EP1958699A1 - Procédé et appareil permettant de perfectionner le fonctionnement des hydrocyclones - Google Patents

Procédé et appareil permettant de perfectionner le fonctionnement des hydrocyclones Download PDF

Info

Publication number
EP1958699A1
EP1958699A1 EP06013697A EP06013697A EP1958699A1 EP 1958699 A1 EP1958699 A1 EP 1958699A1 EP 06013697 A EP06013697 A EP 06013697A EP 06013697 A EP06013697 A EP 06013697A EP 1958699 A1 EP1958699 A1 EP 1958699A1
Authority
EP
European Patent Office
Prior art keywords
fluid
particles
segregation
pulp
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06013697A
Other languages
German (de)
English (en)
Inventor
Pol Huart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genimin
Original Assignee
Genimin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genimin filed Critical Genimin
Priority to EP06013697A priority Critical patent/EP1958699A1/fr
Publication of EP1958699A1 publication Critical patent/EP1958699A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/081Shapes or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/085Vortex chamber constructions with wear-resisting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/008Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with injection or suction of gas or liquid into the cyclone

Definitions

  • the invention relates to the field of cyclones in general and hydrocyclones in particular. They are called hydrocyclones in the text.
  • the invention relates more particularly to a method and apparatus implementing this method, which make it possible to reduce the proportion of particles poorly classified in the underflow.
  • a particular form of the invention makes it possible to recycle unclassified grainy particles heading towards the overflow.
  • This particular form of the invention makes it possible to increase the dilution of the pulp without adding additional fluid.
  • Hydrocyclones are well known in the industry for thickening pulps, eliminating slimes and, in general, for making granulometric separations for fine granulometry where sieving becomes problematic.
  • the pulp is a mixture of a fluid and particles of material of varied size.
  • the fluid can be water, this is the case of hydrocyclones, it can be air or any other fluid.
  • the hydrocyclone performs a granulometric cut to form two fractions, one of finer particles, the other more granular.
  • This operation uses centrifugation to increase sedimentation rates.
  • This separation uses differentiation of sedimentation rates as a function of particle size.
  • the pulp is injected tangentially inside a cylindrical cavity forming the upper part of the hydrocyclone. This entry is usually made in a volute-shaped pipe.
  • the particles constituting the pulp are then centrifuged thanks to the rotation speed generated by this injection which requires an adequate pressure.
  • a tube descends axially in this cylinder. It is open outside at the pressure lower than that existing in the cyclone which is most often the atmospheric pressure. The pressure difference between the inside of the cylinder where the pulp is rotated fast and the output of this tube creates a flow.
  • This tube being located axially to the cylinder, the flow caused in this tube creates a radial flow in the cylinder, from the outside to the inside where the outlet is located.
  • the particles contained in the pulp are then subjected to two opposing forces: a centrifugal force generated by their rotation and a centripetal force generated by the drive in the radial stream.
  • This cavity is conical in order to better maintain the speed of rotation of the pulp. Indeed, the extraction a fraction of its flow to the overflow results in downstream flow reduction. The speed of rotation is then maintained by reducing the diameter of the cylindrical cavity downstream, that is to say towards the apex.
  • This pressure difference generates the helical flow of the pulp centrifuged on the wall towards this outlet.
  • the adjustment of the pressure drop at this apex is a setting parameter of the desired particle size breaking mesh since it regulates the flow of the underflow.
  • the particle size corresponding to an equal probability for which the larger particles in this dimension are moving towards the underflow and the smaller particles moving towards the overflow is called "d50".
  • the graph of this probability as a function of particle size is a curve, called the sharing curve which looks like an integration of the Gaussian curve of a normal probability.
  • This curve which represents the probability that particles of a given dimension will go into the underflow, should start from scratch. Indeed, the particles of dimension close to zero should all be driven by the radial water flow and end up in the overflow.
  • the hydrocyclones are arranged at the outlet of the mill to classify the pulp that comes out. Particles greater than the desired size (d50) are returned to the mill while the particles that have reached the correct size are removed from the circuit.
  • the invention aims to remedy the problem of poorly classified fine particles present in all known hydrocyclones.
  • the invention also aims to reduce the imperfection of hydrocyclones on the fine particles side, but also on the side of the grainy particles.
  • the invention consists in causing a tangential fluid stream with a radial component at the cylindrical wall on which the particles are centrifuged. In this way, the fine particles that there are dislodged to escape the trap that leads them to the underflow. In fact, at the level of the wall where all the centrifuged particles are located, there is no radial fluid flow which subjects these particles to the laws of segregation. This injected fluid provides this desired flow at the surface. In addition, this fluid injection provides additional energy to maintain the rapid rotation movement responsible for segregation.
  • the injected fluid used to dislodge the particles is taken from the periphery of the overflow where poorly sized particles of particles are likely to be centrifuged.
  • the actual overflow is extracted by a pipe centered on this first pipe.
  • the sampling of fluid for injection is taken from the annular space between these two pipes.
  • the poorly graded particles of particles return to the cyclone for further segregation.
  • the injection slot feed design will be executed so that the particles are oriented towards the underflow side of the slot so as to give them an additional chance to head to the right side.
  • This particular form of the invention makes it possible to artificially increase the dilution of the pulp without the addition of fluid.
  • This increase in dilution is sometimes necessary to reduce the correction factor of the formula calculating the D50. In other words, this dilution increase will decrease the value of the D50 for any other constant parameter.
  • the configuration of the output of this fraction must favor its rapid rotation to centrifuge and recover the badly classified particles.
  • a volute exit is required.
  • the circulation pump causes the axial movement of its high-speed feed pipe which communicates with the radial velocity in the annular space via the volute.
  • a pump rotor can be installed on the inner axis of the annular sampling space which acts by accelerating the rotational speed of the fluid while increasing its head to be injected into the cyclone in closed circuit.
  • the invention is inspired by the method and apparatus described and claimed in European Patent Application 05020997.2 / EP05020997 (GENIMIN). It uses the principle of injecting a tangential water slide. As stated in document 05020997.2 / EP05020997 , the water injection slot can be placed indifferently. In the particular form of the invention mentioned in this text, the injection slot is placed parallel to the axis of the cyclone. It can be inclined.
  • the centrifuged pulp overlaps, at each turn, the ply of injected fluid.
  • the direction of tangential fluid injection may comprise an axial component upwards or downwards. low since a portion of the injection fluid will accompany the underflow (downward) or the overflow (upward). In the particular form of the invention described, this direction of injection has no axial component so as not to favor any of the outlets. Having this injection without axial component slows the opening of the pitch of the helix to the underflow.
