EP1961848A1 - Device for detecting and removing foreign matter - Google Patents

Device for detecting and removing foreign matter Download PDF

Info

Publication number
EP1961848A1
EP1961848A1 EP07003699A EP07003699A EP1961848A1 EP 1961848 A1 EP1961848 A1 EP 1961848A1 EP 07003699 A EP07003699 A EP 07003699A EP 07003699 A EP07003699 A EP 07003699A EP 1961848 A1 EP1961848 A1 EP 1961848A1
Authority
EP
European Patent Office
Prior art keywords
mirror
material flow
sensor device
radiation
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07003699A
Other languages
German (de)
French (fr)
Other versions
EP1961848B1 (en
Inventor
Axel Krause
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuchs Rudolf
Original Assignee
Fuchs Rudolf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuchs Rudolf filed Critical Fuchs Rudolf
Priority to EP20070003699 priority Critical patent/EP1961848B1/en
Priority to DE200750004383 priority patent/DE502007004383D1/en
Priority to CN2008100072841A priority patent/CN101250772B/en
Publication of EP1961848A1 publication Critical patent/EP1961848A1/en
Application granted granted Critical
Publication of EP1961848B1 publication Critical patent/EP1961848B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G31/00Warning or safety devices, e.g. automatic fault detectors, stop motions
    • D01G31/003Detection and removal of impurities

Definitions

  • the invention relates to a device for detecting and eliminating foreign matter from a stream of material according to the preamble of claim 1.
  • Such devices are used primarily in spinning mills for cleaning raw cotton. This raw cotton can often be interspersed with undesirable for the spinning process foreign matter.
  • Foreign substances may be, for example, cords, jute or other tissue shreds, plastic films or material particles.
  • a generic comparable device is for example in the Dissertation by Jürg Uhlmann, "Foreign Material Detection in Raw Cotton", Zurich 1996 , in cape. 5.1 and based Fig. 5.1 been described.
  • the cotton flakes are guided in a pneumatic flow through a presentation channel and monitored by means of a "flying spot scanner".
  • a prismatic mirror wheel is provided onto which a light source arrangement with lasers and a sensor arrangement are directed, the laser beams being brought into the direction of the mirror wheel by beam injection.
  • the light sources and the sensors are arranged in a plan view with respect to the mirror wheel approximately at right angles to each other. In practice, it has been found that this arrangement requires a relatively large amount of space. Because of the use of semitransparent mirrors for beam injection losses occur, which has a negative effect on the optical efficiency.
  • the recognition unit can be made slender.
  • the arrangement is further characterized by a high optical efficiency.
  • Another advantage of the arrangement is that illumination and imaging are congruent in each mirror wheel position.
  • the beam of the irradiation device can be deflected or guided directly or indirectly from the polygon mirror in the direction of the flow of material.
  • the material flow can be pneumatically conveyed in a transport line.
  • the material flow could, however, also be transported, for example, as a fleece on a conveyor belt.
  • the device is also particularly suitable for scanning such a material flow in the region of an opening roller in the spinning preparation.
  • the polygon mirror may be a prismatic body whose individual mirror surfaces extend parallel to the axis of rotation.
  • the polygon mirror wheel it would also be conceivable for the polygon mirror wheel to be designed in the shape of a pyramid or truncated pyramid, with the individual mirror surfaces being inclined, as can be seen, to the axis of rotation. Due to the angle of inclination, the degree of deflection of an incident light beam can be determined. In certain cases, it would even be conceivable to form the surfaces of the individual mirrors slightly concave or convex.
  • the irradiation device contains a radiation source for generating a radiation and at least one concave mirror for aligning and bundling the radiation along the radiation axis to the polygon mirror.
  • a radiation source for generating a radiation and at least one concave mirror for aligning and bundling the radiation along the radiation axis to the polygon mirror.
  • the radiation source can emit light such as visible light, UV light or infrared, in particular near infrared (NIR).
  • NIR near infrared
  • the wavelength of the radiation is to be selected in each case such that an optimal differentiation between the material of good and the foreign substance to be eliminated is achieved.
  • the alignment and bundling of the radiation can preferably take place in such a way that, when the material flow is reached, it is almost punctiform or, in cross-section, has at least one expansion in the order of magnitude of the particles to be detected. In this way, foreign substances in the material flow can be precisely localized.
  • sensors for example, single or array-shaped electromagnetic or optoelectronic sensors (eg, individual sensors or matrix sensors) come into question.
  • the irradiation device further has a rear-side reflector with which a rear part of the radiation can be guided or reflected in the direction of the concave mirror.
  • the rear-side reflector can preferably also be designed as a concave mirror.
  • the rear-side reflector also has the advantage that the sensor device is arranged in the light shade created by the latter. As a result, the sensor device is protected from interfering radiation effects by direct irradiation from the radiation source in a simple manner.
  • the rear-side reflector is arranged between the sensor device and the concave mirror, wherein the distance (D1) between a sensor input of the sensor device and the radiation source is smaller than the distance (D2) between the radiation source and the concave mirror.
  • the sensor input can be predetermined, for example, by a lens arranged at the front end of the sensor device. It may be particularly preferred if C1 is less than 0.9 D2, preferably less than 0.75 D2 and more preferably about 2/3 D2.
  • the rear-side reflector is arranged approximately directly next to the radiation source.
  • the distance (D3) between the back reflector and the point light source may be less than 20 mm.
  • the radiation source is located between the concave mirror and the rear-side reflector, wherein the rear-side reflector is thus preferably arranged almost directly next to the radiation source.
  • the radiation source is a halogen lamp with a helix.
  • Such lamps are particularly well suited as point light sources.
  • other lamps or other radiation sources would be conceivable.
  • the distance (D3) between the radiation source and the rear-side reflector formed as a spherical concave mirror may correspond approximately to the radius of the concave mirror.
  • the mirror surfaces of the polygon mirror, the reflecting surfaces of the concave mirror and / or the reflecting surfaces of the rear-side reflector can be silvered, aluminized or gold-plated. Other reflective metallic surfaces are also conceivable. Gilded surfaces are particularly advantageous because they are chemically resistant and work well under severe environmental conditions (no tarnish). Further advantages can be achieved if the individual mirror surfaces of the polygon mirror are provided with a polarization filter, preferably such that each mirror surface has a different polarization direction.
  • the mirror wheel could for example have five individual mirrors, one of which remains without polarization filter and four are each provided with a different polarizing filter. The speed of this mirror wheel could be chosen such that one line is scanned on the material flow with different polarization directions. Thus, the recognizability of foreign substances, in particular of plastic films could be significantly improved.
  • An advantageous arrangement of the detection unit in the device results when the arrangement of irradiation device and sensor device is arranged on an observation channel for carrying out the flow of material, that the deflected by the polygon mirror beam from the irradiation device extends at an acute angle of inclination along the top of the observation channel.
  • This angle of inclination may preferably be less than 10 ° and more preferably less than 5 °.
  • the deflected by the polygon mirror beam could also be parallel to the top of the observation channel (inclination angle would be zero).
  • a deflection mirror can be provided for deflecting the beam in the direction of the flow of material.
  • Such indirect radiation guidance from or to the polygon mirror is characterized by a particularly small footprint.
  • the entire detection unit can be mounted relatively flat on the observation channel. With the help of the deflecting mirror, the beam can be deflected in such a way that, in a lateral view, it can strike the upper side of the observation channel almost at right angles.
  • a lens hood In front of the sensor device, a lens hood can be arranged, whereby it can be prevented that the sensor device is acted upon by rays which originate directly from the irradiation device by reflection at the polygon mirror.
  • This lens hood may be upstream of the sensor device in relation to the radiation axis in the direction of the polygon mirror. In this case, it can connect approximately directly to a lens defining the front end of the sensor device.
  • the lens hood can be wedge-shaped in cross-section or in a side view, wherein the wedge angle can correspond approximately to the predetermined by the polygon mirror deflection angle of the detection unit.
  • a filter can be arranged in front of one or more sensors of the sensor device.
  • the polygon mirror can be driven by an electric motor, which can preferably be designed as an external rotor motor.
  • the mirror surfaces of the polygon mirror are assigned to the external rotor. In this way, the drive motor in the polygon mirror can be easily integrated.
  • the sensor device contains one or more sensors based on semiconductors.
  • the sensor device can be equipped with at least one Peltier element and optionally additionally or alternatively with ventilation means for heat removal (for example "heat pipe"). Cooling may be required regardless of the selected sensor, because the sensor device is arranged directly in the light beam.
  • the preferred as the light source halogen lamps emit a large part of their energy as heat, which could have a negative effect on the sensor device.
  • the irradiation device and the sensor device define a recognition unit
  • the device has at least two recognition units.
  • the units can be mounted in such a way that the material flow at the same height can be scanned in two laterally offset rows.
  • the lines would be based on the transport direction of the material flow arranged at a distance from each other.
  • At least two detection units may be mounted side by side with respect to the transport direction of the material flow, wherein with each detection unit the entire channel area or only one partial area in each case could be scannable. Such a division of the scan area can easily increase the detection rate of foreign substances from the material flow.
  • the flow of material could also be conveyed by another conveyor (e.g., on a conveyor belt).
  • the material flow is pneumatically conveyed through a presentation channel and if the device has at least two recognition units.
  • the recognition units can be arranged on the same side or on two opposite sides of the presentation channel.
  • the detection units are arranged offset on two opposite sides of the presentation channel and with respect to the transport direction of the material flow to each other. Such a dual arrangement ensures a high degree of precipitation of foreign matter, without mutual interference of the recognition units.
  • the device may have a presentation channel with a transparent front for a directed against the material flow beam of the irradiation device.
  • a background adapted to the material material of the material flow can be provided in the presentation channel in such a way that upon reflection at the background, an identical detector signal can be generated as in the case of good material.
  • error detection caused by the back can be excluded in a simple manner.
  • the area of the upper side of the observation channel acted upon by the beams is formed by a transparent pane.
  • the area acted upon by the rays of the back side formed by a disc of transparent material, behind which the aforementioned background could be arranged.
  • FIG. 1 is a designated 1 device for detecting and eliminating foreign substances in a pneumatically conveyed material flow of raw cotton shown.
  • This basic structure known per se consists essentially of a detection unit 2 for detecting foreign substances in the material flow and a separating arrangement 5 operatively connected thereto.
  • the material flow is guided through a transport line 6, a corresponding observation channel 7 being arranged in the region of the detection unit 2.
  • the corresponding event is converted by means of an evaluation unit 9 into a control signal which activates the excretion arrangement 5.
  • the detected foreign matter is now led away via a separator tube 18 or another derivative until it finally reaches a (not shown) separation vessel.
  • the elimination takes place, for example, by means of compressed air (indicated by compressed air source 23) either directly by blowing out the foreign substance or by actuating a deflecting flap.
  • compressed air indicated by compressed air source 23
  • any separation method would be suitable for a material flow conveyed pneumatically in a transport line 6.
  • the device described below is not limited to pneumatic conveying systems.
  • the device is also particularly suitable for non-woven on a conveyor belt or otherwise funded cotton.
  • FIG. 2 the basic structure of a detection unit 2 for detecting foreign substances from a material flow of fiber material is shown.
  • the irradiation device 3 and the sensor device 4 are arranged coaxially with respect to an optical radiation axis L one behind the other.
  • the beam of the irradiation device 3 is deflected in each case by a mirror surface 17 of a rotating polygon mirror 10 in the direction of the material flow in the observation channel 19.
  • a deflecting mirror 20 and an auxiliary mirror 21 are arranged for guiding the beam in the direction of the material flow.
  • the beam from the polygon mirror could also be deflected directly to the flow of material.
  • a beam reflected by the material flow is guided in the opposite direction over the polygon mirror 10 and a lens 26 to the sensor device 4.
  • the material flow can be scanned line by line.
  • Such a line is indicated by a dot-dash line.
  • One possible structural embodiment of the recognition unit is in the following FIGS. 3 and 4 shown.
  • the irradiation device essentially consists of a radiation source 8 for generating radiation, a concave mirror 11 for aligning and bundling the radiation along the radiation axis L to the polygon mirror 10 and furthermore from a rear side reflector 12 arranged immediately behind the radiation source 8 Back part of the radiation in the direction of the concave mirror 11 is feasible.
  • the beam path of a beam from the flow of material to the sensor device 4 is indicated by a bold line and an arrow.
  • FIG. 3 and in particular the FIGS. 4 and 5 As can be seen, the beam does not have to be a beam that is punctiform in cross section.
  • the radiations can be visible light, UV light or infrared radiation. In the field of application of cotton, in particular radiation in the near infrared (NIR, ca. 800-2,500 nm) has proved to be advantageous.
  • the maximum deflection of the detector beam is about 45 °.
  • a polygon mirror 10 a five-surface mirror wheel with five mirror surfaces 17 is used.
  • the scanning range of this scanning unit should normally be - as in Fig. 3 -
  • the channel width of the observation channel 19 correspond.
  • Each mirror surface 17 defines a scan line in each case.
  • the beam deflected by the polygon mirror 10 from the irradiation device or the beam reflected by a particle of the material flow to the polygon mirror 10 extends at an acute angle of inclination ⁇ along the upper side 22.
  • This inclination angle ⁇ is presently about 9 °.
  • the prismatically formed polygon mirror 10 is inclined by an angle ⁇ with respect to a surface normal of the upper side 22 (R: rotation axis of the polygon mirror 10).
  • R rotation axis of the polygon mirror 10
  • Also arranged obliquely in the side view is the arrangement of concave mirror 11, radiation source 8, rear-side reflector 12 and the sensor device 4.
  • a deflecting mirror 20 inclined by about 45 ° with respect to the upper side 22 is provided, whereby the Beam is guided almost vertically through an area formed by a transparent disc portion 22 'of the top. Due to the flat arrangement of the detection unit and the fact that the beam is guided only immediately at the observation channel 19 in the direction of the flow of material, the overall volume can be minimized in an advantageous manner.
  • the rear-side reflector 12 is arranged between the sensor device 4 and the concave mirror 11, wherein the distance D1 between a sensor input of the sensor device 4 and the radiation source 8 is smaller than the distance D2 between the radiation source 8 and the concave mirror 11.
  • FIG. 5 It is shown that in the order concave mirror 11 - radiation source 8 - rear side reflector 12 - sensor device 4 and polygon mirror 10 are mounted in a row successively relative to the optical axis L arranged components of the detection unit on a support plate 31.
  • the polygonal mirror which is rotatable about a rotation axis R, is mounted on one side on a wedge element 30, which in turn is fastened to the support plate 31.
  • This recognition unit can be pre-assembled in a simple manner.
  • the wedge member 30 could be omitted if instead of the prismatic Mirror wheel a truncated pyramidal mirror wheel is used, whose axis of rotation R is arranged at right angles to the support plate 31.
  • a lens 26 In front of the sensor device, a lens 26 is arranged, which defines its front end. Directly in front of the lens 26, a lens hood 13 adjoins, with the aid of which it is prevented that light from the irradiation device can enter the sensor device 4 directly by reflection at the polygon mirror 10.
  • the lens hood 13 is wedge-shaped in cross section, wherein the wedge angle corresponds approximately to the deflection angle of the beams on the polygon mirror 10.
  • FIG. 5 Illustratively, that the irradiation and detection associated (and indicated by arrows) are concentric and opposite to each other.
  • the mirror surfaces 17 of the polygon mirror 10, the reflection surfaces of the concave mirror 11 and the reflection surfaces of the rear side reflector 12 are gold plated.
  • an electronically commutated outer rotor motor is used, which is integrated in the polygon mirror 10.
  • the sensor device 4 may be equipped with at least one (not shown) Peltier element. Furthermore, the sensor device is designed such that an air flow can be guided past the electrical and electronic components.
  • FIG. 6 shows that the radiation source 8 and the rear-side reflector 12 - compared to the distance D2 to the concave mirror 11 - are arranged in close proximity to each other.
  • the distance D3 is for example about 15 mm.
  • the radius r of the rear-side reflector 12 designed as a spherical concave mirror is likewise 15 mm in the present exemplary embodiment.
  • the distance D3 between the radiation source 8 and the rear-side reflector 12 formed as a spherical concave mirror thus corresponds to the radius r of the concave mirror 12.
  • the radiation source 8 is designed as a point light source, wherein, for example, the light source can be a halogen lamp with a coil 27.
  • the concave mirror 11 is designed as an ellipsoid concave mirror. He has the task as much radiation from the halogen lamp on the polygon mirror on the Focus material flow.
  • FIG. 7 a sensor device 4 is shown, in which the beam is guided via a lens 26 to a dielectric beam splitter, which leads a portion of the beams to the sensor 15 and another part to the sensor 16.
  • filters 28 and 29 are arranged to define a spectral range. Instead of an arrangement with two sensors, only one sensor could be provided.
  • the cross-sectional representation (section along the scan region or a scan line) of the observation channel 19 according to FIG. 8 shows (e indicates the transport direction of the flow of material) that the rectangular shaped observation channel is underlaid on three sides by a special background. Incident and reflected rays are indicated by arrows. Not only the upper side 22 'and rear side 25' are formed by glass panes, but in addition also still designated with 37 pages. Both behind the rear pane 25 'and behind the side windows 37, a cotton layer is arranged as a background 36. Thus, even in the event that a beam does not strike a particle of material flow, the detection unit can provide a correct signal. With reflection at the background thus a same detector signal as with the material material of the material flow is generated.
  • FIG. 9 shows for comparison an embodiment with only one recognition unit or a polygon mirror 10th
  • the recognition units are arranged on two opposite sides of the presentation channel 19.
  • the recognition units or polygon mirrors 10, 10 ' can be offset with respect to the transport direction e of the material flow, whereby the material flow can be scanned in two mutually offset lines.
  • this offset is not always necessary.
  • FIG. 11 two detection units are shown schematically, which are mounted side by side with respect to the transport direction of the material flow (without offset), wherein with each detection unit or with each polygon mirror 10, 10 'in each case a partial area is abscannbar.
  • Ü indicated overlap zone can be chosen arbitrarily or even eliminated.
  • FIG. 12 shows a perspective view of a detection arrangement with the two detection units 2 and 2 'according to the configuration FIG. 11 , With Z and Z 'lines are indicated, with each of which about one half of the material flow is abscannbar. The two lines obviously overlap.
  • the recognition units would advantageously be designed such that the scanned portions of adjacent recognition units would overlap in an overlapping zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

