EP1954938B2 - Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids - Google Patents

Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids Download PDF

Info

Publication number
EP1954938B2
EP1954938B2 EP06807073.9A EP06807073A EP1954938B2 EP 1954938 B2 EP1954938 B2 EP 1954938B2 EP 06807073 A EP06807073 A EP 06807073A EP 1954938 B2 EP1954938 B2 EP 1954938B2
Authority
EP
European Patent Office
Prior art keywords
injection
sound
pressure
measuring
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06807073.9A
Other languages
German (de)
French (fr)
Other versions
EP1954938A1 (en
EP1954938B1 (en
Inventor
Juergen Abt
Ulrich Kuhn
Klaus Marx
Stefan Muelders
Bjoern Janetzky
Alexander Stratmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37387346&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1954938(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1954938A1 publication Critical patent/EP1954938A1/en
Publication of EP1954938B1 publication Critical patent/EP1954938B1/en
Application granted granted Critical
Publication of EP1954938B2 publication Critical patent/EP1954938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/001Measuring fuel delivery of a fuel injector

Definitions

  • the injected fuel causes pressure oscillations in the corresponding natural frequencies of the measuring volume, these natural frequencies depending on the geometric dimensions of the measuring volume.
  • many harmonics are usually excited, with several vibration modes are usually possible. This makes it difficult to filter the pressure sensor measuring signal, since the frequencies of the natural oscillations are partly in the range of the frequencies of the measuring signal.
  • this method does not take into account the change in the speed of sound due to the pressure increase. Especially with injection processes, which consist of up to five partial injections, such a measurement is not always possible with the necessary precision, which is necessary for the testing of modern injectors. Also, the calculation of the speed of sound from the induced pressure oscillations by the superimposed vibrations of different modes is not always possible with the required accuracy.
  • the method according to the invention with the features of claim 1 has the advantage that it is possible to determine very precisely both the injection quantity and the course of the injection, that is to say the injection rate, from the pressure curve.
  • the speed of sound is determined by emitting a sound pulse from a sound transducer into the measuring volume, which is reflected at the opposite, parallel base and in turn is received as an echo by the sound transducer. From the length of the measurement volume and the duration of the sound signal can be calculated directly the speed of sound. Because of the long running distance and thus large time, the measured variables are subject to a relatively small error.
  • the measured data of the pressure profile are stored with the aid of an electronic computer, which also makes direct further processing of the data possible.
  • the device not according to the invention has a sound transducer provided in the measuring volume, which at the same time serves as a sound generator and as a sound receiver. Since this eliminates a separate sound receiver, this arrangement is cheaper and it also eliminates the implementation of a signal cable, would otherwise be routed to the measurements of the sound receiver to the electronic computer.
  • FIG. 1 the measuring device is shown in a partially sectioned view.
  • a cylindrical measuring volume 1 with a wall 2 is completely filled with a test liquid, wherein the measuring volume 1 is completed on all sides.
  • the wall 2 has a first base area 102 and a second base area 202, which are connected by a cylindrical side wall 303, which has a longitudinal axis 4.
  • an injection valve 3 projects with its tip into the measuring volume 1, wherein the passage of the injection valve 3 is closed by the wall 2 liquid-tight.
  • the injection valve 3 has a valve body 7, in which in a bore 6, a piston-shaped valve needle 5 is arranged longitudinally displaceable.
  • test liquid flows from a pressure space 9 formed between the valve needle 5 and the wall of the bore 6 to the injection openings 12 and is injected from there into the measurement volume 1 until the injection openings 12 are closed again by the valve needle 5.
  • the injection of the test liquid takes place here with a high pressure, which may be more than 200 MPa depending on the injection valve used.
  • control valve 15 line 16 In the side wall 303 of the cylindrical wall 2 opens a connected to a control valve 15 line 16, can be derived by the test liquid from the measuring volume 1 in a not shown in the drawing leakage volume.
  • a holder 22 projects through the wall 2 into the measuring volume 1.
  • a pressure sensor 20 is arranged, which is connected via a signal line 24, which is led out of the measuring volume 1 in the holder 22 with an electronic computer 28, wherein the passage of the holder 22 is sealed by the wall 2 liquid-tight ,
  • the pressure sensor 20 is arranged in the median plane between the two base surfaces 102, 202 and thus has the same distance to both base surfaces 102, 202.
  • the signal representing the pressure supplied by the pressure sensor 20 can be read out and stored electronically.
  • the pressure sensor 20 is constructed on a piezo-based basis, for example, so that even rapid changes in pressure can be measured without significant delay.
  • a transducer 30 is arranged, which can both send sound signals and receive the associated echo.
  • the transmitted sound signal is reflected at the base surface 202 opposite the sound transducer 30 and thus passes twice the length of the measurement volume 1 before it is detected by the sound transducer 30 as an echo.
  • a separate sound receiver 31 is arranged on the base 202 with respect to the sound transducer 30. This allows two measurements of the speed of sound in a very short time interval: The speed of sound is determined on the one hand from the duration of the sound signal from the sound transducer 30 to the sound receiver 31.
  • the wall 2 of the measuring volume 2 can be regarded as inelastic in a good approximation and thus V can be regarded as constant.
  • V can be regarded as constant.
  • the speed of sound c depends on the pressure p in the measuring volume 1.
  • p v is the pressure before
  • p n is the pressure after injection.
  • the pressure in the measuring volume 1 increases. Liquids are virtually incompressible compared to gases, so that even a small increase in volume leads to a well-measurable pressure increase. It should be noted that the speed of sound depends on the pressure p and this in turn on the time t. Since the injection process is very short and usually completed in a period of 1 to 2 ms, the speed of sound during the injection can not be measured. Instead, c is measured before and after the injection and a linear relationship between the speed of sound c and the pressure p is assumed, which is a good approximation here. This can be used to solve the integral and determine the absolute quantity according to equation II.
  • the procedure is as follows: Into the measuring volume 1, in which the test liquid is located, the injection valve 3 injects a certain amount of liquid by a rapid longitudinal movement of the valve needle 5, through which the injection openings 12 are opened and closed again.
  • the pressure sensor 20 measures the pressure p (t) which is read out and stored by the computer 28 at a specific rate of, for example, 100 kHz.
  • equation III In order to determine the time course of the injection quantity dm (t) / dt and thus the injection rate r (t), equation III is used.
  • the measured values p (t) stored in the computer are converted into a sound velocity, so that the integral can be calculated according to equation III.
  • This provides a function of time t, which is then numerically differentiated, giving the injection rate r (t).
  • the speed of sound c is determined in a separate procedure.
  • equation (II) by integration over the pressure p, the injected quantity m is obtained.
  • FIG. 2 shows the time course of the pressure p (t) and its derivative dp (t) / dt as a function of time t in arbitrary units U.
  • an injector is used as used for direct-injection, auto-ignition internal combustion engines, this corresponds to fuel injection subdivided into a pilot or pilot injection and a subsequent main injection.
  • the evaluation according to equation III results in the injection rate r (t).
  • the measurement method together with the described measurement setup thus makes it possible to measure the pressure profile and to determine the speed of sound c under the current test conditions, from which the injection quantity and the injection rate can be determined.
  • the test liquid may be fuel or another liquid whose properties approximate the liquid used in normal use of the injector.
  • the measuring volume 1 does not have to be cylindrically shaped, but instead may also be cuboid or in another suitable shape, for example spherical.
  • the pressure sensor may in principle be mounted at any point in all forms of the measuring volume 1, but direct admission to the injected fuel should be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Method involves injection of liquid by the injection valve (3) in the measuring volume (1). The method also involves measurement of the pressure in the measuring volume by means of the pressure sensor (20) during the injection and recording these measuring values. The speed of sound is determined in the measuring volume before and after the injection. The method involves determination of the injected test liquid quantity from the pressure measuring values and the speed of sound dependent on pressure. An independent claim is included for measuring the injection quantity and the injection rate of an injection valve for liquids.