  • This particular shape has the advantage of simplicity and ease of adjustment of the injection opening. Indeed, this adjustment of the thickness of the injected water blade can be done by the deformation of the outer wall of the rectangular injection pipe. (see description of the figures).
  • the radial velocity expressed in m / sec of this injection is equal to its thickness expressed in meters multiplied by the number of passes per second.
  • the radial velocity is 0.25 m / sec.
  • the invention relates in particular to a high-performance method for the granulometric classification of a granular material, according to which a suspension of said granular material in a dispersive medium is subjected to centrifugation in a cyclone from which a sample is withdrawn. coarse fraction of the suspension and a fine fraction of the suspension.
  • the method is characterized in that a ply of fluid is injected at the wall so that the centrifuged suspension overlaps this sheet at each turn.
  • the aforesaid direction of injection of the fluid sheet has a tangential component to the centrifugation which maintains it and a radial component which causes the finely divided particles towards the interior of the cyclone.
  • the injection direction may also have an axial component to the cylinder.
  • the fluid is preferably injected substantially continuously into the suspension.
  • the dispersive medium of the suspension can be any fluid, most often this fluid is water or air.
  • a portion of the abovementioned fine fraction of the suspension is taken to form the injected fluid, making it possible to recycle particles that would be poorly classified in the overflow.
  • Figure 1 shows a conventional hydrocyclone that is on the market.
  • the realization is often modular and the assembly of subassemblies is often carried out by means of flanges. From top to bottom, we thus find the extraction tube (1) of the fine fraction (overflow) fixed in the center of the element (2) which ensures the tangential injection which centrifuge the pulp to be separated.
  • a cylindrical section (3) is fixed on this injection element on which the pulp is centrifuged.
  • the movement of the pulp (4) induced by its rotation is helical since an axial component is necessary to allow its evacuation.
  • This cylindrical section makes it possible to give the particles time to be centrifuged against the wall.
  • the tube (1) penetrates at this cylinder (3) and opens at a lower pressure than that present in the cyclone (usually atmospheric pressure).
  • An evacuation stream is created which causes a radial flow (5) to this outlet and a decrease in the pulp flow downstream of the hydrocyclone.
  • This element is then cone-shaped which may consist of several elements with decreasing taper (6-7).
  • the conical section opens at the same pressure as the outlet of the tube (1) above (usually atmospheric pressure). This orifice of (8) is called the apex which allows the evacuation of the underflow.
  • the rotating pulp follows a helical movement up and down the periphery of the cyclone towards the underflow and from bottom to top at its center towards the overflow.
  • This central flow is called a vortex. It happens that this vortex is hollow and traversed by an air core from the apex to the overflow.
  • Known techniques make it possible to eliminate this air core.
  • the hydrocyclone represented in FIG. 2 is in accordance with the invention. It comprises for this purpose an additional subassembly (9) which is fixed between the cylinder and the cone or between two successive cylindrical sections.
  • the inner surface (10) of this subset is cylindrical corresponding to the cylinder diameter of the hydrocyclones.
  • the injection is done by a slot (11) which is outside the template of the cylinder.
  • the outer surface of this slot joins the cylindrical surface by a volute (12).
  • a simple way of adjusting the thickness of the water blade is by changing the profile of the outer surface of the supply line (Figs 3 and 4) which opens and closes the injection slot.
  • the direction of the injection defines a downstream side (11) and an upstream side (14) of the injection pipe (15).
  • the sedimentation surface (10) of the centrifuged particles consists of an abrasion-resistant curved plate (16).
  • This curved wear plate protects the structure of the subassembly (16) and is fixed by external screw (17) so as to keep the inner surface rigorously smooth.
  • a sheet (18) closes a cavity (19) which allows the linear movement of the plate between this sheet and the inner surface of the subassembly. This flexibility of the sheet allows it not to oppose the low rotation of the plate.
  • This sheet is fixed on a piece (20), itself attached to the subassembly serving as a range to the injection fluid supply line.
  • the adjustment of the thickness of the slot is done at each end by a screw (25).
  • the force of these two adjusting screws is distributed over the entire width of the plate by means of a rigid reinforcement (26) integral with the wear plate (10).
  • a wear part (27) which ensures the junction between the ply of injected fluid and the rotating pulp in the cylinder.
  • the curved wear plate (10) must be sufficiently elastic to allow its deformation, (the polyurethane lends itself well to this application).
  • the joining piece (27) must, on the contrary, be very rigid to prevent any deformation. This is a reason for these two pieces (the plate and the junction) to be distinct and made of different materials.
  • a guide groove (28) is formed in the top and bottom closure plates (Fig 5) which close the subassembly. These plates laterally close the installation plane of the injection piping and secures the adjacent sub-assemblies by screws in the threaded holes provided in these plates (29). These plates are attached to the subassembly by countersunk screws so as to keep the laying surface flat with the adjacent subassemblies (position of the holes (30)).
  • the deformation can be caused, not by the elastic deformation of the coating as exposed, but by the movement of two rigid curved plates (31,32), articulated on linear ball joints (33) ( Figure 4).
  • the adjustment of the opening of the slot is always by thrust screw (25) accessible from the outside of the subassembly.
  • the linear ball joint is achieved by the cylindrical milling (convex and concave) of the adjacent sides of these plates.
  • the opposite side of the downstream plate (34) is also articulated on the same linear ball whose concave side is milled in the protective coating of the cylindrical surface of the subassembly (10), of the same thickness as these articulated plates.
  • the convex side of the ball joints is located upstream so that the edge of the ball is oriented in the direction of flow.
  • the upstream side (14) of the upstream plate slides on the inner face of the subassembly.
  • the plate is pushed by a spring (35) and held against the inner wall by a deformable sheet fixed to a part (36), itself fixed on the subassembly. This part serves as a laying plane to the supply pipe of the injection fluid.
  • This second particular form of the invention has the disadvantage compared to the first one of concentrating the curvature modification at the patellae. This is less favorable for flows that must avoid any one-off directional variation.
  • the injection fluid is taken from the overflow (see FIG. 6) at its periphery, in the annular space between the outlet tube of the overflow (37) and the outer tube (38) which descends into the hydrocyclone to collect the overflow.
  • This sample undergoes an increase in its head in a pump (39) to be injected at the required pressure.
  • This particular form of the invention makes it possible to perform the injection without additional fluid supply.
  • the shape of the outlet of this sample is in volute (40) so that the velocity of the fluid communicated by the circulation pump can best maintain the speed of rotation in the annular sampling space and allow the particles badly classified to be captured in this peripheral annular space.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Cyclones (AREA)