The assembly to detect and separate foreign matter from a flow of material, e.g. foreign bodies in raw cotton, has a halogen lamp (8) to illuminate the material flow and a sensor (4) to detect illuminated foreign matter. A rotating polygon mirror (10) gives the light beam a line scanning action. The lamp and the sensor are coaxially in line behind each other on the optical axis (L). At least one hollow mirror (11) with a reflector (12) aligns and bundles the light beam on the optical axis.

Description

Die Erfindung betrifft eine Vorrichtung zum Erkennen und Ausscheiden von Fremdstoffen aus einem Materialstrom gemäss dem Oberbegriff von Anspruch 1. Derartige Vorrichtungen werden in erster Linie in Spinnereien zum Reinigen von Rohbaumwolle eingesetzt. Diese Rohbaumwolle kann häufig mit für den Spinnprozess unerwünschten Fremdstoffen durchsetzt sein. Fremdstoffe können beispielsweise Schnüre, Jutefetzen oder andere Gewebefetzen, Kunststofffolien oder Materialteilchen sein.The invention relates to a device for detecting and eliminating foreign matter from a stream of material according to the preamble of claim 1. Such devices are used primarily in spinning mills for cleaning raw cotton. This raw cotton can often be interspersed with undesirable for the spinning process foreign matter. Foreign substances may be, for example, cords, jute or other tissue shreds, plastic films or material particles.

Eine gattungsmässig vergleichbare Vorrichtung ist beispielsweise in der Dissertation von Jürg Uhlmann, "Fremdstofferkennung in der Rohbaumwolle", Zürich 1996 , in Kap. 5.1 und anhand Fig. 5.1 beschrieben worden. Dabei werden die Baumwollflocken in einem pneumatischen Förderstrom durch einen Präsentationskanal geführt und mit Hilfe eines "Flying-Spot-Scanners" überwacht. Zum zeilenweisen Abscannen des Materialstroms ist ein prismatisch ausgebildetes Spiegelrad vorgesehen, auf das eine Lichtquellenanordnung mit Lasern und eine Sensoranordnung gerichtet sind, wobei die Laserstrahlen durch Strahleinkopplung in Richtung des Spiegelrads gebracht werden. Dabei sind die Lichtquellen und die Sensoren in einer Draufsicht in Bezug auf das Spiegelrad etwa rechtwinklig zueinander angeordnet. In der Praxis hat sich gezeigt, dass diese Anordnung verhältnismässig viel Platz benötigt. Wegen der Verwendung halbdurchlässiger Spiegel für die Strahleinkopplung treten Verluste auf, was sich nachteilig auf den optischen Wirkungsgrad auswirkt.A generic comparable device is for example in the Dissertation by Jürg Uhlmann, "Foreign Material Detection in Raw Cotton", Zurich 1996 , in cape. 5.1 and based Fig. 5.1 been described. The cotton flakes are guided in a pneumatic flow through a presentation channel and monitored by means of a "flying spot scanner". For scanning the material flow on a line-by-line basis, a prismatic mirror wheel is provided onto which a light source arrangement with lasers and a sensor arrangement are directed, the laser beams being brought into the direction of the mirror wheel by beam injection. The light sources and the sensors are arranged in a plan view with respect to the mirror wheel approximately at right angles to each other. In practice, it has been found that this arrangement requires a relatively large amount of space. Because of the use of semitransparent mirrors for beam injection losses occur, which has a negative effect on the optical efficiency.

