EP1958176A1 - Method of determining the horizontal profile of a flight plan complying with a prescribed vertical flight profile - Google Patents

Method of determining the horizontal profile of a flight plan complying with a prescribed vertical flight profile

Info

Publication number
EP1958176A1
EP1958176A1 EP06819557A EP06819557A EP1958176A1 EP 1958176 A1 EP1958176 A1 EP 1958176A1 EP 06819557 A EP06819557 A EP 06819557A EP 06819557 A EP06819557 A EP 06819557A EP 1958176 A1 EP1958176 A1 EP 1958176A1
Authority
EP
European Patent Office
Prior art keywords
points
curvilinear
distance
flight
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06819557A
Other languages
German (de)
French (fr)
Other versions
EP1958176B1 (en
Inventor
Nicolas Marty
Gilles Francois
Elias Bitar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1958176A1 publication Critical patent/EP1958176A1/en
Application granted granted Critical
Publication of EP1958176B1 publication Critical patent/EP1958176B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan

Definitions

  • the present invention relates to the definition, in a flight plan, of the horizontal profile of an air route with vertical flight profile and speed imposed at the start and / or at the arrival, by means of a sequence of waypoints. and / or turning points associated with local flight constraints and called “D-Fix" for "Dynamic FIX" because they are not listed in a published navigation database such as those called "Waypoints”.
  • the waypoints and / or turning points "Waypoints" listed in the published navigation databases meeting the ARINC-424 standard make it possible to define the most common air routes. For the others, they are often only used to define departure and arrival paths in accordance with published approach procedures. Between these imposed departure and arrival approach trajectories, the establishment of the air route calls for "D-Fix" waypoints and / or turning points which play the same roles as the "Waypoints" opposite. with regard to manual piloting through the pilot or with regard to automatic piloting through a flight management computer or automatic piloting equipment but the definition of which is the responsibility of the operator.
  • the aim of the present invention is to determine, by seeking a lower calculation cost, a sequence of “D-Fix” turning and / or turning points defining, with their associated constraints, an air route of flight plan, going from a starting point to a destination point, respecting the vertical flight and speed profiles imposed at the start and / or at the arrival and guaranteeing a bypass of the surrounding reliefs.
  • It relates to a method for determining the horizontal profile of an aircraft flight plan route leading from a starting point to a destination point, respecting vertical flight and speed profiles imposed at the start and / or on arrival and taking into account the relief and areas with regulated overflight, remarkable in that it comprises the following stages:
  • the first map of curvilinear distances having the starting point as the origin of the distance measurements is drawn up taking account of the static constraints due to the relief and areas with regulated overflight, and the dynamic constraint due to the vertical profile of flight and speed imposed at the start while the second curvilinear distance map having the point of destination as the origin of the distance measurements is produced from the set of obstacles to be overcome appeared in the first map of curvilinear distances.
  • the second curvilinear distance map having the destination point as the origin of the distance measurements is drawn up taking account of the static constraints. due to the relief and the areas with regulated overflight and dynamic constraint due to the vertical profile of flight and speed imposed on arrival while the first map of curvilinear distances having the starting point as the origin of the distance measurements is produced at from the set of obstacles to be circumvented which appeared in the second curvilinear distance map.
  • the first and second maps of curvilinear distances are produced from a set of obstacles to be circumvented appearing in two blanks of these curvilinear distance maps:
  • all of the obstacles to be circumvented are supplemented by the points of the first and second maps affected with estimates of curvilinear distance having discontinuities with respect to those assigned to points in the near vicinity.
  • lateral safety margins are a function of the flat turning capacities of the aircraft in its configuration of the moment, when approaching the relief and / or of the overflight area considered, resulting from the monitoring of the vertical flight profile and the imposed speed.
  • the lateral safety margins added to the set of obstacles to be circumvented are determined from a curvilinear distance map having the set of obstacles to be circumvented as the origin of the distance measurements.
  • the local thickness of a lateral safety margin takes account of the local wind.
  • the local thickness of a lateral safety margin takes account of the change of course necessary to bypass a relief and / or a restricted overflight area.
  • the local thickness of a lateral safety margin corresponds to a minimum radius of flat turn authorized for the aircraft in its configuration of the moment.
  • the maximum separation threshold of the chain of straight segments with respect to the series of points of the direct path is of the order of a minimum half-radius of flat turn authorized for the aircraft in its configuration of the moment. .
  • the curvilinear distance maps are produced by means of a distance transform by propagation.
  • the approximation of the series of points of the direct path by a series of rectilinear segments is obtained by a progressive construction during which the starting point or respectively of destination of the direct path is taken as the origin of a first segment that it is made to grow by adding one by one of the consecutive points as long as it does not penetrate all of the listed obstacles to be circumvented and its distance from the points of the direct path that it short-circuits respects the arbitrary threshold maximum permitted spacing, other rectilinear segments constructed in the same way being added to the series as long as the point of destination or respectively of departure of the direct route is not reached.
  • the approximation of the series of points of the direct path by a series of straight segments is obtained by a dichotomous construction during which the starting point and the point of destination of the direct path are initially connected by a rectilinear segment replaced, as soon as it enters all of the listed obstacles to be circumvented or when its deviation from the points of the direct path that it short-circuits exceeds the arbitrary threshold of maximum permitted separation, by a chain of two straight segments joining together at the point of the most distant direct path among those which it short-circuits, each new segment being in turn replaced by a chain of two new segments joining at the point of the most distant direct path among the points short-circuited as soon as it enters all the obstacles to be circumvented or when its deviation from the points of the direct path it short-circuits uite exceeds the arbitrary maximum allowable spacing threshold.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented during a flight, during a "Dir-to" request to rejoin a geographical point made
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented during the preparation of military or civil security missions.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented in a fallback airport rejoining system in the event of an engine failure.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented in a flight plan discontinuity management system.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented in an automatic joining system of predetermined positions for an unmanned aircraft.
  • the method for determining the horizontal profile of a flight plan route is advantageously implemented, in a safe environment, in an automatic joining system of predetermined positions for aircraft piloted out of control.
  • FIG. 1 represents an example of a chamfer mask usable by a distance transform by propagation
  • FIGS. 2a and 2b show cells of the chamfer mask illustrated in FIG. 2 used in scanning passes according to the direct and reverse lexicographic orders
  • FIG. 3 illustrates a vertical flight profile with imposed slopes of climb from the starting point and descent to the destination point
  • Figures 4a and 4b illustrate a decomposition of the vertical flight profile shown in Figure 3, in outward and return profile to allow its use for the location of a curvilinear path direct between the starting point and the destination point of a flight plan air route whose horizontal profile is to be established,
  • FIG. 5 illustrates a vertical flight profile with a constant slope of descent towards the destination point
  • FIGS. 6a and 6b illustrate a decomposition of the vertical flight profile shown in Figure 5, in outward and return profile to allow its use for the location of a direct curvilinear route between the starting point and the destination point a flight plan air route whose horizontal profile is to be established
  • a figure 7 represents an example of a set of obstacles to be circumvented obtained from a draft of curvilinear distance map having for origin measurements distance from the starting point of the flight plan route and taking into account a vertical flight and speed profile imposed at the start,
  • figure 8 represents the obstacles to be circumvented obtained in the same context as figure 7, from a draft of curvilinear distance map having for origin distance measurements the point of destination of the route of flight plan and holding account of a vertical flight and speed profile imposed on arrival,
  • FIG. 9 represents all of the obstacles to be circumvented resulting from the merger by meeting of the sets of obstacles to be circumvented shown in FIGS. 7 and 8,
  • FIG. 10a, 10b, 10c illustrate a method of tracing a lateral safety margin around an obstacle to be circumvented
  • a figure 1 1 represents, in the same context as the figures
  • FIG. 12 represents a set of shortest path points identified in the context of FIGS. 7, 8 and 11,
  • FIG. 13 represents an example of a set of shortest path points showing that the fact that a path belongs to it does not guarantee that it is minimal
  • FIG. 14 represents the direct curvilinear path obtained relative to the set of obstacles to be circumvented shown in FIG. 11,
  • FIG. 15 illustrates a method for determining a sequence of rectilinear segments approximating the route of a direct curvilinear path
  • FIG. 16 illustrates the sequence of rectilinear segments and "D-Fix" passage points obtained from the direct path shown in FIG. 14,
  • FIG. 17 represents a diagram of a device for implementing a method for determining the horizontal profile of an air route flight plan according to the invention.
  • FIGS. 18 to 21 are diagrams of different on-board devices implementing a method for determining the horizontal profile of an air route flight plan according to the invention.
  • the method which will be described, of determining or tracing a horizontal profile of an air route respecting the relief, areas with regulated overflight and vertical profiles of flight and speed imposed at the start and / or at the finish s '' relies on the technique of distance transforms by propagation applied to air navigation, within a framework of static constraints made up of reliefs to be bypassed and areas with regulated overflight to be respected, and dynamic constraints made up of a vertical flight profile and imposed speed.
  • the distance transforms by propagation first appeared in image analysis to estimate distances between objects. Among them are the distance transforms with chamfer mask, examples of which are described by Ms. Gunilla Borgefors in an article entitled “Distance Transformation in Digital Images.” published in the journal: Computer Vision, Graphics and Image Processing, Vol. 34 pp. 344-378 in February 1986.
  • the distance between two points on a surface is the minimum length of all the possible paths on the surface starting from one of the points and ending at the other.
  • a chamfer mask distance transform estimates the distance of a pixel called "goal" pixel with respect to one or more pixels called "source” pixels by gradually building up, starting from source pixels, the shortest possible path following the mesh of pixels and ending at the goal pixel, and using the distances found for the image pixels already analyzed and a table called chamfer mask listing the values of the distances between a pixel and its close neighbors.
  • a chamfer mask is in the form of a table with an arrangement of boxes reproducing the pattern of a pixel surrounded by its close neighbors.
  • a box assigned the value 0 identifies the pixel taken as the origin of the distances listed in the table.
  • Around this central box are agglomerated peripheral boxes filled with non-zero proximity distance values and taking up the arrangement of the pixels in the vicinity of a pixel supposed to occupy the central box.
  • the value of proximity distance appearing in a peripheral box is that of the distance separating a pixel occupying the position of the peripheral box concerned, from a pixel occupying the position of the central box. Note that the proximity distance values are distributed in concentric circles.
  • a third circle of eight boxes corresponding to the eight pixels of third row, which are closest to the pixel of the central box while remaining outside the line, of the column and of the diagonals occupied by the pixel of the central box, are assigned a proximity distance value D3.
  • the chamfer mask can cover a more or less extended neighborhood of the pixel of the central box by listing the values of the proximity distances of a more or less large number of concentric circles of pixels of the neighborhood. It can be reduced to the first two circles formed by the pixels in the vicinity of a pixel occupying the central box or be extended beyond the first three circles formed by the pixels in the vicinity of the pixel in the central box. It is usual to stop at the first three circles as for the chamfer mask shown in Figure 3.
  • the values of the proximity distances D1, D2, D3 which correspond to Euclidean distances are expressed in a scale whose multiplicative factor authorizes the use of whole numbers at the cost of a certain approximation. This is how G. Borgefors adopts a scale corresponding to a multiplicative factor 3 or 5. In the case of a chamfer mask retaining the first two circles of proximity distance values, therefore of dimensions 3x3, G.
  • the progressive construction of the shortest possible path going to a target pixel starting from source pixels and following the mesh of the pixels is done by a regular scanning of the pixels of the image by means of the chamfer mask.
  • the pixels of the image are assigned an infinite distance value, in fact a number high enough to exceed all the values of the measurable distances in the image, except for the source pixel or pixels which are assigned a zero distance value.
  • the initial distance values assigned to the goal points are updated during the scanning of the image by the chamfer mask, an update consisting in replacing a distance value assigned to a goal point, by a new lower value. resulting from an estimation of distance made on the occasion of a new application of the chamfer mask at the target point considered.
  • a distance estimate by applying the chamfer mask to a target pixel consists in listing all the paths going from this target pixel to the source pixel and passing through a pixel in the vicinity of the target pixel, the distance of which has already been estimated during the same scan. , to search among the routes listed, the shortest route (s) and to adopt the length of the shortest route (s) as an estimate of distance.
  • the progressive search for the shortest possible paths starting from a source pixel and going to the different goal pixels of the image gives rise to a phenomenon of propagation in directions of the pixels which are the closest neighbors of the pixel under analysis and whose distances are listed in the chamfer mask.
  • the directions of the closest neighbors of a pixel which do not vary are considered as axes of propagation of the distance transform with chamfer mask.
  • the scanning order of the pixels in the image influences the reliability of the distance estimates and their updates because the paths taken into account depend on it.
  • it is subject to a regularity constraint which means that if the pixels of the image are identified according to the lexicographic order (pixels classified in an increasing order line by line starting from the top of the image and progressing towards the bottom of the image, and from left to right within a line), and if a pixel p has been analyzed before a pixel q then a pixel p + x must be analyzed before the pixel q + x.
  • the lexicographic, reverse lexicographic orders (scanning the pixels of the image line by line from bottom to top and, at the within a line, from right to left), transposed lexicographic (scanning pixels of the image column by column from left to right and, within a column, from top to bottom), reverse transposed lexicographic (scanning pixels per column from right to left and within a column from bottom to top) satisfy this regularity condition and more generally all the scans in which the rows and columns are scanned from right to left or from left to right.
  • Borgefors recommends double scanning the pixels of the image, once in lexicographic order and once in reverse lexicographic order.
  • the analysis of the image by means of the chamfer mask can be done according to a parallel method or a sequential method.
  • a parallel method we consider the distance propagations from all the points of the mask which we pass over the entire image in several scans until there is no more change in the estimates of distance.
  • the sequential method we only consider distance propagations from half the points on the mask. The upper half of the mask is passed over all the points of the image by scanning in the lexicographic order and then the lower half of the mask is passed over all the points of the image in the reverse lexicographic order.
  • FIG. 2a shows, in the case of the sequential method and of a scanning pass in lexicographic order going from the upper left corner to the lower right corner of the image, the boxes of the chamfer mask of FIG. 1 used for index the paths going from a goal pixel placed in the central box (box indexed by 0) to the source pixel passing through a pixel in the vicinity whose distance has already been the subject of an estimate during the same scan.
  • These boxes are eight in number, located in the upper left of the chamfer mask. There are therefore eight paths listed for the search for the shortest whose length is taken to estimate the distance.
  • FIG. 2b shows, in the case of the sequential method and of a scanning pass in reverse lexicographic order going from the lower right corner to the upper left corner of the image, the boxes of the chamfer mask of FIG. 1 used to list the paths going from a goal pixel placed in the central box (box indexed by 0) to the source pixel via a pixel in the neighborhood whose distance has already been the subject of a estimate during the same scan.
  • These boxes are complementary to those in Figure 2a. They are also eight in number but arranged in the lower right part of the chamfer mask. There are therefore still eight paths listed for the search for the shortest whose length is taken to estimate the distance.
  • the distance transform by propagation was originally designed for the analysis of the positioning of objects in an image, but it was soon applied to the estimation of distances. on a relief map extracted from a database of elevations of the terrain with a regular grid of the earth's surface. Indeed, such a map does not explicitly have a metric since it is drawn from the elevations of the points of the mesh of a database of elevations of the terrain of the area represented.
  • the chamfer mask distance transform is applied to an image whose pixels are the elements of the terrain elevation database belonging to the map, i.e. elevation values associated with the geographic coordinates latitude, longitude of the nodes of the grid of the geographic location grid used for the measurements, classified, as on the map, by increasing and decreasing latitude and longitude according to a two-dimensional table of latitude and longitude coordinates.
  • Some field navigation systems for mobiles such as robots use the chamfer mask distance transform to estimate curvilinear distances taking into account impassable areas due to their uneven configurations. To do this, they associate, with the elements of the terrain elevation database appearing on the map, a prohibited area attribute which signals, when activated, an impassable or prohibited area and inhibits any update other than an initialization, of the distance estimation made by the distance transform with chamfer mask.
  • overflight ban minimum authorized overflight height or altitude , authorized altitude ranges, heading or slope constraint which must also be satisfied for the distance propagated at a point to be retained.
  • These aviation regulatory constraint attributes can be entered periodically into the terrain elevation database based on planned durations of regulatory validity or when preparing a flight plan. They can also be downloaded dynamically in an on-board terrain elevation database, for the regions located in the vicinity of the foreseeable route of the aircraft.
  • the location of a direct curvilinear path corresponding to or one of the shortest paths on the basis of the estimate of curvilinear distance made for the destination point in a map of curvilinear distances developed without taking into account dynamic constraints and having the starting point as the origin of its distance measurements can be obtained by drawing up a second and third maps of curvilinear distances covering the same region.
  • the second map differs from the first by the displacement at the goal point, from the point taken for origin of the curvilinear distance measurements.
  • the third map adopts the curvilinear distance estimate at each of its points, the sum of the curvilinear distance estimates made for the point concerned, in the first and second maps.
  • the chain of points may be in a larger set of related points all affected a minimum sum of curvilinear distance estimates, in the form of a series of parallelogram-shaped surfaces giving different possibilities for tracing a path of minimum length.
  • the approximation is continued until the vertical flight profile is assimilated when climbing to cruising altitude from the starting point to a single rectilinear segment with constant slope.
  • the same simplification is made for the vertical flight profile when descending from the cruising altitude in the direction of the destination point while the aircraft must consume its potential and kinetic energies.
  • the outward profile shown in FIG. 4a consists of the climb 30 at a constant slope from the altitude of the starting point to the cruising altitude, extended indefinitely by the level 31 of cruising altitude. It corresponds to a dynamic constraint which can be determined from the starting point, which can be used to draw up a draft of the first faithful curvilinear map at the start of the journey alone, since this dynamic constraint only takes into account the first half of the vertical profile. imposed flight and speed.
  • the return profile shown in reverse order in Figure 4b consists of the landing 32 at cruising altitude, continued by the descent 33 at a constant slope to the point of destination. It corresponds to a dynamic constraint which can be determined from the destination point, which can be used to draw up a draft of a second map of faithful curvilinear distances at the end of the journey alone, since this dynamic constraint only takes into account the second half of the vertical profile. imposed flight and speed.
  • the materialization of the shortest path leading from the point of departure to the point of destination is obtained by breaking down the vertical profile of flight and speed in a degenerate outward profile shown in FIG. 6a consisting of a single bearing 51 at cruising altitude corresponding to an absence of dynamic constraint and in a return profile shown in reverse order in FIG. 6b, consisting of a descent 50 at a constant slope to the point of destination.
  • All the zones to be bypassed used for updating the first and second curvilinear distance maps when locating a direct curvilinear route can go beyond the points of the draft curvilinear distance maps for which it does not have been possible to estimate curvilinear distances for lack of finding sufficiently short paths and to include the points of these drafts affected by estimates of curvilinear distance having discontinuities compared to those assigned to the points of their close vicinity because they correspond to reliefs can only be reached by devious routes. It can also be enlarged with a lateral safety margin in order to distance laterally from the contoured reliefs, the direct curvilinear path identified on the curvilinear distance maps.
  • this lateral safety margin which serves to prevent a limitation of the freedom of lateral movement of an aircraft, due to the proximity of a relief can be defined in various ways: - It can have a constant value arbitrarily fixed as a function of the aircraft's flat turning capacities or its agility,
  • the thickness in the horizontal plane of the lateral safety margin can be taken equal to the minimum radius of flat turn, which is imposed on the aircraft according to its performance, the desired comfort and its TAS air speed taking into account or not local wind.
  • being a coefficient equal to +1 for a right turn and -1 for a left turn
  • the thickness in the horizontal plane of the lateral margin can be made dependent on the change of course necessary for the bypass, for example, as described in the French patent application filed by the plaintiff on 24/9/2004 under n ° 04 10149, by making it depend at a point on the contour of an obstacle to be circumvented, of a scale coefficient in (l + bearing being the angle between the normal to the point
  • Figures 7, 8, 9, 1 1, 12 and 14 illustrate the different stages of a process for locating a direct curvilinear path respecting vertical flight and speed profiles imposed at the start and at the arrival implemented from an image of the reliefs and zones with regulated overflight of a region overflown by an aircraft, the pixels of which correspond to a mesh of the region overflown by a grid of geographic location which can be:
  • the grid reproduces a polygonal pattern with four sides, conventionally squares or rectangles, it can also reproduce other polygonal patterns such as triangles or hexagons.
  • Figure 7 shows the sets 1 of points where an estimation of curvilinear distance proved impossible and the sets 2 of points where discontinuities appear between the estimates of curvilinear distances for neighboring points which emerge, at the first stage of the process of materialization of the path, during the preparation of the first draft of a map of curvilinear distances by application to the image of the region overflight, of a distance transform with chamfer mask originating from distance measurements, the starting point of the journey and respecting static constraints constituted by the relief and / or by areas with regulated traffic and dynamic constraints constituted of an imposed altitude as a function of the distance traveled from the starting point of the journey corresponding to the outward profile part (FIG. 4a) of a vertical flight and speed profile (climb from the starting point to the altitude cruise flight extended indefinitely by a landing).
  • FIG. 8 shows the sets 1 'of points where an estimation of curvilinear distance has proved impossible and the sets 2' of points where discontinuities appear between the estimates of curvilinear distances for neighboring points which emerge, in the second stage of the path materialization process, during the preparation of the second outline of a curvilinear distance map by applying to the image of the region overflown, a distance transform with a chamfer mask originating from point distance measurements 20 for the destination of the journey and respecting the same static constraints as the first draft, constituted by the relief and / or by zones with regulated traffic and dynamic constraints consisting of an altitude imposed as a function of the distance traveled from the point of destination of the path corresponding to the return profile part ( Figure 4b) of the vertical flight and speed profile (bearing r at cruise flight altitude followed by a descent when approaching the destination point).
  • FIG. 9 shows the merging 3, by meeting, of the obstacles to be circumvented which appeared in the two blanks (sets 1, 1 ′ of points where an estimation of curvilinear
  • FIGS. 10a, 10b and 10c illustrate the magnification of an obstacle 4 to be circumvented by lateral safety margins taking into account the limitation of the freedom of lateral movement of the aircraft in the vicinity of this obstacle 4.
  • This magnification is obtained by drawing the margins from iso-distance lines drawn outside the contours of obstacle 4, for example, by means of a chamfer mask distance transform applied to the image of the region overflown with the Obstacles to be circumvented originating from distance measurements as described in French patent application FR 2,864,312 filed by the applicant. It has been assumed here that the lateral margins depend on the speed of the aircraft in the vicinity of the obstacles 4 to be circumvented. They are traced in several stages:
  • a first step illustrated by FIG. 10a consists in drawing around the obstacle 4 to be circumvented, a lateral margin 5 ′ of protection depending on the speed law associated with the outward profile (FIG. 4a) of the vertical flight and speed profile .
  • the lateral margin 5 ′ is of a lesser thickness near the starting point 10 because the aircraft gradually accelerates until it reaches its cruising speed.
  • a second step illustrated in FIG. 10b consists in drawing around the obstacle 4 to be circumvented, a lateral margin 5 "of protection depending on the speed law associated with the return profile (FIG. 4b) of the vertical flight and speed profile
  • the lateral margin 5 has a smaller thickness near the point of destination 20 because the aircraft decelerates in order to land soon.
  • a third step illustrated in FIG. 10c consists in determining the final lateral margin 5 by merging, by intersection, the lateral margins 5 ', 5 "obtained during the two preceding steps.
  • Figure 11 shows the magnification, by a lateral safety margin 6, of all the merged obstacles 3 resulting from the first and second drafts of curvilinear distance maps.
  • Side margin 6 is thinner near departure 10 and destination20 due to the lower speed of the aircraft.
  • FIG. 12 shows the materialization of a set of the points of the shortest paths obtained after:
  • the set 7 of the points of the shortest paths is in the form of an unbroken chain of points thickening in the vicinity of the departure and destination points to take the forms 8, 9 of parallelogram.
  • FIG. 13 represents, on the location grid of a curvilinear distance map, a set of points of the shortest paths between a starting point 11 and a destination point 12 with, for each point or cell of the grid of geographic location forming part of the whole, the numerical estimate of the curvilinear distance from the starting point 1 1 and a pattern background dependent on the number of paths of minimum length used by the distance transform by propagation providing the estimates of curvilinear distance.
  • the lightest pattern background is assigned to cells traveled by a single minimum length path and the densest pattern background is assigned to cells traveled by two minimum length paths.
  • Figure 13 shows that the simple fact for a path to have all its points belonging to the set of points of the shortest paths does not guarantee that it is of minimum length. Only the routes following the arrows are suitable.
  • FIG. 14 shows the direct curvilinear path 15 adopted in the end taking into account the reliefs, the zones with regulated overflight and the vertical profile of flight and speed to be respected. It follows the diagonals of the parallelogram shapes 8, 9.
  • the rectilinear segments "D-Legs" are imposed a maximum deviation from the points of the direct curvilinear path that they short-circuit.
  • One way of determining the rectilinear segments "D-Legs" of the flightable trajectory consists in constructing them progressively starting from the point of departure or arrival by adding one to one of the points of the direct curvilinear path to the block of consecutive points of the segment in construction until it encroaches on the lateral margin of an obstacle to be circumvented or until its distance from one of the points of the direct curvilinear path that it short-circuits reaches the maximum allowable distance.
  • the segment under construction is then considered to be finished and the construction of the next segment started, until the point of arrival or departure is reached.
  • the sequence of rectilinear segments "D-Legs" obtained is then smoothed in the manner of the flight computer and then again compared with the contours of the obstacles to be circumvented, supplemented by the lateral safety margins. It is allowed if there is no encroachment and rejected if it is not. When the chain of straight "D-Legs" segments is rejected due to encroachments on the lateral safety margins, it must be moved away from the margins at the encroachment levels.
  • FIG. 15 illustrates the determination of the rectilinear segments "D-Legs" 30, 31, 32 of the sequence and consequently of the crossing points and / or turning points "D-Fix" from the direct curvilinear path formed by a chain of points 33 bypassing an obstacle 40 surrounded by a lateral safety margin 41 of thickness 'a' corresponding to the minimum turning radius R of the aircraft.
  • the maximum deviation 'b' of the segments from the points 33 of the direct curvilinear path was fixed at half the thickness 'a' of the lateral safety margin 41.
  • the point of departure or respectively of destination of the direct route is taken from the first segment which is made to grow by adding one by one of the points 40 consecutive as long as it does not penetrate into a dilated obstacle of the safety margin and that its deviation (the maximum length of the projections on the segment, of the 40 short-circuited points) respects the maximum allowed deviation. If the destination or departure point of the direct route is not reached respectively, the end point of the first segment is taken from a second rectilinear segment which is made to grow and so on.
  • This progressive construction method admits variants, such as, for example, a dichotomy method consisting in:
  • FIG. 15 shows the rectilinear segments 30, 31, 32 obtained by application of the progressive construction method.
  • the point at the junction of the two rectilinear segments concerned is distant by a certain step from the lateral safety margin, the integrity of which has been brought into play, and the two new rectilinear segments obtained verified as to their respect for bypassing obstacles and their safety margins.
  • the construction of the segments is resumed, either in the case of the progressive method of construction, by shortening the segment rectilinear whose transition is the end point, or in the case of the dichotomy method, by dividing this rectilinear segment. It is also possible to completely start again the construction of the rectilinear segments by changing the method or even, as indicated previously, to resume the process at the stage of identification of the direct curvilinear path after locally and temporarily enlarging the lateral safety margin.
  • transitions 33 and 34 between the rectilinear segments 30, 31 and 32 are flyable because they can be made by turns at the minimum authorized radius, without entering the lateral safety margin. If this had not been the case, at transition 35, this transition 35 would have been, as shown, distant from the lateral safety margin and the straight segments
  • the junction points of the rectilinear segments are taken as crossing and / or turning points
  • Figure 16 shows the "D-Fix" turning and / or turning points
  • FIG. 17 gives an example of architecture for a system implementing the lateral flight plan tracing method which has just been described.
  • This system includes:
  • calculation and processing module 50 (CPU, memory, etc.),
  • a communication module 51 in charge of receiving and storing data from the ground (prohibited areas of overflight, weather, updating on-board databases, etc.), - a database 52 of areas regulated or restricted airlines. This base can be updated dynamically by the communication module 51 (activation of certain regulated or restricted zones, displacement of meteorological phenomena, displacement of prohibited overflight zones for tactical military zones, etc.),
  • an aircraft performance database 53 allowing recovery of the aircraft crossing capacities as well as the definition of the lateral margins profile as a function of the speed and flight altitudes in the case where the lateral margins do not are not supplied by the aircraft on-board equipment located upstream, and
  • Such a system for implementing the lateral flight plan tracing method can be used for different purposes. It can be used in a larger system for managing discontinuities in flight plans, in particular for joining a geographical point during a "Dir-to" joining request by the crew to the flight management computer. flight of the aircraft, for joining a fallback airport in the event of an engine failure or for automatically joining predetermined positions for a drone or for an aircraft piloted in a safe context.
  • a "Dir-to" request made by the crew to the aircraft's flight management computer the latter instead of seeking to go in a straight line to the geographical point designated by the crew, draws up a plan vertical and speed flight and uses a lateral flight plan tracing system implementing the method described above which submits to it a provisional flight plan taking into account the relief, the areas with regulated overflight and the vertical flight profile and imposed speed, and ensures the monitoring of the provisional flight plan as soon as it has received the crew's approval.
  • FIG. 18 shows the diagram of an on-board engine failure management system in a functional environment on board an aircraft.
  • a flight management computer 60 cooperate interacting with the crew of the aircraft through a man-machine interface MCDU ("Multipurpose Control Display Unit") 61 and acting on an automatic pilot equipment FG / C 62 (“Flight Guidance and Control") dedicated to keeping the aircraft on its trajectory and controlling its moving surfaces, with engine failure detection equipment EFD 63 ("Engine Failure Detector”) which can be part of a FADEC (“FuII Authority Digital Engine Control”), with an AS 64 fallback airport choice system (“Airport Selector”) and with a TRS 65 lateral flight plan tracing system (“Terrain Routing System”) ) implementing the method described above.
  • MCDU Multipurpose Control Display Unit
  • FG / C 62 Automatic pilot equipment
  • EFD 63 Engine Failure Detector
  • AS 64 fallback airport choice system Airport Selector
  • TRS 65 lateral flight plan tracing system TRS 65 lateral flight plan tracing system
  • the detection of an engine failure situation by the EFD equipment 63 triggers the execution by the FMS computer 60 of an emergency landing procedure consisting of: - using the TRS 65 and AS 60 systems to choose an accessible fall-back airport and a waypoint and / or turning "Waypoint" also accessible at the entrance to an approach to this airport, in accordance with a published official procedure,
  • the "D-Fix" waypoints and / or turning points provided by the TRS 65 lateral flight plan tracing system are considered as waypoints and / or turning points. "classics to allow an operator to modify, move and delete them.
  • FIG. 19 shows the diagram of an on-board device for managing discontinuities in flight plans in a functional environment on board an aircraft. It uses the same elements as that of FIG. 18 with the exception of the engine failure detection equipment EFD 63 and the fallback airport choice system AS 64.
  • a flight management computer returns control to the pilot when he encounters a flight plan discontinuity in the execution of his automatic flight plan tracking function.
  • the pilot In the absence of a TRS 65 system, the pilot must resume manual piloting on the path going from the waypoint and / or turning "Waypoint” marking the start of the discontinuity to the crossing point and / or turning " Waypoint "marking the end of the discontinuity where it can re-engage the automatic plan tracking function flight of the flight management computer.
  • the pilot can obtain, from a vertical flight profile and speed, a list of waypoints and / or turning points "D-Fix" defining a temporary flight plan straddling the discontinuity which can be handled by the flight computer for automatic monitoring and for fuel consumption predictions.
  • This flight plan discontinuity management functionality is particularly suitable for tactical military flight and helicopter flight.
  • Air routes for helicopters have not yet been standardized or published. Consequently, a frequent operational case consists of taking off from a heliport according to a published procedure, seeking to reach another area, possibly through a published approach procedure. Between the two procedures, the operator is responsible for restoring the route.
  • the method for tracing a lateral flight plan described is therefore particularly useful since it makes it possible to automatically determine the complement of the flight plan guaranteeing safety with respect to the terrain.
  • FIG. 20 shows the diagram of an on-board device for automatically rejoining predetermined positions for an unmanned aircraft: UAV ("Unmanned Aerial Vehicle") or drone, in a functional environment on board an aircraft. It uses the same elements as that of FIG. 19 with the exception of the man-machine interface MCDU which is replaced by a ground-on-board communication module COMM 66 allowing an operator on the ground to control the unmanned aircraft.
  • UAV Unmanned Aerial Vehicle
  • COMM 66 ground-on-board communication module
  • the flight management computer FMS 60 can be programmed to request from the lateral flight plan tracing system 65, from a profile vertical and speed flight, a list of "D-Fix" waypoints and / or turning points defining a flight plan to join a predetermined fallback position stored in memory, from which the planned mission can be resumed .
  • FIG. 21 shows the diagram of an on-board automatic joining device by an aircraft of predetermined positions in a security context.
  • This includes an EAS 68 automaton for implementing an automatic maneuver to rejoin a position predetermined taking control of the flight management computer FMS 60 and the autopilot equipment FG / C 62 under the request of SSS 67 equipment for detecting intrusions and on-board events occurring safety of the aircraft.
  • the EAS 68 controller is programmed to, when it takes control of the aircraft:
  • the method of tracing a lateral flight plan which has just been described makes it possible to determine on the ground, during the preparation of a military or civil security mission, automatically, the zones in which an aircraft can operate taking into account its performance and the required safety margins. Depending on the configuration of these zones, the ground operator can decide to move the crossing points and / or turning "D-Fix" obtained or to modify the crossing altitudes at these "D-Fix" points to take into account account in the flight plan, constraints ignored in the tracing process.
  • the flight plan Once the flight plan is finalized, it can be loaded on board the aircraft like any flight plan with existing means (data link, mission preparation memory, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