Abstract

Procédé pour l'amélioration du fonctionnement de tout appareil de ségrégation de particules travaillant en centrifuge et en particulier les cyclone et hydrocyclones qui consiste à déloger de la paroi (10), par une nappe injectée de fluide, toutes les particules centrifugées sur celle-ci de manière à ce qu'elles soient soumises à un flux radial (5) de fluide responsable de leur ségrégation. Le fluide injecté est prélevé à la périphérie de l'overflow centrifugé de manière à soumettre les particules grenues mal classées à une nouvelle ségrégation mieux adaptée.

Description

    Domaine de l'invention.
  • L'invention se rapporte au domaine des cyclones en général et des hydrocyclones en particulier. Ils sont appelés hydrocyclones dans le texte.
  • L'invention concerne plus particulièrement un procédé et des appareils mettant en oeuvre ce procédé, qui permettent de réduire la proportion de particules mal classées dans l'underflow.
  • Une forme particulière de l'invention permet de recycler des particules grenues mal classées se dirigeant vers l'overflow.
  • Cette forme particulière de l'invention permet d'augmenter la dilution de la pulpe sans ajout de fluide additionnel.
  • Ces applications de l'invention conduisent à une diminution de l'imperfection et du d50.
  • Etat de la technique
  • Les hydrocyclones sont bien connus dans l'industrie pour épaissir des pulpes, en éliminer les schlamms et, en général, pour réaliser des séparations granulométriques pour des fines granulométries où le tamisage devient problématique.
  • La pulpe est un mélange d'un fluide et de particules de matière de granulométrie variée. Le fluide peut être de l'eau, c'est le cas des hydrocyclones, il peut être de l'air ou tout autre fluide.
  • Ainsi, l'hydrocyclone réalise une coupure granulométrique pour constituer deux fractions, l'une de plus fines particules, l'autre de plus grenues.
  • Cette opération utilise la centrifugation pour augmenter les vitesses de sédimentation. Cette séparation utilise la différenciation des vitesses de sédimentation en fonction de la granulométrie.
  • La pulpe est injectée tangentiellement à l'intérieur d'une cavité cylindrique formant la partie supérieure de l'hydrocyclone. Cette entrée se fait en général dans une conduite en forme de volute.
  • Les particules constituant la pulpe sont alors centrifugées grâce à la vitesse de rotation engendrée par cette injection qui nécessite une pression adéquate.
  • Un tube descend axialement dans ce cylindre. Il est ouvert à l'extérieur à la pression inférieure à celle existant dans le cyclone qui est le plus souvent la pression atmosphérique. La différence de pression entre l'intérieur du cylindre où la pulpe est mise en rotation rapide et la sortie de ce tube crée un écoulement. Ce tube étant situé axialement au cylindre, l'écoulement provoqué dans ce tube crée un écoulement radial dans le cylindre, de l'extérieur vers l'intérieur où se situe l'exutoire.
  • Les particules contenues dans la pulpe sont alors soumises à deux forces opposées : une force centrifuge générée par leur rotation et une force centripète générée par l'entraînement dans le courant radial.
  • Les particules sont entraînées du côté où la résultante des forces est prédominante, les particules fines sont entraînées dans le tube et les grenues sont centrifugées sur la surface cylindrique. La fraction de la pulpe évacuée dans le tube axial est appelée « overflow » (vocable anglo-saxon communément utilisé dans la littérature technique).
  • Les particules grenues continuent leur course en hélice dans une cavité conique qui débouche à une pression identique que celle de l'overflow (souvent la pression atmosphérique) par une évacuation appelée apex. Cette fraction de pulpe est appelée « underflow » (vocable anglo-saxon communément utilisé dans la littérature technique). La conicité de cette partie constitue un paramètre de fonctionnement des hydrocyclones. Cette conicité peut aller en diminuant vers l'apex en assemblant des éléments de conicité décroissante.
  • Cette cavité est conique afin d'entretenir au mieux la vitesse de rotation de la pulpe. En effet, l'extraction d'une fraction de son débit vers l'overflow entraîne une réduction de débit en aval. La vitesse de rotation est alors entretenue par le réduction du diamètre de la cavité cylindrique vers l'aval, c'est-à-dire vers l'apex.
  • Cette différence de pression génère l'écoulement en hélice de la pulpe centrifugée sur la paroi vers cet exutoire. Le réglage de la perte de charge à cet apex est un paramètre de réglage de la maille de coupure granulométrique désirée puisqu'il règle le débit de l'underflow.
  • Il arrive que le vortex soit parcouru par un écoulement ascendant d'air. Ce phénomène peut être évité.
  • La dimension de particule correspondante à une probabilité égale pour laquelle les particules plus grosses à cette dimension se dirigent vers l'underflow et les particules plus petites se dirigent vers l'overflow est appelées « d50 ».
  • L'idéal serait que toutes les particules plus petites au d50 aillent vers l'overflow et toutes les autres vers l'underflow. Ce serait la perfection. Il n'en est pas ainsi, et plus on s'écarte du d50, plus la probabilité qu'une particule parte du bon côté augmente. Plus cette probabilité augmente pour un écart donné de granulométrie, plus on s'approche de la perfection et plus un indice appelé « imperfection » diminue.