Es ist daher eine Aufgabe der Erfindung, die Nachteile des Bekannten zu vermeiden, insbesondere eine Vorrichtung der eingangs genannten Art zu schaffen, die wenig Platz benötigt. Insbesondere soll sich die Erkennungseinheit durch eine kompakte Bauweise auszeichnen. Diese Aufgabe wird erfindungsgemäss mit einer Vorrichtung gelöst, die die Merkmale im Anspruch 1 aufweist.It is therefore an object of the invention to avoid the disadvantages of the known, in particular to provide a device of the type mentioned, which requires little space. In particular, the detection unit should be characterized by a compact design. This object is achieved according to the invention with a device having the features in claim 1.

Dadurch dass die wesentlichen Komponenten (d.h. die Bestrahlungseinrichtung, die Sensoreinrichtung und der Polygonspiegel) auf einer Linie angeordnet sind, kann die Erkennungseinheit schlank ausgeführt werden. Die Anordnung zeichnet sich weiter durch einen hohen optischen Wirkungsgrad aus. Ein weiterer Vorteil der Anordnung ist, dass Beleuchtung und Abbildung in jeder Spiegelradposition deckungsgleich sind. Der Strahl der Bestrahlungseinrichtung kann direkt oder indirekt vom Polygonspiegel in Richtung des Materialstroms abgelenkt oder geführt werden. Der Materialstrom kann in einer Transportleitung pneumatisch gefördert werden. Der Materialstrom könnte aber z.B. auch als Vlies auf einem Förderband transportiert werden. Die Vorrichtung eignet sich insbesondere auch zum Abscannen eines solchen Materialstroms im Bereich einer Öffnungswalze in der Spinnereivorbereitung.By arranging the essential components (ie, the irradiation means, the sensor means, and the polygon mirror) in a line, the recognition unit can be made slender. The arrangement is further characterized by a high optical efficiency. Another advantage of the arrangement is that illumination and imaging are congruent in each mirror wheel position. The beam of the irradiation device can be deflected or guided directly or indirectly from the polygon mirror in the direction of the flow of material. The material flow can be pneumatically conveyed in a transport line. The material flow could, however, also be transported, for example, as a fleece on a conveyor belt. The device is also particularly suitable for scanning such a material flow in the region of an opening roller in the spinning preparation.

Beim Polygonspiegel kann es sich um einen prismatischen Körper handeln, dessen einzelne Spiegelflächen sich parallel zur Drehachse erstrecken. Es wäre aber auch denkbar, dass das Polygonspiegelrad pyramidenartig oder pyramidenstumpfartig ausgebildet ist, wobei die einzelnen Spiegelflächen ersichtlicherweise zur Drehachse geneigt sind. Durch den Neigungswinkel kann der Grad der Ablenkung eines auftreffenden Lichtstrahls bestimmt werden. In bestimmten Fällen wäre es sogar denkbar, die Oberflächen der einzelnen Spiegel leicht konkav oder konvex auszubilden.The polygon mirror may be a prismatic body whose individual mirror surfaces extend parallel to the axis of rotation. However, it would also be conceivable for the polygon mirror wheel to be designed in the shape of a pyramid or truncated pyramid, with the individual mirror surfaces being inclined, as can be seen, to the axis of rotation. Due to the angle of inclination, the degree of deflection of an incident light beam can be determined. In certain cases, it would even be conceivable to form the surfaces of the individual mirrors slightly concave or convex.

In einer ersten Ausführungsform enthält die Bestrahlungseinrichtung eine Strahlungsquelle zum Erzeugen einer Strahlung und wenigstens einen Hohlspiegel zum Ausrichten und Bündeln der Strahlung entlang der Strahlungsachse zum Polygonspiegel. Selbstverständlich könnte alternativ zum Ausrichten und Bündeln der Strahlung auch eine Linse oder ein Linsensystem vorgesehen werden. Die Strahlungsquelle kann Licht wie beispielsweise sichtbares Licht, UV-Licht oder Infrarot, insbesondere nahes Infrarot (NIR) emittieren. Die Wellenlänge der Strahlung ist jeweils so auszuwählen, dass eine optimale Differenzierung zwischen dem Gutmaterial und dem zu eliminierenden Fremdstoff erreicht wird. Das Ausrichten und Bündeln der Strahlung kann dabei vorzugsweise derart erfolgen, dass sie bei Erreichen des Materialstroms nahezu punktförmig ist oder im Querschnitt wenigstens eine Ausdehnung in der Grössenordnung der zu erkennenden Partikel aufweist. Auf diese Weise lassen sich Fremdstoffe im Materialstrom präzise lokalisieren.In a first embodiment, the irradiation device contains a radiation source for generating a radiation and at least one concave mirror for aligning and bundling the radiation along the radiation axis to the polygon mirror. Of course, as an alternative to aligning and bundling the radiation, a lens or a lens system could also be provided. The radiation source can emit light such as visible light, UV light or infrared, in particular near infrared (NIR). The wavelength of the radiation is to be selected in each case such that an optimal differentiation between the material of good and the foreign substance to be eliminated is achieved. The alignment and bundling of the radiation can preferably take place in such a way that, when the material flow is reached, it is almost punctiform or, in cross-section, has at least one expansion in the order of magnitude of the particles to be detected. In this way, foreign substances in the material flow can be precisely localized.

Als Sensoren kommen beispielsweise einzelne oder array-förmige elektromagnetische bzw. optoelektronische Sensoren (z.B. also Einzelsensoren oder Matrixsensoren) in Frage.As sensors, for example, single or array-shaped electromagnetic or optoelectronic sensors (eg, individual sensors or matrix sensors) come into question.

Vorteilhaft weist die Bestrahlungseinrichtung weiter einen Rückseiten-Reflektor auf, mit dem ein rückseitiger Teil der Strahlung in Richtung des Hohlspiegels führbar bzw. reflektierbar ist. Der Rückseiten-Reflektor kann dabei bevorzugt ebenfalls als Hohlspiegel ausgebildet sein. Neben der Funktion der Lichtbündelung hat der Rückseiten-Reflektor weiterhin den Vorteil, dass die Sensoreinrichtung im durch diesen geschaffenen Lichtschatten angeordnet ist. Dadurch ist die Sensoreinrichtung von störenden Strahlungseinflüssen durch direkte Bestrahlung von der Strahlungsquelle auf einfache Art und Weise geschützt.Advantageously, the irradiation device further has a rear-side reflector with which a rear part of the radiation can be guided or reflected in the direction of the concave mirror. The rear-side reflector can preferably also be designed as a concave mirror. In addition to the function of light bundling, the rear-side reflector also has the advantage that the sensor device is arranged in the light shade created by the latter. As a result, the sensor device is protected from interfering radiation effects by direct irradiation from the radiation source in a simple manner.

Weiter kann es vorteilhaft sein, wenn der Rückseiten-Reflektor zwischen der Sensoreinrichtung und dem Hohlspiegel angeordnet ist, wobei die Distanz (D1) zwischen einem Sensoreingang der Sensoreinrichtung und der Strahlungsquelle kleiner als die Distanz (D2) zwischen der Strahlungsquelle und dem Hohlspiegel ist. Der Sensoreingang kann beispielsweise durch eine am vorderen Ende der Sensoreinrichtung angeordnete Linse vorgegeben sein. Besonders bevorzugt kann es sein, wenn C1 kleiner als 0.9 D2, vorzugsweise kleiner als 0.75 D2 ist und besonders bevorzugt etwa 2/3 D2 beträgt.Furthermore, it may be advantageous if the rear-side reflector is arranged between the sensor device and the concave mirror, wherein the distance (D1) between a sensor input of the sensor device and the radiation source is smaller than the distance (D2) between the radiation source and the concave mirror. The sensor input can be predetermined, for example, by a lens arranged at the front end of the sensor device. It may be particularly preferred if C1 is less than 0.9 D2, preferably less than 0.75 D2 and more preferably about 2/3 D2.

Vorteilhaft kann es weiter sein, wenn der Rückseiten-Reflektor etwa unmittelbar neben der Strahlungsquelle angeordnet ist. Bei einer Punktlichtquelle als Strahlungsquelle kann die Distanz (D3) zwischen dem Rückseiten-Reflektor und der Punktlichtquelle zum Beispiel weniger als 20 mm betragen. Die Strahlungsquelle befindet sich zwischen dem Hohlspiegel und dem Rückseiten-Reflektor, wobei der Rückseiten-Reflektor vorzugsweise also nahezu unmittelbar neben der Strahlungsquelle angeordnet ist.It may be advantageous if the rear-side reflector is arranged approximately directly next to the radiation source. For example, in a point light source as a radiation source, the distance (D3) between the back reflector and the point light source may be less than 20 mm. The radiation source is located between the concave mirror and the rear-side reflector, wherein the rear-side reflector is thus preferably arranged almost directly next to the radiation source.

Vorteilhaft kann es sein, wenn die Strahlungsquelle eine Halogenlampe mit einem Wendel ist. Derartige Lampen eignen sich besonders gut als Punktlichtquellen. Selbstverständlich wären aber auch andere Lampen oder weitere Strahlungsquellen denkbar.It can be advantageous if the radiation source is a halogen lamp with a helix. Such lamps are particularly well suited as point light sources. Of course, other lamps or other radiation sources would be conceivable.

Die Distanz (D3) zwischen der Strahlungsquelle und dem als sphärischen Hohlspiegel ausgebildeten Rückseiten-Reflektor kann etwa dem Radius des Hohlspiegels entsprechen.The distance (D3) between the radiation source and the rear-side reflector formed as a spherical concave mirror may correspond approximately to the radius of the concave mirror.