Description

Stand der TechnikState of the art

Bei der Fertigungs- und Funktionsprüfung von Kraftstoff-Einspritzkomponenten, wie beispielsweise von Einspritzventilen, Common-Rail-Injektoren und anderen Hochdruckeinspritzventilen, sind zur Mengenmessung verschiedene Prüfvorrichtungen und Prüfverfahren im Stand der Technik beschrieben. So ist beispielsweise aus der DE 100 64 511 A1 das Messkolbenprinzip bekannt, bei dem das Einspritzventil Kraftstoff in ein mit einem Prüfmedium gefülltes Messvolumen einspritzt. Der Druck im Messvolumen wird konstant gehalten, indem ein Messkolben durch die Einspritzmenge verdrängt wird. Aus der Verschiebung des Messkolbens kann dann unmittelbar die Einspritzmenge berechnet werden. Dieses Verfahren ist wegen der mechanischen Kolbenbewegung dynamisch begrenzt und kann dadurch die steigenden Anforderungen nach zeitlich hochaufgelöster Messung der Einspritzrate bei modernen Hochdruck-Einspritzsystemen für Brennkraftmaschinen, die pro Einspritzzyklus häufig mehrere Teileinspritzungen umfassen, nicht erfüllen.In manufacturing and functional testing of fuel injection components, such as injectors, common rail injectors, and other high pressure injectors, various prior art test devices and test methods are described for volume measurement. For example, from the DE 100 64 511 A1 The measuring piston principle is known in which the injection valve injects fuel into a measuring medium filled with a test medium. The pressure in the measuring volume is kept constant by displacing a volumetric flask by the injection quantity. From the displacement of the volumetric flask, the injection quantity can then be calculated directly. This method is dynamically limited because of the mechanical piston movement and thus can not meet the increasing demands for high-temporal measurement of the injection rate in modern high-pressure injection systems for internal combustion engines, which often comprise multiple partial injections per injection cycle.

Ein alternatives und genaues Verfahren, wie es beispielsweise in W. Zeuch: "Neue Verfahren zur Messung des Einspritzgesetzes und der Einspritzregelmäßigkeit von Diesel-Einspritzpumpen", Motortechnische Zeitschrift (MTZ) 22 (1961), S. 344 - 349 , beschrieben ist, ist das hydraulische Druckanstiegsverfahren (HDV). Hierbei spritzt das Einspritzventil ebenfalls in ein flüssigkeitsgefülltes Messvolumen ein, jedoch wird hier das Messvolumen konstant gehalten. Dadurch kommt es zu einem Druckanstieg im Messvolumen, was mit einem geeigneten Drucksensor gemessen wird. Moderne Drucksensoren auf Piezo-Basis zeichnen sich dabei durch eine sehr kurze Ansprechzeit aus, was zeitlich hochaufgelöste Messungen möglich macht. Aus dem zeitlichen Verlauf des Druckanstiegs lässt sich im Prinzip der Verlauf der Einspritzrate und die eingespritzte Menge berechnen.An alternative and accurate method, such as in W. Zeuch: "New methods for measuring the injection law and the injection uniformity of diesel injection pumps", Motortechnische Zeitschrift (MTZ) 22 (1961), pp 344-349 , is the hydraulic pressure increase method (HDV). Here, the injection valve also injects into a liquid-filled measuring volume, but here the measuring volume is kept constant. This leads to a pressure increase in the measuring volume, which is measured with a suitable pressure sensor. Modern piezo-based pressure sensors are characterized by a very short response time, which makes temporally high-resolution measurements possible. In principle, the course of the injection rate and the injected quantity can be calculated from the time course of the pressure rise.