  • Le graphique de cette probabilité en fonction de la granulométrie est une courbe, appelée courbe de partage qui ressemble à une intégration de la courbe de Gauss d'une probabilité normale.
  • Cette courbe, qui représente la probabilité que les particules d'une dimension donnée aillent dans l'underflow, devrait partir de zéro. En effet, les particules de dimension proche de zéro devraient toute être entraînées par le courant d'eau radial et se retrouver dans l'overflow.
  • Lorsqu'on examine les courbes de partage de la séparation de tous les hydrocyclones, on remarque qu'elles ne partent pas de zéro comme la logique le laisserait penser. Cette courbe de partage est toujours décalée vers le haut.
  • Cela signifie qu'un certain pourcentage de particule se dirige vers l'underflow quelque soit leur taille. Ce pourcentage peut atteindre une valeur de 30%. Nous appelons ce phénomène un « dysfonctionnement » des hydrocyclones.
  • L'explication de ce dysfonctionnement vient de ce que la vitesse radiale du courant est nulle au niveau de la paroi et les fines particules ne sont pas donc entraînées vers l'intérieur ; ces particules accompagnent alors les particules grenues vers l'underflow.
  • Ce dysfonctionnement est très préjudiciable aux applications des hydrocyclones.
  • Dans le cadre du broyage par exemple, les hydrocyclones sont disposés à la sortie du broyeur afin de classer la pulpe qui en sort. Les particules supérieures à la dimension désirée (d50) sont renvoyées au broyeur alors que les particules qui ont atteint la bonne dimension sont extraites du circuit.
  • Ce dysfonctionnement des hydrocyclones provoque alors le retour au broyeur de particules qui sont inférieures à la dimension requise et subissent ainsi un surbroyage. Cela provoque une surconsommation énergétique et une surproduction de très fines particules qui risquent de gêner le procédé en aval. Ces fines particules augmentent la viscosité de la pulpe dans le broyeur qui est responsable d'une moins bonne efficacité de broyage.
  • Résumé de l'invention
  • L'invention vise à remédier au problème des particules fines mal classées, présent dans tous les hydrocyclones connus.
  • L'invention vise aussi à diminuer l'imperfection des hydrocyclones du côté des particules fines, mais aussi du côté des particules grenues.
  • Spécialement du côté des particules fines :
  • L'invention consiste à provoquer un courant de fluide tangentiel avec une composante radiale au niveau de la paroi cylindrique sur laquelle les particules sont centrifugées. De cette façon, les particules fines qui s'y trouvent y sont délogées afin d'échapper au piège qui les entraîne vers l'underflow. En effet, au niveau de la paroi où se trouve l'ensemble des particules centrifugées, il n'y a aucun écoulement de fluide radial qui soumet ces particules aux lois de ségrégation. Ce fluide injecté apporte cet écoulement désiré au niveau de la surface. De plus, cette injection de fluide permet d'apporter de l'énergie supplémentaire pour entretenir le mouvement rapide de rotation responsable de la ségrégation.
  • Spécialement du côté des particules grenues :
  • Le fluide injecté servant à déloger les particules est prélevé à la périphérie de l'overflow où des particules grenues mal classées ont toute les chances de se retrouvée centrifugées. L'overflow proprement dit est extrait par un tuyau centré sur ce premier tuyau. Le prélèvement de fluide servant à l'injection est donc prélevé dans l'espace annulaire entre ces deux tuyaux. Les particules grenues mal classées retourne dans le cyclone pour y subir une nouvelle ségrégation. Le design de l'alimentation de la fente d'injection sera exécuté de manière à ce que les particules soient orientées vers le côté underflow de la fente de manière à leur donner une chance supplémentaire de se diriger du bon côté.
  • Cette forme particulière de l'invention permet d'augmenter artificiellement la dilution de la pulpe sans ajout de fluide. Cette augmentation de dilution est parfois nécessaire pour diminuer le facteur de correction de la formule calculant le D50. Autrement dit, cette augmentation de dilution permettra de diminuer la valeur du D50 pour tout autre paramètre constant.
  • La configuration de la sortie de cette fraction doit favoriser sa rotation rapide pour centrifuger et récupérer les particules mal classées. Une sortie en volute s'impose. La pompe de circulation provoque le mouvement axial de son tuyau d'alimentation à grande vitesse qui se communique à la vitesse radiale dans l'espace annulaire via la volute.
  • Un rotor de pompe peut être installé sur l'axe interne de l'espace annulaire de prélèvement qui agit en accélérant la vitesse de rotation du fluide tout en augmentant sa hauteur manométrique afin d'être injecté dans le cyclone en circuit fermé.
  • L'invention s'inspire du procédé et de l'appareil décrit et revendiqué dans la demande de brevet européen 05020997.2/ EP05020997 (GENIMIN). Elle fait appel au principe de l'injection d'une lame d'eau tangentielle. Comme exposé dans le document 05020997.2/ EP05020997 , la fente d'injection d'eau peut être placée indifféremment. Dans la forme particulière de l'invention évoquée dans ce texte, la fente d'injection est placée parallèlement à l'axe du cyclone. Elle peut être inclinée.
  • La pulpe centrifugée chevauche, à chaque tour, la nappe de fluide injecté.