Die Spiegelflächen des Polygonspiegels, die Reflexionsflächen des Hohlspiegels und/oder die Reflexionsflächen des Rückseiten-Reflektors können versilbert, aluminisiert oder vergoldet sein. Andere spiegelnde metallische Oberflächen sind aber ebenfalls denkbar. Vergoldete Oberflächen sind insbesondere deshalb vorteilhaft, weil sie chemisch resistent sind und auch unter schwierigen äusseren Umweltbedingungen funktionieren (kein Anlaufen).
Weitere Vorteile können erzielt werden, wenn die einzelnen Spiegelflächen des Polygonspiegels mit einem Polarisationsfilter versehen sind, und zwar vorzugsweise derart, dass jede Spiegelfläche eine unterschiedliche Polarisationsrichtung aufweist. Das Spiegelrad könnte beispielsweise fünf Einzelspiegel aufweisen, von denen einer ohne Polarisationsfilter verbleibt und vier mit je einem unterschiedlichen Polarisationsfilter versehen sind. Die Drehzahl dieses Spiegelrades könnte derart gewählt werden, dass jeweils eine Zeile am Materialstrom mit verschiedenen Polarisationsrichtungen abgescannt wird. Damit könnte die Erkennbarkeit von Fremdstoffen, insbesondere von Plastikfolien erheblich verbessert werden.
The mirror surfaces of the polygon mirror, the reflecting surfaces of the concave mirror and / or the reflecting surfaces of the rear-side reflector can be silvered, aluminized or gold-plated. Other reflective metallic surfaces are also conceivable. Gilded surfaces are particularly advantageous because they are chemically resistant and work well under severe environmental conditions (no tarnish).
Further advantages can be achieved if the individual mirror surfaces of the polygon mirror are provided with a polarization filter, preferably such that each mirror surface has a different polarization direction. The mirror wheel could for example have five individual mirrors, one of which remains without polarization filter and four are each provided with a different polarizing filter. The speed of this mirror wheel could be chosen such that one line is scanned on the material flow with different polarization directions. Thus, the recognizability of foreign substances, in particular of plastic films could be significantly improved.

Eine vorteilhafte Anordnung der Erkennungseinheit in der Vorrichtung ergibt sich, wenn die Anordnung aus Bestrahlungseinrichtung und Sensoreinrichtung derart an einem Beobachtungskanal zum Durchführen des Materialstroms angeordnet ist, dass der vom Polygonspiegel abgelenkte Strahl von der Bestrahlungseinrichtung in einem spitzen Neigungswinkel entlang der Oberseite des Beobachtungskanals verläuft. Dieser Neigungswinkel kann dabei vorzugsweise kleiner als 10° und besonders bevorzugt kleiner als 5° sein. Selbstverständlich könnte der vom Polygonspiegel abgelenkte Strahl auch parallel zur Oberseite des Beobachtungskanals verlaufen (Neigungswinkel wäre dann Null). Zum Ablenken des Strahls in Richtung des Materialstroms kann ein Umlenkspiegel vorgesehen sein. Eine derartige indirekte Strahlungsführung vom bzw. zum Polygonspiegel zeichnet sich durch einen besonders geringen Platzbedarf aus. Die gesamte Erkennungseinheit kann verhältnismässig flach an den Beobachtungskanal montiert werden. Mit Hilfe des Umlenkspiegels kann der Strahl derart umgelenkt werden, dass er in einer seitlichen Ansicht nahezu im rechten Winkel auf die Oberseite des Beobachtungskanals auftreffen kann.An advantageous arrangement of the detection unit in the device results when the arrangement of irradiation device and sensor device is arranged on an observation channel for carrying out the flow of material, that the deflected by the polygon mirror beam from the irradiation device extends at an acute angle of inclination along the top of the observation channel. This angle of inclination may preferably be less than 10 ° and more preferably less than 5 °. Of course, the deflected by the polygon mirror beam could also be parallel to the top of the observation channel (inclination angle would be zero). For deflecting the beam in the direction of the flow of material, a deflection mirror can be provided. Such indirect radiation guidance from or to the polygon mirror is characterized by a particularly small footprint. The entire detection unit can be mounted relatively flat on the observation channel. With the help of the deflecting mirror, the beam can be deflected in such a way that, in a lateral view, it can strike the upper side of the observation channel almost at right angles.

Vor der Sensoreinrichtung kann eine Gegenlichtblende angeordnet sein, wodurch verhindert werden kann, dass die Sensoreinrichtung von Strahlen beaufschlagt wird, die direkt durch Reflexion am Polygonspiegel von der Bestrahlungseinrichtung herrühren. Diese Gegenlichtblende kann bezogen auf die Strahlungsachse in Richtung des Polygonspiegels der Sensoreinrichtung vorgelagert sein. Dabei kann sie etwa unmittelbar an eine das vordere Ende der Sensoreinrichtung definierende Linse anschliessen. Die Gegenlichtblende kann im Querschnitt bzw. in einer Seitenansicht keilförmig ausgebildet sein, wobei der Keilwinkel in etwa dem durch den Polygonspiegel vorgegebenen Ablenkwinkel der Erkennungseinheit entsprechen kann.In front of the sensor device, a lens hood can be arranged, whereby it can be prevented that the sensor device is acted upon by rays which originate directly from the irradiation device by reflection at the polygon mirror. This lens hood may be upstream of the sensor device in relation to the radiation axis in the direction of the polygon mirror. In this case, it can connect approximately directly to a lens defining the front end of the sensor device. The lens hood can be wedge-shaped in cross-section or in a side view, wherein the wedge angle can correspond approximately to the predetermined by the polygon mirror deflection angle of the detection unit.

Zum Festlegen eines Spektralbereichs kann ein Filter vor einem oder vor mehreren Sensoren der Sensoreinrichtung angeordnet sein.To define a spectral range, a filter can be arranged in front of one or more sensors of the sensor device.

In einer weiteren Ausführungsform kann der Polygonspiegel über einen Elektromotor antreibbar sein, der vorzugsweise als Aussenläufermotor ausgebildet sein kann. Dabei sind die Spiegelflächen des Polygonspiegels dem Aussenläufer zugeordnet. Auf diese Art und Weise lässt sich der Antriebsmotor im Polygonspiegel einfach integrieren.In a further embodiment, the polygon mirror can be driven by an electric motor, which can preferably be designed as an external rotor motor. The mirror surfaces of the polygon mirror are assigned to the external rotor. In this way, the drive motor in the polygon mirror can be easily integrated.

Vorteilhaft kann es weiter sein, wenn die Sensoreinrichtung einen oder mehrere Sensoren auf Halbleiterbasis enthält.It may be advantageous if the sensor device contains one or more sensors based on semiconductors.

Zum Kühlen kann die Sensoreinrichtung mit wenigstens einem Peltier-Element und gegebenenfalls zusätzlich oder alternativ mit Ventilationsmitteln zur Wärmeabfuhr ausgerüstet sein (z.B. "Heat Pipe"). Eine Kühlung kann unabhängig vom gewählten Sensor erforderlich sein, weil die Sensoreinrichtung unmittelbar im Lichtstrahl angeordnet ist. Die als Lichtquelle bevorzugten Halogenlampen strahlen einen grossen Teil ihrer Energie als Wärme ab, was sich negativ auf die Sensoreinrichtung auswirken könnte.For cooling, the sensor device can be equipped with at least one Peltier element and optionally additionally or alternatively with ventilation means for heat removal (for example "heat pipe"). Cooling may be required regardless of the selected sensor, because the sensor device is arranged directly in the light beam. The preferred as the light source halogen lamps emit a large part of their energy as heat, which could have a negative effect on the sensor device.

Wenn die Bestrahlungseinrichtung und die Sensoreinrichtung eine Erkennungseinheit definieren, kann es vorteilhaft sein, wenn die Vorrichtung wenigstens zwei Erkennungseinheiten aufweist. Die Einheiten können dabei derart montiert sein, dass der Materialstrom auf gleicher Höhe in zwei seitlich zueinander versetzten Zeilen abscannbar ist. Vorzugsweise wären dabei die Zeilen bezogen auf die Transportrichtung des Materialstroms in einem Abstand zueinander angeordnet.If the irradiation device and the sensor device define a recognition unit, it can be advantageous if the device has at least two recognition units. The units can be mounted in such a way that the material flow at the same height can be scanned in two laterally offset rows. Preferably, the lines would be based on the transport direction of the material flow arranged at a distance from each other.

Wenigstens zwei Erkennungseinheiten können bezogen auf die Transportrichtung des Materialstroms nebeneinander montiert sein, wobei mit jeder Erkennungseinheit der gesamte Kanalbereich oder nur jeweils ein Teilbereich abscannbar sein könnte. Durch eine derartige Aufteilung des Scan-Bereichs lässt sich die Erkennungsquote von Fremdstoffen aus dem Materialstrom auf einfache Art und Weise erhöhen.At least two detection units may be mounted side by side with respect to the transport direction of the material flow, wherein with each detection unit the entire channel area or only one partial area in each case could be scannable. Such a division of the scan area can easily increase the detection rate of foreign substances from the material flow.

Selbstverständlich könnte der Materialstrom statt durch einen Präsentationskanal auch durch ein anderes Fördermittel (z.B. auf einem Förderband) gefördert werden.Of course, instead of passing through a presentation channel, the flow of material could also be conveyed by another conveyor (e.g., on a conveyor belt).

Weiter kann es vorteilhaft sein, wenn der Materialstrom durch einen Präsentationskanal pneumatisch förderbar ist und wenn die Vorrichtung wenigstens zwei Erkennungseinheiten aufweist. Dabei können die Erkennungseinheiten auf derselben Seite oder auf zwei einander gegenüberliegenden Seiten des Präsentationskanals angeordnet sein.Further, it may be advantageous if the material flow is pneumatically conveyed through a presentation channel and if the device has at least two recognition units. In this case, the recognition units can be arranged on the same side or on two opposite sides of the presentation channel.

Besonders vorteilhaft kann es dabei sein, wenn die Erkennungseinheiten auf zwei einander gegenüberliegenden Seiten des Präsentationskanals und bezogen auf die Transportrichtung des Materialstroms versetzt zueinander angeordnet sind. Eine derartige duale Anordnung gewährleistet einen hohen Ausscheidungsgrad von Fremdstoffen, ohne gegenseitige Störung der Erkennungseinheiten.It may be particularly advantageous if the detection units are arranged offset on two opposite sides of the presentation channel and with respect to the transport direction of the material flow to each other. Such a dual arrangement ensures a high degree of precipitation of foreign matter, without mutual interference of the recognition units.