In der Praxis wird dies jedoch durch eine Reihe von Faktoren erschwert: Im Messvolumen V kommt es durch den eingespritzten Kraftstoff zu Druckschwingungen in den entsprechenden Eigenfrequenzen des Messvolumens, wobei diese Eigenfrequenzen von den geometrischen Abmessungen des Messvolumens abhängen. Neben der Grundschwingung werden in der Regel auch viele Oberschwingungen angeregt, wobei in der Regel mehrere Schwingungsmoden möglich sind. Dies erschwert eine Filterung des Drucksensor-Messsignals, da die Frequenzen der Eigenschwingungen zum Teil im Bereich der Frequenzen des Messsignals liegen.In practice, however, this is made difficult by a number of factors: In the measuring volume V, the injected fuel causes pressure oscillations in the corresponding natural frequencies of the measuring volume, these natural frequencies depending on the geometric dimensions of the measuring volume. In addition to the fundamental vibration also many harmonics are usually excited, with several vibration modes are usually possible. This makes it difficult to filter the pressure sensor measuring signal, since the frequencies of the natural oscillations are partly in the range of the frequencies of the measuring signal.

Weiter wird eine genaue Messung des Absolutwerts der Einspritzmenge Δm dadurch erschwert, dass die Messgröße des Drucks erst auf die eingespritzte Flüssigkeitsmenge umgerechnet werden muss. Es gilt hierbei Δm = ρ ΔV = V ρ / K Δp

Figure imgb0001
wobei K der Kompressionsmodul ist, ρ die Dichte der Flüssigkeit und V das Volumen des Messvolumens. Da sowohl der Kompressionsmodul K als auch die Dichte ρ vom Druck abhängen, ist eine präzise Bestimmung der eingespritzten Menge und insbesondere des zeitlichen Verlaufs der Einspritzrate nur mit eingeschränkter Genauigkeit möglich.Furthermore, an accurate measurement of the absolute value of the injection quantity Δm is made more difficult by the fact that the measured variable of the pressure must first be converted to the amount of liquid injected. It applies here Dm = ρ .DELTA.V = V ρ / K Ap
Figure imgb0001
where K is the modulus of compression, ρ the density of the liquid and V the volume of the measurement volume. Since both the compression modulus K and the density ρ depend on the pressure, a precise determination of the injected quantity and in particular the time profile of the injection rate is only possible with limited accuracy.

In der DE 102 49 754 A1 wird vorgeschlagen, aus Druckschwingungen, die durch die Einspritzung im Messvolumen induziert werden, die Schallgeschwindigkeit zu berechnen und daraus den Kompressionsmodul zu bestimmen. Damit lässt sich aus der Druckänderung direkt die Einspritzrate berechnen.In the DE 102 49 754 A1 It is proposed to calculate the speed of sound from pressure oscillations induced by the injection in the measuring volume and to determine therefrom the compression modulus. This allows the injection rate to be calculated directly from the change in pressure.

Dieses Verfahren berücksichtigt jedoch nicht die Änderung der Schallgeschwindigkeit durch die Druckerhöhung. Gerade bei Einspritzvorgängen, die aus bis zu fünf Teileinspritzungen bestehen, ist so eine Messung nicht immer mit der nötigen Präzision möglich, die zur Prüfung von modernen Einspritzventilen nötig ist. Auch ist die Berechnung der Schallgeschwindigkeit aus den induzierten Druckschwingungen durch die überlagerten Schwingungen verschiedener Modi nicht immer mit der erforderlichen Genauigkeit möglich.However, this method does not take into account the change in the speed of sound due to the pressure increase. Especially with injection processes, which consist of up to five partial injections, such a measurement is not always possible with the necessary precision, which is necessary for the testing of modern injectors. Also, the calculation of the speed of sound from the induced pressure oscillations by the superimposed vibrations of different modes is not always possible with the required accuracy.

Offenbarung der ErfindungDisclosure of the invention

Das erfindungsgemäße Verfahren mit den Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass sich aus dem Druckverlauf sehr genau sowohl die Einspritzmenge als auch der Einspritzverlauf, also die Einspritzrate, sehr präzise bestimmen lässt.In contrast, the method according to the invention with the features of claim 1 has the advantage that it is possible to determine very precisely both the injection quantity and the course of the injection, that is to say the injection rate, from the pressure curve.

Durch das erfindungsgemäße Verfahren wird die Schallgeschwindigkeit dadurch ermittelt, dass ein Schallimpuls von einem Schallwandler in das Messvolumen abgegeben wird, der an der gegenüberliegenden, parallelen Grundfläche reflektiert und wiederum von dem Schallwandler als Echo empfangen wird. Aus der Länge des Messvolumens und der Laufzeit des Schallsignals lässt sich direkt die Schallgeschwindigkeit berechnen. Wegen der großen Laufstrecke und damit großen Zeit sind die Messgrößen mit einem relativ geringen Fehler behaftet.By means of the method according to the invention, the speed of sound is determined by emitting a sound pulse from a sound transducer into the measuring volume, which is reflected at the opposite, parallel base and in turn is received as an echo by the sound transducer. From the length of the measurement volume and the duration of the sound signal can be calculated directly the speed of sound. Because of the long running distance and thus large time, the measured variables are subject to a relatively small error.