  • La direction de l'injection tangentielle de fluide peut comporter une composante axiale vers le haut ou vers le bas puisqu'une partie du fluide d'injection accompagnera l'underflow (vers de bas) ou l'overflow (vers le haut). Dans la forme particulière de l'invention décrite, cette direction d'injection n'a aucune composante axiale afin de ne privilégier aucun des exutoires. Le fait de disposer cette injection sans composante axiale permet de ralentir l'ouverture du pas de l'hélice vers l'underflow.
  • Les particules les plus grenues sont sédimentées avant d'avoir fait un tour complet alors que les plus fines ne le sont pas et sont donc entraînées par le courant radial provoqué par cette injection de fluide.
  • Cette forme particulière présente l'avantage de simplicité et de facilité de réglage de l'ouverture d'injection. En effet, ce réglage de l'épaisseur de la lame d'eau injectée peut se faire par la déformation de la paroi extérieure de la conduite rectangulaire d'injection. (voir description des figures).
  • La vitesse radiale exprimée en m/sec de cette injection est égale à son épaisseur exprimée en mètre multipliée par le nombre de passage par seconde. Ainsi, pour une vitesse de rotation de 3000 tours par minute et une épaisseur de lame de 5mm, la vitesse radiale est de 0,25m/sec.
  • L'invention concerne notamment un procédé performant pour la classification granulométrique d'une matière granulaire, selon lequel une suspension de ladite matière granulaire dans un milieu dispersif est soumise à une centrifugation dans un cyclone d'où l'on soutire une fraction grossière de la suspension et une fraction fine de la suspension. Le procédé se caractérise en ce qu'on injecte une nappe de fluide au niveau de la paroi afin que la suspension centrifugée vienne chevaucher cette nappe à chaque tour.
  • Dans une forme de réalisation de ce procédé performant, la direction susdite d'injection de la nappe fluide présente une composante tangentielle à la centrifugation qui l'entretient et une composante radiale qui entraîne les fines particules déclassées vers l'intérieur du cyclone. La direction d'injection peut aussi présenter une composante axiale au cylindre.
  • Dans le procédé performant susdit, le fluide est de préférence injecté de manière sensiblement continue dans la suspension.
    Dans le procédé performant susdit, le milieu dispersif de la suspension peut être tout fluide, le plus souvent, ce fluide est de l'eau ou de l'air.
    Dans une forme de réalisation particulière dudit procédé performant, on prélève une partie de la fraction fine précitée de la suspension pour constituer le fluide injecté, permettant de recycler des particules qui seraient mal classées dans l'overflow.
  • Brève description des figures
  • Des particularités et détails de l'invention vont apparaître au cours de la description suivante des figures annexées, qui représentent quelques formes de réalisation particulières de l'invention.
    • La figure 1 est une vue, en section axiale, d'un hydrocyclone antérieur à l'invention ;
    • La figure 2 est une vue analogue à la figure 1, d'une première forme de réalisation du cyclone selon l'invention ;
    • Les figures 3a et 3b montrent, en section transversale, le cyclone de la figure 2 dans deux réglages distincts ;
    • Les figures 4a et 4b sont des figures analogues à celles des figures 3a et 3b et montrent une variante de réalisation du cyclone de la figure 2 ;
    • La figure 5 montre, en plan, un détail de l'hydrocyclone de la figure 2 ;
    • La figure 6 est une vue analogue à la figure 1 d'une autre forme de réalisation de l'hydrocyclone selon l'invention.
    • Les figures ne sont pas dessinées à l'échelle.
    Généralement, les mêmes numéros de référence désignent les mêmes éléments. Description détaillée de modes de réalisation particuliers
  • La figure 1 montre un hydrocyclone classique qui se trouve sur le marché. La réalisation est souvent modulaire et l'assemblage des sous ensembles se réalise souvent par l'intermédiaire de brides. De haut en bas, nous trouvons ainsi le tube d'extraction (1) de la fraction fine (overflow) fixé au centre de l'élément (2) qui assure l'injection tangentielle qui centrifuge la pulpe à séparer.
  • Une section cylindrique (3) est fixée sur cet élément d'injection sur laquelle est centrifugée la pulpe. Le mouvement de la pulpe (4) induit par sa mise en rotation est en hélice puisqu'une composante axiale est nécessaire pour permettre son évacuation. Cette section cylindrique permet de donner le temps aux particules d'être centrifugée contre la paroi. Le tube (1) pénètre au niveau de ce cylindre (3) et débouche à une pression plus basse que celle présente dans le cyclone (en général la pression atmosphérique). Il se crée un courant d'évacuation qui provoque un écoulement radial (5) vers cet exutoire et une diminution du débit de pulpe à l'aval de l'hydrocyclone. Afin de maintenir la rotation de la pulpe et maintenir les particules centrifugées sur la paroi, sa section décroît. Cet élément est alors en forme de cône qui peut être constitué de plusieurs éléments à conicité décroissante (6-7). La section conique débouche à la même pression que la sortie du tube (1) précité (en général la pression atmosphérique). Cet orifice de (8) est appelé l'apex qui permet l'évacuation de l'underflow.
  • La pulpe en rotation suit un mouvement en hélice de haut en bas à la périphérie du cyclone vers l'underflow et de bas en haut en son centre vers l'overflow. Cet écoulement central est appelé vortex. Il arrive que ce vortex soit creux et parcouru par un noyau d'air de l'apex vers l'overflow. Les techniques connues permettent d'éliminer ce noyau d'air.