Die Vorrichtung kann einen Präsentationskanal mit einer für einen gegen den Materialstrom gerichteten Strahl der Bestrahlungseinrichtung transparenten Vorderseite aufweisen. Auf der der Vorderseite gegenüberliegenden Rückseite kann im Präsentationskanal ein an das Gutmaterial des Materialstrom derart angepasster Hintergrund vorgesehen sein, dass bei Reflexion am Hintergrund ein gleiches Detektorsignal wie beim Gutmaterial erzeugbar ist. Somit können auf einfache Art und Weise Fehlerkennungen verursacht durch die Rückseite ausgeschlossen werden.The device may have a presentation channel with a transparent front for a directed against the material flow beam of the irradiation device. On the rear side opposite the front side, a background adapted to the material material of the material flow can be provided in the presentation channel in such a way that upon reflection at the background, an identical detector signal can be generated as in the case of good material. Thus, error detection caused by the back can be excluded in a simple manner.

Vorteilhaft kann es weiter sein, wenn wenigstens der von den Strahlen beaufschlagte Bereich der Oberseite des Beobachtungskanals durch eine transparente Scheibe gebildet ist. Vorzugsweise ist auch der von den Strahlen beaufschlagte Bereich der Rückseite durch eine Scheibe aus transparentem Material gebildet, hinter welchem der vorgängig genannte Hintergrund angeordnet sein könnte.It may be advantageous if at least the area of the upper side of the observation channel acted upon by the beams is formed by a transparent pane. Preferably, the area acted upon by the rays of the back side formed by a disc of transparent material, behind which the aforementioned background could be arranged.

Weitere Einzelmerkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschreibung von Ausführungsbeispielen und aus den Zeichnungen. Es zeigen:

Figur 1
eine stark schematisierte Darstellung einer erfindungsgemässen Vorrichtung,
Figur 2
eine perspektivische Darstellung des prinzipiellen Aufbaus einer Erkennungseinheit für die Vorrichtung,
Figur 3
eine Draufsicht auf eine über einem Beobachtungskanal angeordnete alternative Erkennungseinheit,
Figur 4
eine Seitenansicht der Erkennungseinheit gemäss Figur 3,
Figur 5
eine etwas detailliertere Darstellung der Erkennungseinheit gemäss Figur 4,
Figur 6
eine vergrösserte Darstellung eines Schnittes durch eine Bestrahlungseinrichtung der Erkennungseinheit gemäss Figur 5,
Figur 7
eine vereinfachte Darstellung einer Sensoreinrichtung für die Erkennungseinheit
Figur 8
einen Querschnitt durch einen Präsentationskanal,
Figur 9
eine schematische Ansicht mit einem Präsentationskanal mit einem einer Erkennungseinheit zugeordneten Polygonspiegel,
Figur 10
einen Beobachtungskanal mit zwei Polygonspiegeln, die auf gegenüberliegenden Seiten angeordnet und je einer Erkennungseinheit zugeordnet sind,
Figur 11
eine weitere Anordnung mit zwei Erkennungseinheiten (angedeutet durch je einen Polygonspiegel), bei welcher jedoch die Erkennungseinheiten auf derselben Seite und nebeneinander angeordnet sind, und
Figur 12
eine perspektivische Darstellung einer Anordnung gemäss Figur 11 mit nebeneinander angeordneten Erkennungseinheiten.
Further individual features and advantages of the invention will become apparent from the following description of exemplary embodiments and from the drawings. Show it:
FIG. 1
a highly schematic representation of a device according to the invention,
FIG. 2
a perspective view of the basic structure of a detection unit for the device,
FIG. 3
a plan view of an arranged above an observation channel alternative detection unit,
FIG. 4
a side view of the detection unit according to FIG. 3 .
FIG. 5
a more detailed representation of the detection unit according to FIG. 4 .
FIG. 6
an enlarged view of a section through an irradiation device of the detection unit according to FIG. 5 .
FIG. 7
a simplified representation of a sensor device for the detection unit
FIG. 8
a cross section through a presentation channel,
FIG. 9
a schematic view with a presentation channel with a recognition unit associated with a polygon mirror,
FIG. 10
an observation channel with two polygon mirrors arranged on opposite sides and each associated with a recognition unit,
FIG. 11
a further arrangement with two recognition units (indicated by a respective polygon mirror), in which, however, the recognition units are arranged on the same side and side by side, and
FIG. 12
a perspective view of an arrangement according to FIG. 11 with juxtaposed recognition units.

In Figur 1 ist eine mit 1 bezeichnete Vorrichtung zum Erkennen und Ausscheiden von Fremdstoffen in einem pneumatisch geförderten Materialstrom von Rohbaumwolle gezeigt. Dieser an sich bekannte Grundaufbau besteht im Wesentlichen aus einer Erkennungseinheit 2 zum Detektieren von Fremdstoffen im Materialstrom und einer mit dieser in Wirkverbindung stehenden Ausscheideanordnung 5. Der Materialstrom wird durch eine Transportleitung 6 geführt, wobei im Bereich der Erkennungseinheit 2 ein entsprechender Beobachtungskanal 7 angeordnet ist.In FIG. 1 is a designated 1 device for detecting and eliminating foreign substances in a pneumatically conveyed material flow of raw cotton shown. This basic structure known per se consists essentially of a detection unit 2 for detecting foreign substances in the material flow and a separating arrangement 5 operatively connected thereto. The material flow is guided through a transport line 6, a corresponding observation channel 7 being arranged in the region of the detection unit 2.

Beim Erkennen eines Fremdstoffs wird das entsprechende Ereignis mittels einer Auswerteeinheit 9 in ein Steuersignal umgewandelt, das die Ausscheideanordnung 5 aktiviert. Der erkannte Fremdstoff wird nun über ein Abscheiderohr 18 oder eine andere Ableitung weggeführt, bis er schliesslich zu einem (nicht dargestellten) Ausscheidebehälter gelangt. In Figur 1 erfolgt die Ausscheidung beispielhaft mittels Druckluft (angedeutet durch Druckluftquelle 23) entweder unmittelbar durch Ausblasen des Fremdstoffs oder durch Betätigen einer Umlenkklappe. Für die vorliegende Erfindung würde sich jedoch grundsätzlich jedes Ausscheideverfahren für einen pneumatisch in einer Transportleitung 6 geförderten Materialstrom eignen. Selbstverständlich ist die nachfolgend beschriebene Vorrichtung nicht nur auf pneumatische Fördersysteme beschränkt. Die Vorrichtung eignet sich insbesondere auch für als Vlies auf einem Förderband oder anderweitig geförderte Baumwolle.Upon detection of a foreign substance, the corresponding event is converted by means of an evaluation unit 9 into a control signal which activates the excretion arrangement 5. The detected foreign matter is now led away via a separator tube 18 or another derivative until it finally reaches a (not shown) separation vessel. In FIG. 1 the elimination takes place, for example, by means of compressed air (indicated by compressed air source 23) either directly by blowing out the foreign substance or by actuating a deflecting flap. For the present invention, however, basically any separation method would be suitable for a material flow conveyed pneumatically in a transport line 6. Of course, the device described below is not limited to pneumatic conveying systems. The device is also particularly suitable for non-woven on a conveyor belt or otherwise funded cotton.

In Figur 2 ist der prinzipielle Aufbau einer Erkennungseinheit 2 zum Erkennen von Fremdstoffen aus einem Materialstrom von Fasermaterial gezeigt. Ersichtlicherweise sind die Bestrahlungseinrichtung 3 und die Sensoreinrichtung 4 koaxial bezogen auf eine optische Strahlungsachse L hintereinander angeordnet. Der Strahl der Bestrahlungseinrichtung 3 wird jeweils von einer Spiegelfläche 17 eines rotierenden Polygonspiegel 10 in Richtung des Materialstroms im Beobachtungskanal 19 abgelenkt. Zur Führung des Strahls in Richtung des Materialstroms sind ein Umlenkspiegel 20 sowie ein Hilfsspiegel 21 angeordnet. Selbstverständlich könnte der Strahl vom Polygonspiegel aber auch direkt zum Materialstrom abgelenkt werden. Ein vom Materialstrom reflektierter Strahl wird in umgekehrter Richtung über den Polygonspiegel 10 und eine Linse 26 zur Sensoreinrichtung 4 geführt. Mit einer solchen Erkennungseinheit 2 kann der Materialstrom zeilenweise abgescannt werden. Eine solche Zeile ist durch eine strichpunktierte Linie angedeutet. Eine mögliche konstruktive Ausgestaltung der Erkennungseinheit ist in den nachfolgenden Figuren 3 und 4 gezeigt.In FIG. 2 the basic structure of a detection unit 2 for detecting foreign substances from a material flow of fiber material is shown. Evidently, the irradiation device 3 and the sensor device 4 are arranged coaxially with respect to an optical radiation axis L one behind the other. The beam of the irradiation device 3 is deflected in each case by a mirror surface 17 of a rotating polygon mirror 10 in the direction of the material flow in the observation channel 19. For guiding the beam in the direction of the material flow, a deflecting mirror 20 and an auxiliary mirror 21 are arranged. Of course, the beam from the polygon mirror could also be deflected directly to the flow of material. A beam reflected by the material flow is guided in the opposite direction over the polygon mirror 10 and a lens 26 to the sensor device 4. With such a detection unit 2, the material flow can be scanned line by line. Such a line is indicated by a dot-dash line. One possible structural embodiment of the recognition unit is in the following FIGS. 3 and 4 shown.

Wie aus Figur 3 hervorgeht, besteht die Bestrahlungseinrichtung im Wesentlichen aus einer Strahlungsquelle 8 zum Erzeugen einer Strahlung, einem Hohlspiegel 11 zum Ausrichten und Bündeln der Strahlung entlang der Strahlungsachse L zum Polygonspiegel 10 und weiterhin aus einem unmittelbar hinter der Strahlungsquelle 8 angeordneten Rückseiten-Reflektor 12, mit dem ein rückseitiger Teil der Strahlung in Richtung des Hohlspiegels 11 führbar ist. Der Strahlengang eines Strahls vom Materialstrom zur Sensoreinrichtung 4 ist durch eine fette Linie und einen Pfeil angedeutet. Wie aus Figur 3 und insbesondere den Figuren 4 und 5 hervorgeht, muss es sich beim Strahl nicht um einen im Querschnitt punktförmigen Strahl handeln. Als Strahl wird auch ein Strahlenbündel mit einer geringen Ausdehnung im Querschnitt, vorzugsweise mit einer etwa kreisförmigen Querschnittsausdehnung angesehen. Der Strahl von der Bestrahlungseinrichtung und der Strahl zur Sensoreinrichtung verlaufen dabei ersichtlicherweise konzentrisch und gegenläufig zueinander. Somit ergibt sich ein gegenüber einer Beobachtungskanal-Mittelebene (in Fig. 3: L) symmetrischer Aufbau der Erkennungseinheit. Bei den Strahlungen kann es sich um sichtbares Licht, UV-Licht oder Infrarot-Strahlung handeln. Im Einsatzgebiet Baumwolle hat sich insbesondere Strahlung im nahen Infrarot (NIR, ca. 800-2'500 nm) als vorteilhaft erwiesen.How out FIG. 3 As can be seen, the irradiation device essentially consists of a radiation source 8 for generating radiation, a concave mirror 11 for aligning and bundling the radiation along the radiation axis L to the polygon mirror 10 and furthermore from a rear side reflector 12 arranged immediately behind the radiation source 8 Back part of the radiation in the direction of the concave mirror 11 is feasible. The beam path of a beam from the flow of material to the sensor device 4 is indicated by a bold line and an arrow. How out FIG. 3 and in particular the FIGS. 4 and 5 As can be seen, the beam does not have to be a beam that is punctiform in cross section. As a beam and a beam with a small extension in cross-section, preferably viewed with an approximately circular cross-sectional dimension. The beam from the irradiation device and the beam to the sensor device are evidently concentric and opposite to each other. This results in a relation to an observation channel center plane (in Fig. 3 : L) symmetrical design of the recognition unit. The radiations can be visible light, UV light or infrared radiation. In the field of application of cotton, in particular radiation in the near infrared (NIR, ca. 800-2,500 nm) has proved to be advantageous.