The present invention relates to the definition, in a flight plan, of the horizontal profile of an air route with vertical flight and speed profile prescribed on departure and/or on arrival, by a stringing together of check-points and/or turn points associated with local flight constraints and called “D-Fix” because they are not listed in a published navigation database like those called “Waypoints”. It consists in charting, on curvilinear distance maps, a direct curvilinear path joining the departure point to the destination point of the air route while complying with vertical flight and speed profiles prescribed on departure and/or on arrival and while guaranteeing a circumnavigation of the surrounding reliefs and compliance with regulated overfly zones, then in approximating the series of points of the direct curvilinear path by a sequence of straight segments complying with an arbitrary maximum deviation threshold relative to the points of the series and an arbitrary minimum lateral deviation threshold relative to the set of obstacles to be circumnavigated and in adopting as “D-Fix” points the points of the intermediate intersections of the rectilinear segments.

Description

PROCEDE DE DETERMINATION DU PROFIL HORIZONTAL D'UN PLAN DE VOL RESPECTANT UN PROFIL DE VOL VERTICAL IMPOSE  METHOD FOR DETERMINING THE HORIZONTAL PROFILE OF A FLIGHT PLAN RESPECTING AN IMPOSED VERTICAL FLIGHT PROFILE
La présente invention concerne la définition, dans un plan de vol, du profil horizontal d'une route aérienne à profil vertical de vol et de vitesse imposé au départ et/ou à l'arrivée, au moyen d'un enchaînement de points de passage et/ou tournants associés à des contraintes locales de vol et dénommés "D-Fix" pour « Dynamic FIX» car non répertoriés dans une base de données publiées de navigation comme ceux appelés "Waypoints". The present invention relates to the definition, in a flight plan, of the horizontal profile of an air route with vertical flight profile and speed imposed at the start and / or at the arrival, by means of a sequence of waypoints. and / or turning points associated with local flight constraints and called "D-Fix" for "Dynamic FIX" because they are not listed in a published navigation database such as those called "Waypoints".
Les points de passage et/ou tournants "Waypoints" répertoriés dans les bases de données publiées de navigation répondant à la norme ARINC-424 permettent de définir les routes aériennes les plus courantes. Pour les autres, ils ne servent souvent qu'à définir des trajectoires de départ et d'arrivée conformes à des procédures publiées d'approche. Entre ces trajectoires imposées d'approche au départ et à l'arrivée, l'établissement de la route aérienne fait appel à des points de passage et/ou tournants "D-Fix" qui jouent les mêmes rôles que les "Waypoints" vis à vis du pilotage manuel par l'entremise du pilote ou vis à vis du pilotage automatique par l'entremise d'un calculateur de gestion du vol ou d'un équipement de pilotage automatique mais dont la définition est de la responsabilité de l'opérateur. La création de ces points de passage et/ou tournants "D-Fix" présuppose le choix d'un tracé de route aérienne joignant au plus court, un point de départ à un point de destination en tenant compte du relief de la région survolée, des restrictions réglementaires de survol et des capacités de manœuvre latérale de l'aéronef devant la parcourir, capacités manoeuvrières qui sont fonction de l'aéronef et de sa configuration de vol. Souvent, le choix du tracé de la route aérienne doit respecter un profil vertical de vol et de vitesse imposé, soit par les circonstances, soit par le désir de minimiser le coût de la mission par exemple en recherchant une consommation de fuel minimum.  The waypoints and / or turning points "Waypoints" listed in the published navigation databases meeting the ARINC-424 standard make it possible to define the most common air routes. For the others, they are often only used to define departure and arrival paths in accordance with published approach procedures. Between these imposed departure and arrival approach trajectories, the establishment of the air route calls for "D-Fix" waypoints and / or turning points which play the same roles as the "Waypoints" opposite. with regard to manual piloting through the pilot or with regard to automatic piloting through a flight management computer or automatic piloting equipment but the definition of which is the responsibility of the operator. The creation of these "D-Fix" waypoints and / or turning points presupposes the choice of an air route route joining the shortest, a starting point to a destination point, taking into account the relief of the region overflown, regulatory overflight restrictions and lateral maneuvering capabilities of the aircraft to be flown over, maneuvering capabilities that are dependent on the aircraft and its flight configuration. Often, the choice of the route of the air route must respect a vertical profile of flight and speed imposed, either by the circumstances, or by the desire to minimize the cost of the mission for example by seeking a minimum fuel consumption.
Il existe une importante littérature sur la détermination du profil horizontal de la route aérienne que doit suivre un aéronef pour remplir au moindre coût les objectifs d'une mission, le coût étant apprécié en terme de contraintes locales prenant en considération la vitesse de l'aéronef, le maximum d'accélération latérale acceptable, les risques de collision avec le relief, les menaces ennemies dans le cas d'une mission militaire, les déviations par rapport à un trajet direct et la longueur supplémentaire parcourue par rapport au chemin le plus court. On y trouve principalement des méthodes consistant à découper la région survolée en cellules élémentaires au moyen d'une grille de localisation géographique, à choisir un enchaînement de cellules élémentaires à suivre pour aller, au moindre coût, du point de départ au point de destination et à placer le long de l'enchaînement de cellules élémentaires choisies des points de passage et/ou tournants "D-Fix" compatibles avec une trajectoire volable. Parmi ces méthodes, il y a les méthodes dites à base de grille, dont un exemple est décrit dans le brevet américain US 4,812,990, qui mettent en œuvre une recherche d'un chemin à coût minimal parmi tous les chemins possibles reliant le point de départ au point de destination en passant par les centres des cellules de la grille, les méthodes dites à base de graphes, dont un exemple est décrit dans le brevet américain US 6,266,610, qui mettent en œuvre une recherche d'un chemin à coût minimal parmi tous les chemins reliant le point de départ au point de destination en passant par les côtés ou les diagonales des cellules et des méthodes hybrides à base de grille et de graphe telles que celle décrite dans le brevet américain US 6,259,988. There is considerable literature on determining the horizontal profile of the air route that an aircraft must follow in order to fulfill the objectives of a mission at the lowest cost, the cost being appreciated in terms of local constraints taking into account the speed of the aircraft. , maximum acceptable lateral acceleration, risk of collision with terrain, enemy threats in the case of a military mission, deviations from a direct route and additional length traveled relative to the shortest path. There are mainly methods consisting of dividing the region overflown into elementary cells using a geographic location grid, choosing a sequence of elementary cells to follow in order to go, at the lowest cost, from the starting point to the destination point and to place along the chain of selected elementary cells crossing points and / or turning "D-Fix" compatible with a flightable trajectory. Among these methods, there are the so-called grid-based methods, an example of which is described in US Pat. No. 4,812,990, which implement a search for a path at minimum cost among all the possible paths connecting the starting point at the point of destination passing through the centers of the cells of the grid, the so-called graph-based methods, an example of which is described in American patent US Pat. No. 6,266,610, which implement a search for a path at minimum cost among all the paths connecting the starting point to the destination point passing through the sides or the diagonals of the cells and hybrid methods based on a grid and a graph such as that described in American patent US Pat. No. 6,259,988.
Toutes ces méthodes se heurtent à la difficulté de la recherche d'un enchaînement de cellules élémentaires conduisant à un chemin à coût minimal, provoquée par le grand nombre des enchaînements possibles, nombre qui croît de manière exponentielle lorsque l'on resserre le pas de la grille de localisation géographique. La plupart d'entre elles proposent des méthodes de traçage progressif, pas à pas cherchant à limiter le plus rapidement possible le champ de recherche parmi l'ensemble des enchaînements possibles mais elles réclament toujours une très importante puissance de calcul dont la disponibilité fait souvent défaut à bord d'un aéronef. En outre, elles ne tiennent pas ou peu compte des impératifs de confort des aéronefs de transport civils qui demandent à minimiser la fréquence et la rapidité des changements de cap ou d'altitude.  All of these methods come up against the difficulty of finding a chain of elementary cells leading to a path at minimum cost, caused by the large number of possible chains, a number which increases exponentially when the pace is reduced. geographic location grid. Most of them offer progressive tracing methods, step by step, seeking to limit the search field as quickly as possible among all the possible sequences, but they always require a very large computing power, the availability of which is often lacking. on board an aircraft. In addition, they take little or no account of the comfort requirements of civil transport aircraft, which require minimizing the frequency and speed of changes of course or altitude.
En fait, le problème de la détermination du profil horizontal d'une route aérienne, repose sur la détermination d'un trajet curviligne direct donc de longueur minimale, contournant les reliefs qui ne peuvent être franchis avec le profil vertical de vol et de vitesse imposé. Cette détermination d'un trajet curviligne direct est du ressort des estimations de distances curvilignes en présence de contraintes statiques (obstacles à contourner) et dynamiques (profil vertical de vol et de vitesse). Or, de telles estimations peuvent être faites à un moindre coût de calcul, à la manière décrite dans la demande de brevet français FR 2.860.292, au moyen de transformées de distance par propagation dites également transformée de distance de chanfrein qui se contentent de calculs sur des nombres entiers. In fact, the problem of determining the horizontal profile of an air route, rests on the determination of a direct curvilinear path therefore of minimum length, bypassing the reliefs which cannot be crossed with the vertical profile of flight and speed imposed . This determination of a direct curvilinear path is the responsibility of the estimates of curvilinear distances in the presence of static (obstacles to be circumvented) and dynamic constraints. (vertical flight and speed profile). However, such estimates can be made at a lower computation cost, in the manner described in French patent application FR 2,860,292, by means of distance transforms by propagation also called chamfer distance transforms which are satisfied with calculations on whole numbers.
La demanderesse a déjà proposé, dans les demandes de brevet français FR 2.864.312 et FR2.868.835, la mise en œuvre de transformées de distance par propagation pour élaborer des cartes de distances curvilignes dans le cadre d'un affichage de cartes électroniques de navigation aéronautique faisant ressortir les reliefs à contourner de la région survolée avec les marges latérales de sécurité à respecter, et dans le cadre d'un guidage pour aéronef vers une zone sûre, sans contrainte d'évolution dans le plan horizontal, notamment pour écarter un risque avéré de collision avec le sol.  The applicant has already proposed, in French patent applications FR 2,864,312 and FR2,868,835, the implementation of distance transforms by propagation to develop curvilinear distance maps in the context of the display of electronic navigation maps. aeronautics highlighting the reliefs to be bypassed from the overflown region with the lateral safety margins to be respected, and in the context of guidance for aircraft to a safe area, without constraint of movement in the horizontal plane, in particular to avoid a risk proven to collide with the ground.
La présente invention a pour but la détermination, en recherchant un moindre coût de calcul, d'un enchaînement de points de passage et/ou tournants "D-Fix" définissant, avec leurs contraintes associées, une route aérienne de plan de vol, allant d'un point de départ à un point de destination en respectant des profils verticaux de vol et de vitesse imposés au départ et/ou à l'arrivée et en garantissant un contoumement des reliefs environnants.  The aim of the present invention is to determine, by seeking a lower calculation cost, a sequence of “D-Fix” turning and / or turning points defining, with their associated constraints, an air route of flight plan, going from a starting point to a destination point, respecting the vertical flight and speed profiles imposed at the start and / or at the arrival and guaranteeing a bypass of the surrounding reliefs.
Elle a pour objet un procédé de détermination du profil horizontal d'une route de plan de vol d'aéronef menant d'un point de départ à un point de destination, respectant des profils verticaux de vol et de vitesse imposés au départ et/ou à l'arrivée et tenant compte du relief et de zones à survol réglementé, remarquable en ce qu'il comporte les étapes suivantes :  It relates to a method for determining the horizontal profile of an aircraft flight plan route leading from a starting point to a destination point, respecting vertical flight and speed profiles imposed at the start and / or on arrival and taking into account the relief and areas with regulated overflight, remarkable in that it comprises the following stages:
- élaboration de deux cartes de distances curvilignes couvrant une zone d'évolution contenant les points de départ et de destination, et renfermant un même ensemble d'obstacles à contourner prenant en compte le relief, les zones à survol réglementé et les profils verticaux de vol et de vitesse imposés au départ et/ou à l'arrivée, la première ayant le point de départ pour origine des mesures de distance et la deuxième, le point de destination pour origine des mesures de distance,  - development of two curvilinear distance maps covering an evolution zone containing the departure and destination points, and containing the same set of obstacles to be circumvented taking into account the relief, the zones with regulated overflight and the vertical flight profiles and of speed imposed at the start and / or at the arrival, the first having the starting point for origin of distance measurements and the second, the point of destination for origin of distance measurements,
- élaboration d'une troisième carte de distances curvilignes par sommation, pour chacun de ses points, des distances curvilignes qui leur sont affectées dans les première et deuxième cartes de distances curvilignes, - development of a third map of curvilinear distances by summing, for each of its points, the curvilinear distances which their are assigned in the first and second curvilinear distance maps,
- repérage dans la troisième carte de distances curvilignes, d'un ensemble connexe de points iso-distances formant un enchaînement de parallélogrammes et/ou de points reliant les points de départ et de destination,  - identification in the third map of curvilinear distances, of a connected set of iso-distance points forming a chain of parallelograms and / or points connecting the departure and destination points,
- sélection, dans l'ensemble connexe repéré de points isodistances, d'une suite de points consécutifs allant du point de départ au point de destination en passant par des diagonales de ses parallélogrammes, suite dite trajet direct,  - selection, in the related set identified of isodistance points, of a series of consecutive points going from the starting point to the destination point via diagonals of its parallelograms, so-called direct path sequence,
- approximation de la suite de points du trajet direct par une chaîne de segments droits respectant un seuil arbitraire d'écartement maximum par rapport aux points de la suite et un seuil arbitraire d'écartement latéral minimum par rapport à l'ensemble d'obstacles à contourner, et  - approximation of the sequence of points on the direct path by a chain of straight segments respecting an arbitrary threshold of maximum spacing relative to the points of the sequence and an arbitrary threshold of minimum lateral spacing relative to the set of obstacles to bypass, and
- choix des points des jonctions intermédiaires des segments droits en tant que point de passage ou tournants "D-Fix" du plan de vol.  - choice of the points of the intermediate junctions of the straight segments as a point of passage or "D-Fix" turning points of the flight plan.
Avantageusement, lorsqu'il n'y a qu'un profil vertical de vol et de vitesse imposé au départ, la première carte de distances curvilignes ayant le point de départ pour origine des mesures de distance est élaborée en tenant compte des contraintes statiques dues au relief et aux zones à survol réglementé, et de la contrainte dynamique due au profil vertical de vol et de vitesse imposé au départ tandis que la deuxième carte de distances curvilignes ayant le point de destination comme origine des mesures de distance est élaborée à partir de l'ensemble des obstacles à contourner apparus dans la première carte de distances curvilignes.  Advantageously, when there is only one vertical flight and speed profile imposed at the start, the first map of curvilinear distances having the starting point as the origin of the distance measurements is drawn up taking account of the static constraints due to the relief and areas with regulated overflight, and the dynamic constraint due to the vertical profile of flight and speed imposed at the start while the second curvilinear distance map having the point of destination as the origin of the distance measurements is produced from the set of obstacles to be overcome appeared in the first map of curvilinear distances.
Avantageusement, lorsqu'il n'y a qu'un profil vertical de vol et de vitesse imposé à l'arrivée, la deuxième carte de distances curvilignes ayant le point de destination pour origine des mesures de distance est élaborée en tenant compte des contraintes statiques dues au relief et aux zones à survol réglementé et de la contrainte dynamique due au profil vertical de vol et de vitesse imposé à l'arrivée tandis que la première carte de distances curvilignes ayant le point de départ comme origine des mesures de distance est élaborée à partir de l'ensemble des obstacles à contourner apparus dans la deuxième carte de distances curvilignes. Avantageusement, lorsqu'il y a des profils verticaux de vol et de vitesse imposés au départ et à l'arrivée, les première et deuxième cartes de distances curvilignes sont élaborées à partir d'un ensemble d'obstacles à contourner figurant dans deux ébauches de ces cartes de distances curvilignes : Advantageously, when there is only a vertical flight and speed profile imposed on arrival, the second curvilinear distance map having the destination point as the origin of the distance measurements is drawn up taking account of the static constraints. due to the relief and the areas with regulated overflight and dynamic constraint due to the vertical profile of flight and speed imposed on arrival while the first map of curvilinear distances having the starting point as the origin of the distance measurements is produced at from the set of obstacles to be circumvented which appeared in the second curvilinear distance map. Advantageously, when there are vertical flight and speed profiles imposed at the start and at the arrival, the first and second maps of curvilinear distances are produced from a set of obstacles to be circumvented appearing in two blanks of these curvilinear distance maps:
- une ébauche de la première carte de distances curvilignes ayant le point de départ pour origine des mesures de distance élaborée en tenant compte des contraintes statiques dues au relief et aux zones à survol réglementé et de la contrainte dynamique due au profil vertical de vol et de vitesse imposé au départ, et - a draft of the first map of curvilinear distances having the starting point as the origin of the distance measurements developed taking into account the static constraints due to the relief and the areas with regulated overflight and the dynamic constraint due to the vertical flight profile and speed imposed at the start, and
- une ébauche de la deuxième carte de distances curvilignes ayant le point de destination pour origine des mesures de distance étant élaborée en tenant compte des contraintes statiques dues au relief et aux zones à survol réglementé et de la contrainte dynamique due au profil vertical de vol et de vitesse imposé e l'arrivée. - a draft of the second curvilinear distance map having the destination point as the origin of the distance measurements being prepared taking into account the static constraints due to the relief and the areas with regulated overflight and the dynamic constraint due to the vertical flight profile and of speed imposed on arrival.
Avantageusement, l'ensemble des obstacles à contourner est complété par les points des première et deuxième cartes affectés d'estimations de distance curviligne présentant des discontinuités par rapport à celles affectées à des points du proche voisinage.  Advantageously, all of the obstacles to be circumvented are supplemented by the points of the first and second maps affected with estimates of curvilinear distance having discontinuities with respect to those assigned to points in the near vicinity.
Avantageusement, l'ensemble des obstacles à contourner pris en compte dans les cartes de distances curvilignes est complété par des marges latérales de sécurité fonction des capacités de virage à plat de l'aéronef dans sa configuration du moment, en approche du relief et/ou de la zone à survol réglementé considéré, résultant du suivi du profil vertical de vol et de vitesse imposé.  Advantageously, all of the obstacles to be circumvented taken into account in the curvilinear distance maps are supplemented by lateral safety margins which are a function of the flat turning capacities of the aircraft in its configuration of the moment, when approaching the relief and / or of the overflight area considered, resulting from the monitoring of the vertical flight profile and the imposed speed.
Avantageusement, les marges latérales de sécurité ajoutées à l'ensemble des obstacles à contourner sont déterminées à partir d'une carte de distances curvilignes ayant l'ensemble d'obstacles à contourner comme origine des mesures de distance.  Advantageously, the lateral safety margins added to the set of obstacles to be circumvented are determined from a curvilinear distance map having the set of obstacles to be circumvented as the origin of the distance measurements.
Avantageusement, l'épaisseur locale d'une marge latérale de sécurité tient compte du vent local.  Advantageously, the local thickness of a lateral safety margin takes account of the local wind.
Avantageusement, l'épaisseur locale d'une marge latérale de sécurité tient compte du changement de cap nécessaire pour contourner un relief et/ou une zone à survol réglementée. Avantageusement, l'épaisseur locale d'une marge latérale de sécurité correspond à un rayon minimal de virage à plat autorisé pour l'aéronef dans sa configuration du moment. Advantageously, the local thickness of a lateral safety margin takes account of the change of course necessary to bypass a relief and / or a restricted overflight area. Advantageously, the local thickness of a lateral safety margin corresponds to a minimum radius of flat turn authorized for the aircraft in its configuration of the moment.
Avantageusement, le seuil d'écartement maximum de la chaîne de segments droits par rapport à la suite de points du trajet direct est de l'ordre d'un demi-rayon minimal de virage à plat autorisé pour l'aéronef dans sa configuration du moment.  Advantageously, the maximum separation threshold of the chain of straight segments with respect to the series of points of the direct path is of the order of a minimum half-radius of flat turn authorized for the aircraft in its configuration of the moment. .
Avantageusement, les cartes de distances curvilignes sont élaborées au moyen d'une transformée de distance par propagation.  Advantageously, the curvilinear distance maps are produced by means of a distance transform by propagation.
Avantageusement, l'approximation de la suite de points du trajet direct par un enchaînement de segments rectilignes est obtenue par une construction progressive au cours de laquelle le point de départ ou respectivement de destination du trajet direct est pris pour origine d'un premier segment que l'on fait grandir en ajoutant un par un des points consécutifs tant qu'il ne pénètre pas dans l'ensemble des obstacles répertoriés à contourner et que son écart par rapport aux points du trajet direct qu'il court-circuite respecte le seuil arbitraire d'écartement maximum admis, d'autres segments rectilignes construits de la même manière étant ajoutés à la suite tant que le point de destination ou respectivement de départ du trajet direct n'est pas atteint.  Advantageously, the approximation of the series of points of the direct path by a series of rectilinear segments is obtained by a progressive construction during which the starting point or respectively of destination of the direct path is taken as the origin of a first segment that it is made to grow by adding one by one of the consecutive points as long as it does not penetrate all of the listed obstacles to be circumvented and its distance from the points of the direct path that it short-circuits respects the arbitrary threshold maximum permitted spacing, other rectilinear segments constructed in the same way being added to the series as long as the point of destination or respectively of departure of the direct route is not reached.
Avantageusement, l'approximation de la suite de points du trajet direct par un enchaînement de segments rectilignes est obtenue par une construction dichotomique au cours de laquelle le point de départ et le point de destination du trajet direct sont initialement reliés par un segment rectiligne remplacé, dès qu'il pénètre dans l'ensemble des obstacles répertoriés à contourner ou que son écart par rapport aux points du trajet direct qu'il court-circuite dépasse le seuil arbitraire d'écartement maximum admis, par un enchaînement de deux segments rectilignes se rejoignant au point du trajet direct le plus à l'écart parmi ceux qu'il court-circuite, chaque nouveau segment étant à son tour remplacé par un enchaînement de deux nouveaux segments se joignant au point du trajet direct le plus à l'écart parmi les points court-circuité dès qu'il pénètre dans l'ensemble des obstacles à contourner ou que son écart par rapport aux points du trajet direct qu'il court- circuite dépasse le seuil arbitraire d'écartement maximum admis. Le procédé de détermination du profil horizontal d'une route de plan de vol est avantageusement mis en œuvre au cours d'un vol, lors d'une requête "Dir-to" de rejointe d'un point géographique faite par l'équipage au calculateur de gestion du vol de l'aéronef. Advantageously, the approximation of the series of points of the direct path by a series of straight segments is obtained by a dichotomous construction during which the starting point and the point of destination of the direct path are initially connected by a rectilinear segment replaced, as soon as it enters all of the listed obstacles to be circumvented or when its deviation from the points of the direct path that it short-circuits exceeds the arbitrary threshold of maximum permitted separation, by a chain of two straight segments joining together at the point of the most distant direct path among those which it short-circuits, each new segment being in turn replaced by a chain of two new segments joining at the point of the most distant direct path among the points short-circuited as soon as it enters all the obstacles to be circumvented or when its deviation from the points of the direct path it short-circuits uite exceeds the arbitrary maximum allowable spacing threshold. The method for determining the horizontal profile of a flight plan route is advantageously implemented during a flight, during a "Dir-to" request to rejoin a geographical point made by the crew at aircraft flight management computer.