  • L'hydrocyclone représenté à la figure 2 est conforme à l'invention. Il comprend à cet effet un sous ensemble supplémentaire (9) qui vient se fixer entre le cylindre et le cône ou entre deux sections cylindriques successives.
  • Dans la forme particulière décrite, la surface intérieure (10) de ce sous ensemble est cylindrique correspondant au diamètre du cylindre des hydrocyclones. L'injection se fait par une fente (11) qui se trouve hors du gabarit du cylindre. La surface extérieure de cette fente rejoint la surface cylindrique par une volute (12).
  • Dans la forme particulière décrite une façon simple de régler l'épaisseur de la lame d'eau se fait en modifiant le profil de la surface externe de la conduite d'alimentation (fig3 et 4) qui ouvre et ferme la fente d'injection. Le sens de l'injection définit un côté aval (11) et un côté amont (14) de la conduite d'injection (15).
  • La surface de sédimentation (10) des particules centrifugées est constituée d'une plaque courbe résistante à l'abrasion (16). Cette plaque d'usure courbe protège la structure du sous ensemble (16) et y est fixée par vis extérieure (17) de manière à garder la surface intérieure rigoureusement lisse.
  • Ces fixations s'interrompent au niveau de la volute d'entrée de l'injection d'eau permettant la déformation de cette plaque courbe.
  • Du côté amont, une tôle (18) ferme une cavité (19) qui permet le mouvement linéaire de la plaque entre cette tôle et la surface intérieure du sous-ensemble. Cette flexibilité de la tôle lui permet de ne pas s'opposer à la faible rotation de la plaque. Cette tôle est fixée sur une pièce (20), elle même fixée au sous-ensemble servant de portée à la conduite d'alimentation de fluide d'injection.
  • Le réglage de l'épaisseur de la fente se fait par à chaque extrémité par une vis (25). L'effort de ces deux vis de réglage est réparti sur toute la largeur de la plaque grâce à un renfort rigide (26) solidaire de la plaque d'usure (10).
  • Sur le côté opposé de la cavité d'alimentation est fixée une pièce d'usure (27) qui assure la jonction entre la nappe de fluide injecté et la pulpe en rotation dans le cylindre. La plaque d'usure courbe (10) doit être suffisamment élastique pour permettre sa déformation, (le polyuréthane se prête bien à cette application). La pièce de jonction (27) doit être, au contraire, très rigide pour éviter toute déformation. Ceci est une raison pour que ces deux pièces (la plaque et la jonction) soient distinctes et réalisées dans des matériaux différents.
  • Ce type de montage permet d'extraire cette pièce sans démontage du sous-ensemble et la remplacer en cas d'usure. Une rainure de guidage (28) est réalisée dans les plaques de fermetures supérieure et inférieure (Fig 5) qui ferment le sous-ensemble. Ces plaques referment latéralement le plan de pose de la tuyauterie d'injection et assure la fixation aux sous-ensembles adjacents par vis dans les trous filetés aménagés dans ces plaques (29). Ces plaques sont fixées au sous-ensemble par vis à têtes fraisées de manière à maintenir plan la surface de pose aux sous-ensembles adjacents (position des trous (30)).
  • La déformation peut être provoquée, non pas par la déformation élastique du revêtement comme exposé, mais par le mouvement de deux plaques courbes rigides (31,32), articulées sur rotules linéaires (33) (fig 4). Le réglage de l'ouverture de la fente se fait toujours par vis de poussée (25) accessible de l'extérieure du sous-ensemble.
  • La rotule linéaire est réalisée par le fraisage cylindrique (convexe et concave) des côtés limitrophes de ces plaques. Le côté opposé de la plaque aval (34) est aussi articulé sur une même rotule linéaire dont le côté concave est fraisé dans le revêtement de protection de la surface cylindrique du sous-ensemble (10), de même épaisseur que ces plaques articulées. Le côté convexe des rotules est situé en amont de manière à ce que l'arête de la rotule soit orientée dans le sens de l'écoulement. Le côté amont (14) de la plaque amont glisse sur le face interne du sous-ensemble. La plaque est repoussée par un ressort (35) et maintenue contre la paroi interne par une tôle déformable fixée sur une pièce (36), elle même fixée sur le sous-ensemble. Cette pièce sert de plan de pose à la tuyauterie d'alimentation du fluide d'injection.
  • Cette seconde forme particulière de l'invention présente le désavantage par rapport à la première de concentrer la modification de courbure au niveau des rotules. Cela est moins favorable aux écoulements qui doivent éviter toute variation ponctuelle de direction.
  • Dans une forme particulière et avantageuse de l'invention, le fluide d'injection est prélevé sur l'overflow (cf fig 6) à sa périphérie, dans l'espace annulaire entre le tube de sortie de l'overflow (37) et le tube externe (38) qui descend dans l'hydrocyclone pour collecter l'overflow.
  • Ce prélèvement subit une augmentation de sa hauteur manométrique dans une pompe (39) afin d'être injecté à la pression requise. Cette forme particulière de l'invention permet de réaliser l'injection sans apport additionnel de fluide. La forme de la sortie de ce prélèvement est en volute (40) de manière à ce que la vitesse du fluide communiquée par la pompe de circulation permette d'entretenir au mieux la vitesse de rotation dans l'espace annulaire de prélèvement et permettre aux particules mal classées d'être captée dans cet espace annulaire périphérique.