Im Ausführungsbeispiel gemäss Figur 3 beträgt die maximale Auslenkung des Detektorstrahls etwa 45°. Als Polygonspiegel 10 wird ein fünfflächiges Spiegelrad mit fünf Spiegelflächen 17 verwendet. Der Abtastbereich dieser Scan-Einheit sollte in der Regel - wie in Fig. 3 - der Kanalbreite des Beobachtungskanals 19 entsprechen. Jede Spiegelfläche 17 legt jeweils eine Scan-Zeile fest.In the embodiment according to FIG. 3 the maximum deflection of the detector beam is about 45 °. As a polygon mirror 10, a five-surface mirror wheel with five mirror surfaces 17 is used. The scanning range of this scanning unit should normally be - as in Fig. 3 - The channel width of the observation channel 19 correspond. Each mirror surface 17 defines a scan line in each case.

Aus der Seitenansicht gemäss Figur 4 geht hervor, dass der vom Polygonspiegel 10 abgelenkte Strahl von der Bestrahlungseinrichtung bzw. der von einem Teilchen des Materialstroms reflektierte Strahl zum Polygonspiegel 10 in einem spitzen Neigungswinkel α entlang der Oberseite 22 verläuft. Dieser Neigungswinkel α beträgt vorliegend etwa 9°. Der prismatisch ausgebildete Polygonspiegel 10 ist um einen Winkel γ gegenüber einer Flächennormalen der Oberseite 22 geneigt (R: Rotationsachse des Polygonspiegels 10). Ebenfalls in der Seitenansicht schrägt angeordnet ist die Anordnung aus Hohlspiegel 11, Strahlungsquelle 8, Rückseiten-Reflektor 12 und der Sensoreinrichtung 4. Zum Umlenken des entlang der Oberseite verlaufenden Strahls ist ein um etwa 45° gegenüber der Oberseite 22 geneigter Umlenkspiegel 20 vorgesehen, wodurch der Strahl nahezu senkrecht durch einen durch eine transparente Scheibe gebildeten Bereich 22' der Oberseite geführt wird. Durch die flache Anordnung der Erkennungseinheit und dadurch, dass der Strahl erst unmittelbar beim Beobachtungskanal 19 in Richtung des Materialstroms geführt wird, kann das Bauvolumen insgesamt auf vorteilhafte Art und Weise minimiert werden. Der Rückseiten-Reflektor 12 ist zwischen der Sensoreinrichtung 4 und dem Hohlspiegel 11 angeordnet, wobei die Distanz D1 zwischen einem Sensoreingang der Sensoreinrichtung 4 und der Strahlungsquelle 8 kleiner als die Distanz D2 zwischen der Strahlungsquelle 8 und dem Hohlspiegel 11 ist.From the side view according to FIG. 4 shows that the beam deflected by the polygon mirror 10 from the irradiation device or the beam reflected by a particle of the material flow to the polygon mirror 10 extends at an acute angle of inclination α along the upper side 22. This inclination angle α is presently about 9 °. The prismatically formed polygon mirror 10 is inclined by an angle γ with respect to a surface normal of the upper side 22 (R: rotation axis of the polygon mirror 10). Also arranged obliquely in the side view is the arrangement of concave mirror 11, radiation source 8, rear-side reflector 12 and the sensor device 4. For deflecting the beam running along the upper side, a deflecting mirror 20 inclined by about 45 ° with respect to the upper side 22 is provided, whereby the Beam is guided almost vertically through an area formed by a transparent disc portion 22 'of the top. Due to the flat arrangement of the detection unit and the fact that the beam is guided only immediately at the observation channel 19 in the direction of the flow of material, the overall volume can be minimized in an advantageous manner. The rear-side reflector 12 is arranged between the sensor device 4 and the concave mirror 11, wherein the distance D1 between a sensor input of the sensor device 4 and the radiation source 8 is smaller than the distance D2 between the radiation source 8 and the concave mirror 11.

In Figur 5 ist gezeigt, dass die in der Reihenfolge Hohlspiegel 11 - Strahlungsquelle 8 - Rückseiten-Reflektor 12 - Sensoreinrichtung 4 und Polygonspiegel 10 in einer Reihe hintereinander bezogen auf die optisch Achse L angeordneten Bauelemente der Erkennungseinheit auf einer Trägerplatte 31 montiert sind. Der um eine Rotationsachse R drehbare Polygonspiegel ist auf einer Seite an einem Keilelement 30 angebracht, das seinerseits an der Trägerplatte 31 befestigt ist. Diese Erkennungseinheit kann auf einfache Art und Weise vormontiert werden. Ersichtlicherweise könnte beim vorliegenden Ausführungsbeispiel das Keilelement 30 wegfallen, wenn anstelle des prismatischen Spiegelrades ein pyramidenstumpfförmiges Spiegelrad verwendet wird, dessen Rotationsachse R im rechten Winkel zur Trägerplatte 31 angeordnet ist.In FIG. 5 It is shown that in the order concave mirror 11 - radiation source 8 - rear side reflector 12 - sensor device 4 and polygon mirror 10 are mounted in a row successively relative to the optical axis L arranged components of the detection unit on a support plate 31. The polygonal mirror, which is rotatable about a rotation axis R, is mounted on one side on a wedge element 30, which in turn is fastened to the support plate 31. This recognition unit can be pre-assembled in a simple manner. Evidently, in the present embodiment, the wedge member 30 could be omitted if instead of the prismatic Mirror wheel a truncated pyramidal mirror wheel is used, whose axis of rotation R is arranged at right angles to the support plate 31.

Vor der Sensoreinrichtung ist eine Linse 26 angeordnet, die deren vorderes Ende definiert. Direkt vor der Linse 26 schliesst eine Gegenlichtblende 13 an, mit deren Hilfe verhindert wird, dass Licht von der Bestrahlungseinrichtung direkt durch Reflexion am Polygonspiegel 10 in die Sensoreinrichtung 4 eingehen kann. Ersichtlicherweise ist die Gegenlichtblende 13 im Querschnitt keilförmig ausgebildet, wobei der Keilwinkel in etwa dem Ablenkungswinkel der Strahlen am Polygonspiegel 10 entspricht.In front of the sensor device, a lens 26 is arranged, which defines its front end. Directly in front of the lens 26, a lens hood 13 adjoins, with the aid of which it is prevented that light from the irradiation device can enter the sensor device 4 directly by reflection at the polygon mirror 10. Evidently, the lens hood 13 is wedge-shaped in cross section, wherein the wedge angle corresponds approximately to the deflection angle of the beams on the polygon mirror 10.

Weiterhin zeigt Figur 5 illustrativ, dass die der Bestrahlung und der Detektion zugeordneten (und durch Pfeile angedeuteten) Strahlen konzentrisch und gegenläufig zueinander verlaufen. Die Spiegelflächen 17 des Polygonspiegels 10, die Reflexionsflächen des Hohlspiegels 11 und die Reflexionsflächen des Rückseiten-Reflektor 12 sind vergoldet. Als Antrieb wird zum Beispiel ein elektronisch kommutierter Aussenläufer-Motor verwendet, der im Polygonspiegel 10 integriert ist.Further shows FIG. 5 Illustratively, that the irradiation and detection associated (and indicated by arrows) are concentric and opposite to each other. The mirror surfaces 17 of the polygon mirror 10, the reflection surfaces of the concave mirror 11 and the reflection surfaces of the rear side reflector 12 are gold plated. As an example, an electronically commutated outer rotor motor is used, which is integrated in the polygon mirror 10.

Es können bevorzugt strahlungsempfindliche Sensoren auf Halbleiterbasis verwendet werden. Zur Wärmeabfuhr kann die Sensoreinrichtung 4 mit wenigstens einem (nicht dargestellten) Peltier-Element ausgerüstet sein. Weiterhin ist die Sensoreinrichtung derart ausgebildet, dass ein Luftstrom an den elektrischen und elektronischen Bauteilen vorbeiführbar ist.Preferably, radiation-sensitive sensors based on semiconductors can be used. For heat dissipation, the sensor device 4 may be equipped with at least one (not shown) Peltier element. Furthermore, the sensor device is designed such that an air flow can be guided past the electrical and electronic components.

Figur 6 zeigt, dass die Strahlungsquelle 8 und der Rückseiten-Reflektor 12 - verglichen mit der Distanz D2 zum Hohlspiegel 11 - in unmittelbarer Nähe zueinander angeordnet sind. Die Distanz D3 beträgt beispielsweise etwa 15 mm. Der Radius r des als sphärischer Hohlspiegel ausgebildeten Rückseiten-Reflektors 12 beträgt im vorliegenden Ausführungsbeispiel ebenfalls 15 mm. Die Distanz D3 zwischen der Strahlungsquelle 8 und dem als sphärischen Hohlspiegel ausgebildeten Rückseiten-Reflektor 12 entspricht also dem Radius r des Hohlspiegels 12. Die Strahlungsquelle 8 ist als Punktlichtquelle ausgestaltet, wobei beispielsweise die Lichtquelle eine Halogenlampe mit einem Wendel 27 sein kann. Der Hohlspiegel 11 ist als Ellipsoid-Hohlspiegel ausgestaltet. Er hat die Aufgabe, möglichst viel Strahlung von der Halogenlampe über den Polygonspiegel auf den Materialstrom zu fokussieren. FIG. 6 shows that the radiation source 8 and the rear-side reflector 12 - compared to the distance D2 to the concave mirror 11 - are arranged in close proximity to each other. The distance D3 is for example about 15 mm. The radius r of the rear-side reflector 12 designed as a spherical concave mirror is likewise 15 mm in the present exemplary embodiment. The distance D3 between the radiation source 8 and the rear-side reflector 12 formed as a spherical concave mirror thus corresponds to the radius r of the concave mirror 12. The radiation source 8 is designed as a point light source, wherein, for example, the light source can be a halogen lamp with a coil 27. The concave mirror 11 is designed as an ellipsoid concave mirror. He has the task as much radiation from the halogen lamp on the polygon mirror on the Focus material flow.