Le procédé de détermination du profil horizontal d'une route de plan de vol est avantageusement mis en œuvre lors de la préparation de missions militaires ou de sécurité civile.  The method for determining the horizontal profile of a flight plan route is advantageously implemented during the preparation of military or civil security missions.
Le procédé de détermination du profil horizontal d'une route de plan de vol est avantageusement mis en œuvre dans un système de rejointe d'un aéroport de repli en cas de panne moteur.  The method for determining the horizontal profile of a flight plan route is advantageously implemented in a fallback airport rejoining system in the event of an engine failure.
Le procédé de détermination du profil horizontal d'une route de plan de vol est avantageusement mis en œuvre dans un système de gestion des discontinuités de plan de vol.  The method for determining the horizontal profile of a flight plan route is advantageously implemented in a flight plan discontinuity management system.
Le procédé de détermination du profil horizontal d'une route de plan de vol est avantageusement mis en œuvre dans un système de rejointe automatique de positions prédéterminées pour aéronef sans pilote.  The method for determining the horizontal profile of a flight plan route is advantageously implemented in an automatic joining system of predetermined positions for an unmanned aircraft.
Le procédé de détermination du profil horizontal d'une route de plan de vol est avantageusement mis en œuvre, dans un cadre sécuritaire, dans un système de rejointe automatique de positions prédéterminées pour aéronef piloté hors de contrôle.  The method for determining the horizontal profile of a flight plan route is advantageously implemented, in a safe environment, in an automatic joining system of predetermined positions for aircraft piloted out of control.
D'autres caractéristiques et avantages de l'invention ressortiront de la description ci-après, d'un mode de réalisation donné à titre d'exemple. Cette description sera faite en regard du dessin dans lequel : Other characteristics and advantages of the invention will emerge from the description below, of an embodiment given by way of example. This description will be made with reference to the drawing in which:
- une figure 1 représente un exemple de masque de chanfrein utilisable par une transformée de distance par propagation, FIG. 1 represents an example of a chamfer mask usable by a distance transform by propagation,
- des figures 2a et 2b montrent des cellules du masque de chanfrein illustré à la figure 2 utilisées dans des passes de balayage selon les ordres lexicographiques direct et inverse, - une figure 3 illustre un profil vertical de vol avec des pentes imposées de montée depuis le point de départ et de descente vers le point de destination, FIGS. 2a and 2b show cells of the chamfer mask illustrated in FIG. 2 used in scanning passes according to the direct and reverse lexicographic orders, FIG. 3 illustrates a vertical flight profile with imposed slopes of climb from the starting point and descent to the destination point,
- des figures 4a et 4b illustrent une décomposition du profil vertical de vol montré à la figure 3, en profil aller et profil retour afin de permettre son utilisation pour le repérage d'un trajet curviligne direct entre le point de départ et le point de destination d'une route aérienne de plan de vol dont le profil horizontal est à établir,- Figures 4a and 4b illustrate a decomposition of the vertical flight profile shown in Figure 3, in outward and return profile to allow its use for the location of a curvilinear path direct between the starting point and the destination point of a flight plan air route whose horizontal profile is to be established,
- une figure 5 illustre un profil vertical de vol à pente de descente constante vers le point de destination, FIG. 5 illustrates a vertical flight profile with a constant slope of descent towards the destination point,
- des figures 6a et 6b illustrent une décomposition du profil vertical de vol montré à la figure 5, en profil aller et profil retour afin de permettre son utilisation pour le repérage d'un trajet curviligne direct entre le point de départ et le point de destination d'une route aérienne de plan de vol dont le profil horizontal est à établir, - une figure 7 représente un exemple d'un ensemble d'obstacles à contourner obtenu à partir d'une ébauche de carte de distances curvilignes ayant pour origine des mesures de distance le point de départ de la route de plan de vol et tenant compte d'un profil vertical de vol et de vitesse imposé au départ, - Figures 6a and 6b illustrate a decomposition of the vertical flight profile shown in Figure 5, in outward and return profile to allow its use for the location of a direct curvilinear route between the starting point and the destination point a flight plan air route whose horizontal profile is to be established, - a figure 7 represents an example of a set of obstacles to be circumvented obtained from a draft of curvilinear distance map having for origin measurements distance from the starting point of the flight plan route and taking into account a vertical flight and speed profile imposed at the start,
- une figure 8 représente les obstacles à contourner obtenu dans le même contexte que la figure 7, à partir d'une ébauche de carte de distances curvilignes ayant pour origine des mesures de distance le point de destination de la route de plan de vol et tenant compte d'un profil vertical de vol et de vitesse imposé à l'arrivée, - a figure 8 represents the obstacles to be circumvented obtained in the same context as figure 7, from a draft of curvilinear distance map having for origin distance measurements the point of destination of the route of flight plan and holding account of a vertical flight and speed profile imposed on arrival,
- une figure 9 représente l'ensemble des obstacles à contourner résultant de la fusion par réunion des ensembles d'obstacles à contourner montrés aux figures 7 et 8, FIG. 9 represents all of the obstacles to be circumvented resulting from the merger by meeting of the sets of obstacles to be circumvented shown in FIGS. 7 and 8,
- des figures 10a, 10b, 10c illustrent une méthode de traçage d'une marge latérale de sécurité autour d'un obstacle à contourner, - une figure 1 1 représente, dans le même contexte que les figures - Figures 10a, 10b, 10c illustrate a method of tracing a lateral safety margin around an obstacle to be circumvented, - a figure 1 1 represents, in the same context as the figures
7 et 8, l'ensemble des obstacles à contourner, grossis de marges latérales de sécurité, pris en compte pour les cartes de distances curvilignes servant au repérage du trajet direct entre le point de départ et le point de destination, 7 and 8, all of the obstacles to be circumvented, enlarged with lateral safety margins, taken into account for the curvilinear distance maps used to locate the direct route between the starting point and the destination point,
- une figure 12 représente un ensemble de points de trajets les plus courts identifié dans le contexte des figures 7, 8 et 1 1 ,FIG. 12 represents a set of shortest path points identified in the context of FIGS. 7, 8 and 11,
- une figure 13 représente un exemple d'ensemble de points de trajets les plus courts montrant que le fait qu'un trajet lui appartienne ne garantit pas qu'il soit minimal, - une figure 14 représente le trajet curviligne direct obtenu relativement à l'ensemble d'obstacles à contourner montré à la figure 1 1 , FIG. 13 represents an example of a set of shortest path points showing that the fact that a path belongs to it does not guarantee that it is minimal, FIG. 14 represents the direct curvilinear path obtained relative to the set of obstacles to be circumvented shown in FIG. 11,
- une figure 15 illustre une méthode de détermination d'un enchaînement de segments rectilignes approximant le tracé d'un trajet curviligne direct,  FIG. 15 illustrates a method for determining a sequence of rectilinear segments approximating the route of a direct curvilinear path,
- une figure 16 illustre l'enchaînement de segments rectilignes et des points de passages "D-Fix" obtenus à partir du trajet direct montré à la figure 14,  FIG. 16 illustrates the sequence of rectilinear segments and "D-Fix" passage points obtained from the direct path shown in FIG. 14,
- une figure 17 représente un schéma d'un dispositif de mise en œuvre d'un procédé de détermination du profil horizontal d'une route aérienne de plan de vol selon l'invention, et  FIG. 17 represents a diagram of a device for implementing a method for determining the horizontal profile of an air route flight plan according to the invention, and
- des figures 18 à 21 sont des schémas de différents dispositifs embarqués mettant en œuvre un procédé de détermination du profil horizontal d'une route aérienne de plan de vol selon l'invention.  - Figures 18 to 21 are diagrams of different on-board devices implementing a method for determining the horizontal profile of an air route flight plan according to the invention.
La méthode, qui va être décrite, de détermination ou de traçage d'un profil horizontal de route aérienne respectant le relief, des zones à survol réglementé et des profils verticaux de vol et de vitesse imposés au départ et/ou à l'arrivée s'appuie sur la technique des transformées de distance par propagation appliquée à la navigation aérienne, dans un cadre de contraintes statiques constituées de reliefs à contourner et de zones à survol réglementé à respecter, et de contraintes dynamiques constituées par un profil vertical de vol et de vitesse imposé. The method, which will be described, of determining or tracing a horizontal profile of an air route respecting the relief, areas with regulated overflight and vertical profiles of flight and speed imposed at the start and / or at the finish s '' relies on the technique of distance transforms by propagation applied to air navigation, within a framework of static constraints made up of reliefs to be bypassed and areas with regulated overflight to be respected, and dynamic constraints made up of a vertical flight profile and imposed speed.
Les transformées de distance par propagation sont apparues initialement en analyse d'image pour estimer des distances entre objets. Parmi elles, figurent les transformées de distance à masque de chanfrein dont des exemples sont décrits par Mme Gunilla Borgefors dans un article intitulé " Distance Transformation in Digital Images." paru dans la revue : Computer Vision, Graphics and Image Processing, Vol. 34 pp. 344-378 en février 1986.  The distance transforms by propagation first appeared in image analysis to estimate distances between objects. Among them are the distance transforms with chamfer mask, examples of which are described by Ms. Gunilla Borgefors in an article entitled "Distance Transformation in Digital Images." published in the journal: Computer Vision, Graphics and Image Processing, Vol. 34 pp. 344-378 in February 1986.
La distance entre deux points d'une surface est la longueur minimale de tous les parcours possibles sur la surface partant de l'un des points et aboutissant à l'autre. Dans une image formée de pixels répartis selon un maillage régulier de lignes, colonnes et diagonales, une transformée de distance à masque de chanfrein estime la distance d'un pixel dit pixel "but" par rapport à un ou plusieurs pixels dits pixels "source" en construisant progressivement, en partant des pixels source, le plus court trajet possible suivant le maillage des pixels et aboutissant au pixel but, et en s'aidant des distances trouvées pour les pixels de l'image déjà analysés et d'un tableau dit masque de chanfrein répertoriant les valeurs des distances entre un pixel et ses proches voisins. The distance between two points on a surface is the minimum length of all the possible paths on the surface starting from one of the points and ending at the other. In an image formed by distributed pixels according to a regular mesh of lines, columns and diagonals, a chamfer mask distance transform estimates the distance of a pixel called "goal" pixel with respect to one or more pixels called "source" pixels by gradually building up, starting from source pixels, the shortest possible path following the mesh of pixels and ending at the goal pixel, and using the distances found for the image pixels already analyzed and a table called chamfer mask listing the values of the distances between a pixel and its close neighbors.
Comme montré à la figure 1 , un masque de chanfrein se présente sous la forme d'un tableau avec une disposition de cases reproduisant le motif d'un pixel entouré de ses proches voisins. Au centre du motif, une case affectée de la valeur 0 repère le pixel pris pour origine des distances répertoriées dans le tableau. Autour de cette case centrale, s'agglomèrent des cases périphériques remplies de valeurs de distance de proximité non nulles et reprenant la disposition des pixels du voisinage d'un pixel supposé occuper la case centrale. La valeur de distance de proximité figurant dans une case périphérique est celle de la distance séparant un pixel occupant la position de la case périphérique concernée, d'un pixel occupant la position de la case centrale. On remarque que les valeurs de distance de proximité se répartissent en cercles concentriques. Un premier cercle de quatre cases correspondant aux quatre pixels de premier rang, qui sont les plus proches du pixel de la case centrale, soit sur la même ligne, soit sur la même colonne, sont affectées d'une valeur de distance de proximité D1. Un deuxième cercle de quatre cases correspondant aux quatre pixels de deuxième rang, qui sont les pixels les plus proches du pixel de la case centrale placés sur les diagonales, sont affectées d'une valeur de distance de proximité D2. Un troisième cercle de huit cases correspondant aux huit pixels de troisième rang, qui sont les plus proches du pixel de la case centrale tout en restant en dehors de la ligne, de la colonne et des diagonales occupées par le pixel de la case centrale, sont affectées d'une valeur de distance de proximité D3.  As shown in Figure 1, a chamfer mask is in the form of a table with an arrangement of boxes reproducing the pattern of a pixel surrounded by its close neighbors. In the center of the pattern, a box assigned the value 0 identifies the pixel taken as the origin of the distances listed in the table. Around this central box are agglomerated peripheral boxes filled with non-zero proximity distance values and taking up the arrangement of the pixels in the vicinity of a pixel supposed to occupy the central box. The value of proximity distance appearing in a peripheral box is that of the distance separating a pixel occupying the position of the peripheral box concerned, from a pixel occupying the position of the central box. Note that the proximity distance values are distributed in concentric circles. A first circle of four boxes corresponding to the four first-row pixels, which are closest to the pixel of the central box, either on the same line or on the same column, are assigned a proximity distance value D1. A second circle of four boxes corresponding to the four pixels of second rank, which are the pixels closest to the pixel of the central box placed on the diagonals, are assigned a proximity distance value D2. A third circle of eight boxes corresponding to the eight pixels of third row, which are closest to the pixel of the central box while remaining outside the line, of the column and of the diagonals occupied by the pixel of the central box, are assigned a proximity distance value D3.
Le masque de chanfrein peut couvrir un voisinage plus ou moins étendu du pixel de la case centrale en répertoriant les valeurs des distances de proximité d'un nombre plus ou moins important de cercles concentriques de pixels du voisinage. Il peut être réduit aux deux premiers cercles formés par les pixels du voisinage d'un pixel occupant la case centrale ou être étendu au-delà des trois premiers cercles formés par les pixels du voisinage du pixel de la case centrale. Il est habituel de s'arrêter à trois premiers cercles comme pour le masque de chanfrein montré à la figure 3. The chamfer mask can cover a more or less extended neighborhood of the pixel of the central box by listing the values of the proximity distances of a more or less large number of concentric circles of pixels of the neighborhood. It can be reduced to the first two circles formed by the pixels in the vicinity of a pixel occupying the central box or be extended beyond the first three circles formed by the pixels in the vicinity of the pixel in the central box. It is usual to stop at the first three circles as for the chamfer mask shown in Figure 3.
Les valeurs des distances de proximité D1 , D2, D3 qui correspondent à des distances euclidiennes sont exprimées dans une échelle dont le facteur multiplicatif autorise l'emploi de nombres entiers au prix d'une certaine approximation. C'est ainsi que G. Borgefors adopte une échelle correspondant à un facteur multiplicatif 3 ou 5. Dans le cas d'un masque de chanfrein retenant les deux premiers cercles de valeurs de distance de proximité, donc de dimensions 3x3, G. Borgefors donne, à la première distance de proximité D1 qui correspond à un échelon en abscisse ou en ordonnée et également au facteur multiplicatif d'échelle, la valeur 3 et, à la deuxième distance de proximité qui correspond à la racine de la somme des carrés des échelons en abscisse et en ordonnée -Jx2 + y2 , la valeur 4. Dans le cas d'un masque de chanfrein retenant les trois premiers cercles, donc de dimensions 5x5, elle donne, à la distance D1 qui correspond au facteur multiplicatif d'échelle, la valeur 5, à la distance D2, la valeur 7 qui est une approximation de 5V2 , et à la distance D3 la valeur 1 1 qui est une approximation de 5>/5 . The values of the proximity distances D1, D2, D3 which correspond to Euclidean distances are expressed in a scale whose multiplicative factor authorizes the use of whole numbers at the cost of a certain approximation. This is how G. Borgefors adopts a scale corresponding to a multiplicative factor 3 or 5. In the case of a chamfer mask retaining the first two circles of proximity distance values, therefore of dimensions 3x3, G. Borgefors gives , at the first proximity distance D1 which corresponds to a step on the abscissa or on the ordinate and also to the multiplicative factor of scale, the value 3 and, at the second proximity distance which corresponds to the root of the sum of the squares of the steps on the abscissa and on the ordinate -Jx 2 + y 2 , the value 4. In the case of a chamfer mask retaining the first three circles, therefore of dimensions 5x5, it gives, at the distance D1 which corresponds to the multiplicative factor of scale, the value 5, at the distance D2, the value 7 which is an approximation of 5V2, and at the distance D3 the value 1 1 which is an approximation of 5> / 5.
La construction progressive du plus court trajet possible allant à un pixel but en partant de pixels source et en suivant le maillage des pixels se fait par un balayage régulier des pixels de l'image au moyen du masque de chanfrein.  The progressive construction of the shortest possible path going to a target pixel starting from source pixels and following the mesh of the pixels is done by a regular scanning of the pixels of the image by means of the chamfer mask.
Initialement, les pixels de l'image se voient affecter une valeur de distance infinie, en fait un nombre suffisamment élevé pour dépasser toutes les valeurs des distances mesurables dans l'image, à l'exception du ou des pixels source qui se voient affecter une valeur de distance nulle. Puis les valeurs initiales de distance affectées aux points but sont mises à jour au cours du balayage de l'image par le masque de chanfrein, une mise à jour consistant à remplacer une valeur de distance attribuée à un point but, par une nouvelle valeur moindre résultant d'une estimation de distance faite à l'occasion d'une nouvelle application du masque de chanfrein au point but considéré. Une estimation de distance par application du masque de chanfrein à un pixel but consiste à répertorier tous les trajets allant de ce pixel but au pixel source et passant par un pixel du voisinage du pixel but dont la distance a déjà été estimée au cours du même balayage, à rechercher parmi les trajets répertoriés, le ou les trajets les plus courts et à adopter la longueur du ou des trajets les plus courts comme estimation de distance. Cela se fait en plaçant le pixel but dont on veut estimer la distance dans la case centrale du masque de chanfrein, en sélectionnant les cases périphériques du masque de chanfrein correspondant à des pixels du voisinage dont la distance vient d'être mise à jour, en calculant les longueurs des trajets les plus courts reliant le pixel but à mettre à jour aux pixels source en passant par un des pixels sélectionnés du voisinage, par addition de la valeur de distance affectée au pixel du voisinage concerné et de la valeur de distance de proximité donnée par le masque de chanfrein, et à adopter, comme estimation de distance, le minimum des valeurs de longueur de trajet obtenues et de l'ancienne valeur de distance affectée au pixel en cours d'analyse. Initially, the pixels of the image are assigned an infinite distance value, in fact a number high enough to exceed all the values of the measurable distances in the image, except for the source pixel or pixels which are assigned a zero distance value. Then the initial distance values assigned to the goal points are updated during the scanning of the image by the chamfer mask, an update consisting in replacing a distance value assigned to a goal point, by a new lower value. resulting from an estimation of distance made on the occasion of a new application of the chamfer mask at the target point considered. A distance estimate by applying the chamfer mask to a target pixel consists in listing all the paths going from this target pixel to the source pixel and passing through a pixel in the vicinity of the target pixel, the distance of which has already been estimated during the same scan. , to search among the routes listed, the shortest route (s) and to adopt the length of the shortest route (s) as an estimate of distance. This is done by placing the goal pixel whose distance we want to estimate in the central box of the chamfer mask, by selecting the peripheral boxes of the chamfer mask corresponding to neighboring pixels whose distance has just been updated, by calculating the lengths of the shortest paths connecting the goal pixel to be updated to the source pixels by passing through one of the selected pixels of the neighborhood, by adding the distance value assigned to the pixel of the neighborhood concerned and the proximity distance value given by the chamfer mask, and to adopt, as a distance estimate, the minimum of the path length values obtained and the old distance value assigned to the pixel being analyzed.
Au niveau d'un pixel en analyse par le masque de chanfrein, la recherche progressive des plus courts trajets possibles partant d'un pixel source et allant aux différents pixels but de l'image donne lieu à un phénomène de propagation en directions des pixels qui sont les voisins les plus proches du pixel en analyse et dont les distances sont répertoriées dans le masque de chanfrein. Dans le cas d'une répartition régulière des pixels de l'image, les directions des plus proches voisins d'un pixel ne variant pas sont considérées comme des axes de propagation de la transformée de distance à masque de chanfrein.  At the level of a pixel analyzed by the chamfer mask, the progressive search for the shortest possible paths starting from a source pixel and going to the different goal pixels of the image gives rise to a phenomenon of propagation in directions of the pixels which are the closest neighbors of the pixel under analysis and whose distances are listed in the chamfer mask. In the case of a regular distribution of the pixels of the image, the directions of the closest neighbors of a pixel which do not vary are considered as axes of propagation of the distance transform with chamfer mask.
L'ordre de balayage des pixels de l'image influe sur la fiabilité des estimations de distance et de leurs mises à jour car les trajets pris en compte en dépendent. En fait, il est soumis à une contrainte de régularité qui fait que si les pixels de l'image sont repérés selon l'ordre lexicographique (pixels classés dans un ordre croissant ligne par ligne en partant du haut de l'image et en progressant vers le bas de l'image, et de gauche à droite au sein d'une ligne), et si un pixel p a été analysé avant un pixel q alors un pixel p+x doit être analysé avant le pixel q+x. Les ordres lexicographique, lexicographique inverse (balayage des pixels de l'image ligne par ligne de bas en haut et, au sein d'une ligne, de droite à gauche), lexicographique transposé (balayage des pixels de l'image colonne par colonne de gauche à droite et, au sein d'une colonne, de haut en bas), lexicographique transposé inverse (balayage des pixels par colonnes de droite à gauche et au sein d'une colonne de bas en haut) satisfont cette condition de régularité et plus généralement tous les balayages dans lesquels les lignes et colonnes sont balayées de droite à gauche ou de gauche à droite. G. Borgefors préconise un double balayage des pixels de l'image, une fois dans l'ordre lexicographique et une autre dans l'ordre lexicographique inverse. The scanning order of the pixels in the image influences the reliability of the distance estimates and their updates because the paths taken into account depend on it. In fact, it is subject to a regularity constraint which means that if the pixels of the image are identified according to the lexicographic order (pixels classified in an increasing order line by line starting from the top of the image and progressing towards the bottom of the image, and from left to right within a line), and if a pixel p has been analyzed before a pixel q then a pixel p + x must be analyzed before the pixel q + x. The lexicographic, reverse lexicographic orders (scanning the pixels of the image line by line from bottom to top and, at the within a line, from right to left), transposed lexicographic (scanning pixels of the image column by column from left to right and, within a column, from top to bottom), reverse transposed lexicographic (scanning pixels per column from right to left and within a column from bottom to top) satisfy this regularity condition and more generally all the scans in which the rows and columns are scanned from right to left or from left to right. G. Borgefors recommends double scanning the pixels of the image, once in lexicographic order and once in reverse lexicographic order.
L'analyse de l'image au moyen du masque de chanfrein peut se faire selon une méthode parallèle ou une méthode séquentielle. Pour la méthode parallèle, on considère les propagations de distance depuis tous les points du masque que l'on fait passer sur la totalité de l'image en plusieurs balayages jusqu'à ce qu'il ne se produise plus de changement dans les estimations de distance. Pour la méthode séquentielle, on ne considère les propagations de distance que depuis la moitié des points du masque. On fait passer la moitié supérieure du masque sur tous les points de l'image par un balayage suivant l'ordre lexicographique puis la moitié inférieure du masque sur tous les points de l'image selon l'ordre lexicographique inverse.  The analysis of the image by means of the chamfer mask can be done according to a parallel method or a sequential method. For the parallel method, we consider the distance propagations from all the points of the mask which we pass over the entire image in several scans until there is no more change in the estimates of distance. For the sequential method, we only consider distance propagations from half the points on the mask. The upper half of the mask is passed over all the points of the image by scanning in the lexicographic order and then the lower half of the mask is passed over all the points of the image in the reverse lexicographic order.