Claims (13)

  1. Procédé pour l'amélioration du fonctionnement de tout appareil de ségrégation de particules travaillant en centrifuge et en particulier les cyclone et hydrocyclones qui consiste à déloger de la paroi (10) toutes les particules centrifugée sur celle-ci de manière à ce qu'elles soient soumises à un flux radial (5) de fluide responsable de leur ségrégation.
  2. Procédé selon la revendication 1, caractérisé par le fait que le terme ségrégation porte sur toute ségrégation dont la plus courante est la ségrégation granulométrique.
  3. Procédé selon les revendications précédentes, caractérisé en ce que le fluide (5) est injecté de manière sensiblement continue dans une pulpe (4) centrifugée
  4. Procédé selon les revendication précédentes, caractérisé en ce que le fluide (5) est injecté par une fente (11) disposée de manière la plus appropriée et, notamment, parallèle à l'axe de l'hydrocyclone.
  5. Procédé selon les revendications précédentes, selon lequel la vitesse d'injection présente une composante radiale qui provoque l'entraînement, vers l'intérieur de l'appareil, des particules constituant la pulpe (4).
  6. Procédé selon les revendications précédentes, selon lequel l'énergie apportée par le fluide injecté (5) entretient la vitesse de centrifugation de la pulpe (4).
  7. Procédé selon les revendications précédentes, selon lequel le fluide d'injection (5) est prélevé sur l'overflow (22) permettant une circulation en circuit fermé permettant d'augmenter artificiellement la dilution de la pulpe (4) au niveau où se déroule la ségrégation.
  8. Procédé selon les revendications précédentes, selon lequel le fluide d'injection (5) est prélevé à la périphérie de l'overflow (22) permettant aux particules mal classées de subir une nouvelle ségrégation
  9. Procédé selon les revendications précédentes, selon lequel la sortie du prélèvement se fait dans une cavité en volute permettant une transition du mouvement rotatif en hélice vers un écoulement axial le dirigeant vers la pompe rotative de mise en pression.
  10. Procédé selon les revendications précédentes, qui peut se présenter comme un sous ensemble (9) adapté à être assemblé à chaque type d'hydrocyclone ou cyclone de fabrication modulaire ou tout autre appareil de ségrégation.
  11. Procédé selon les revendications précédentes, permettant de régler l'épaisseur de la lame de fluide injecté par déformation de la surface extérieure de la conduite d'alimentation du fluide injecté.
  12. Procédé selon les revendications précédentes, qui utilise le revêtement de protection anti-abrasion comme surface de déformation permettant la fermeture de la fente d'injection.
  13. Procédé selon les revendications précédentes, selon lequel une pièce rigide, amovible de l'extérieur, réalise la jonction des deux flux (fluide d'injection et la pulpe en rotation).
EP06013697A 2006-07-01 2006-07-01 Procédé et appareil permettant de perfectionner le fonctionnement des hydrocyclones Withdrawn EP1958699A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06013697A EP1958699A1 (fr) 2006-07-01 2006-07-01 Procédé et appareil permettant de perfectionner le fonctionnement des hydrocyclones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06013697A EP1958699A1 (fr) 2006-07-01 2006-07-01 Procédé et appareil permettant de perfectionner le fonctionnement des hydrocyclones

Publications (1)

Publication Number Publication Date
EP1958699A1 true EP1958699A1 (fr) 2008-08-20

Family

ID=39430638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06013697A Withdrawn EP1958699A1 (fr) 2006-07-01 2006-07-01 Procédé et appareil permettant de perfectionner le fonctionnement des hydrocyclones

Country Status (1)