In einer vorteilhaften Weiterbildung des Verfahrens werden die Messdaten des Druckverlaufs mit Hilfe eines elektronischen Rechners gespeichert, der auch eine direkte Weiterbearbeitung der Daten möglich macht.In an advantageous development of the method, the measured data of the pressure profile are stored with the aid of an electronic computer, which also makes direct further processing of the data possible.

Die nicht erfindungsgemäße Vorrichtung weist ein im Messvolumen vorgesehenen Schallwandler auf, der gleichzeitig als Schallgeber und als Schallempfänger dient. Da hierdurch ein separater Schallempfänger entfällt, ist diese Anordnung kostengünstiger und es entfällt darüber hinaus die Durchführung eines Signalkabels, über das sonst die Messwerte des Schallempfängers an den elektronischen Rechner geleitet werden müssten.The device not according to the invention has a sound transducer provided in the measuring volume, which at the same time serves as a sound generator and as a sound receiver. Since this eliminates a separate sound receiver, this arrangement is cheaper and it also eliminates the implementation of a signal cable, would otherwise be routed to the measurements of the sound receiver to the electronic computer.

Zeichnungdrawing

In der Zeichnung ist ein Ausführungsbeispiel einer nicht erfindungsgemäßen Vorrichtung dargestellt. Es zeigt

Figur 1
die Messvorrichtung mit den schematisch dargestellten Komponenten und
Figur 2
das Diagramm einer Messung, wobei der Druck und dessen Ableitung über der Zeit abgetragen sind.
In the drawing, an embodiment of a device not according to the invention is shown. It shows
FIG. 1
the measuring device with the schematically illustrated components and
FIG. 2
the diagram of a measurement, where the pressure and its derivative are plotted over time.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In der Figur 1 ist die Messvorrichtung in einer teilweise geschnittenen Darstellung gezeigt. Ein zylinderförmiges Messvolumen 1 mit einer Wandung 2 ist mit einer Prüfflüssigkeit vollständig gefüllt, wobei das Messvolumen 1 allseitig abgeschlossen ist. Die Wandung 2 weist eine erste Grundfläche 102 und eine zweite Grundfläche 202 auf, die durch eine zylindrische Seitenwand 303 verbunden sind, welche eine Längsachse 4 aufweist. Durch eine Öffnung 10 in der ersten Grundfläche 102 der Wandung 2 ragt ein Einspritzventil 3 mit seiner Spitze in das Messvolumen 1, wobei der Durchtritt des Einspritzventils 3 durch die Wandung 2 flüssigkeitsdicht verschlossen ist. Das Einspritzventil 3 weist einen Ventilkörper 7 auf, in dem in einer Bohrung 6 eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet ist. Durch eine Längsbewegung der Ventilnadel 5 werden mehrere Einspritzöffnungen 12, die an der in das Messvolumen 1 hineinragenden Spitze des Einspritzventils 3 ausgebildet sind, geöffnet oder geschlossen. Bei geöffneten Einspritzöffnungen 12 strömt Prüfflüssigkeit aus einem zwischen der Ventilnadel 5 und der Wand der Bohrung 6 ausgebildeten Druckraum 9 zu den Einspritzöffnungen 12 und wird von dort in das Messvolumen 1 eingespritzt, bis die Einspritzöffnungen 12 durch die Ventilnadel 5 wieder verschlossen werden. Die Einspritzung der Prüfflüssigkeit erfolgt hierbei mit einem hohen Druck, der je nach verwendetem Einspritzventil mehr als 200 MPa betragen kann.In the FIG. 1 the measuring device is shown in a partially sectioned view. A cylindrical measuring volume 1 with a wall 2 is completely filled with a test liquid, wherein the measuring volume 1 is completed on all sides. The wall 2 has a first base area 102 and a second base area 202, which are connected by a cylindrical side wall 303, which has a longitudinal axis 4. Through an opening 10 in the first base 102 of the wall 2, an injection valve 3 projects with its tip into the measuring volume 1, wherein the passage of the injection valve 3 is closed by the wall 2 liquid-tight. The injection valve 3 has a valve body 7, in which in a bore 6, a piston-shaped valve needle 5 is arranged longitudinally displaceable. By a longitudinal movement of the valve needle 5, a plurality of injection openings 12, which are formed on the projecting into the measuring volume 1 tip of the injection valve 3, opened or closed. When the injection openings 12 are open, test liquid flows from a pressure space 9 formed between the valve needle 5 and the wall of the bore 6 to the injection openings 12 and is injected from there into the measurement volume 1 until the injection openings 12 are closed again by the valve needle 5. The injection of the test liquid takes place here with a high pressure, which may be more than 200 MPa depending on the injection valve used.

In die Seitenwand 303 der zylinderförmigen Wandung 2 mündet eine mit einem Steuerventil 15 verbundene Leitung 16, durch die Prüfflüssigkeit aus dem Messvolumen 1 in ein in der Zeichnung nicht dargestelltes Leckvolumen abgeleitet werden kann. Durch die zeitlich variable Ansteuerung des Steuerventils ist die Aufrechterhaltung eines gewissen Druckes im Messvolumen 1 und die stets vollständige Füllung mit Flüssigkeit sichergestellt.In the side wall 303 of the cylindrical wall 2 opens a connected to a control valve 15 line 16, can be derived by the test liquid from the measuring volume 1 in a not shown in the drawing leakage volume. By the time-variable control of the control valve, the maintenance of a certain pressure in the measuring volume 1 and the always complete filling with liquid is ensured.