La figure 2a montre, dans le cas de la méthode séquentielle et d'une passe de balayage selon l'ordre lexicographique allant du coin supérieur gauche au coin inférieur droit de l'image, les cases du masque de chanfrein de la figure 1 utilisées pour répertorier les trajets allant d'un pixel but placé sur la case centrale (case indexée par 0) au pixel source en passant par un pixel du voisinage dont la distance a déjà fait l'objet d'une estimation au cours du même balayage. Ces cases sont au nombre de huit, disposées dans la partie supérieure gauche du masque de chanfrein. Il y a donc huit trajets répertoriés pour la recherche du plus court dont la longueur est prise pour estimation de la distance.  FIG. 2a shows, in the case of the sequential method and of a scanning pass in lexicographic order going from the upper left corner to the lower right corner of the image, the boxes of the chamfer mask of FIG. 1 used for index the paths going from a goal pixel placed in the central box (box indexed by 0) to the source pixel passing through a pixel in the vicinity whose distance has already been the subject of an estimate during the same scan. These boxes are eight in number, located in the upper left of the chamfer mask. There are therefore eight paths listed for the search for the shortest whose length is taken to estimate the distance.
La figure 2b montre, dans le cas de la méthode séquentielle et d'une passe de balayage selon l'ordre lexicographique inverse allant du coin inférieur droit au coin supérieur gauche de l'image, les cases du masque de chanfrein de la figure 1 utilisées pour répertorier les trajets allant d'un pixel but placé sur la case centrale (case indexée par 0) au pixel source en passant par un pixel du voisinage dont la distance a déjà fait l'objet d'une estimation au cours du même balayage. Ces cases sont complémentaires de celles de la figure 2a. Elles sont également au nombre de huit mais disposées dans la partie inférieure droite du masque de chanfrein. Il y a donc encore huit trajets répertoriés pour la recherche du plus court dont la longueur est prise pour estimation de la distance. FIG. 2b shows, in the case of the sequential method and of a scanning pass in reverse lexicographic order going from the lower right corner to the upper left corner of the image, the boxes of the chamfer mask of FIG. 1 used to list the paths going from a goal pixel placed in the central box (box indexed by 0) to the source pixel via a pixel in the neighborhood whose distance has already been the subject of a estimate during the same scan. These boxes are complementary to those in Figure 2a. They are also eight in number but arranged in the lower right part of the chamfer mask. There are therefore still eight paths listed for the search for the shortest whose length is taken to estimate the distance.
La transformée de distance par propagation dont le principe vient d'être rappelé sommairement a été conçue à l'origine pour l'analyse du positionnement d'objets dans une image mais elle n'a pas tardé à être appliquée à l'estimation des distances sur une carte du relief extraite d'une base de données d'élévations du terrain à maillage régulier de la surface terrestre. En effet, une telle carte ne dispose pas explicitement d'une métrique puisqu'elle est tracée à partir des élévations des points du maillage d'une base de données d'élévations du terrain de la zone représentée. Dans ce cadre, la transformée de distance à masque de chanfrein est appliquée à une image dont les pixels sont les éléments de la base de données d'élévations du terrain appartenant à la carte, c'est-à-dire des valeurs d'élévation associées aux coordonnées géographiques latitude, longitude des nœuds du maillage de la grille de localisation géographique utilisée pour les mesures, classés, comme sur la carte, par latitude et par longitude croissantes ou décroissantes selon un tableau à deux dimensions de coordonnées latitude et longitude.  The distance transform by propagation, the principle of which has just been briefly recalled, was originally designed for the analysis of the positioning of objects in an image, but it was soon applied to the estimation of distances. on a relief map extracted from a database of elevations of the terrain with a regular grid of the earth's surface. Indeed, such a map does not explicitly have a metric since it is drawn from the elevations of the points of the mesh of a database of elevations of the terrain of the area represented. In this framework, the chamfer mask distance transform is applied to an image whose pixels are the elements of the terrain elevation database belonging to the map, i.e. elevation values associated with the geographic coordinates latitude, longitude of the nodes of the grid of the geographic location grid used for the measurements, classified, as on the map, by increasing and decreasing latitude and longitude according to a two-dimensional table of latitude and longitude coordinates.
Certains systèmes de navigation de terrain pour des mobiles tels que des robots se servent de la transformée de distance à masque de chanfrein pour estimer des distances curvilignes tenant compte de zones infranchissables en raison de leurs configurations accidentées. Pour ce faire, ils associent, aux éléments de la base de données d'élévations du terrain figurant dans la carte, un attribut de zone interdite qui signale, lorsqu'il est activé, une zone infranchissable ou interdite et inhibe toute mise à jour autre qu'une initialisation, de l'estimation de distance faite par la transformée de distance à masque de chanfrein.  Some field navigation systems for mobiles such as robots use the chamfer mask distance transform to estimate curvilinear distances taking into account impassable areas due to their uneven configurations. To do this, they associate, with the elements of the terrain elevation database appearing on the map, a prohibited area attribute which signals, when activated, an impassable or prohibited area and inhibits any update other than an initialization, of the distance estimation made by the distance transform with chamfer mask.
Dans le cas d'un aéronef, l'adoption d'un attribut de zone interdite ne convient pas car la configuration des zones infranchissables évolue en fonction de l'altitude résultant du suivi du profil vertical de sa trajectoire. Pour résoudre cette difficulté, la demanderesse a proposé, dans une demande de brevet français FR 2.860.292 de faire propager par la transformée de distance sur les points de l'image constituée par des éléments de la base de données d'élévations du terrain non seulement les longueurs des trajets les plus courts dites distances propagées mais également les altitudes que prendrait l'aéronef après avoir parcouru un trajet de rejointe de longueur minimale en respectant son profil vertical de vol et de vitesse, dites altitudes propagées, et de ne retenir une distance propagée en un point que si l'altitude propagée associée est supérieure à l'élévation du point considéré figurant dans la base de données, augmentée d'une marge verticale de sécurité. In the case of an aircraft, the adoption of a forbidden zone attribute is not suitable because the configuration of impassable zones evolves as a function of the altitude resulting from the monitoring of the vertical profile of its trajectory. To resolve this difficulty, the applicant has proposed, in a French patent application FR 2,860,292 to propagate by the transform of distance to the points of the image constituted by elements of the terrain elevation database not only the lengths of the shortest paths known as propagated distances but also the altitudes that the aircraft would take after having flown a joining path minimum length respecting its vertical flight profile and speed, known as propagated altitudes, and to retain a propagated distance at a point only if the associated propagated altitude is greater than the elevation of the point considered appearing in the database , plus a vertical safety margin.
La prise en compte des restrictions de survol imposées par la réglementation aérienne s'obtient au moyen d'attributs spécifiques de contraintes de réglementation répertoriant, en chaque point, les exigences de la réglementation aérienne : interdiction de survol, hauteur ou altitude minimale de survol autorisée, tranches d'altitude autorisées, contrainte de cap ou de pente qui doivent également être satisfaites pour que la distance propagée en un point soit retenue. Ces attributs de contraintes de réglementation aérienne peuvent être saisis périodiquement dans la base de données d'élévations du terrain en fonction de durées planifiées de validité de la réglementation ou à l'occasion de la préparation d'un plan de vol. Ils peuvent également être téléchargés de manière dynamique dans une base de données d'élévations du terrain embarquée, pour les régions situées au voisinage de la route prévisible de l'aéronef.  Taking into account the overflight restrictions imposed by air regulations is obtained by means of specific attributes of regulatory constraints listing, at each point, the requirements of air regulations: overflight ban, minimum authorized overflight height or altitude , authorized altitude ranges, heading or slope constraint which must also be satisfied for the distance propagated at a point to be retained. These aviation regulatory constraint attributes can be entered periodically into the terrain elevation database based on planned durations of regulatory validity or when preparing a flight plan. They can also be downloaded dynamically in an on-board terrain elevation database, for the regions located in the vicinity of the foreseeable route of the aircraft.
En final, la mise en œuvre d'une transformée de distance par propagation dans le domaine de la navigation aérienne, plus généralement l'élaboration d'une carte de distances curvilignes, doit se faire en tenant compte de contraintes statiques constituées par le relief et/ou par des zones à circulation réglementée, et d'une loi de variation d'altitude en fonction de la distance parcourue qui est une contrainte dynamique déterminable à partir de la distance estimée depuis le point pris pour origine des mesures et qui résulte souvent d'un profil vertical de vol et de vitesse imposé.  Finally, the implementation of a distance transform by propagation in the air navigation field, more generally the development of a map of curvilinear distances, must be done taking into account static constraints constituted by the relief and / or by areas with regulated traffic, and a law of variation of altitude as a function of the distance traveled which is a dynamic constraint determinable from the distance estimated from the point taken as the origin of the measurements and which often results from '' a vertical profile of imposed flight and speed.
La détermination, en projection horizontale, d'une route aérienne entre un point de départ et un point de destination au moyen de cartes de distances curvilignes posent différents problèmes dont :  The determination, in horizontal projection, of an air route between a starting point and a destination point using curvilinear distance maps poses various problems including:
- le repérage du ou des trajets curvilignes directs les plus courts correspondant à l'estimation de distance curviligne associée au point de destination car ils n'apparaissent pas explicitement dans une carte de distances curvilignes, - the identification of the shortest direct curvilinear path (s) corresponding to the estimate of curvilinear distance associated with the point of destination because they do not appear explicitly in a curvilinear distance map,
- la connaissance incomplète d'un profil vertical de vol et de vitesse lorsqu'il est constitué de deux parties, l'une définie à partir du point de départ et l'autre depuis le point de destination car celui-ci dépend de la longueur du trajet adopté en final,  - incomplete knowledge of a vertical flight and speed profile when it consists of two parts, one defined from the starting point and the other from the destination point because it depends on the length of the route finally adopted,
- les adaptations à apporter au profil d'un trajet curviligne direct à la base d'une estimation de distance curviligne du point de destination pour qu'il soit volable, c'est-à-dire adapté aux conditions d'évolution imposées à un aéronef, et  - the adaptations to be made to the profile of a direct curvilinear route on the basis of an estimate of curvilinear distance from the point of destination so that it is flyable, that is to say adapted to the conditions of evolution imposed on a aircraft, and
- les localisations des points de passage et/ou tournants "D-Fix" permettant le suivi, en pilotage manuel ou automatique, du trajet curviligne direct rendu volable.  - the locations of "D-Fix" crossing points and / or turning points allowing the tracking, by manual or automatic piloting, of the direct curvilinear path made flyable.
Le repérage d'un trajet curviligne direct correspondant au ou à l'un des trajets les plus courts à la base de l'estimation de distance curviligne faite pour le point de destination dans une carte de distances curvilignes élaborée sans prise en compte de contraintes dynamiques et ayant le point de départ pour origine de ses mesures de distance peut être obtenu par élaboration d'une deuxième et d'une troisième cartes de distances curvilignes couvrant la même région. La deuxième carte se différencie de la première par le déplacement au point but, du point pris pour origine des mesures de distance curviligne. La troisième carte adopte pour estimation de distance curviligne en chacun de ses points, la somme des estimations de distance curviligne faites pour le point concerné, dans la première et la deuxième cartes.  The location of a direct curvilinear path corresponding to or one of the shortest paths on the basis of the estimate of curvilinear distance made for the destination point in a map of curvilinear distances developed without taking into account dynamic constraints and having the starting point as the origin of its distance measurements can be obtained by drawing up a second and third maps of curvilinear distances covering the same region. The second map differs from the first by the displacement at the goal point, from the point taken for origin of the curvilinear distance measurements. The third map adopts the curvilinear distance estimate at each of its points, the sum of the curvilinear distance estimates made for the point concerned, in the first and second maps.
En effet, lorsqu'il existe un trajet curviligne direct de longueur minimale, ce qui est le cas d'un point de destination pourvu d'une estimation de distance curviligne, les points de la troisième carte de distances curvilignes, empruntés par le trajet curviligne direct constituent une chaîne ininterrompue de points allant du point de départ au point de destination, tous affectés de la somme minimale d'estimations de distances curvilignes car, si ce n'était pas le cas, il existerait un trajet plus court, ce qui est impossible par définition. Comme il peut y avoir plusieurs trajets de longueur minimale menant du point de départ au point de destination, la chaîne de points peut se trouver dans un ensemble plus grand de points connexes tous affectés d'une somme minimale d'estimations de distance curviligne, ayant la forme d'un enchaînement de surfaces en forme de parallélogramme donnant différentes possibilités pour le traçage d'un chemin de longueur minimale. Dans ce cas, on adopte le tracé le moins sinueux en suivant les diagonales des formes en parallélogramme. Indeed, when there is a direct curvilinear path of minimum length, which is the case of a destination point provided with an estimate of curvilinear distance, the points of the third map of curvilinear distances, taken by the curvilinear path direct constitute an unbroken chain of points from the starting point to the destination point, all affected by the minimum sum of estimates of curvilinear distances because, if this were not the case, there would be a shorter route, which is impossible by definition. Since there can be more than one path of minimum length from the point of departure to the point of destination, the chain of points may be in a larger set of related points all affected a minimum sum of curvilinear distance estimates, in the form of a series of parallelogram-shaped surfaces giving different possibilities for tracing a path of minimum length. In this case, we adopt the least sinuous path following the diagonals of the parallelogram shapes.
Lorsque la carte de distances curvilignes ayant le point de départ pour origine des mesures de distance est élaborée en tenant compte de contraintes dynamiques, la méthode précédente de repérage d'un trajet curviligne direct pose un problème de mise en œuvre car les contraintes dynamiques déterminables à partir d'un point n'ont aucune raison de l'être à partir d'un autre point. Ainsi, il est souvent impossible de respecter dans la deuxième carte les contraintes dynamiques appliquées à la première carte. Pour tourner cette difficulté, on remplace, lors de l'élaboration de la deuxième carte de distances curvilignes, les contraintes statiques et dynamiques prise en compte lors de l'élaboration de la carte initiale de distances curvilignes, par un ensemble de zones à contourner constituées des points de la première carte où une estimation de distance curviligne s'est révélée impossible du fait des diverses contraintes.  When the map of curvilinear distances having the starting point as the origin of distance measurements is drawn up taking dynamic constraints into account, the previous method of locating a direct curvilinear path poses an implementation problem because the dynamic constraints that can be determined from one point has no reason to be from another point. Thus, it is often impossible to respect in the second map the dynamic constraints applied to the first map. To overcome this difficulty, we replace, during the development of the second map of curvilinear distances, the static and dynamic constraints taken into account during the development of the initial map of curvilinear distances, by a set of zones to bypass constituted points on the first map where an estimation of curvilinear distance has proved impossible due to various constraints.
Lors de la montée à une altitude de croisière depuis un point de départ de mission, on cherche, pour un aéronef de transport à optimiser l'énergie consommée, ce qui se traduit par un profil vertical de vol et de vitesse irrégulier que l'on approxime par une suite de segments rectilignes pour son suivi par un calculateur de gestion du vol ou par un équipement de pilotage automatique.  When climbing to a cruising altitude from a mission starting point, we seek, for a transport aircraft to optimize the energy consumed, which results in a vertical flight profile and irregular speed that we approximate by a series of rectilinear segments for tracking by a flight management computer or by automatic piloting equipment.
Pour simplifier la description, on poursuit l'approximation jusqu'à assimiler le profil vertical de vol lors de la montée à l'altitude de croisière depuis le point de départ à un unique segment rectiligne à pente constante. On fait la même simplification pour le profil vertical de vol lors de la descente depuis l'altitude de croisière en direction du point de destination alors que l'aéronef doit consommer ses énergies potentielle et cinétique.  To simplify the description, the approximation is continued until the vertical flight profile is assimilated when climbing to cruising altitude from the starting point to a single rectilinear segment with constant slope. The same simplification is made for the vertical flight profile when descending from the cruising altitude in the direction of the destination point while the aircraft must consume its potential and kinetic energies.
Ces simplifications ne sont pas restrictives car il est toujours possible de s'en passer dans les différentes étapes de la méthode de repérage d'un trajet curviligne direct qui va être décrite et de remplacer les segments rectilignes uniques à pentes constantes par les suites de segments rectilignes qu'ils approximent. Comme montré à la figure 3, on aboutit, pour un aéronef de transport décollant d'une piste d'un aéroport de départ pour se poser sur une piste d'un aéroport de destination, à un profil vertical de vol comportant une montée 30 à pente constante partant de l'altitude du point de départ jusqu'à une altitude de croisière suivie d'un palier 31 , 32 à l'altitude de croisière puis d'une descente 33 à pente constante jusqu'à l'altitude du point de destination. Dans ce cas, le repérage d'un trajet curviligne direct menant du point de départ au point de destination s'obtient en décomposant le profil vertical de vol et de vitesse en un profil aller montré à la figure 4a et en un profil retour montré à la figure 4b. These simplifications are not restrictive because it is always possible to do without them in the various stages of the method of locating a direct curvilinear path which will be described and to replace the single rectilinear segments with constant slopes by the sequences of segments. straight they approximate. As shown in FIG. 3, for a transport aircraft taking off from a runway of a departure airport and landing on a runway of a destination airport, there is a vertical flight profile comprising a climb 30 to constant slope from the altitude of the starting point to a cruising altitude followed by a plateau 31, 32 at the cruising altitude then a descent 33 at a constant slope to the altitude of the destination. In this case, the location of a direct curvilinear path leading from the starting point to the destination point is obtained by decomposing the vertical flight and speed profile into a forward profile shown in Figure 4a and into a return profile shown in Figure 4b.
Le profil aller montré à la figure 4a est constitué de la montée 30 à pente constante depuis l'altitude du point de départ jusqu'à l'altitude de croisière, prolongée indéfiniment par le palier 31 d'altitude de croisière. Il correspond à une contrainte dynamique déterminable depuis le point de départ, utilisable pour l'élaboration d'une ébauche de première carte de distances curvilignes fidèle sur le seul début du trajet puisque cette contrainte dynamique ne prend en compte que la première moitié du profil vertical de vol et de vitesse imposé.  The outward profile shown in FIG. 4a consists of the climb 30 at a constant slope from the altitude of the starting point to the cruising altitude, extended indefinitely by the level 31 of cruising altitude. It corresponds to a dynamic constraint which can be determined from the starting point, which can be used to draw up a draft of the first faithful curvilinear map at the start of the journey alone, since this dynamic constraint only takes into account the first half of the vertical profile. imposed flight and speed.
Le profil retour montré dans l'ordre inverse à la figure 4b, est constitué du palier 32 à l'altitude de croisière, poursuivi par la descente 33 à pente constante jusqu'au point de destination. Il correspond à une contrainte dynamique déterminable depuis le point de destination, utilisable pour l'élaboration d'une ébauche de deuxième carte de distances curvilignes fidèle sur la seule fin du trajet puisque cette contrainte dynamique ne prend en compte que la deuxième moitié du profil vertical de vol et de vitesse imposé.  The return profile shown in reverse order in Figure 4b, consists of the landing 32 at cruising altitude, continued by the descent 33 at a constant slope to the point of destination. It corresponds to a dynamic constraint which can be determined from the destination point, which can be used to draw up a draft of a second map of faithful curvilinear distances at the end of the journey alone, since this dynamic constraint only takes into account the second half of the vertical profile. imposed flight and speed.
Dans le cas où l'aéronef ne ferait que descendre, comme montré en 50 à la figure 5, la matérialisation du trajet le plus court menant du point de départ au point de destination s'obtient en décomposant le profil vertical de vol et de vitesse en un profil aller dégénéré montré à la figure 6a constitué d'un simple palier 51 à l'altitude de croisière correspondant à une absence de contrainte dynamique et en un profil retour montré dans l'ordre inverse à la figure 6b, constitué d'une descente 50 à pente constante jusqu'au point de destination.  In the case where the aircraft is only descending, as shown at 50 in FIG. 5, the materialization of the shortest path leading from the point of departure to the point of destination is obtained by breaking down the vertical profile of flight and speed in a degenerate outward profile shown in FIG. 6a consisting of a single bearing 51 at cruising altitude corresponding to an absence of dynamic constraint and in a return profile shown in reverse order in FIG. 6b, consisting of a descent 50 at a constant slope to the point of destination.
Pour rendre compatibles les deux ébauches des première et deuxième cartes élaborées avec des profils verticaux de vol et de vitesse différents, on procède à leur mise à jour consistant à les élaborer à nouveau en remplaçant les contraintes statiques et dynamiques par un ensemble d'obstacles à contourner constitués des points des ébauches où une estimation de distance curviligne s'est révélée impossible. Le processus de repérage d'un trajet curviligne direct se poursuit ensuite par l'élaboration d'une troisième carte de distances curvilignes reprenant les sommes des estimations de distance curviligne des mises à jour des deux premières cartes et par traçage d'un chemin reliant le point de départ au point de destination au sein d'un ensemble connexe de points affectés d'une somme minimale d'estimations de distance curviligne. To make the two drafts of the first and second maps compatible with vertical flight and speed profiles they are updated, consisting in developing them again by replacing the static and dynamic constraints with a set of obstacles to be circumvented consisting of the points of the blanks where an estimation of curvilinear distance has proved impossible. The process of locating a direct curvilinear path then continues with the development of a third curvilinear distance map incorporating the sums of the curvilinear distance estimates of the updates of the first two maps and by tracing a path connecting the starting point at the destination point within a related set of points affected by a minimum sum of curvilinear distance estimates.
On remarque que le processus de repérage d'un trajet curviligne direct se simplifie dans le cas où l'aéronef ne ferait que descendre vers son point de destination car il est alors possible de faire l'impasse sur l'ébauche de la première carte de distances curvilignes et sur la mise à jour de la deuxième carte de distances curvilignes. La même simplification se produit chaque fois qu'il n'y a pas de profil vertical de vol et de vitesse imposé au départ. Une simplification du même genre se produit également lorsqu'il n'y a pas de profil vertical de vol et de vitesse imposé à l'arrivée car il est alors possible de faire l'impasse sur l'ébauche de la deuxième carte de distances curvilignes et sur la mise à jour de la première carte de distances curvilignes.  It is noted that the process of locating a direct curvilinear path is simplified in the case where the aircraft would only descend to its point of destination because it is then possible to ignore the draft of the first map of curvilinear distances and on the update of the second curvilinear distance map. The same simplification occurs whenever there is no vertical flight profile and speed imposed at the start. A similar simplification also occurs when there is no vertical flight profile and speed imposed on arrival because it is then possible to skip over the draft of the second curvilinear distance map. and on the update of the first curvilinear distance map.