Country Link
EP (1) EP1958699A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082975A1 (fr) * 2009-12-15 2011-07-14 Basf Se Séparateur de gouttes centrifuge pour la séparation de gouttelettes de liquide sur un flux de gaz opérationnel contenant ces gouttelettes
WO2012130491A1 (fr) * 2011-03-31 2012-10-04 Dürr Systems GmbH Installation de traitement de pièces à l'aide d'un liquide de procédé
WO2014058773A1 (fr) * 2012-10-09 2014-04-17 Ohio Blow Pipe Co. Système de filtration de poussières à hydrocyclone
WO2017031556A1 (fr) 2015-08-24 2017-03-02 Axel De Broqueville Dispositif d'injection de fluides dans la zone libre d'un lit fluidifié rotatif
CN106696324A (zh) * 2016-11-21 2017-05-24 江苏森德新型复合材料有限公司 一种旋风涂砂装置及工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1213513A (en) * 1967-01-25 1970-11-25 Schilde Ag Apparatus for the treatment of a granular material with a fluid
US3600817A (en) * 1969-11-28 1971-08-24 Siemens Ag Processing apparatus for effecting interaction between, and subsequent separation or gaseous and solid or liquid particulate substances
GB2239191A (en) * 1989-11-28 1991-06-26 Orkney Water Test Centre Limit Coalescing device and method
DE19923600A1 (de) * 1999-05-24 2000-11-30 Heinz Hoelter Verfahren zur Aufbereitung von mineralischen Rohstoffen, insbesondere von Steinkohle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1213513A (en) * 1967-01-25 1970-11-25 Schilde Ag Apparatus for the treatment of a granular material with a fluid
US3600817A (en) * 1969-11-28 1971-08-24 Siemens Ag Processing apparatus for effecting interaction between, and subsequent separation or gaseous and solid or liquid particulate substances
GB2239191A (en) * 1989-11-28 1991-06-26 Orkney Water Test Centre Limit Coalescing device and method
DE19923600A1 (de) * 1999-05-24 2000-11-30 Heinz Hoelter Verfahren zur Aufbereitung von mineralischen Rohstoffen, insbesondere von Steinkohle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082975A1 (fr) * 2009-12-15 2011-07-14 Basf Se Séparateur de gouttes centrifuge pour la séparation de gouttelettes de liquide sur un flux de gaz opérationnel contenant ces gouttelettes
US20120302420A1 (en) * 2009-12-15 2012-11-29 Basf Se Centrifugal droplet separator for separating liquid droplets out of a feed gas stream comprising them
WO2012130491A1 (fr) * 2011-03-31 2012-10-04 Dürr Systems GmbH Installation de traitement de pièces à l'aide d'un liquide de procédé
WO2014058773A1 (fr) * 2012-10-09 2014-04-17 Ohio Blow Pipe Co. Système de filtration de poussières à hydrocyclone
US9815252B2 (en) 2012-10-09 2017-11-14 Ohio Blow Pipe Co. Wet cyclone dust filtration system
WO2017031556A1 (fr) 2015-08-24 2017-03-02 Axel De Broqueville Dispositif d'injection de fluides dans la zone libre d'un lit fluidifié rotatif
CN106696324A (zh) * 2016-11-21 2017-05-24 江苏森德新型复合材料有限公司 一种旋风涂砂装置及工艺
CN106696324B (zh) * 2016-11-21 2019-07-02 安徽森德新材料科技发展有限公司 一种旋风涂砂装置及工艺

Similar Documents

Publication Publication Date Title
EP1958699A1 (fr) Procédé et appareil permettant de perfectionner le fonctionnement des hydrocyclones
EP2382056B1 (fr) Dispositif de séparation granulométrique sélective de matières pulvérulentes solides, à action centrifuge, et procédé d'utilisation d'un tel dispositif
EP2919915B1 (fr) Dispositif de filtration d'eau de piscine
EP3223957A1 (fr) Hydrocyclone anti-boudinage
EP1534434B1 (fr) Procede et unite de recyclage d'une membrane bitumineuse
WO2005075115A1 (fr) Separateur de matiere granuleuse
FR2617516A1 (fr) Appareil de repartition d'une pate cellulosique fibreuse
EP0104966B1 (fr) Centrifugeuse à récupération d'énergie
FR2589755A1 (fr) Procede et dispositif pour separer les differentes phases de milieux coulants a plusieurs phases
FR2629371A1 (fr) Dispositif de depoussierage de gaz industriels par separateurs mecaniques - pneumatiques
FR2584306A1 (fr) Dispositif de separation de particules non desirees presentes dans une pate de fibres
FR2588779A1 (fr) Separateur a vortex pour liquide heterogene a debit variable
FR2588778A1 (fr) Separateur a vortex liquide
WO2012117102A1 (fr) Dispositif d'épuration d'un gaz par extraction de particules
EP3174637B1 (fr) Dispositif de séparation cyclonique comprenant deux cyclones reliés par une unité de canalisation optimisée
WO2013037820A1 (fr) Separateur de matieres granuleuses
FR2482874A1 (fr) Brides de fixation de fermeture d'extremite de bol de centrifugeur
FR2514668A1 (fr) Dispositif de reglage de la surface de sortie d'un separateur a cyclone
FR3040005A1 (fr) Installation perfectionnee de traitement de dechets
FR2679792A1 (fr) Perfectionnements aux broyeurs a anneaux.
EP3204163B1 (fr) Broyeur par compression de lit de matières
FR2511268A3 (fr) Cyclone pour la separation de solides en suspension dans un liquide
FR2654754A1 (fr) Machine pour separer des particules d'un courant de pate et pour diviser la pate en fractions.
BE566864A (fr)
FR2786116A1 (fr) Procede et installation de traitement d'une poudre combustible nucleaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090203