Eine Halterung 22 ragt durch die Wandung 2 in das Messvolumen 1 hinein. Am Ende der Halterung 22 ist ein Drucksensor 20 angeordnet, der über eine Signalleitung 24, die in der Halterung 22 aus dem Messvolumen 1 herausgeführt ist, mit einem elektronischen Rechner 28 verbunden ist, wobei der Durchtritt der Halterung 22 durch die Wandung 2 flüssigkeitsdicht verschlossen ist. Der Drucksensor 20 ist in der Mittelebene zwischen den beiden Grundflächen 102, 202 angeordnet und hat somit zu beiden Grundflächen 102, 202 denselben Abstand. Über den elektronischen Rechner 28 kann das den Druck repräsentierende Signal, das der Drucksensor 20 liefert, ausgelesen und elektronisch gespeichert werden. Um eine schnelle Messung des Druckverlaufs zu ermöglichen, ist der Drucksensor 20 beispielsweise auf Piezo-Basis gebaut, so dass auch schnelle Änderungen des Drucks ohne nennenswerte Verzögerung gemessen werden können.A holder 22 projects through the wall 2 into the measuring volume 1. At the end of the holder 22, a pressure sensor 20 is arranged, which is connected via a signal line 24, which is led out of the measuring volume 1 in the holder 22 with an electronic computer 28, wherein the passage of the holder 22 is sealed by the wall 2 liquid-tight , The pressure sensor 20 is arranged in the median plane between the two base surfaces 102, 202 and thus has the same distance to both base surfaces 102, 202. Via the electronic computer 28, the signal representing the pressure supplied by the pressure sensor 20 can be read out and stored electronically. In order to enable a rapid measurement of the pressure curve, the pressure sensor 20 is constructed on a piezo-based basis, for example, so that even rapid changes in pressure can be measured without significant delay.

An der Grundfläche 202 der Wandung 2 ist ein Schallwandler 30 angeordnet, der sowohl Schallsignale aussenden als auch das zugehörige Echo empfangen kann. Das gesendete Schallsignal wird dabei an der dem Schallwandler 30 gegenüberliegenden Grundfläche 202 reflektiert und durchläuft somit die zweifache Länge des Messvolumens 1, ehe es vom Schallwandler 30 als Echo detektiert wird. Alternativ kann es auch vorgesehen sein, dass ein separater Schallempfänger 31 an der Grundfläche 202 gegenüber dem Schallwandler 30 angeordnet ist. Dies ermöglicht zwei Messungen der Schallgeschwindigkeit in sehr kurzem Zeitabstand: Die Schallgeschwindigkeit wird zum einen aus der Laufzeit des Schallsignals vom Schallwandler 30 zum Schallempfänger 31 bestimmt. Zum anderen kann aus der Laufzeit des von der Grundfläche 202 reflektierten Schallsignals zum Schallwandler 30 zurück eine zweite Messung vorgenommen werden, die zeitlich unmittelbar auf die erste folgt. Dies erlaubt es, die Schallgeschwindigkeit in sehr kurzem zeitlichen Abstand zu messen und bei entsprechend kleinem Messvolumen wegen Mehrfachreflexionen an den Grundflächen 102, 202 auch während der Dauer einer Einspritzung.At the base 202 of the wall 2, a transducer 30 is arranged, which can both send sound signals and receive the associated echo. The transmitted sound signal is reflected at the base surface 202 opposite the sound transducer 30 and thus passes twice the length of the measurement volume 1 before it is detected by the sound transducer 30 as an echo. Alternatively, it can also be provided that a separate sound receiver 31 is arranged on the base 202 with respect to the sound transducer 30. This allows two measurements of the speed of sound in a very short time interval: The speed of sound is determined on the one hand from the duration of the sound signal from the sound transducer 30 to the sound receiver 31. On the other hand, from the transit time of the sound signal reflected from the base 202 to the sound transducer 30, a second measurement can be taken which immediately follows the first time. This makes it possible to measure the speed of sound in a very short time interval and with a correspondingly small measuring volume because of multiple reflections at the base areas 102, 202 even during the duration of an injection.

Die zu messende Einspritzmenge Δm der Prüfflüssigkeit kann aus dem Druckanstieg und der Schallgeschwindigkeit berechnet werden. Ist p die Dichte der Prüfflüssigkeit und V das Volumen des Messvolumens, so ergibt sich durch das Einspritzen einer Menge Δm Prüfflüssigkeit bei konstantem Volumen V eine Änderung der Dichte Δρ, so dass gilt Δm = V Δρ

Figure imgb0002
The injection quantity Δm of the test liquid to be measured can be calculated from the pressure increase and the sound velocity. If p is the density of the test liquid and V is the volume of the measuring volume, the injection of a quantity Δm of test liquid at a constant volume V results in a change in the density Δρ, so that the following applies Dm = V Δρ
Figure imgb0002

Die Wandung 2 des Messvolumes 2 kann hierbei in guter Näherung als inelastisch angesehen und damit V als konstant betrachtet werden. Nach der bekannten akustischen Theorie ist der Zusammenhang zwischen der Schallgeschwindigkeit c, der Dichteänderung Δρ und dem Druckanstieg Δp wie folgt Δρ = Δp 1 / c p 2

Figure imgb0003
The wall 2 of the measuring volume 2 can be regarded as inelastic in a good approximation and thus V can be regarded as constant. According to the known acoustic theory, the relationship between the speed of sound c, the density change Δρ and the pressure increase Δp is as follows Δρ = Ap 1 / c p 2
Figure imgb0003

Die Schallgeschwindigkeit c hängt vom Druck p im Messvolumen 1 ab. Die eingespritzte Menge m ergibt sich dann durch Integration mit Hilfe der genannten Beziehungen zu m = V p v p n 1 c p 2 dp

Figure imgb0004
wobei pv der Druck vor und pn der Druck nach der Einspritzung ist. Es gibt also einen Zusammenhang zwischen dem Druckanstieg Δp und der Mengenänderung m bzw. Δm.The speed of sound c depends on the pressure p in the measuring volume 1. The injected quantity m then results from integration with the aid of the above-mentioned relationships m = V p v p n 1 c p 2 dp
Figure imgb0004
where p v is the pressure before and p n is the pressure after injection. Thus, there is a relationship between the pressure increase Δp and the quantity change m or Δm.