L'ensemble des zones à contourner servant aux mises à jour des première et deuxième cartes de distances curvilignes lors du repérage d'un trajet curviligne direct peut aller au-delà des points des ébauches de carte de distances curvilignes pour lesquels il n'a pas été possible d'estimer des distances curvilignes faute de trouver des chemins suffisamment courts et inclure les points de ces ébauches affectés d'estimations de distance curviligne présentant des discontinuités par rapport à celles affectées aux points de leur proche voisinage car ils correspondent à des reliefs ne pouvant être atteints que par des voies détournées. Il peut également être grossi d'une marge latérale de sécurité afin d'éloigner latéralement des reliefs contournés, le trajet curviligne direct repéré sur les cartes de distances curvilignes. L'épaisseur de cette marge latérale de sécurité qui sert à prévenir une limitation de la liberté d'évolution en latéral d'un aéronef, due à la proximité d'un relief peut être définie de diverses manières : - Elle peut avoir une valeur constante fixée arbitrairement en fonction des capacités de virage à plat de l'aéronef ou de son agilité, All the zones to be bypassed used for updating the first and second curvilinear distance maps when locating a direct curvilinear route can go beyond the points of the draft curvilinear distance maps for which it does not have been possible to estimate curvilinear distances for lack of finding sufficiently short paths and to include the points of these drafts affected by estimates of curvilinear distance having discontinuities compared to those assigned to the points of their close vicinity because they correspond to reliefs can only be reached by devious routes. It can also be enlarged with a lateral safety margin in order to distance laterally from the contoured reliefs, the direct curvilinear path identified on the curvilinear distance maps. The thickness of this lateral safety margin which serves to prevent a limitation of the freedom of lateral movement of an aircraft, due to the proximity of a relief can be defined in various ways: - It can have a constant value arbitrarily fixed as a function of the aircraft's flat turning capacities or its agility,
- Elle peut avoir une valeur fonction à la fois des capacités de virage à plat de l'aéronef et de la loi de vitesse associée au profil vertical de vol et de vitesse imposé. Ainsi, les marges de sécurité sont moindres lorsque l'aéronef vole lentement (décollage et atterrissage) et augmentent lorsque l'aéronef est en croisière à proximité du relief.  - It can have a value which is a function of both the flat turning capabilities of the aircraft and the speed law associated with the vertical flight profile and the imposed speed. Thus, the safety margins are lower when the aircraft is flying slowly (takeoff and landing) and increase when the aircraft is cruising near the terrain.
- Elle peut encore dépendre du changement de cap nécessaire pour contourner un obstacle.  - It can still depend on the course change required to get around an obstacle.
L'épaisseur dans le plan horizontal de la marge latérale de sécurité peut être prise égale au rayon minimal de virage à plat, qui est imposé à l'aéronef en fonction de ses performances, du confort recherché et de sa vitesse air TAS en tenant compte ou non du vent local.  The thickness in the horizontal plane of the lateral safety margin can be taken equal to the minimum radius of flat turn, which is imposed on the aircraft according to its performance, the desired comfort and its TAS air speed taking into account or not local wind.
En l'absence de vent local, le rayon minimal R de virage à plat répond à la relation classique :  In the absence of local wind, the minimum radius R of flat turn responds to the classic relationship:
R = TAS* R = TAS *
g- ^ Ψroll  g- ^ Ψroll
φr0ιι étant un angle de roulis maximum et φ r0 ιι being a maximum roll angle and
g étant l'accélération de la pesanteur. g being the acceleration of gravity.
Le vent local modifie le rayon apparent d'un virage à plat en l'augmentant lorsqu'il vient du côté opposé au virage ou de l'arrière et en le réduisant lors qu'il vient du côté intérieur au virage ou de l'avant. Le rayon apparent peut être assimilé à la moitié de la distance transversale, par rapport à l'aéronef, du point du virage où l'aéronef atteindra un changement de cap de 180°. Cette distance transversale répond à la relation : χt (^i ) = WSx, V " δJL.cos(wtm + yt) + δ.R.cos(χt ) avec Local wind changes the apparent radius of a flat turn by increasing it when coming from the side opposite the turn or from the rear and by reducing it when it comes from the inside of the turn or from the front . The apparent radius can be assimilated to half the transverse distance, relative to the aircraft, from the point of the turn where the aircraft will reach a change of heading of 180 °. This transverse distance corresponds to the relation: χ t (^ i) = WS x , V "δJL.cos (wt m + y t ) + δ.R.cos (χ t ) with
MVl ~~ MVl ~~
γ t - -δ '.(Track - Heading) γ t - -δ ' . (Track - Heading)
TAS gΛan φrolι TAS gΛan φ rolι
w =  w =
R TAS R TAS
WSχt étant la composante transversale du vent local, γ étant un facteur dépendant des conditions initiales, WSχ t being the transverse component of the local wind, γ being a factor depending on the initial conditions,
δ étant un coefficient égal à +1 pour un virage à droite et -1 pour un virage à gauche, δ being a coefficient equal to +1 for a right turn and -1 for a left turn,
Pour une justification de cette relation, on peut se reporter à la description de la demande de brevet français FR 2.871 .878 déposée par la demanderesse.  For a justification of this relationship, reference may be made to the description of French patent application FR 2.871 .878 filed by the applicant.
Tout en étant fonction d'un rayon minimal R de virage à plat, l'épaisseur dans le plan horizontal de la marge latérale peut être rendue dépendante du changement de cap nécessaire au contoumement, par exemple, comme décrit dans la demande de brevet français déposée par la demanderesse le 24/9/2004 sous le n° 04 10149, en la faisant dépendre en un point du contour d'un obstacle à contourner, d'un coefficient d'échelle en (l + bearing étant l'angle entre la normale au point While being a function of a minimum radius R for a flat turn, the thickness in the horizontal plane of the lateral margin can be made dependent on the change of course necessary for the bypass, for example, as described in the French patent application filed by the plaintiff on 24/9/2004 under n ° 04 10149, by making it depend at a point on the contour of an obstacle to be circumvented, of a scale coefficient in (l + bearing being the angle between the normal to the point
concerné du contour et la tangente au trajet. concerned with the contour and the tangent to the path.
Les figures 7, 8, 9, 1 1 , 12 et 14 illustrent les différentes étapes d'un processus de repérage d'un trajet curviligne direct respectant des profils verticaux de vol et de vitesse imposés au départ et à l'arrivée mis en œuvre à partir d'une image des reliefs et zones à survol réglementé d'une région survolée par un aéronef, dont les pixels correspondent à un maillage de la région survolée par une grille de localisation géographique qui peut être :  Figures 7, 8, 9, 1 1, 12 and 14 illustrate the different stages of a process for locating a direct curvilinear path respecting vertical flight and speed profiles imposed at the start and at the arrival implemented from an image of the reliefs and zones with regulated overflight of a region overflown by an aircraft, the pixels of which correspond to a mesh of the region overflown by a grid of geographic location which can be:
- une grille régulière en distance, alignée sur les méridiens et parallèles,  - a regular grid in distance, aligned on the meridians and parallels,
- une grille régulière en distance alignée sur le cap de l'aéronef, - a regular grid in distance aligned with the heading of the aircraft,
- une grille régulière en distance alignée sur la route de l'aéronef, - une grille régulière en angulaire, alignée sur les méridiens et parallèles, - a regular grid in distance aligned on the route of the aircraft, - a regular grid in angle, aligned on the meridians and parallel,
- une grille régulière en angulaire alignée sur le cap de l'aéronef, - a regular angular grid aligned with the heading of the aircraft,
- une grille régulière en angulaire alignée sur la route de l'aéronef.- a regular angular grid aligned with the route of the aircraft.
- une représentation polaire (radiale) centrée sur l'aéronef et son cap, - une représentation polaire (radiale) centrée sur l'aéronef et sa route. - a polar (radial) representation centered on the aircraft and its heading, - a polar (radial) representation centered on the aircraft and its route.
Typiquement, la grille reproduit un motif polygonal à quatre côtés, classiquement des carrés ou des rectangles, elle peut aussi reproduire d'autres motifs polygonaux tels que des triangles ou des hexagones.  Typically, the grid reproduces a polygonal pattern with four sides, conventionally squares or rectangles, it can also reproduce other polygonal patterns such as triangles or hexagons.
La figure 7 montre les ensembles 1 de points où une estimation de distance curviligne s'est révélée impossible et les ensembles 2 de points où apparaissent des discontinuités entre les estimations de distances curvilignes pour des points voisins qui ressortent, à la première étape du processus de matérialisation de trajet, lors de l'élaboration de la première ébauche de carte de distances curvilignes par application à l'image de la région survolée, d'une transformée de distance à masque de chanfrein ayant pour origine des mesures de distance, le point 10 de départ du trajet et respectant des contraintes statiques constituées par le relief et/ou par des zones à circulation réglementée et des contraintes dynamiques constituées d'une altitude imposée en fonction de la distance parcourue depuis le point 10 de départ du trajet correspondant à la partie profil aller (figure 4a) d'un profil vertical de vol et de vitesse (montée depuis le point de départ à l'altitude de vol de croisière prolongée indéfiniment par un palier). Figure 7 shows the sets 1 of points where an estimation of curvilinear distance proved impossible and the sets 2 of points where discontinuities appear between the estimates of curvilinear distances for neighboring points which emerge, at the first stage of the process of materialization of the path, during the preparation of the first draft of a map of curvilinear distances by application to the image of the region overflight, of a distance transform with chamfer mask originating from distance measurements, the starting point of the journey and respecting static constraints constituted by the relief and / or by areas with regulated traffic and dynamic constraints constituted of an imposed altitude as a function of the distance traveled from the starting point of the journey corresponding to the outward profile part (FIG. 4a) of a vertical flight and speed profile (climb from the starting point to the altitude cruise flight extended indefinitely by a landing).
Les ensembles 1 de points où une estimation de distance curviligne s'est révélée impossible faute pour la transformée de distance à masque de chanfrein d'avoir pu trouver un chemin y conduisant représentent les zones à contourner car inaccessibles pour l'aéronef s'il veut respecter la partie profil aller (figure 4a) du profil vertical de vol et de vitesse imposé.  The sets 1 of points where an estimation of curvilinear distance proved to be impossible for lack of the transform of distance with chamfer mask to have been able to find a path leading there represent the zones to be circumvented because inaccessible for the aircraft if it wants respect the forward profile part (figure 4a) of the vertical flight and speed profile imposed.
Les ensembles 2 de points où apparaissent des discontinuités entre les estimations de distance curviligne pour des points voisins signalent des reliefs ne pouvant être atteints directement donc à contourner.  The sets 2 of points where discontinuities appear between the curvilinear distance estimates for neighboring points indicate reliefs which cannot therefore be reached directly, therefore to be bypassed.
La figure 8 montre les ensembles 1 ' de points où une estimation de distance curviligne s'est révélée impossible et les ensembles 2' de points où apparaissent des discontinuités entre les estimations de distances curvilignes pour des points voisins qui ressortent, à la deuxième étape du processus de matérialisation de trajet, lors de l'élaboration de la deuxième ébauche de carte de distances curvilignes par application à l'image de la région survolée, d'une transformée de distance à masque de chanfrein ayant pour origine des mesures de distance le point 20 de destination du trajet et respectant les mêmes contraintes statiques que la première ébauche, constituées par le relief et/ou par des zones à circulation réglementée et des contraintes dynamiques constituées d'une altitude imposée en fonction de la distance parcourue depuis le point de destination du trajet correspondant à la partie profil retour (figure 4b) du profil vertical de vol et de vitesse (palier à l'altitude de vol de croisière suivi d'une descente à l'approche du point de destination). La figure 9 montre la fusion 3, par réunion, des obstacles à contourner apparus dans les deux ébauches (ensembles 1 , 1 ' de points où une estimation de distance curviligne s'est révélée impossible et ensemblesFIG. 8 shows the sets 1 'of points where an estimation of curvilinear distance has proved impossible and the sets 2' of points where discontinuities appear between the estimates of curvilinear distances for neighboring points which emerge, in the second stage of the path materialization process, during the preparation of the second outline of a curvilinear distance map by applying to the image of the region overflown, a distance transform with a chamfer mask originating from point distance measurements 20 for the destination of the journey and respecting the same static constraints as the first draft, constituted by the relief and / or by zones with regulated traffic and dynamic constraints consisting of an altitude imposed as a function of the distance traveled from the point of destination of the path corresponding to the return profile part (Figure 4b) of the vertical flight and speed profile (bearing r at cruise flight altitude followed by a descent when approaching the destination point). FIG. 9 shows the merging 3, by meeting, of the obstacles to be circumvented which appeared in the two blanks (sets 1, 1 ′ of points where an estimation of curvilinear distance proved to be impossible and sets
2, 2' de points où apparaissent des discontinuités entre estimations de distance curviligne pour des points voisins). 2, 2 'of points where there appear discontinuities between estimates of curvilinear distance for neighboring points).
Les figures 10a, 10b et 10c illustrent le grossissement d'un obstacle 4 à contourner par des marges latérales de sécurité prenant en compte la limitation de la liberté d'évolution latérale de l'aéronef au voisinage de cet obstacle 4. Ce grossissement est obtenu en traçant les marges à partir de lignes iso-distances tracées à l'extérieur des contours de l'obstacle 4, par exemple, au moyen d'une transformée de distance à masque de chanfrein appliquée à l'image de la région survolée avec les obstacles à contourner pris pour origine des mesures de distance comme cela est décrit dans la demande de brevet français FR 2.864.312 déposée par la demanderesse. On a supposé ici, que les marges latérales dépendaient de la vitesse de l'aéronef au voisinage de l'obstacles 4 à contourner. Elles sont tracées en plusieurs étapes :  FIGS. 10a, 10b and 10c illustrate the magnification of an obstacle 4 to be circumvented by lateral safety margins taking into account the limitation of the freedom of lateral movement of the aircraft in the vicinity of this obstacle 4. This magnification is obtained by drawing the margins from iso-distance lines drawn outside the contours of obstacle 4, for example, by means of a chamfer mask distance transform applied to the image of the region overflown with the Obstacles to be circumvented originating from distance measurements as described in French patent application FR 2,864,312 filed by the applicant. It has been assumed here that the lateral margins depend on the speed of the aircraft in the vicinity of the obstacles 4 to be circumvented. They are traced in several stages:
- une première étape illustrée par la figure 10a consiste à tracer autour de l'obstacle 4 à contourner, une marge latérale 5' de protection fonction de la loi de vitesse associée au profil aller (figure 4a) du profil vertical de vol et de vitesse. La marge latérale 5' est d'une épaisseur moindre à proximité du point de départ 10 car l'aéronef accélère progressivement jusqu'à atteindre sa vitesse de croisière. - A first step illustrated by FIG. 10a consists in drawing around the obstacle 4 to be circumvented, a lateral margin 5 ′ of protection depending on the speed law associated with the outward profile (FIG. 4a) of the vertical flight and speed profile . The lateral margin 5 ′ is of a lesser thickness near the starting point 10 because the aircraft gradually accelerates until it reaches its cruising speed.
- Une deuxième étape illustrée par la figure 10b consiste à tracer autour de l'obstacle 4 à contourner, une marge latérale 5" de protection fonction de la loi de vitesse associée au profil retour (figure 4b) du profil vertical de vol et de vitesse. La marge latérale 5" a une épaisseur moindre à proximité du point de destination 20 car l'aéronef décélère en vue d'atterrir prochainement. - A second step illustrated in FIG. 10b consists in drawing around the obstacle 4 to be circumvented, a lateral margin 5 "of protection depending on the speed law associated with the return profile (FIG. 4b) of the vertical flight and speed profile The lateral margin 5 "has a smaller thickness near the point of destination 20 because the aircraft decelerates in order to land soon.
- Une troisième étape illustrée par la figure 10c consiste déterminer la marge latérale finale 5 en fusionnant, par intersection, les marges latérales 5', 5" obtenues au cours des deux étapes précédentes. - A third step illustrated in FIG. 10c consists in determining the final lateral margin 5 by merging, by intersection, the lateral margins 5 ', 5 "obtained during the two preceding steps.
La figure 1 1 montre le grossissement, par une marge latérale de sécurité 6, de l'ensemble des obstacles fusionnés 3 résultant des première et deuxième ébauches de cartes de distances curvilignes. La marge latérale 6 est plus mince aux abords des points de départ 10 et de destination20 en raison de la vitesse plus réduite de l'aéronef. Figure 11 shows the magnification, by a lateral safety margin 6, of all the merged obstacles 3 resulting from the first and second drafts of curvilinear distance maps. Side margin 6 is thinner near departure 10 and destination20 due to the lower speed of the aircraft.
La figure 12 montre la matérialisation d'un ensemble des points des trajets les plus courts obtenue après :  FIG. 12 shows the materialization of a set of the points of the shortest paths obtained after:
- mise à jour de l'ébauche de la première carte de distances curvilignes ayant le point de départ 10 comme origine de mesure des distances, par application à l'image de la région survolée, d'une transformée de distance à masque de chanfrein ayant le point de départ 10 du trajet pour origine des mesures de distance et pour contraintes l'ensemble 3 des obstacles à contourner fusionnés et grossis par la marge latérale de sécurité 6,  - update of the draft of the first curvilinear distance map having the starting point 10 as the origin for measuring the distances, by applying to the image of the overflown region, a distance transform with chamfer mask having the starting point 10 of the journey for the origin of the distance measurements and for constraints the set 3 of obstacles to be circumvented merged and magnified by the lateral safety margin 6,
- mise à jour de l'ébauche de la carte de distances curvilignes ayant le point de destination 20 comme origine des mesures de distance, par application à l'image de la région survolée, d'une transformée de distance à masque de chanfrein ayant le point de destination 20 du trajet pour origine des mesures de distance et pour contraintes l'ensemble 3 des obstacles à contourner fusionnés et grossis par la marge latérale de sécurité 6,  - update of the outline of the curvilinear distance map having the destination point 20 as the origin of the distance measurements, by applying to the image of the region overflown, a distance transform with chamfer mask having the destination point 20 of the journey for the origin of the distance measurements and for constraints the set 3 of obstacles to be circumvented merged and magnified by the lateral safety margin 6,
- élaboration d'une troisième carte de distances curvilignes adoptant pour estimation de distance curviligne en chacun de ses points, la somme des estimations de distance curviligne faites pour le point concerné, et  - development of a third map of curvilinear distances adopting the estimate of curvilinear distance at each of its points, the sum of the estimates of curvilinear distance made for the point concerned, and
- repérage de l'ensemble connexe 7 des points affectés, dans la troisième carte de distances curvilignes, d'une estimation minimale de distance curviligne et joignant le point de départ 10 au point de destination 20.  - identification of the related set 7 of the points affected, in the third map of curvilinear distances, of a minimum estimate of curvilinear distance and joining the starting point 10 to the destination point 20.
L'ensemble 7 des points des trajets les plus courts se présente sous la forme d'une chaîne ininterrompue de points s'épaississant aux voisinages des points de départ et de destination pour prendre des formes 8, 9 de parallélogramme.  The set 7 of the points of the shortest paths is in the form of an unbroken chain of points thickening in the vicinity of the departure and destination points to take the forms 8, 9 of parallelogram.
La figure 13 représente, sur la grille de localisation d'une carte de distances curvilignes, un ensemble de points des trajets les plus courts entre un point de départ 1 1 et un point de destination 12 avec, pour chaque point ou cellule de la grille de localisation géographique faisant parti de l'ensemble, l'estimation chiffrée de la distance curviligne depuis le point de départ 1 1 et un fond de motif dépendant du nombre de trajets de longueur minimale utilisés par la transformée de distance par propagation fournissant les estimations de distance curviligne. Le fond de motif le plus clair est attribué aux cellules empruntées par un seul trajet de longueur minimale et le fond de motif le plus dense aux cellules empruntées par deux trajets de longueur minimale. La figure 13 montre que le simple fait pour un trajet d'avoir tous ses points appartenant à l'ensemble des points des trajets les plus courts ne garantit pas qu'il soit de longueur minimale. Seuls les trajets suivant les flèches conviennent. FIG. 13 represents, on the location grid of a curvilinear distance map, a set of points of the shortest paths between a starting point 11 and a destination point 12 with, for each point or cell of the grid of geographic location forming part of the whole, the numerical estimate of the curvilinear distance from the starting point 1 1 and a pattern background dependent on the number of paths of minimum length used by the distance transform by propagation providing the estimates of curvilinear distance. The lightest pattern background is assigned to cells traveled by a single minimum length path and the densest pattern background is assigned to cells traveled by two minimum length paths. Figure 13 shows that the simple fact for a path to have all its points belonging to the set of points of the shortest paths does not guarantee that it is of minimum length. Only the routes following the arrows are suitable.
La figure 14 montre le trajet curviligne direct 15 adopté en final compte tenu des reliefs, des zones à survol réglementé et du profil vertical de vol et de vitesse à respecter. Il suit les diagonales des formes en parallélogramme 8, 9.  FIG. 14 shows the direct curvilinear path 15 adopted in the end taking into account the reliefs, the zones with regulated overflight and the vertical profile of flight and speed to be respected. It follows the diagonals of the parallelogram shapes 8, 9.
Il reste à définir une trajectoire volable par une succession de points de passage et/ou tournants "D-Fix" définissant avec leurs contraintes associées, un enchaînement de segments rectilignes "D-Legs" à transitions arrondies au plus juste par des virages à rayons fonction de la vitesse courante de l'aéronef, approchant le trajet curviligne direct tout en n'empiétant pas sur l'ensemble des obstacles fusionnés et leurs marges latérales de protection, en réduisant le plus possible la fréquence des changements de cap et en tenant compte du lissage de trajectoire opéré de manière automatique par un calculateur de gestion du vol lors d'une transition entre deux ou plusieurs segments rectilignes "D-Legs".  It remains to define a flightable trajectory by a succession of waypoints and / or turning "D-Fix" defining with their associated constraints, a sequence of rectilinear segments "D-Legs" with transitions rounded as closely as possible by radius turns as a function of the current speed of the aircraft, approaching the direct curvilinear path while not encroaching on all of the merged obstacles and their lateral protective margins, minimizing the frequency of course changes and taking into account trajectory smoothing operated automatically by a flight management computer during a transition between two or more rectilinear segments "D-Legs".
Pour s'assurer du suivi au plus près du trajet curviligne direct, on impose aux segments rectilignes "D-Legs" un écart maximal par rapport aux points du trajet curviligne direct qu'ils court-circuitent.  To ensure tracking as close as possible to the direct curvilinear path, the rectilinear segments "D-Legs" are imposed a maximum deviation from the points of the direct curvilinear path that they short-circuit.
Une façon de déterminer les segments rectilignes "D-Legs" de la trajectoire volable consiste à les construire progressivement en partant du point de départ ou d'arrivée en ajoutant un à un des points du trajet curviligne direct au bloc de points consécutifs du segment en construction jusqu'à ce qu'il empiète sur la marge latérale d'un obstacle à contourner ou que son éloignement à l'un des points du trajet curviligne direct qu'il court-circuite atteigne l'écart maximal admis. Le segment en construction est alors considéré comme terminé et la construction du segment suivant entamé, cela jusqu'à ce que le point d'arrivée ou de départ soit atteint. L'enchaînement de segments rectilignes "D-Legs" obtenu est alors lissé à la façon du calculateur de vol puis à nouveau comparé aux contours des obstacles à contourner complétés des marges latérales de sécurité. Il est admis s'il n'y a pas d'empiétement et rejeter dans le cas contraire. Lorsque l'enchaînement de segments rectilignes "D-Legs" est rejeté en raison d'empiétements sur les marges latérales de sécurité, il faut l'éloigner des marges aux niveaux des empiétements. Une façon de faire consiste à faire un nouveau repérage de trajet curviligne direct avec des marges latérales de sécurité augmentées localement au droit des empiétements et uniquement pour ce repérage, puis de procéder à une nouvelle détermination de l'enchaînement de segments rectilignes "D-Legs". One way of determining the rectilinear segments "D-Legs" of the flightable trajectory consists in constructing them progressively starting from the point of departure or arrival by adding one to one of the points of the direct curvilinear path to the block of consecutive points of the segment in construction until it encroaches on the lateral margin of an obstacle to be circumvented or until its distance from one of the points of the direct curvilinear path that it short-circuits reaches the maximum allowable distance. The segment under construction is then considered to be finished and the construction of the next segment started, until the point of arrival or departure is reached. The sequence of rectilinear segments "D-Legs" obtained is then smoothed in the manner of the flight computer and then again compared with the contours of the obstacles to be circumvented, supplemented by the lateral safety margins. It is allowed if there is no encroachment and rejected if it is not. When the chain of straight "D-Legs" segments is rejected due to encroachments on the lateral safety margins, it must be moved away from the margins at the encroachment levels. One way of doing this is to make a new direct curvilinear path location with lateral safety margins increased locally at the level of the encroachments and only for this location, then to carry out a new determination of the sequence of rectilinear segments "D-Legs ".
Une fois, un enchaînement de segments rectilignes "D-Legs" admis pour définition de la trajectoire volable, les points de jonctions des segments rectilignes "D-Legs" consécutifs sont pris pour points de passage et/ou tournants "D-Fix", associés aux contraintes de vol imposées par le respect du profil vertical de vol et de vitesse à leurs niveaux.  Once, a sequence of rectilinear segments "D-Legs" admitted for definition of the flight path, the junction points of the rectilinear segments "D-Legs" consecutive are taken for waypoints and / or turning "D-Fix", associated with the flight constraints imposed by compliance with the vertical flight profile and speed at their levels.
