03-16 Thyssenkrupp Ag Process for the thermal treatment of a black plate coated with a conversion layer
WO2018006270A1 (en) * 2016-07-05 2018-01-11 深圳市恒兆智科技有限公司 Chromium-free aluminum conversion coating agent, aluminum material, and surface conversion coating treatment method
KR20190043155A (en) 2016-08-24 2019-04-25 피피지 인더스트리즈 오하이오 인코포레이티드 Alkaline compositions for treating metal substrates
US11008254B2 (en) 2019-08-08 2021-05-18 Specialty Granules Investments Llc Building materials comprising agglomerated particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743971A (en) 1995-08-21 1998-04-28 Dipsol Chemicals Co., Ltd. Liquid rust proof film-forming composition and rust proof film-forming method
US20030205299A1 (en) 2002-04-29 2003-11-06 Greene Jeffrey Allen Conversion coatings including alkaline earth metal fluoride complexes
EP1950325A2 (en) 2007-01-19 2008-07-30 Nihon Hyomen Kagaku Kabushiki Kaisha Chromium-free solution for treating metal surfaces

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN176027B (en) * 1988-08-12 1995-12-23 Alcan Int Ltd
JP2870170B2 (en) * 1990-09-21 1999-03-10 日本板硝子株式会社 Method for producing titanium oxide coating
US6193815B1 (en) * 1995-06-30 2001-02-27 Henkel Corporation Composition and process for treating the surface of aluminiferous metals
DE10010758A1 (en) * 2000-03-04 2001-09-06 Henkel Kgaa Corrosion protection of zinc, aluminum and/or magnesium surfaces such as motor vehicle bodies, comprises passivation using complex fluorides of Ti, Zr, Hf, Si and/or B and organic polymers
CA2408675A1 (en) * 2000-05-11 2001-11-15 Henkel Corporation Metal surface treatment agent
JP3851106B2 (en) * 2000-05-11 2006-11-29 日本パーカライジング株式会社 Metal surface treatment agent, metal surface treatment method and surface treatment metal material
US6524403B1 (en) * 2001-08-23 2003-02-25 Ian Bartlett Non-chrome passivation process for zinc and zinc alloys
JP4167046B2 (en) * 2002-11-29 2008-10-15 日本パーカライジング株式会社 Metal surface treatment agent, metal surface treatment method and surface treatment metal material
JP4205939B2 (en) * 2002-12-13 2009-01-07 日本パーカライジング株式会社 Metal surface treatment method
JP4402991B2 (en) * 2004-03-18 2010-01-20 日本パーカライジング株式会社 Metal surface treatment composition, metal surface treatment liquid, metal surface treatment method and metal material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743971A (en) 1995-08-21 1998-04-28 Dipsol Chemicals Co., Ltd. Liquid rust proof film-forming composition and rust proof film-forming method
US20030205299A1 (en) 2002-04-29 2003-11-06 Greene Jeffrey Allen Conversion coatings including alkaline earth metal fluoride complexes
EP1950325A2 (en) 2007-01-19 2008-07-30 Nihon Hyomen Kagaku Kabushiki Kaisha Chromium-free solution for treating metal surfaces

Also Published As

Publication number Publication date
KR101493458B1 (en) 2015-02-13
CN101668881A (en) 2010-03-10
EP1978131B1 (en) 2012-06-06
ES2388302T3 (en) 2012-10-11
KR20100014685A (en) 2010-02-10
US20100126633A1 (en) 2010-05-27
BRPI0809299A2 (en) 2014-10-14
WO2008119675A1 (en) 2008-10-09
EP1978131A1 (en) 2008-10-08
JP2010532816A (en) 2010-10-14
JP5279811B2 (en) 2013-09-04
CN101668881B (en) 2011-08-24
US8764916B2 (en) 2014-07-01
ES2388302T5 (en) 2019-10-18

Similar Documents

Publication Publication Date Title
EP1978131B2 (en) Means for manufacturing corrosion protection coats on metal surfaces
EP2907894B1 (en) Method for production of a substrate with a chromium VI free and cobalt-free passivation
EP2255026B1 (en) Optimized passivation on ti-/zr-basis for metal surfaces
DE69737195T2 (en) Solution and method for the production of protective layers on metals
DE60110470T2 (en) Corrosion protection coatings for aluminum and aluminum alloys
DE69732102T2 (en) Surface treated metallic corrosion resistant material and surface treatment agent
EP1816234B1 (en) Aqueous passivating coating composition for zinc or zinc alloys and method for using same
WO2011067094A1 (en) Multi-stage pre-treatment method for metal components having zinc and iron surfaces
DE2711431C2 (en) Process for the surface treatment of metals
WO1992006226A1 (en) Process for the passivating post-treatment of phosphatised metal surfaces
EP1611266B1 (en) Method for producing pieces having a modified surface
DE19808440A1 (en) Aqueous solution and process for phosphating metallic surfaces
EP3676419B1 (en) Improved method for nickel-free phosphating of metallic surfaces
EP1678345A1 (en) Coloured conversion layers devoid of chrome formed on metal surfaces
EP0943695A1 (en) Wire based on zinc and aluminium and its use in thermal spraying for corrosion protection
DE102015209909A1 (en) Conditioning before a conversion treatment of metal surfaces
EP1318212A1 (en) Agents and methods for the surface treatment of zinc-based coatings
WO2019052701A1 (en) Two-stage pre-treatment of aluminum, in particular aluminum casting alloys, comprising pickle and conversion treatment
DE19905479A1 (en) Process for the phosphatisation of zinc or aluminum surfaces
EP0171043B1 (en) Passivating process for lead and lead-containing surfaces
DE4031710A1 (en) Corrosion protection medium for aluminium@ surfaces - process for making corrosion protecting layers on aluminium
EP3336219B1 (en) Method for the corrosion protection and cleaning pretreatment of metallic components
WO2022135778A1 (en) Chromium(vi)-free coating agent for metals
WO2005047566A1 (en) Coloured conversion layers devoid of chromium, applied to metal surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081004

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOTECH DEUTSCHLAND GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 561091

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007009986

Country of ref document: DE

Effective date: 20120802

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120606

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2388302

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120907

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121008

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: EWALD DOERKEN AG

Effective date: 20130305

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20130306

R26 Opposition filed (corrected)

Opponent name: EWALD DOERKEN AG

Effective date: 20130305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007009986

Country of ref document: DE

Effective date: 20130305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120906

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: ATOTECH DEUTSCHLAND G.M.B.H.

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130329

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130329

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130329

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007009986

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130329

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070329

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: EWALD DOERKEN AG

Effective date: 20130305

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20130306

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20190306

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007009986

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2388302

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20191018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 17

Ref country code: ES

Payment date: 20230527

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240321

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 18