Mit dem Drucksensor 20 wird der zeitliche Verlauf des Drucks p(t) gemessen, woraus sich wiederum die Einspritzrate r(t) bestimmen lässt, also die pro Zeiteinheit dt eingespritzte Menge dm(t) der Prüfflüssigkeit. Aus Gleichung II ergibt sich damit für die Einspritzrate r(t), also die zeitliche Ableitung der eingespritzten Menge dm(t)/dt, folgende Gleichung: r t = dm t dt = d dt V p v p n 1 c p 2 dp

Figure imgb0005
With the pressure sensor 20, the time course of the pressure p (t) is measured, from which in turn the injection rate r (t) can be determined, ie the amount dm (t) of the test liquid injected per unit time dt. From equation II, the following equation results for the injection rate r (t), ie the time derivative of the injected quantity dm (t) / dt: r t = dm t dt = d dt V p v p n 1 c p 2 dp
Figure imgb0005

Beim Einspritzen der Prüfflüssigkeit in das Messvolumen 1, das anfänglich einen konstanten Druck aufweist, der beispielsweise 1 MPa entspricht, steigt der Druck im Messvolumen 1 an. Flüssigkeiten sind im Vergleich zu Gasen praktisch inkompressibel, so dass auch eine kleine Mengenzunahme zu einer gut messbaren Druckerhöhung führt. Hierbei ist zu beachten, dass die Schallgeschwindigkeit vom Druck p und dieser wiederum von der Zeit t abhängt. Da der Einspritzvorgang sehr kurz ist und in der Regel in einem Zeitraum von 1 bis 2 ms abgeschlossen ist, lässt sich die Schallgeschwindigkeit während der Einspritzung nicht messen. Statt dessen wird c vor und nach der Einspritzung gemessen und ein linearer Zusammenhang zwischen der Schallgeschwindigkeit c und dem Druck p angenommen, was hier eine gute Näherung darstellt. Damit lässt sich das Integral lösen und die absolute Menge nach Gleichung II bestimmen.When injecting the test liquid into the measuring volume 1, which initially has a constant pressure, which corresponds for example to 1 MPa, the pressure in the measuring volume 1 increases. Liquids are virtually incompressible compared to gases, so that even a small increase in volume leads to a well-measurable pressure increase. It should be noted that the speed of sound depends on the pressure p and this in turn on the time t. Since the injection process is very short and usually completed in a period of 1 to 2 ms, the speed of sound during the injection can not be measured. Instead, c is measured before and after the injection and a linear relationship between the speed of sound c and the pressure p is assumed, which is a good approximation here. This can be used to solve the integral and determine the absolute quantity according to equation II.

Zur Auswertung der Messung geht man folgendermaßen vor: In das Messvolumen 1, in dem sich die Prüfflüssigkeit befindet, spritzt das Einspritzventil 3 durch eine schnelle Längsbewegung der Ventilnadel 5, durch welche die Einspritzöffnungen 12 geöffnet und wieder verschlossen werden, eine bestimmte Flüssigkeitsmenge ein. Der Drucksensor 20 misst den Druck p(t), der mit einer bestimmen Rate von beispielsweise 100 kHz vom Rechner 28 ausgelesen und gespeichert wird.To evaluate the measurement, the procedure is as follows: Into the measuring volume 1, in which the test liquid is located, the injection valve 3 injects a certain amount of liquid by a rapid longitudinal movement of the valve needle 5, through which the injection openings 12 are opened and closed again. The pressure sensor 20 measures the pressure p (t) which is read out and stored by the computer 28 at a specific rate of, for example, 100 kHz.

Um den zeitlichen Verlauf der Einspritzmenge dm(t)/dt und damit die Einspritzrate r(t) zu bestimmen, benutzt man Gleichung III. Die im Rechner gespeicherten Messwerte p(t) werden in eine Schallgeschwindigkeit umgerechnet, so dass das Integral nach Gleichung III berechnet werden kann. Dies liefert eine Funktion der Zeit t, die anschließend numerisch differenziert wird, was die Einspritzrate r(t) ergibt.In order to determine the time course of the injection quantity dm (t) / dt and thus the injection rate r (t), equation III is used. The measured values p (t) stored in the computer are converted into a sound velocity, so that the integral can be calculated according to equation III. This provides a function of time t, which is then numerically differentiated, giving the injection rate r (t).

Die Schallgeschwindigkeit c wird in einem separaten Verfahren bestimmt. Hierzu wird vom Schallwandler 30 ein Schallimpuls ausgesandt, der an der gegenüberliegenden Grundfläche 202 des Messvolumens 1 reflektiert wird und als Echo nach einer Laufzeit tL wiederum vom Schallwandler aufgefangen wird. Aus dem Abstand s von Schallwandler 30 und Grundfläche 202 berechnet sich dann nach c = 2 s / t L

Figure imgb0006

die Schallgeschwindigkeit c. Nach der Gleichung (II) ergibt sich durch Integration über den Druck p die eingespritzte Menge m.The speed of sound c is determined in a separate procedure. For this purpose, a sound pulse is emitted by the sound transducer 30, which is reflected at the opposite base surface 202 of the measuring volume 1 and is collected as an echo after a running time t L again from the transducer. From the distance s of sound transducer 30 and base 202 then calculated after c = 2 s / t L
Figure imgb0006

the speed of sound c. By the equation (II), by integration over the pressure p, the injected quantity m is obtained.