La figure 15 illustre la détermination des segments rectilignes "D- Legs" 30, 31 , 32 de l'enchaînement et par voie de conséquence des points de passage et/ou tournants "D-Fix" à partir du trajet curviligne direct formé d'une chaîne de points 33 contournant un obstacle 40 entouré d'une marge latérale de sécurité 41 d'une épaisseur 'a' correspondant au rayon minimal R de virage de l'aéronef. Pour cette détermination, l'écart maximal 'b' des segments par rapport aux points 33 du trajet curviligne direct a été fixé à la moitié de l'épaisseur 'a' de la marge latérale de sécurité 41 .  FIG. 15 illustrates the determination of the rectilinear segments "D-Legs" 30, 31, 32 of the sequence and consequently of the crossing points and / or turning points "D-Fix" from the direct curvilinear path formed by a chain of points 33 bypassing an obstacle 40 surrounded by a lateral safety margin 41 of thickness 'a' corresponding to the minimum turning radius R of the aircraft. For this determination, the maximum deviation 'b' of the segments from the points 33 of the direct curvilinear path was fixed at half the thickness 'a' of the lateral safety margin 41.
Pour tracer les segments rectilignes "D-Legs", on peut chercher à remplacer, dans la chaîne de points 33 du trajet curviligne direct, le maximum de points consécutifs par des segments rectilignes satisfaisant la condition d'écart maximal 'b'. Cela peut se faire par la construction progressive décrite précédemment. Le point de départ ou respectivement de destination du trajet direct est pris pour origine du premier segment que l'on fait grandir en ajoutant un par un des points 40 consécutifs tant qu'il ne pénètre pas dans un obstacle dilaté de la marge de sécurité et que son écart (la longueur maximale des projections sur le segment, des points 40 court- circuités) respecte l'écart maximal admis. Si le point de destination ou respectivement de départ du trajet direct n'est pas atteint, le point d'extrémité du premier segment est pris pour origine d'un deuxième segment rectiligne que l'on fait grandir et ainsi de suite. To trace the rectilinear segments "D-Legs", one can seek to replace, in the chain of points 33 of the direct curvilinear path, the maximum of consecutive points by rectilinear segments satisfying the condition of maximum deviation 'b'. This can be done by the progressive construction described above. The point of departure or respectively of destination of the direct route is taken from the first segment which is made to grow by adding one by one of the points 40 consecutive as long as it does not penetrate into a dilated obstacle of the safety margin and that its deviation (the maximum length of the projections on the segment, of the 40 short-circuited points) respects the maximum allowed deviation. If the destination or departure point of the direct route is not reached respectively, the end point of the first segment is taken from a second rectilinear segment which is made to grow and so on.
Cette méthode de construction progressive admet des variantes, comme par exemple, une méthode par dichotomie consistant à:  This progressive construction method admits variants, such as, for example, a dichotomy method consisting in:
- adopter initialement un segment rectiligne reliant les points de départ et de destination du tracé curviligne direct,  - initially adopt a straight segment connecting the starting and destination points of the direct curvilinear course,
- si ce segment pénètre dans un obstacle dilaté de la marge latérale de sécurité ou s'il ne respecte pas l'écart maximal admis, repérer le point du tracé curviligne direct le plus à l'écart,  - if this segment enters a dilated obstacle in the lateral safety margin or if it does not respect the maximum permitted deviation, locate the point of the most distant direct curvilinear course,
- remplacer le segment rectiligne précédent par deux segments rectilignes passant par le point du tracé curviligne direct le plus à l'écart, et  - replace the previous rectilinear segment with two rectilinear segments passing through the most distant point of the direct curvilinear line, and
- recommencer les mêmes opérations sur chacun des nouveaux segments jusqu'à obtention d'une chaîne de segments rectilignes contournant les obstacles et leurs marges latérales de sécurité et respectant l'écart maximal admis.  - repeat the same operations on each of the new segments until a chain of rectilinear segments is obtained, bypassing obstacles and their lateral safety margins and respecting the maximum allowable distance.
La figure 15 montrent les segments rectilignes 30, 31 , 32 obtenus par application de la méthode de construction progressive.  FIG. 15 shows the rectilinear segments 30, 31, 32 obtained by application of the progressive construction method.
Une fois obtenue une chaîne de segments rectilignes "D-Legs", on vérifie que les transitions entre segments rectilignes sont volables, c'est- à-dire réalisables par des virages au rayon minimal R admissible contournant les obstacles et leurs marges latérales de sécurité.  Once a chain of rectilinear segments "D-Legs" has been obtained, it is checked that the transitions between rectilinear segments are flyable, that is to say achievable by turns with the minimum admissible radius R bypassing obstacles and their lateral safety margins .
En cas de problème de transition, le point à la jonction des deux segments rectilignes concernés est éloigné d'un certain pas de la marge latérale de sécurité dont l'intégrité a été mise en jeu et les deux nouveaux segments rectilignes obtenus vérifiés quant à leur respect du contournement des obstacles et de leurs marges de sécurité. En cas de non-respect du contournement des obstacles et de leurs marges de sécurité par suite de l'existence d'un autre obstacle proche, la construction des segments est reprise soit dans le cas de la méthode progressive de construction, en raccourcissant le segment rectiligne dont la transition est le point d'extrémité, soit dans le cas de la méthode par dichotomie, en fractionnant ce segment rectiligne. Il est également possible de recommencer complètement la construction des segments rectilignes en changeant de méthode ou encore, comme indiqué précédemment, de reprendre le processus à l'étape du repérage du trajet curviligne direct après avoir grossi localement et momentanément la marge latérale de sécurité. In the event of a transition problem, the point at the junction of the two rectilinear segments concerned is distant by a certain step from the lateral safety margin, the integrity of which has been brought into play, and the two new rectilinear segments obtained verified as to their respect for bypassing obstacles and their safety margins. In the event of non-compliance with the circumvention of obstacles and their safety margins due to the existence of another close obstacle, the construction of the segments is resumed, either in the case of the progressive method of construction, by shortening the segment rectilinear whose transition is the end point, or in the case of the dichotomy method, by dividing this rectilinear segment. It is also possible to completely start again the construction of the rectilinear segments by changing the method or even, as indicated previously, to resume the process at the stage of identification of the direct curvilinear path after locally and temporarily enlarging the lateral safety margin.
Sur la figure 15, les transitions 33 et 34 entre les segments rectilignes 30, 31 et 32 sont volables car réalisable par des virages au rayon minimal autorisé, sans pénétrer dans la marge latérale de sécurité. Si cela n'avait pas été le cas, à la transition 35, cette transition 35 aurait été comme montré, éloignée de la marge latérale de sécurité et les segments rectilignes In FIG. 15, the transitions 33 and 34 between the rectilinear segments 30, 31 and 32 are flyable because they can be made by turns at the minimum authorized radius, without entering the lateral safety margin. If this had not been the case, at transition 35, this transition 35 would have been, as shown, distant from the lateral safety margin and the straight segments
30 et 31 déformés conformément aux segments rectilignes 30' et 31 ' montrés en pointillés. 30 and 31 deformed in accordance with the straight segments 30 'and 31' shown in dotted lines.
Une fois que l'enchaînement de segments rectilignes construit sur le trajet direct est admis comme une trajectoire volable, les points de jonction des segments rectilignes sont pris pour points de passage et/ou tournants Once the sequence of rectilinear segments constructed on the direct path is accepted as a flight path, the junction points of the rectilinear segments are taken as crossing and / or turning points
"D-Fix" avec, comme contraintes associées les profils de vol vertical et de vitesse. "D-Fix" with, as associated constraints, vertical flight and speed profiles.
La figure 16 montre les points de passage et/ou tournants "D-Fix" Figure 16 shows the "D-Fix" turning and / or turning points
151 , 152, 153, 154 obtenus à partir du trajet curviligne direct 15 de la figure151, 152, 153, 154 obtained from the direct curvilinear path 15 of the figure
14. 14.
La figure 17 donne un exemple d'architecture pour un système mettant en œuvre le procédé de traçage de plan de vol latéral qui vient d'être décrit. Ce système comporte :  FIG. 17 gives an example of architecture for a system implementing the lateral flight plan tracing method which has just been described. This system includes:
- un module de calcul et de traitement 50 (CPU, mémoire, etc.), - a calculation and processing module 50 (CPU, memory, etc.),
- un module de communication 51 en charge de la réception et du stockage des données en provenance du sol (zones interdites de survol, météo, mises à jour des bases de données du bord, etc.), - une base de données 52 de zones aériennes réglementées ou restreintes. Cette base peut être mise à jour dynamiquement par le module de communication 51 (activation de certaines zones réglementées ou restreintes, déplacement des phénomènes météorologiques, déplacement de zones interdites de survol pour les zones militaires tactiques, etc.), - a communication module 51 in charge of receiving and storing data from the ground (prohibited areas of overflight, weather, updating on-board databases, etc.), - a database 52 of areas regulated or restricted airlines. This base can be updated dynamically by the communication module 51 (activation of certain regulated or restricted zones, displacement of meteorological phenomena, displacement of prohibited overflight zones for tactical military zones, etc.),
- une base de données 53 de performances de l'aéronef permettant rétablissement des capacités de franchissement de l'aéronef ainsi que la définition du profil de marges latérales en fonction de la vitesse et des altitudes de vol dans le cas où les marges latérales ne sont pas fournies par les équipements de bord de l'aéronef situés en amont, et - an aircraft performance database 53 allowing recovery of the aircraft crossing capacities as well as the definition of the lateral margins profile as a function of the speed and flight altitudes in the case where the lateral margins do not are not supplied by the aircraft on-board equipment located upstream, and
- une base de données 54 d'élévations du terrain environnant.  - a database 54 of elevations of the surrounding terrain.
Un tel système de mise en œuvre du procédé de traçage de plan de vol latéral peut être utilisé à différentes fins. Il peut être utilisé dans un système plus vaste de gestion des discontinuités dans les plans de vol, notamment, pour la rejointe d'un point géographique lors d'une requête de rejointe "Dir-to" par l'équipage au calculateur de gestion du vol de l'aéronef, pour la rejointe d'un aéroport de repli en cas de panne moteur ou pour la rejointe automatique de positions prédéterminées pour un drone ou pour un aéronef piloté dans un contexte sécuritaire.  Such a system for implementing the lateral flight plan tracing method can be used for different purposes. It can be used in a larger system for managing discontinuities in flight plans, in particular for joining a geographical point during a "Dir-to" joining request by the crew to the flight management computer. flight of the aircraft, for joining a fallback airport in the event of an engine failure or for automatically joining predetermined positions for a drone or for an aircraft piloted in a safe context.
Lors d'une requête "Dir-to" faite par l'équipage au calculateur de gestion du vol de l'aéronef, celui-ci au lieu de chercher à rallier en ligne droite le point géographique désigné par l'équipage, élabore un plan de vol vertical et de vitesse et fait appel à un système de traçage de plan de vol latéral mettant en œuvre le procédé décrit précédemment qui lui soumet un plan de vol provisoire tenant compte du relief, des zones à survol réglementée et du profil vertical de vol et de vitesse imposé, et assure le suivi du plan de vol provisoire dès que celui-ci a reçu l'approbation de l'équipage.  During a "Dir-to" request made by the crew to the aircraft's flight management computer, the latter instead of seeking to go in a straight line to the geographical point designated by the crew, draws up a plan vertical and speed flight and uses a lateral flight plan tracing system implementing the method described above which submits to it a provisional flight plan taking into account the relief, the areas with regulated overflight and the vertical flight profile and imposed speed, and ensures the monitoring of the provisional flight plan as soon as it has received the crew's approval.
La figure 18 montre le schéma d'un système embarqué de gestion d'une panne moteur dans un environnement fonctionnel à bord d'un aéronef. Celui-ci fait coopérer un calculateur de gestion du vol 60 dialoguant avec l'équipage de l'aéronef au travers d'une interface homme-machine MCDU ("Multipurpose Control Display Unit") 61 et agissant sur un équipement de pilotage automatique FG/C 62 ("Flight Guidance and Control") dédié au maintien de l'aéronef sur sa trajectoire et au contrôle de ses surfaces mobiles, avec un équipement de détection de panne moteur EFD 63 ("Engine Failure Detector") pouvant faire partie d'un FADEC ("FuII Authority Digital Engine Control"), avec un système de choix d'un aéroport de repli AS 64 ("Airport Selector") et avec un système de traçage de plan de vol latéral TRS 65 ("Terrain Routing System") mettant en œuvre le procédé décrit précédemment.  FIG. 18 shows the diagram of an on-board engine failure management system in a functional environment on board an aircraft. This makes a flight management computer 60 cooperate interacting with the crew of the aircraft through a man-machine interface MCDU ("Multipurpose Control Display Unit") 61 and acting on an automatic pilot equipment FG / C 62 ("Flight Guidance and Control") dedicated to keeping the aircraft on its trajectory and controlling its moving surfaces, with engine failure detection equipment EFD 63 ("Engine Failure Detector") which can be part of a FADEC ("FuII Authority Digital Engine Control"), with an AS 64 fallback airport choice system ("Airport Selector") and with a TRS 65 lateral flight plan tracing system ("Terrain Routing System") ) implementing the method described above.
La détection d'une situation de panne moteur par l'équipement EFD 63 déclenche l'exécution par le calculateur FMS 60 d'une procédure d'atterrissage d'urgence consistant en : - une mise à contribution des systèmes TRS 65 et AS 60 pour les choix d'un aéroport accessible de repli et d'un point de passage et/ou tournant "Waypoint" également accessible en entrée d'une approche de cet aéroport, conforme à une procédure officielle publiée, The detection of an engine failure situation by the EFD equipment 63 triggers the execution by the FMS computer 60 of an emergency landing procedure consisting of: - using the TRS 65 and AS 60 systems to choose an accessible fall-back airport and a waypoint and / or turning "Waypoint" also accessible at the entrance to an approach to this airport, in accordance with a published official procedure,
- une mise à contribution du MCDU 61 pour une validation par le pilote, après des modifications éventuelles, des choix de l'aéroport de repli et de la procédure d'approche faits par les systèmes TRS 65 et AS 60,  - use of the MCDU 61 for validation by the pilot, after possible modifications, choices of the fall-back airport and the approach procedure made by the TRS 65 and AS 60 systems,
- l'établissement d'un profil de vol vertical et de vitesse pour la rejointe du "Waypoint" donnant accès à l'aéroport de repli,  - establishing a vertical flight and speed profile for joining the "Waypoint" giving access to the fall-back airport,
- une nouvelle mise à contribution du système TRS 65 pour la détermination d'un plan de vol temporaire de rejointe du point de passage et/ou tournant d'accès en approche de l'aéroport de repli, - a new use of the TRS 65 system for the determination of a temporary flight plan to rejoin the waypoint and / or turning point for approaching the fallback airport,
- une nouvelle mise à contribution du MCDU 61 pour une validation par le pilote, après des modifications éventuelles, de la route proposée, et - a new contribution from the MCDU 61 for validation by the pilot, after possible modifications, of the proposed route, and
- rémission des consignes permettant au FG/C 62 de faire suivre à l'aéronef des trajectoires conformes au plan de vol temporaire validé.  - remission of the instructions allowing the FG / C 62 to make the aircraft follow trajectories in accordance with the validated temporary flight plan.
Une fois transmis au calculateur de gestion du vol FMS 60 les points de passage et/ou tournants "D-Fix" fournis par le système de traçage de plan de vol latéral TRS 65 sont considérés comme des points de passage et/ou tournants "Waypoints" classiques afin de permettre à un opérateur leur modification, déplacement et suppression.  Once transmitted to the FMS 60 flight management computer, the "D-Fix" waypoints and / or turning points provided by the TRS 65 lateral flight plan tracing system are considered as waypoints and / or turning points. "classics to allow an operator to modify, move and delete them.
La figure 19 montre le schéma d'un dispositif embarqué de gestion des discontinuités dans les plans de vol dans un environnement fonctionnel à bord d'un aéronef. Il reprend les mêmes éléments que celui de la figure 18 à l'exception de l'équipement de détection de panne moteur EFD 63 et du système de choix d'aéroport de repli AS 64.  FIG. 19 shows the diagram of an on-board device for managing discontinuities in flight plans in a functional environment on board an aircraft. It uses the same elements as that of FIG. 18 with the exception of the engine failure detection equipment EFD 63 and the fallback airport choice system AS 64.
Un calculateur de gestion du vol rend la main au pilote lorsqu'il rencontre une discontinuité de plan de vol dans l'exécution de sa fonction de suivi automatique d'un plan de vol. En l'absence d'un système TRS 65, le pilote doit reprendre le pilotage manuel sur le trajet allant du point de passage et/ou tournant "Waypoint" marquant le début de la discontinuité jusqu'au point de passage et/ou tournant "Waypoint" marquant la fin de la discontinuité où il peut réengager la fonction de suivi automatique de plan de vol du calculateur de gestion du vol. Avec le système TRS 65, le pilote peut obtenir, à partir d'un profil de vol vertical et de vitesse, une liste de points de passage et/ou tournants "D-Fix" définissant un plan de vol temporaire à cheval sur la discontinuité qui peut être prise en charge par le calculateur de vol pour un suivi automatique et pour des prédictions de consommation de fuel. A flight management computer returns control to the pilot when he encounters a flight plan discontinuity in the execution of his automatic flight plan tracking function. In the absence of a TRS 65 system, the pilot must resume manual piloting on the path going from the waypoint and / or turning "Waypoint" marking the start of the discontinuity to the crossing point and / or turning " Waypoint "marking the end of the discontinuity where it can re-engage the automatic plan tracking function flight of the flight management computer. With the TRS 65 system, the pilot can obtain, from a vertical flight profile and speed, a list of waypoints and / or turning points "D-Fix" defining a temporary flight plan straddling the discontinuity which can be handled by the flight computer for automatic monitoring and for fuel consumption predictions.
Cette fonctionnalité de gestion des discontinuités d'un plan de vol est particulièrement adaptée au vol militaire tactique et au vol d'hélicoptère. En effet, les routes aériennes ("airways") pour hélicoptères ne sont pas encore standardisées ni publiées. Dès lors, un cas opérationnel fréquent consiste à décoller d'un héliport selon une procédure publiée, en cherchant à rejoindre une autre zone, éventuellement au travers d'une procédure d'approche publiée. Entre les deux procédures, l'opérateur est responsable de rétablissement de la route. Le procédé de traçage de plan de vol latéral décrit est donc particulièrement utile puisqu'il permet de déterminer automatiquement le complément du plan de vol garantissant la sécurité vis à vis du relief.  This flight plan discontinuity management functionality is particularly suitable for tactical military flight and helicopter flight. Air routes for helicopters have not yet been standardized or published. Consequently, a frequent operational case consists of taking off from a heliport according to a published procedure, seeking to reach another area, possibly through a published approach procedure. Between the two procedures, the operator is responsible for restoring the route. The method for tracing a lateral flight plan described is therefore particularly useful since it makes it possible to automatically determine the complement of the flight plan guaranteeing safety with respect to the terrain.
La figure 20 montre le schéma d'un dispositif embarqué de rejointe automatique de positions prédéterminées pour un aéronef sans pilote : UAV ("Unmanned Aerial Vehicle") ou drone, dans un environnement fonctionnel à bord d'un aéronef. Il reprend les mêmes éléments que celui de la figure 19 à l'exception de l'interface homme-machine MCDU qui est remplacé par un module de communication sol-bord COMM 66 permettant à un opérateur au sol de commander l'aéronef sans pilote.  FIG. 20 shows the diagram of an on-board device for automatically rejoining predetermined positions for an unmanned aircraft: UAV ("Unmanned Aerial Vehicle") or drone, in a functional environment on board an aircraft. It uses the same elements as that of FIG. 19 with the exception of the man-machine interface MCDU which is replaced by a ground-on-board communication module COMM 66 allowing an operator on the ground to control the unmanned aircraft.
En cas de perte de lien de données entre l'aéronef sans pilote et son contrôleur au sol, le calculateur de gestion du vol FMS 60 peut être programmé pour requérir du système de traçage de plan de vol latéral 65, à partir d'un profil de vol vertical et de vitesse, une liste de points de passage et/ou tournants "D-Fix" définissant un plan de vol de rejointe d'une position de repli prédéterminée stockée en mémoire, à partir de laquelle la mission prévue pourra être reprise.  In the event of loss of data link between the unmanned aircraft and its ground controller, the flight management computer FMS 60 can be programmed to request from the lateral flight plan tracing system 65, from a profile vertical and speed flight, a list of "D-Fix" waypoints and / or turning points defining a flight plan to join a predetermined fallback position stored in memory, from which the planned mission can be resumed .
La figure 21 montre le schéma d'un dispositif embarqué de rejointe automatique par un aéronef de positions prédéterminées dans un contexte sécuritaire. Celui-ci comporte un automate EAS 68 de mise en œuvre d'une manœuvre automatique de rejointe d'une position prédéterminée prenant en main les contrôles du calculateur de gestion du vol FMS 60 et de l'équipement de pilotage automatique FG/C 62 sous la requête d'un équipement SSS 67 de détection des intrusions et des événements se déroulant à bord et allant à rencontre de la sécurité de l'aéronef. L'automate EAS 68 est programmé pour, lorsqu'il prend le contrôle de l'aéronef : FIG. 21 shows the diagram of an on-board automatic joining device by an aircraft of predetermined positions in a security context. This includes an EAS 68 automaton for implementing an automatic maneuver to rejoin a position predetermined taking control of the flight management computer FMS 60 and the autopilot equipment FG / C 62 under the request of SSS 67 equipment for detecting intrusions and on-board events occurring safety of the aircraft. The EAS 68 controller is programmed to, when it takes control of the aircraft:
- - une mise à contribution du système de traçage d'un plan de vol latéral TRS 65 et d'un système de choix d'un aéroport de déroutement AS 60 pour les choix d'un aéroport de repli, accessible et compatible avec la menace détectée par l'équipement SSS 67 et d'un point de passage et/ou tournant "Waypoint" également accessible en entrée d'une approche de cet aéroport, conforme à une procédure officielle publiée,  - - use of the TRS 65 lateral flight plan tracking system and an AS 60 diversion airport choice system for the choice of a fallback airport, accessible and compatible with the threat detected by SSS 67 equipment and a waypoint and / or turning point "Waypoint" also accessible when entering an approach to this airport, in accordance with an official published procedure,
- rétablissement par le calculateur de gestion du vol FMS 60, d'un profil de vol vertical et de vitesse pour la rejointe du "Waypoint" donnant accès à l'aéroport de repli,  - restoration by the FMS 60 flight management computer, of a vertical flight and speed profile for joining the "Waypoint" giving access to the fallback airport,
- une nouvelle mise à contribution du système de traçage d'un plan de vol latéral TRS 65 pour la détermination d'un plan de vol temporaire de rejointe du point de passage et/ou tournant "Waypoint" d'accès en approche de l'aéroport de repli, et  - a new contribution to the tracing system for a lateral flight plan TRS 65 for the determination of a temporary flight plan joining the waypoint and / or turning "Waypoint" of access when approaching the fall-back airport, and
- rémission des consignes permettant au FG/C 62 de faire suivre à l'aéronef des trajectoires conformes au du plan de vol temporaire validé.  - remission of the instructions allowing the FG / C 62 to make the aircraft follow trajectories in accordance with the validated temporary flight plan.
Le procédé de traçage de plan de vol latéral qui vient d'être décrit permet de déterminer au sol, lors de la préparation d'une mission militaire ou de sécurité civile, de manière automatique, les zones dans lesquelles un aéronef peut évoluer compte tenu de ses performances et des marges de sécurité requises. En fonction de la configuration de ces zones, l'opérateur au sol peut décider de déplacer les points de passage et/ou tournants "D-Fix" obtenus ou de modifier les altitudes de passage en ces points "D-Fix" pour prendre en compte dans le plan de vol, des contraintes ignorées du processus de traçage. Une fois le plan de vol finalisé, il peut être chargé à bord de l'aéronef comme n'importe quel plan de vol avec les moyens existants (lien de donnée, mémoire de préparation de mission, etc.).  The method of tracing a lateral flight plan which has just been described makes it possible to determine on the ground, during the preparation of a military or civil security mission, automatically, the zones in which an aircraft can operate taking into account its performance and the required safety margins. Depending on the configuration of these zones, the ground operator can decide to move the crossing points and / or turning "D-Fix" obtained or to modify the crossing altitudes at these "D-Fix" points to take into account account in the flight plan, constraints ignored in the tracing process. Once the flight plan is finalized, it can be loaded on board the aircraft like any flight plan with existing means (data link, mission preparation memory, etc.).