In Figur 7 ist eine Sensoreinrichtung 4 gezeigt, bei welcher der Strahl über eine Linse 26 zu einem dielektrischen Strahlenteiler geführt wird, der einen Teil der Strahlen zum Sensor 15 und einen andern Teil zum Sensor 16 führt. Vor den Sensoren 15 und 16 sind zum Festlegen eines Spektralbereichs jeweils Filter 28 und 29 angeordnet. Statt einer Anordnung mit zwei Sensoren könnte auch nur ein Sensor vorgesehen sein.In FIG. 7 a sensor device 4 is shown, in which the beam is guided via a lens 26 to a dielectric beam splitter, which leads a portion of the beams to the sensor 15 and another part to the sensor 16. In front of the sensors 15 and 16, filters 28 and 29 are arranged to define a spectral range. Instead of an arrangement with two sensors, only one sensor could be provided.

Die Querschnittsdarstellung (Schnitt entlang des Scan-Bereichs bzw. einer Scan-Zeile) des Beobachtungskanals 19 gemäss Figur 8 zeigt (e zeigt die Transportrichtung des Materialstroms an), dass der rechteckig ausgebildete Beobachtungskanal auf drei Seiten von einem speziellen Hintergrund unterlegt ist. Einfallende und reflektierte Strahlen sind durch Pfeile angedeutet. Nicht nur die Oberseite 22' und Rückseite 25' sind durch Glasscheiben ausgebildet, sondern zusätzlich auch noch die mit 37 bezeichneten Seiten. Sowohl hinter der rückseitigen Scheibe 25' als auch hinter den Seitenscheiben 37 ist eine Baumwoll-Schicht als Hintergrund 36 angeordnet. Damit kann die Erkennungseinheit auch im Fall, dass ein Strahl nicht auf ein Teilchen des Materialstroms auftrifft, ein korrektes Signal liefern. Bei Reflexion am Hintergrund wird somit ein gleiches Detektorsignal wie beim Gutmaterial des Materialstroms erzeugt.The cross-sectional representation (section along the scan region or a scan line) of the observation channel 19 according to FIG. 8 shows (e indicates the transport direction of the flow of material) that the rectangular shaped observation channel is underlaid on three sides by a special background. Incident and reflected rays are indicated by arrows. Not only the upper side 22 'and rear side 25' are formed by glass panes, but in addition also still designated with 37 pages. Both behind the rear pane 25 'and behind the side windows 37, a cotton layer is arranged as a background 36. Thus, even in the event that a beam does not strike a particle of material flow, the detection unit can provide a correct signal. With reflection at the background thus a same detector signal as with the material material of the material flow is generated.

In den Figuren 10 und 11 sind Anordnungen mit zwei Erkennungseinheiten schematisch dargestellt, wobei die Erkennungseinheiten lediglich durch die ihnen zugeordneten Polygonspiegel 10 und 10' angedeutet sind. Eine Bestrahlungseinrichtung und eine Sensoreinrichtung definieren dabei eine Erkennungseinheit. Figur 9 zeigt zum Vergleich eine Ausführung mit nur einer Erkennungseinheit bzw. einem Polygonspiegel 10.In the Figures 10 and 11 arrangements with two recognition units are shown schematically, the recognition units are indicated only by their associated polygon mirror 10 and 10 '. An irradiation device and a sensor device define a recognition unit. FIG. 9 shows for comparison an embodiment with only one recognition unit or a polygon mirror 10th

In Figur 10 sind die Erkennungseinheiten auf zwei einander gegenüberliegenden Seiten des Präsentationskanals 19 angeordnet. Die Erkennungseinheiten bzw. Polygonspiegel 10, 10' können bezogen auf die Transportrichtung e des Materialstroms versetzt zueinender sind, wodurch der Materialstrom in zwei zueinander versetzten Zeilen abscannbar ist. Dieser Versatz ist jedoch nicht in jedem Fall erforderlich.In FIG. 10 the recognition units are arranged on two opposite sides of the presentation channel 19. The recognition units or polygon mirrors 10, 10 'can be offset with respect to the transport direction e of the material flow, whereby the material flow can be scanned in two mutually offset lines. However, this offset is not always necessary.

In Figur 11 sind zwei Erkennungseinheiten schematisch dargestellt, die bezogen auf die Transportrichtung des Materialstroms (ohne Versatz) nebeneinander montiert sind, wobei mit jeder Erkennungseinheit bzw. mit jedem Polygonspiegel 10, 10' jeweils ein Teilbereich abscannbar ist. Die in Figur 11 mit Ü angedeutete Überlappungszone kann beliebig gewählt werden oder auch wegfallen.In FIG. 11 two detection units are shown schematically, which are mounted side by side with respect to the transport direction of the material flow (without offset), wherein with each detection unit or with each polygon mirror 10, 10 'in each case a partial area is abscannbar. In the FIG. 11 With Ü indicated overlap zone can be chosen arbitrarily or even eliminated.

Figur 12 zeigt eine perspektivische Darstellung einer Erkennungsanordnung mit den zwei Erkennungseinheiten 2 und 2' gemäss der Konfiguration nach Figur 11. Mit Z und Z' sind Zeilen angedeutet, mit denen jeweils etwa eine Hälfte des Materialstroms abscannbar ist. Die beiden Zeilen überlappen sich ersichtlicherweise. Je nach Breite des Präsentationskanals 19 können selbstverständlich auch mehr als zwei bezogen auf die Transportrichtung e nebeneinander angeordnete Erkennungseinheiten verwendet werden. Dabei wären die Erkennungseinheiten vorteilhaft derart auszubilden, dass die abgescannten Teilbereiche nebeneinander liegender Erkennungseinheiten sich in einer Überlappungszone überlappen würden. FIG. 12 shows a perspective view of a detection arrangement with the two detection units 2 and 2 'according to the configuration FIG. 11 , With Z and Z 'lines are indicated, with each of which about one half of the material flow is abscannbar. The two lines obviously overlap. Of course, depending on the width of the presentation channel 19, more than two recognition units arranged next to one another with respect to the transport direction e can also be used. In this case, the recognition units would advantageously be designed such that the scanned portions of adjacent recognition units would overlap in an overlapping zone.

Claims (15)