Figur 2 zeigt den zeitlichen Verlauf des Drucks p(t) und dessen Ableitung dp(t)/dt als Funktion der Zeit t in willkürlichen Einheiten U. Der Druck p(t) steigt etwa zum Zeitpunkt t = 1 ms auf ein erstes Niveau an und etwa zum Zeitpunkt t = 2 ms auf ein zweites, deutlich höheres Niveau. Dies entspricht einer Einspritzung, die sich in eine kleinere Menge und eine größere Menge Prüfflüssigkeit gliedert, wobei die zweite Teileinspritzung der ersten in einem Abstand von etwa 1 ms folgt. Wird ein Einspritzventil gemessen, wie es für direkteinspritzende, selbstzündende Brennkraftmaschinen verwendet wird, entspricht dies einer Kraftstoffeinspritzung, die sich in eine Pilot- oder Voreinspritzung und eine nachfolgende Haupteinspritzung unterteilt. Nachdem das vom Drucksensor 20 gemessene Drucksignal p(t) aufgezeichnet worden ist, ergibt die Auswertung nach Gleichung III die Einspritzrate r(t). FIG. 2 shows the time course of the pressure p (t) and its derivative dp (t) / dt as a function of time t in arbitrary units U. The pressure p (t) increases approximately at time t = 1 ms to a first level and about at time t = 2 ms to a second, significantly higher level. This corresponds to an injection, which is divided into a smaller amount and a larger amount of test liquid, the second partial injection of the first follows at a distance of about 1 ms. When an injector is used as used for direct-injection, auto-ignition internal combustion engines, this corresponds to fuel injection subdivided into a pilot or pilot injection and a subsequent main injection. After the pressure signal p (t) measured by the pressure sensor 20 has been recorded, the evaluation according to equation III results in the injection rate r (t).

Das Messverfahren zusammen mit dem beschriebenen Messaufbau ermöglicht es also, den Druckverlauf zu messen und die Schallgeschwindigkeit c bei den aktuellen Prüfbedingungen zu bestimmen, woraus sich die Einspritzmenge und die Einspritzrate bestimmen lässt. Die Prüfflüssigkeit kann hierbei Kraftstoff oder eine andere Flüssigkeit sein, deren Eigenschaften der Flüssigkeit nahekommen, die im normalen Gebrauch des Einspritzventils verwendet wird. Das Messvolumen 1 muss nicht zylinderförmig ausgebildet sein, sondern kann statt dessen auch quaderförmig oder in einer anderen geeigneten Form ausgebildet sein, beispielsweise kugelförmig. Der Drucksensor kann bei allen Formen des Messvolumens 1 grundsätzlich an jeder Stelle angebracht sein, jedoch sollte eine direkte Beaufschlagung mit dem eingespritzten Kraftstoff vermieden werden.The measurement method together with the described measurement setup thus makes it possible to measure the pressure profile and to determine the speed of sound c under the current test conditions, from which the injection quantity and the injection rate can be determined. The test liquid may be fuel or another liquid whose properties approximate the liquid used in normal use of the injector. The measuring volume 1 does not have to be cylindrically shaped, but instead may also be cuboid or in another suitable shape, for example spherical. The pressure sensor may in principle be mounted at any point in all forms of the measuring volume 1, but direct admission to the injected fuel should be avoided.

Claims (3)

  1. Method for measuring the injection rate of an injection valve for liquids, preferably for liquid fuel, in which method the injection valve (3) injects the liquid into a liquid-filled measuring volume (1), with the measuring volume (1) being closed on all sides and with a pressure sensor (20) being arranged in the measuring volume (1), characterized by the following method steps:
    - injecting liquid through the injection valve (3) into the measuring volume (1),
    - measuring the pressure (p(t)) in the measuring volume (1) by means of the pressure sensor (20) during the injection and plotting said measurement values,
    - determining the speed of sound (c) in the measuring volume (1) at least before and after the injection,
    - determining the pressure-dependent speed of sound c(p) from the determination of the speed of sound before and after the injection, by assuming a linear correlation between the speed of sound (c) and the pressure (p),
    - determining the injected test liquid quantity (m(t); Δm) from the pressure measurement values (p(t)) and the determined pressure-dependent speed of sound (c(p)), with the speed of sound (c) being determined from the propagation time of a sound signal emitted by a sound transducer (30) which receives the echo of said sound signal.
  2. Method according to Claim 1, characterized in that the pressure measurement values (p(t)) during the injection are plotted by an electronic computer (28).
  3. Method according to Claim 1, characterized in that the speed of sound (c) is determined by means of the propagation time of a sound signal in the measuring volume (1).
EP06807073.9A 2005-11-23 2006-10-09 Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids Active EP1954938B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005056153A DE102005056153A1 (en) 2005-11-23 2005-11-23 Method for measuring injection quantity and injection rate of injection valve for liquids, involves measurement of pressure in measuring volume by means of pressure sensor during injection and recording these measuring value
PCT/EP2006/067181 WO2007060055A1 (en) 2005-11-23 2006-10-09 Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids

Publications (3)