Claims

REVENDICATIONS
1. Procédé de détermination du profil horizontal d'une route de plan de vol d'aéronef menant d'un point de départ à un point de destination, respectant des profils verticaux de vol et de vitesse imposés (30, 33, 50) au départ et/ou à l'arrivée et tenant compte du relief et de zones à survol réglementé, caractérisé en ce qu'il comporte les étapes suivantes : 1. Method for determining the horizontal profile of an aircraft flight plan route leading from a starting point to a destination point, respecting the imposed vertical flight and speed profiles (30, 33, 50) at departure and / or arrival and taking into account the relief and areas with regulated overflight, characterized in that it comprises the following stages:
- élaboration de deux cartes de distances curvilignes (figures 7, 8, 9) couvrant une zone d'évolution contenant les points de départ (10) et de destination (1 1 ) et renfermant un même ensemble (3) d'obstacles à contourner prenant en compte le relief, les zones à survol réglementé et les profils verticaux de vol et de vitesse imposés (30, 33, 50) au départ et/ou à l'arrivée, la première ayant le point de départ pour origine des mesures de distance et la deuxième, le point de destination pour origine des mesures de distance,  - development of two curvilinear distance maps (Figures 7, 8, 9) covering an evolution zone containing the starting (10) and destination (1 1) points and containing the same set (3) of obstacles to be circumvented taking into account the relief, the areas with regulated overflight and the vertical profiles of flight and speed imposed (30, 33, 50) at the start and / or at the arrival, the first having the starting point for origin of the measurements of distance and the second, the destination point for the origin of the distance measurements,
- élaboration d'une troisième carte de distances curvilignes par sommation, pour chacun de ses points, des distances curvilignes qui leur sont affectées dans les première et deuxième cartes de distances curvilignes,  - development of a third curvilinear distance map by summing, for each of its points, the curvilinear distances assigned to them in the first and second curvilinear distance maps,
- repérage dans la troisième carte de distances curvilignes, d'un ensemble connexe (7) de points iso-distances formant un enchaînement de parallélogrammes (8, 9) et/ou de points reliant les points de départ (10) et de destination (20),  - location in the third map of curvilinear distances, of a related set (7) of iso-distance points forming a chain of parallelograms (8, 9) and / or points connecting the starting points (10) and destination ( 20),
- sélection, dans l'ensemble connexe (7) repéré de points isodistances, d'une suite (15) de points consécutifs allant du point de départ (10) au point de destination (20) en passant par des diagonales de ses parallélogrammes (8, 9), suite (15) dite trajet direct,  - selection, in the related set (7) identified of isodistance points, of a series (15) of consecutive points going from the starting point (10) to the destination point (20) passing by diagonals of its parallelograms ( 8, 9), continuation (15) called direct path,
- approximation de la suite (15) de points du trajet direct par une chaîne de segments droits (30, 31 , 32) respectant un seuil arbitraire d'écartement maximum par rapport aux points de la suite (15) et un seuil arbitraire d'écartement latéral minimum par rapport à l'ensemble (3) d'obstacles à contourner, et  - approximation of the sequence (15) of points on the direct path by a chain of straight segments (30, 31, 32) respecting an arbitrary threshold of maximum separation from the points of the sequence (15) and an arbitrary threshold of minimum lateral spacing with respect to the set (3) of obstacles to be circumvented, and
- choix des points (151 , 152, 153, 154) des jonctions intermédiaires des segments droits en tant que points de passage ou tournants du plan de vol. - choice of the points (151, 152, 153, 154) of the intermediate junctions of the straight segments as waypoints or turning points of the flight plan.
2. Procédé selon la revendication 1 , caractérisé en ce que, lorsqu'il n'y a qu'un profil vertical de vol et de vitesse imposé au départ, la première carte de distances curvilignes (figure 7) ayant le point de départ (10) pour origine des mesures de distance est élaborée en tenant compte des contraintes statiques dues au relief et aux zones à survol réglementé et de la contrainte dynamique due au profil vertical de vol et de vitesse imposé au départ tandis que la deuxième carte de distances curvilignes ayant le point de destination comme origine des mesures de distance est élaborée à partir de l'ensemble des obstacles à contourner apparus dans la première carte de distances curvilignes. 2. Method according to claim 1, characterized in that, when there is only a vertical profile of flight and speed imposed at the start, the first map of curvilinear distances (FIG. 7) having the starting point ( 10) Origin of distance measurements is developed taking into account the static constraints due to the relief and the areas with regulated overflight and the dynamic constraint due to the vertical profile of flight and speed imposed at the start while the second map of curvilinear distances having the point of destination as the origin of the distance measurements is developed from all the obstacles to be circumvented which appeared in the first map of curvilinear distances.
3. Procédé selon la revendication 1 , caractérisé en ce que, lorsqu'il n'y a qu'un profil vertical de vol et de vitesse imposé à l'arrivée, la deuxième carte de distances curvilignes (figure 8) ayant le point de destination (20) pour origine des mesures de distance est élaborée en tenant compte des contraintes statiques dues au relief et aux zones à survol réglementé et de la contrainte dynamique due au profil vertical de vol et de vitesse imposé à l'arrivée tandis que la première carte de distances curvilignes ayant le point de départ comme origine des mesures de distance est élaborée à partir de l'ensemble des obstacles à contourner apparus dans la deuxième carte de distances curvilignes. 3. Method according to claim 1, characterized in that, when there is only a vertical profile of flight and speed imposed on arrival, the second map of curvilinear distances (Figure 8) having the point of destination (20) for the origin of the distance measurements is developed taking into account the static constraints due to the relief and the areas with regulated overflight and the dynamic constraint due to the vertical profile of flight and speed imposed on arrival while the first map of curvilinear distances having the starting point as the origin of the distance measurements is produced from all the obstacles to be circumvented which appeared in the second map of curvilinear distances.
4. Procédé selon la revendication 1 , caractérisé en ce que, lorsqu'il y a des profils verticaux de vol et de vitesse (30, 33) imposés au départ et à l'arrivée, les première et deuxième cartes de distances curvilignes sont élaborées à partir d'un ensemble (3) d'obstacles à contourner figurant dans deux ébauches de ces cartes de distances curvilignes : 4. Method according to claim 1, characterized in that, when there are vertical flight and speed profiles (30, 33) imposed at the start and at the arrival, the first and second maps of curvilinear distances are produced from a set (3) of obstacles to be circumvented appearing in two drafts of these curvilinear distance maps:
- une ébauche (figure 7) de la première carte de distances curvilignes ayant le point de départ (10) pour origine des mesures de distance élaborée en tenant compte des contraintes statiques dues au relief et aux zones à survol réglementé et de la contrainte dynamique due au profil vertical de vol et de vitesse (30) imposé au départ, et - une ébauche (figure 8) de la deuxième carte de distances curvilignes ayant le point de destination (20) pour origine des mesures de distance étant élaborée en tenant compte des contraintes statiques dues au relief et aux zones à survol réglementé et de la contrainte dynamique due au profil vertical de vol et de vitesse (33) imposé à l'arrivée. - a draft (figure 7) of the first curvilinear distance map having the starting point (10) for the origin of the distance measurements developed taking into account the static constraints due to the relief and to the areas with regulated overflight and the dynamic constraint due the vertical flight and speed profile (30) imposed at the start, and - a draft (figure 8) of the second curvilinear distance map having the destination point (20) for the origin of the distance measurements being developed taking into account the static constraints due to the relief and to the areas with regulated overflight and the dynamic constraint due to the vertical flight and speed profile (33) imposed on arrival.
5. Procédé selon la revendication 1 , caractérisé en ce que l'ensemble (3) des obstacles à contourner pris en compte dans les cartes de distances curvilignes est complété par les points (2, 2') des première et deuxième cartes (figures 7 et 8) affectés d'estimations de distance curviligne présentant des discontinuités par rapport à celles affectées à des points du proche voisinage. 5. Method according to claim 1, characterized in that the set (3) of obstacles to be circumvented taken into account in the maps of curvilinear distances is supplemented by the points (2, 2 ') of the first and second maps (Figures 7 and 8) affected by curvilinear distance estimates having discontinuities with respect to those assigned to points in the near vicinity.
6. Procédé selon la revendication 1 , caractérisé en ce que l'ensemble (3) des obstacles à contourner pris en compte dans les cartes de distances curvilignes est complété par des marges latérales de sécurité (6) fonction des capacités de virage à plat de l'aéronef dans sa configuration du moment, en approche du relief et/ou de la zone à survol réglementé considéré, résultant du suivi du profil vertical de vol et de vitesse imposé (30, 31 , 32, 33). 6. Method according to claim 1, characterized in that the set (3) of obstacles to be circumvented taken into account in the maps of curvilinear distances is supplemented by lateral safety margins (6) depending on the flat turning capacities of the aircraft in its configuration of the moment, approaching the relief and / or the regulated overflight zone considered, resulting from the monitoring of the vertical flight profile and of the imposed speed (30, 31, 32, 33).
7. Procédé selon la revendication 6, caractérisé en ce que les marges latérales de sécurité (6) ajoutées à l'ensemble des obstacles répertoriés à contourner sont déterminées à partir d'une carte de distances curvilignes ayant l'ensemble d'obstacles à contourner comme origine des mesures de distance. 7. Method according to claim 6, characterized in that the lateral safety margins (6) added to the set of listed obstacles to be circumvented are determined from a curvilinear distance map having the set of obstacles to be circumvented as the origin of distance measurements.
8. Procédé selon la revendication 6, caractérisé en ce que l'épaisseur locale d'une marge latérale de sécurité (6, 41 ) tient compte du vent local. 8. Method according to claim 6, characterized in that the local thickness of a lateral safety margin (6, 41) takes into account the local wind.
9. Procédé selon la revendication 6, caractérisé en ce que l'épaisseur locale d'une marge latérale de sécurité (6, 41 ) tient compte du changement de cap nécessaire pour contourner un relief et/ou une zone à survol réglementée. 9. Method according to claim 6, characterized in that the local thickness of a lateral safety margin (6, 41) takes account of the change of course necessary to bypass a terrain and / or a restricted overflight area.
10. Procédé selon la revendication 6, caractérisé en ce que l'épaisseur locale d'une marge latérale de sécurité (6, 41 ) correspond au rayon minimal (R) de virage à plat autorisé pour l'aéronef dans la configuration du moment. 10. Method according to claim 6, characterized in that the local thickness of a lateral safety margin (6, 41) corresponds to the minimum radius (R) of flat turn authorized for the aircraft in the configuration of the moment.
1 1. Procédé selon la revendication 1 , caractérisé en ce que le seuil d'écartement maximum de la chaîne de segments droits par rapport à la suite de points du trajet direct est de l'ordre d'un demi-rayon minimal (R) de virage à plat autorisé pour l'aéronef dans sa configuration du moment. 1 1. Method according to claim 1, characterized in that the maximum separation threshold of the chain of straight segments with respect to the series of points of the direct path is of the order of a minimum half-radius (R) flat turn allowed for the aircraft in its current configuration.
12. Procédé selon la revendication 1 , caractérisé en ce que les cartes de distances curvilignes sont élaborées au moyen d'une transformée de distance par propagation. 12. Method according to claim 1, characterized in that the curvilinear distance maps are produced by means of a distance transform by propagation.
13. Procédé selon la revendication 1 , caractérisé en ce que l'approximation de la suite (15) de points du trajet direct par un enchaînement de segments rectilignes (30, 31 , 32) est obtenue par une construction progressive au cours de laquelle le point de départ (10) ou respectivement de destination (20) du trajet direct est pris pour origine d'un premier segment que l'on fait grandir en ajoutant un par un des points consécutifs tant qu'il ne pénètre pas dans l'ensemble (40, 41 ) des obstacles à contourner et que son écart par rapport aux points du trajet direct qu'il court-circuite respecte le seuil arbitraire d'écartement maximum admis, d'autres segments rectilignes construits de la même manière étant ajoutés à la suite tant que le point de destination ou respectivement de départ du trajet direct n'est pas atteint. 13. Method according to claim 1, characterized in that the approximation of the series (15) of points of the direct path by a series of rectilinear segments (30, 31, 32) is obtained by a progressive construction during which the point of departure (10) or respectively of destination (20) of the direct path is taken as the origin of a first segment which is made to grow by adding one by one of the consecutive points as long as it does not penetrate into the whole (40, 41) of the obstacles to be circumvented and that its deviation from the points of the direct path that it short-circuits respects the arbitrary threshold of maximum permitted separation, other rectilinear segments constructed in the same way being added to the continued as long as the point of destination or respectively of the start of the direct journey is not reached.
14. Procédé selon la revendication 1 , caractérisé en ce que l'approximation de la suite (15) de points du trajet direct par un enchaînement de segments rectilignes est obtenue par une construction dichotomique au cours de laquelle le point de départ et le point de destination du trajet direct sont initialement reliés par un segment rectiligne remplacé, dès qu'il pénètre dans l'ensemble des obstacles à contourner ou que son écart par rapport aux points du trajet direct qu'il court-circuite dépasse le seuil arbitraire d'écartement maximum admis, par un enchaînement de deux segments rectilignes se rejoignant au point du trajet direct le plus à l'écart parmi ceux qu'il court-circuite, chaque nouveau segment étant à son tour remplacé par un enchaînement de deux nouveaux segments se joignant au point du trajet direct le plus à l'écart parmi les points court-circuités dès qu'il pénètre dans l'ensemble des obstacles à contourner ou que son écart par rapport aux points du trajet direct qu'il court-circuite dépasse le seuil arbitraire d'écartement maximum admis. 14. Method according to claim 1, characterized in that the approximation of the series (15) of points of the direct path by a chain of rectilinear segments is obtained by a dichotomous construction during which the starting point and the point of direct route destination are initially connected by a straight segment replaced, as soon as it enters all of the obstacles to be circumvented or when its deviation from the points of the direct path that it short-circuits exceeds the arbitrary threshold of maximum permitted separation, by a sequence of two straight segments joining at the point of the most distant direct path among those which it short-circuits, each new segment being in turn replaced by a chain of two new segments joining at the point of the most distant direct path among the points short-circuited as soon as it enters all of the obstacles to be circumvented or when its deviation from the points of the direct path that it short-circuits exceeds the arbitrary threshold of maximum permitted separation.
15. Procédé selon la revendication 1 caractérisé en ce qu'il est mis en œuvre dans un système de rejointe d'un aéroport de repli en cas de panne moteur (figure 18). 15. The method of claim 1 characterized in that it is implemented in a joining system of a fallback airport in the event of an engine failure (Figure 18).
1 6. Procédé selon la revendication 1 , caractérisé en ce qu'il est mis en œuvre dans un système de gestion des discontinuités de plan de vol (figure 19). 1 6. Method according to claim 1, characterized in that it is implemented in a flight plan discontinuity management system (Figure 19).
17. Procédé selon la revendication 1 , caractérisé en ce qu'il est mis en œuvre dans un système de rejointe automatique de positions prédéterminées pour aéronef sans pilote (figure 20). 17. The method of claim 1, characterized in that it is implemented in an automatic joining system of predetermined positions for unmanned aircraft (Figure 20).
18. Procédé selon la revendication 1 , caractérisé en ce qu'il est mis en œuvre, dans un cadre sécuritaire, dans un système de rejointe automatique de positions prédéterminées pour aéronef piloté hors de contrôle (figure 21 ). 18. The method of claim 1, characterized in that it is implemented, in a safe environment, in an automatic joining system of predetermined positions for aircraft piloted out of control (Figure 21).
19. Procédé selon la revendication 1 , caractérisé en ce qu'il est mis en œuvre lors de la préparation de missions militaires ou de sécurité civile. 19. The method of claim 1, characterized in that it is implemented during the preparation of military or civil security missions.
20. Procédé selon la revendication 1 , caractérisé en ce qu'il est mis en œuvre au cours d'un vol, lors d'une requête "Dir-to" de rejointe d'un point géographique faite par l'équipage au calculateur de gestion du vol de l'aéronef.  20. The method of claim 1, characterized in that it is implemented during a flight, during a "Dir-to" request to rejoin a geographical point made by the crew to the computer. flight management of the aircraft.
EP06819557A 2005-12-07 2006-11-16 Method of determining the horizontal profile of a flight plan complying with a prescribed vertical flight profile Not-in-force EP1958176B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0512420A FR2894367B1 (en) 2005-12-07 2005-12-07 METHOD FOR DETERMINING THE HORIZONTAL PROFILE OF A FLIGHT PLAN RESPECTING A VERTICAL FLIGHT PROFILE IMPOSE
PCT/EP2006/068581 WO2007065781A1 (en) 2005-12-07 2006-11-16 Method of determining the horizontal profile of a flight plan complying with a prescribed vertical flight profile