Vorrichtung zum Erkennen und Ausscheiden von Fremdstoffen aus einem Materialstrom von Fasermaterial, insbesondere von Rohbaumwolle, mit wenigstens einer Bestrahlungseinrichtung (3) zum Bestrahlen des Materialstroms und wenigstens einer Sensoreinrichtung (4) zum Detektieren von bestrahlten Fremdstoffen im Materialstrom, wobei zum zeilenweisen Abscannen des Materialstroms ein drehbarer Polygonspiegel (10) vorgesehen ist, mit welchem der Strahl der Bestrahlungseinrichtung (3) in Richtung des Materialstroms und mit welchem der vom Materialstrom reflektierte Strahl zur Sensoreinrichtung (4) ablenkbar ist, und mit einer mit der Sensoreinrichtung (4) in Wirkverbindung stehenden Ausscheideanordnung (4) zum Ausscheiden von detektierten Fremdstoffen, dadurch gekennzeichnet, dass die Bestrahlungseinrichtung (3) und die Sensoreinrichtung (4) koaxial bezogen auf eine optische Strahlungsachse (L) hintereinander angeordnet sind.Device for detecting and separating foreign substances from a material flow of fibrous material, in particular raw cotton, with at least one irradiation device (3) for irradiating the material flow and at least one sensor device (4) for detecting irradiated foreign matter in the material flow, wherein the material flow is scanned by line rotatable polygon mirror (10) is provided, with which the beam of the irradiation device (3) in the direction of material flow and with which the beam reflected from the material flow to the sensor device (4) is deflected, and with a sensor device (4) in operative connection Ausscheideanordnung (4) for the separation of detected foreign substances, characterized in that the irradiation device (3) and the sensor device (4) are arranged coaxially with respect to an optical radiation axis (L) one behind the other. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Bestrahlungseinrichtung (3) eine Strahlungsquelle (8) zum Erzeugen einer Strahlung und wenigstens einen Hohlspiegel (11) zum Ausrichten und Bündeln der Strahlung entlang der Strahlungsachse (L) zum Polygonspiegel (10) enthält.Apparatus according to claim 1, characterized in that the irradiation device (3) comprises a radiation source (8) for generating a radiation and at least one concave mirror (11) for aligning and bundling the radiation along the radiation axis (L) to the polygon mirror (10). Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Bestrahlungseinrichtung (3) weiter einen vorzugsweise als Hohlspiegel ausgebildeten Rückseiten-Reflektor (12) enthält, mit dem ein rückseitiger Teil der Strahlung in Richtung des Hohlspiegels (11) führbar ist.Apparatus according to claim 2, characterized in that the irradiation device (3) further comprises a preferably designed as a concave mirror rear-side reflector (12) with which a back part of the radiation in the direction of the concave mirror (11) can be guided. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Strahlungsquelle (8) eine Halogenlampe mit einem Wendel (27) zur Bildung einer Punktlichtquelle ist.Device according to one of claims 1 to 3, characterized in that the radiation source (8) is a halogen lamp with a helix (27) for forming a point light source. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Distanz (D3) zwischen der Strahlungsquelle (8) und dem als sphärischen Hohlspiegel ausgebildeten Rückseiten-Reflektor (12) etwa dem Radius (r) des Hohlspiegels (12) entspricht.Device according to Claim 4, characterized in that the distance (D3) between the radiation source (8) and the rear-side reflector (12) designed as a spherical concave mirror is approximately equal to the radius (r) of the concave mirror (12). equivalent. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Anordnung aus Bestrahlungseinrichtung (3) und Sensoreinrichtung (4) derart an einem Beobachtungskanal (19) zum Durchführen des Materialstroms angeordnet ist, dass der vom Polygonspiegel (10) abgelenkte Strahl von der Bestrahlungseinrichtung etwa parallel zur Oberseite (22) des Beobachtungskanals (19) oder in einem spitzen Neigungswinkel (α) entlang der Oberseite (22) des Beobachtungskanals (19) verläuft und dass zum Ablenken des Strahls in Richtung des Materialstroms ein Umlenkspiegel (20) vorgesehen ist.Device according to one of claims 1 to 5, characterized in that the arrangement of irradiation device (3) and sensor device (4) is arranged on an observation channel (19) for carrying out the flow of material, that of the polygon mirror (10) deflected beam of the Irradiation device approximately parallel to the top (22) of the observation channel (19) or at an acute angle of inclination (α) along the top (22) of the observation channel (19) and that for deflecting the beam in the direction of material flow, a deflection mirror (20) is provided , Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass vor der Sensoreinrichtung (4) eine Gegenlichtblende (13) angeordnet ist.Device according to one of claims 1 to 6, characterized in that in front of the sensor device (4) a lens hood (13) is arranged. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zum Festlegen eines Spektralbereichs ein Filter (28, 29) vor einem Sensor (15, 16) der Sensoreinrichtung (4) angeordnet ist.Device according to one of claims 1 to 7, characterized in that for defining a spectral range, a filter (28, 29) in front of a sensor (15, 16) of the sensor device (4) is arranged. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Polygonspiegel (10) über einen Elektromotor (14) antreibbar ist, der vorzugsweise als Aussenläufer-Motor ausgebildet ist, wobei die Spiegelflächen (17) des Polygonspiegels (10) dem Aussenläufer zugeordnet sind.Device according to one of claims 1 to 8, characterized in that the polygon mirror (10) via an electric motor (14) is driven, which is preferably designed as an external rotor motor, wherein the mirror surfaces (17) of the polygon mirror (10) associated with the external rotor are. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Sensoreinrichtung (4) einen Sensor auf Halbleiterbasis enthält.Device according to one of claims 1 to 9, characterized in that the sensor device (4) includes a sensor based on semiconductor. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Sensoreinrichtung (4) zur Wärmeabfuhr mit wenigstens einem Peltier-Element und gegebenenfalls mit alternativen Mitteln zur Wärmeabfuhr ausgerüstet ist.Device according to one of claims 1 to 10, characterized in that the sensor device (4) is equipped for heat dissipation with at least one Peltier element and optionally with alternative means for heat dissipation. Vorrichtung nach einem der Ansprüche 1 bis 11, wobei die Bestrahlungseinrichtung (3) und die Sensoreinrichtung (4) eine Erkennungseinheit (2) definieren, dass der Materialstrom durch einen Präsentationskanal (7, 19) vorzugsweise pneumatisch förderbar ist, dadurch gekennzeichnet, dass sie wenigstens zwei Erkennungseinheiten (2) aufweist, wobei die Erkennungseinheiten (2) auf derselben Seite oder auf zwei einander gegenüberliegenden Seiten des Präsentationskanals (7) angeordnet sind.Device according to one of claims 1 to 11, wherein the irradiation device (3) and the sensor device (4) a recognition unit (2) define that the material flow through a presentation channel (7, 19) is preferably pneumatically conveyable, characterized in that it comprises at least two recognition units (2), wherein the recognition units (2) on the same side or on two opposite sides of the presentation channel (7) are arranged. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die wenigstens zwei Erkennungseinheiten (2, 2') bezogen auf die Transportrichtung des Materialstroms nebeneinander montiert sind, wobei mit jeder Erkennungseinheit (2, 2') jeweils ein Teilbereich abscannbar ist.Apparatus according to claim 12, characterized in that the at least two detection units (2, 2 ') are mounted side by side with respect to the transport direction of the flow of material, each one sub-area can be scanned with each detection unit (2, 2'). Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Erkennungseinheiten (2, 2') derart ausgebildet sind, dass die Teilbereiche nebeneinander liegender Erkennungseinheiten (2, 2') sich in einer Überlappungszone (Ü) überlappen.Apparatus according to claim 13, characterized in that the recognition units (2, 2 ') are formed such that the subregions of adjacent recognition units (2, 2') overlap in an overlapping zone (Ü). Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Erkennungseinheiten (2) auf zwei einander gegenüberliegenden Seiten des Präsentationskanals (7) und bezogen auf die Transportrichtung des Materialstroms versetzt zueinender angeordnet sind.Apparatus according to claim 14, characterized in that the detection units (2) on two opposite sides of the presentation channel (7) and with respect to the transport direction of the material flow are arranged offset zueinender.
EP20070003699 2007-02-23 2007-02-23 Device for detecting and removing foreign matter Not-in-force EP1961848B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20070003699 EP1961848B1 (en) 2007-02-23 2007-02-23 Device for detecting and removing foreign matter
DE200750004383 DE502007004383D1 (en) 2007-02-23 2007-02-23 Device for detecting and eliminating foreign substances
CN2008100072841A CN101250772B (en) 2007-02-23 2008-02-22 Device for detecting and removing foreign matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20070003699 EP1961848B1 (en) 2007-02-23 2007-02-23 Device for detecting and removing foreign matter

Publications (2)

Publication Number Publication Date
EP1961848A1 true EP1961848A1 (en) 2008-08-27
EP1961848B1 EP1961848B1 (en) 2010-07-14

Family

ID=38180566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070003699 Not-in-force EP1961848B1 (en) 2007-02-23 2007-02-23 Device for detecting and removing foreign matter

Country Status (3)

Country Link
EP (1) EP1961848B1 (en)
CN (1) CN101250772B (en)
DE (1) DE502007004383D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285879A1 (en) * 2021-07-14 2023-01-19 Premier Evolvics Private Limited Device and method for detecting contaminants in a textile material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968453B (en) * 2009-12-01 2012-05-09 北京理工大学 Polarization detection method and device for white and colorless foreign matters in cotton
CN102621147A (en) * 2012-03-09 2012-08-01 武汉钢铁工程技术集团有限责任公司 Steel plate surface color difference defect detecting device
CN105887251A (en) * 2016-06-16 2016-08-24 新疆利华棉业股份有限公司 CCD electronic imaging foreign fiber separation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2129038A1 (en) * 1971-06-11 1972-12-21 Licentia Gmbh Device for testing moving material tracks or curves
DE29719245U1 (en) * 1997-10-29 1998-03-12 Jossi Holding Ag, Islikon Device for recognizing and eliminating foreign substances in fiber material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1292445B1 (en) * 1996-08-08 1999-02-08 Truetzschler & Co PROCEDURE AND DEVICE IN A PLANT FOR THE PREPARATION FOR SPINNING (DYEING) FOR THE RECOGNITION AND SEPARATION OF SUBSTANCES
DE10055953A1 (en) * 2000-11-11 2002-05-23 Hubert A Hergeth Sensor detects foreign bodies in an airborne flow of textile fibres to activate a diversion valve to a trap
CN1696366A (en) * 2004-05-12 2005-11-16 郭云生 Special equipment for identifying and separating different colors of textile fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2129038A1 (en) * 1971-06-11 1972-12-21 Licentia Gmbh Device for testing moving material tracks or curves
DE29719245U1 (en) * 1997-10-29 1998-03-12 Jossi Holding Ag, Islikon Device for recognizing and eliminating foreign substances in fiber material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285879A1 (en) * 2021-07-14 2023-01-19 Premier Evolvics Private Limited Device and method for detecting contaminants in a textile material

Also Published As

Publication number Publication date
CN101250772A (en) 2008-08-27
CN101250772B (en) 2011-06-29
EP1961848B1 (en) 2010-07-14
DE502007004383D1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
DE19613082C2 (en) Method and device for the qualitative assessment of processed material
DD274903A5 (en) OPTICAL SURFACE INSPECTION DEVICE
EP1961848B1 (en) Device for detecting and removing foreign matter
EP3531012B1 (en) Lighting device for motor vehicles with a rod-like light guide
AT7634U1 (en) DETECTING DEVICE AND SORTING DEVICE
DE3125189A1 (en) TROUBLESHOOTING DEVICE FOR WIDE PATHS
DE29719245U1 (en) Device for recognizing and eliminating foreign substances in fiber material
DE19857561A1 (en) Vehicle light includes light guide rod, luminous diodes, and light inlet surface and opposite end surface formed as light deflecting region
EP1154198A2 (en) Rod-shaped light guide
DE202005010358U1 (en) Optolectronic light barrier for security applications has frame with pairs of lamps separated by pairs of light sensors and has opposed frame with 45 degree mirrors set in two staggered rows
EP2092098A1 (en) Method and apparatus for detecting and separating impurities
DE1921290A1 (en) Device for making television recordings by scanning with a laser beam
DE3511474C2 (en)
DE2718711C2 (en)
DE102004038321A1 (en) Light trap for microscope, especially scanning microscope or confocal scanning microscope, comprises hollow element for absorbing undesirable light, and feed element for guiding undesirable light into hollow element
DE3446354C2 (en)
EP1686398B1 (en) Optoelectronic sensor
WO2010149770A1 (en) Microscopic detection of objects in a fluid flow
WO2004112594A1 (en) Optical unit for lateral viewing duodenoscopes
EP3764158B1 (en) Two-dimensional illumination system
EP0918250B1 (en) Photoelectric scanner for a photographic film
DE8328870U1 (en) OPTICAL STRIP DETECTOR
DE102004011911A1 (en) Transmitting element for light barriers, light grids and the like
DE2552332C3 (en) Scanning device
AT223828B (en) Device for photoelectric scanning of a running web or the like for optically recognizable deviations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080926

AKX Designation fees paid

Designated state(s): CH DE IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502007004383

Country of ref document: DE

Date of ref document: 20100826

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: RUDOLF FUCHS;IM WIESENGRUND 11B;8500 FRAUENFELD (CH)

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004383

Country of ref document: DE

Effective date: 20110415

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: USTER TECHNOLOGIES AG, CH

Free format text: FORMER OWNER: RUDOLF FUCHS, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007004383

Country of ref document: DE

Representative=s name: ISARPATENT PATENTANWAELTE BEHNISCH, BARTH, CHA, DE

Effective date: 20140313

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007004383

Country of ref document: DE

Representative=s name: ISARPATENT GBR PATENT- UND RECHTSANWAELTE, DE

Effective date: 20140313

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007004383

Country of ref document: DE

Owner name: USTER TECHNOLOGIES AG, CH

Free format text: FORMER OWNER: FUCHS, RUDOLF, WIL, CH

Effective date: 20140313

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007004383

Country of ref document: DE

Representative=s name: ISARPATENT - PATENTANWAELTE- UND RECHTSANWAELT, DE

Effective date: 20140313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160211

Year of fee payment: 10

Ref country code: DE

Payment date: 20160216

Year of fee payment: 10

Ref country code: IT

Payment date: 20160222

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007004383

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170223