Publication Number Publication Date
EP1954938A1 EP1954938A1 (en) 2008-08-13
EP1954938B1 EP1954938B1 (en) 2010-04-07
EP1954938B2 true EP1954938B2 (en) 2014-08-27

Family

ID=37387346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06807073.9A Active EP1954938B2 (en) 2005-11-23 2006-10-09 Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids

Country Status (4)

Country Link
EP (1) EP1954938B2 (en)
AT (1) ATE463671T1 (en)
DE (2) DE102005056153A1 (en)
WO (1) WO2007060055A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010002898A1 (en) * 2010-03-16 2011-09-22 Robert Bosch Gmbh Method and device for evaluating an injection device
DE102011081544A1 (en) 2011-07-15 2013-01-17 Robert Bosch Gmbh Method for measuring pressure of fuel in automotive industry, involves determining pressure in measuring reservoir depending on pressure-dependent sound velocity and continuously measured temperature
DE102015201817B4 (en) 2015-02-03 2022-05-05 Ford Global Technologies, Llc Mass flow curve CNG valve
DE102015209398A1 (en) 2015-05-22 2016-11-24 Robert Bosch Gmbh Apparatus for measuring the injection rate, method for producing such a device and measuring method
DE102018203542A1 (en) * 2018-03-08 2019-09-12 Volkswagen Aktiengesellschaft Method for diagnosing an injection device for an internal combustion engine
CN111946517A (en) * 2020-08-07 2020-11-17 哈尔滨工程大学 Variable-range fuel injection law measuring instrument

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10310114A1 (en) 2003-03-06 2004-09-16 Robert Bosch Gmbh Device and method for hydrostatic pressure determination in a high pressure container by means of ultrasonic transit time measurement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10064511C2 (en) * 2000-12-22 2002-11-21 Bosch Gmbh Robert Device, method and computer program for measuring the injection quantity of injection systems, in particular for internal combustion engines of motor vehicles
DE10249754A1 (en) * 2002-10-25 2004-05-06 Robert Bosch Gmbh Method and device for measuring the injection rate of a liquid injection valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10310114A1 (en) 2003-03-06 2004-09-16 Robert Bosch Gmbh Device and method for hydrostatic pressure determination in a high pressure container by means of ultrasonic transit time measurement

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Taschenbuch der Physik", Fachbuchverlag Leipzig, 1999, 16. Auflage.
Abschlussbericht FVV-Vorhaben Nr. 312, 362 und 418 "Einfluss der Kraftstoff-Hochdruckeinspritzung auf die Verbrennung in Dieselmotor.
SAE Paper 2001-01-0527 "Measurement of the Rate of Multiple Fuel Injections with Diesel Fuel and DME.

Also Published As

Publication number Publication date
DE102005056153A1 (en) 2007-05-24
EP1954938A1 (en) 2008-08-13
DE502006006663D1 (en) 2010-05-20
EP1954938B1 (en) 2010-04-07
ATE463671T1 (en) 2010-04-15
WO2007060055A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
EP1561029B1 (en) Method and device for measuring the injection rate of an injection valve for liquids
EP1954938B2 (en) Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids
EP3298266B1 (en) Device for measuring the injection rate and measuring method
EP1644707B1 (en) Device for measuring time-resolved volumetric throughflow processes
EP1368620B1 (en) Method, computer program and device for measuring the amount injected by an injection system
DE10301264B4 (en) Method and device for determining the temperature of the fuel in a storage injection system
DE102008040628A1 (en) Fluid i.e. fuel, quantity measuring method for engine of vehicle, involves determining injected fluid quantity from sound velocity of fluid found in chamber and from pressure drop that is measured in chamber during injection of fluid
DE102013224706A1 (en) Method for calculating the injection rate profile
DE102015208416B3 (en) Determination method for determining an absolute value of an injected fuel mass
DE102014225530A1 (en) Method for operating a fuel injector
DE102006042098B3 (en) Method for determining a correction of a partial injection quantity of an internal combustion engine
DE3806129C2 (en)
EP3221576B1 (en) Method of injecting a predetermined volume of fuel by using a common-rail injection device
DE60019365T2 (en) Device for determining the fuel injection timing for a diesel internal combustion engine
DE2916150C2 (en) Device for determining the chattering behavior of a fuel injection valve
EP2347117B1 (en) Method for measuring flow paths in valves
Schmidt et al. Detection of cavitation in fuel injector nozzles
DE3916418C2 (en)
WO2006037684A1 (en) Method for measuring the tightness of an injection valve for liquids
DE102015204684A1 (en) Method for operating a fuel injector
WO2008083791A1 (en) Measuring device and measuring method for an injector
DE102011081544A1 (en) Method for measuring pressure of fuel in automotive industry, involves determining pressure in measuring reservoir depending on pressure-dependent sound velocity and continuously measured temperature
AT518663B1 (en) Device for determining the injection rate variance of gas valves, in particular for internal combustion engines operable with gaseous fuels
DE3046768A1 (en) Automobile engine fuel injection jet testing device - measures jet opening pressure by using sensor in muzzle to trigger sensor in fuel line
DE102015206128A1 (en) Method for operating a fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080923

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006006663

Country of ref document: DE

Date of ref document: 20100520

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100407

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100809

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: IAV GMBH INGENIEURSGESELLSCHAFT AUTO UND VERKEHR

Effective date: 20110106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PLAP Information related to despatch of examination report in opposition + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDORE2

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101009

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20140827

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502006006663

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502006006663

Country of ref document: DE

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 18

Ref country code: FR

Payment date: 20231023

Year of fee payment: 18

Ref country code: AT

Payment date: 20231019

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231218

Year of fee payment: 18