Publications (2)

Publication Number Publication Date
EP1958176A1 true EP1958176A1 (en) 2008-08-20
EP1958176B1 EP1958176B1 (en) 2009-04-08

Family

ID=36992716

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819557A Not-in-force EP1958176B1 (en) 2005-12-07 2006-11-16 Method of determining the horizontal profile of a flight plan complying with a prescribed vertical flight profile

Country Status (6)

Country Link
US (1) US8090526B2 (en)
EP (1) EP1958176B1 (en)
AT (1) ATE428161T1 (en)
DE (1) DE602006006213D1 (en)
FR (1) FR2894367B1 (en)
WO (1) WO2007065781A1 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906921B1 (en) 2006-10-10 2010-08-13 Thales Sa METHOD FOR FORMING A 3D EMERGENCY TRACK FOR AN AIRCRAFT AND DEVICE FOR IMPLEMENTING THE SAME
US20090063032A1 (en) * 2007-08-30 2009-03-05 Honeywell International, Inc. Methods, systems, and apparatus for routing a vehicle to avoid an adverse condition
FR2920580B1 (en) * 2007-08-31 2010-09-03 Thales Sa METHOD FOR SIMPLIFYING THE DISPLAY OF STATIONARY ELEMENTS OF AN EMBEDDED DATA BASE
US7885764B2 (en) * 2007-09-06 2011-02-08 GM Global Technology Operations LLC Method for adaptively constructing and revising road maps
FR2931265B1 (en) * 2008-05-13 2015-12-11 Thales Sa METHOD AND DEVICE FOR AIDING THE MAINTENANCE OF A SYSTEM
EP2286182B1 (en) 2008-05-14 2018-07-25 Elbit Systems Ltd. Terrain awareness warning system forward looking protection envelope switching
FR2932279B1 (en) 2008-06-10 2011-08-19 Thales Sa DEVICE AND METHOD FOR MONITORING OBSTRUCTIONS IN THE ENVIRONMENT CLOSE TO AN AIRCRAFT.
FR2932306B1 (en) * 2008-06-10 2010-08-20 Thales Sa METHOD AND DEVICE FOR AIDING NAVIGATION FOR AN AIRCRAFT WITH RESPECT TO OBSTACLES
FR2935481B1 (en) 2008-09-02 2011-02-11 Thales Sa METHOD FOR MONITORING ATMOSPHERIC AREAS FOR AN AIRCRAFT
FR2937453B1 (en) 2008-10-17 2010-10-22 Thales Sa DEVICE FOR CALCULATING A FLIGHT PLAN OF AN AIRCRAFT
US8493412B2 (en) * 2008-10-31 2013-07-23 Honeywell Internatioal Inc. Methods and systems for displaying sensor-based images of an external environment
CN101465066B (en) * 2009-01-15 2011-07-27 北京航空航天大学 Method for obtaining airplane vertical occupation ratio
US8515596B2 (en) * 2009-08-18 2013-08-20 Honeywell International Inc. Incremental position-based guidance for a UAV
US8477062B1 (en) * 2009-09-29 2013-07-02 Rockwell Collins, Inc. Radar-based system, module, and method for presenting steering symbology on an aircraft display unit
JP5696987B2 (en) * 2010-01-13 2015-04-08 独立行政法人 宇宙航空研究開発機構 Turbulence avoidance operation support device
US8918271B2 (en) * 2010-04-22 2014-12-23 Bae Systems Plc Flight planning methods and systems
FR2963120B1 (en) * 2010-07-20 2013-08-30 Airbus Operations Sas METHOD AND APPARATUS FOR AUTOMATICALLY MANAGING A LATERAL TRAJECTORY FOR AN EMERGENCY LOWERING OF AN AIRCRAFT
CN102506872B (en) * 2011-11-28 2015-02-11 中国电子科技集团公司第五十四研究所 Method for judging flight route deviation
US20130226373A1 (en) * 2012-02-27 2013-08-29 Ge Aviation Systems Llc Methods for in-flight adjusting of a flight plan
JP2013246553A (en) * 2012-05-24 2013-12-09 Toyota Motor Corp Track planning device, track planning method and track planning program
US20140024999A1 (en) 2012-07-17 2014-01-23 Elwha LLC, a limited liability company of the State of Delaware Unmanned device utilization methods and systems
US9254363B2 (en) 2012-07-17 2016-02-09 Elwha Llc Unmanned device interaction methods and systems
FR2994010B1 (en) * 2012-07-27 2018-09-07 Thales DEVICE AND METHOD FOR MANAGING NAVIGATION POINT JOINT STRATEGY
US8843303B1 (en) * 2012-12-17 2014-09-23 Rockwell Collins, Inc. Risk-aware contingency flight re-planner system and related method
FR3007840B1 (en) * 2013-06-28 2015-07-31 Dassault Aviat METHOD FOR DETECTING A FAILURE OF AT LEAST ONE SENSOR PRESENTED ON AN AIRCRAFT USING AN ANEMO-INERTIAL LOOP AND ASSOCIATED SYSTEM
US9243910B1 (en) * 2013-08-27 2016-01-26 Rockwell Collins, Inc. Route image generating system, device, and method
CN105247593B (en) 2014-04-17 2017-04-19 深圳市大疆创新科技有限公司 Flight control for flight-restricted regions
US9483052B2 (en) * 2014-06-12 2016-11-01 The Boeing Company Aircraft departure profile generation compliant with noise abatement limits
FR3024231B1 (en) * 2014-07-28 2019-12-20 Airbus Operations METHOD AND DEVICE FOR DETERMINING AN OPERATIONAL DISTANCE FROM AN INDETERMINALLY TERMINATED SEGMENT OF AN AIRCRAFT FLIGHT PLAN.
CN104239635B (en) * 2014-09-16 2017-06-23 武汉中原电子集团有限公司 Seaway domain center line automatic drafting method on a kind of inland river electronic chart
CN104596516A (en) * 2014-11-24 2015-05-06 中国海洋大学 Unmanned aerial vehicle coverage flight path planning based on dynamic newly-added adjacent area
JP6012777B2 (en) * 2015-01-16 2016-10-25 富士重工業株式会社 Via point setting device and via point setting program
US9683864B2 (en) * 2015-02-24 2017-06-20 168 Productions, LLC System for providing aircraft landing instructions
EP3164775B1 (en) 2015-03-31 2023-03-22 SZ DJI Technology Co., Ltd. Open platform for flight restricted region
EP3171133B1 (en) * 2015-11-19 2020-03-11 Sikorsky Aircraft Corporation Kinematic motion planning with regional planning constraints
US10134292B2 (en) * 2015-12-07 2018-11-20 Airbus Group India Private Limited Navigating and guiding an aircraft to a reachable airport during complete engine failure
US10121383B2 (en) * 2016-01-26 2018-11-06 Northrop Grumman Systems Corporation Terrain profile system
US9645581B1 (en) * 2016-02-04 2017-05-09 Zerotech (Shenzhen) Intelligence Robot Co., Ltd Method and apparatus for navigating unmanned aerial vehicle
US9834306B2 (en) * 2016-02-09 2017-12-05 Abdullah Almasoud Emergency unmanned aerial vehicle and method for deploying an unmanned aerial vehicle
ES2919138T3 (en) * 2016-06-21 2022-07-22 Ericsson Telefon Ab L M Unmanned aerial vehicle route direction methods
US10710710B2 (en) 2016-10-27 2020-07-14 International Business Machines Corporation Unmanned aerial vehicle (UAV) compliance using standard protocol requirements and components to enable identifying and controlling rogue UAVS
CN109661694B (en) * 2017-02-28 2022-03-29 深圳市大疆创新科技有限公司 Method and equipment for controlling flight of unmanned aerial vehicle, and method and equipment for generating flight-limiting zone
CN107291101A (en) * 2017-07-28 2017-10-24 江苏理工学院 A kind of unmanned plane during flying autocontrol method, storage device and unmanned plane
FR3074349B1 (en) * 2017-11-24 2020-11-13 Dassault Aviat AIRCRAFT MISSION CALCULATION SYSTEM, INCLUDING AN AIRCRAFT TRACK CALCULATION ENGINE DURING THE MISSION AND ASSOCIATED PROCESS
US20190236966A1 (en) * 2018-01-31 2019-08-01 General Electric Company Centralized registry for unmanned vehicle traffic management
FR3078583B1 (en) * 2018-03-02 2020-03-13 Airbus Defence And Space Sas SYSTEMS AND METHODS FOR AVOIDING COLLISIONS BETWEEN AIRCRAFT OR VESSELS
CN109344513B (en) * 2018-10-12 2022-11-11 厦门市美亚柏科信息股份有限公司 Shortest route planning method, system and computer storage medium
US20200132467A1 (en) * 2018-10-30 2020-04-30 Navico Holding As Systems and associated methods for generating navigation charts and navigable routes in an open environment
CN109798909A (en) * 2019-02-01 2019-05-24 安徽达特智能科技有限公司 A kind of method of global path planning
US11551562B2 (en) * 2020-05-14 2023-01-10 The Boeing Company Efficient flight planning for regions with high elevation terrain
CN112037254B (en) * 2020-08-11 2024-07-12 浙江大华技术股份有限公司 Target tracking method and related device
CN112180959A (en) * 2020-09-24 2021-01-05 上海理工大学 All-dimensional flying-around track planning method for spacecraft
CN112148033B (en) * 2020-10-22 2024-06-14 广州极飞科技股份有限公司 Unmanned aerial vehicle route determining method, device, equipment and storage medium
CN112697135B (en) * 2020-12-31 2022-03-18 广州极飞科技股份有限公司 Path shortening method and device, unmanned equipment and storage medium
DE102021203809B4 (en) * 2021-03-16 2023-05-04 Continental Autonomous Mobility Germany GmbH Driving course estimation in an environment model
DE102021106868A1 (en) * 2021-03-19 2022-09-22 Volocopter Gmbh Method for planning the operation of an aircraft, control unit for an aircraft and aircraft with such
CN114035572B (en) * 2021-10-09 2023-08-01 凤凰智能电子(杭州)有限公司 Obstacle avoidance tour method and system for mowing robot
CN114636417B (en) * 2022-05-23 2022-09-02 珠海翔翼航空技术有限公司 Aircraft forced landing path planning method, system and equipment based on image recognition
FR3137981A1 (en) * 2022-07-18 2024-01-19 Airbus METHOD AND SYSTEM FOR GENERATING THE LATERAL TRAJECTORY OF AN AIRCRAFT

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862373A (en) * 1987-05-13 1989-08-29 Texas Instruments Incorporated Method for providing a collision free path in a three-dimensional space
US4821990A (en) 1987-12-11 1989-04-18 Porter Toney L Flashlight holder
DE19604931A1 (en) * 1996-02-10 1997-08-14 Nfs Navigations Und Flugfuehru Procedure for correcting the flight sequence of an aircraft
FR2749686B1 (en) * 1996-06-07 1998-09-11 Sextant Avionique METHOD FOR THE VEHICLE LATERAL AVOIDANCE OF A MOBILE AREA
US6192314B1 (en) * 1998-03-25 2001-02-20 Navigation Technologies Corp. Method and system for route calculation in a navigation application
US6259988B1 (en) * 1998-07-20 2001-07-10 Lockheed Martin Corporation Real-time mission adaptable route planner
US6266610B1 (en) 1998-12-31 2001-07-24 Honeywell International Inc. Multi-dimensional route optimizer
US7133771B1 (en) * 2002-08-29 2006-11-07 America Online, Inc. Automated route determination to avoid a particular maneuver
US7474960B1 (en) * 2002-12-30 2009-01-06 Mapquest, Inc. Presenting a travel route
FR2860292B1 (en) * 2003-09-26 2005-12-02 Thales Sa DISTANCE ESTIMATING METHOD FOR A MOBILE SUBJECT TO DYNAMIC TRAVEL CONSTRAINTS
FR2864312B1 (en) * 2003-12-19 2006-07-14 Thales Sa SIDE MANEUVERABLE CARD FOR MOBILE AND METHOD OF OBTAINING SAME
US7447593B2 (en) * 2004-03-26 2008-11-04 Raytheon Company System and method for adaptive path planning
FR2868835B1 (en) 2004-04-09 2006-11-17 Thales Sa METHOD FOR SELECTING, FOR AN AIRCRAFT, A POINT OF ACCESS TO A FREE ZONE OF LATERAL EVOLUTION
FR2871878B1 (en) 2004-06-18 2006-09-01 Thales Sa METHOD FOR SIGNALING SIDE MARGINS OF MANEUVER EXISTING ON EITHER OF THE TRACK OF THE FLIGHT PLAN OF AN AIRCRAFT
FR2875899B1 (en) 2004-09-24 2006-12-01 Thales Sa DEVICE AND METHOD FOR SIGNALING SIDE MARGINS OF MANEUVER
FR2877721B1 (en) * 2004-11-10 2007-01-19 Thales Sa CARTOGRAPHIC REPRESENTATION DEVICE FOR MINIMUM VERTICAL SPEEDS
US7194353B1 (en) * 2004-12-03 2007-03-20 Gestalt, Llc Method and system for route planning of aircraft using rule-based expert system and threat assessment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007065781A1 *

Also Published As

Publication number Publication date
WO2007065781A1 (en) 2007-06-14
EP1958176B1 (en) 2009-04-08
US8090526B2 (en) 2012-01-03
FR2894367A1 (en) 2007-06-08
DE602006006213D1 (en) 2009-05-20
US20080306680A1 (en) 2008-12-11
FR2894367B1 (en) 2008-02-29
ATE428161T1 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
EP1958176B1 (en) Method of determining the horizontal profile of a flight plan complying with a prescribed vertical flight profile
EP2178065B1 (en) Device for calculating an aircraft flight plan
EP2375299B1 (en) Flight management system for an unmanned aircraft
EP2171702B1 (en) Method for generating a connectivity graph of the elements of an airport for taxiing assistance and related devices
US8082102B2 (en) Computing flight plans for UAVs while routing around obstacles having spatial and temporal dimensions
CA2796923C (en) Determining landing sites for aircraft
EP1738139A1 (en) Method for estimating an aircraft distance taking into account air navigation constraints
FR2892192A1 (en) METHOD FOR AIDING NAVIGATION FOR AN AIRCRAFT IN EMERGENCY SITUATION
EP3994678A1 (en) Method for determining the path of an unmanned aerial device and other associated methods
FR2887065A1 (en) METHOD AND SYSTEM FOR AIDING THE STEERING OF A LOW ALTITUDE FLYING AIRCRAFT
US11694557B2 (en) Integrating air and ground data collection for improved drone operation
FR3038750A1 (en) METHOD FOR INTEGRATING A NEW NAVIGATION SERVICE IN AN OPEN AIR ARCHITECTURE OPEN ARCHITECTURE SYSTEM OF A CLIENT-SERVER TYPE, IN PARTICULAR A FIM MANUFACTURING SERVICE
CN106781707A (en) A kind of path planning method for low latitude middle and long distance ferry flight
US11964669B2 (en) System, method, and computer program product for topological planning in autonomous driving using bounds representations
FR3002657A1 (en) METHOD FOR THE PREPARATION OF A VERTICAL TRACK PROFILE COMPRISING MULTIPLE LEVELS OF ALTITUDE
FR2991094A1 (en) DEVICE FOR FLIGHT MANAGEMENT OF AN AIRCRAFT ADAPTED TO CONTROL OF MULTI-TIME CONSTRAINTS AND CORRESPONDING METHOD
FR3023644A1 (en) METHOD FOR INSERTING A FLIGHT PLAN FLANGE IN A FLIGHT PLAN
EP4063794B1 (en) Method and system for calculating trajectory for landing an aircraft
CN111142555B (en) Airport unmanned aerial vehicle control area planning method based on collision risk
Besada et al. Drone flight planning for safe urban operations: UTM requirements and tools
FR3038751A1 (en) METHOD FOR INTEGRATING A CONSTRAINED ROAD OPTIMIZATION APPLICATION IN AN OPEN ARCHITECTURE AIRCRAFT SYSTEM OF CLIENT-TYPE SERVER
EP3770555B1 (en) Navigation based on a multi-agent diffusion
FR2994010A1 (en) DEVICE AND METHOD FOR MANAGING NAVIGATION POINT JOINT STRATEGY
EP4083966A1 (en) Method and system for calculating lateral trajectory of an aircraft
WO2020187880A1 (en) Determination of a shortened trajectory of a moving object travelling in a corridor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FRANCOIS, GILLES

Inventor name: MARTY, NICOLAS

Inventor name: BITAR, ELIAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006006213

Country of ref document: DE

Date of ref document: 20090520

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090808

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

26N No opposition filed

Effective date: 20100111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

BERE Be: lapsed

Owner name: THALES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090709

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181106

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006006213

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201027

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211108

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130