EP1934669A2 - System to transfer a template transfer body between a motion stage and a docking plate - Google Patents

System to transfer a template transfer body between a motion stage and a docking plate

Info

Publication number
EP1934669A2
EP1934669A2 EP06786500A EP06786500A EP1934669A2 EP 1934669 A2 EP1934669 A2 EP 1934669A2 EP 06786500 A EP06786500 A EP 06786500A EP 06786500 A EP06786500 A EP 06786500A EP 1934669 A2 EP1934669 A2 EP 1934669A2
Authority
EP
European Patent Office
Prior art keywords
docking
motion stage
recited
motion
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06786500A
Other languages
German (de)
French (fr)
Other versions
EP1934669A4 (en
Inventor
Philip D. Schumaker
Angelo Fancello
Jae H. Kim
Byung-Jin Choi
Daniel A. Babbs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Nanotechnologies Inc
Original Assignee
Molecular Imprints Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/211,766 external-priority patent/US7665981B2/en
Priority claimed from US11/211,785 external-priority patent/US20070074635A1/en
Priority claimed from US11/211,763 external-priority patent/US20070064384A1/en
Application filed by Molecular Imprints Inc filed Critical Molecular Imprints Inc
Publication of EP1934669A2 publication Critical patent/EP1934669A2/en
Publication of EP1934669A4 publication Critical patent/EP1934669A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the field of the invention relates generally to nano- fabrication of structures . More particularly, the present invention is directed to a system to transfer a body between a motion stage and a docking system.
  • Nano-fabrication involves the fabrication of very small structures, e.g., having features on the order of nano-meters or smaller.
  • One area in which nano-fabrication has had a sizeable impact is in the processing of integrated circuits.
  • nano-fabrication becomes increasingly important. Nano-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed.
  • Other areas of development in which nano- fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
  • An exemplary nano-fabrication technique is commonly referred to as imprint lithography.
  • Exemplary imprint lithography processes are described in detail in numerous publications, such as United States published patent application 2004/0065976 filed as United States patent application 10/264,960, entitled, "Method and a Mold to Arrange Features on a Substrate to Replicate Features having Minimal Dimensional Variability" ,- United States published patent application 2004/0065252 filed as United States patent application 10/264,926, entitled “Method of Forming a Layer on a Substrate to Facilitate Fabrication of Metrology Standards"; and United States published patent application 2004/0046271 filed as United States patent application 10/235,314, (U.S.
  • Patent Number 6,936,194 entitled "Functional Patterning Material for imprint Lithography Processes,” all of which are assigned to the assignee of the present invention.
  • the fundamental imprint lithography technique disclosed in each of the aforementioned United States published patent applications includes formation of a relief pattern in a polymerizable layer and transferring a pattern corresponding to the relief pattern into an underlying substrate.
  • the substrate may be positioned upon a motion stage to obtain a desired position to facilitate patterning thereof.
  • a template is employed spaced-apart from the substrate with a formable liquid present between the template and the substrate.
  • the liquid is solidified to form a solidified layer that has a pattern recorded therein that is conforming to a shape of the surface of the template in contact with the liquid.
  • the template is then separated from the solidified layer such that the template and the substrate are spaced-apart.
  • the substrate and the solidified layer are then subjected to processes to transfer, into the substrate, a relief image that corresponds to the pattern in the solidified layer.
  • Imprint lithography systems often use an imprint head with the template, which can be installed and removed from the imprint head. This allows the imprint lithography system to be used to imprint different patterns. In this manner, the imprint lithography system may be used to fabricate various types of circuits or other devices, or imprint various structures on a substrate.
  • United States patent number 6,805,054 to Meissl et al . which is assigned to the assignee of the present invention, describes a template transfer system having a template positioned thereupon, wherein relative movement is created between the motion stage and the imprint head to place the template transfer system and the imprint head in superimposition to transfer the template to the imprint head.
  • an imprint lithography system including, inter alia, a docking plate; a motion stage having a range of motion associated therewith, the range of motion having a periphery spaced-apart from the docking plate a first distance; and a body, having first and second opposed sides spaced-apart a second distance, selectively coupled between the docking plate and the motion stage, the first distance being greater than the second distance to minimize, if not prevent, a probability of a collision between the docking plate, the motion stage and the body while transferring the body between the docking plate and the motion stage.
  • FIG. 1 is a side view of a lithography system having a template transfer system, a docking system, and a motion stage positioned thereon;
  • Fig. 2 is a perspective view of a first embodiment of a coupling mechanism of the motion stage shown in Fig. 1;
  • Fig. 3 is a perspective view of a second embodiment of a coupling mechanism of the motion stage shown in Fig. 1; and
  • Fig. 4 is a top down view of the motion stage shown in Fig. 1;
  • Fig- 5 is a detailed view of the interface between the template transfer system and the docking system shown in Fig. 1;
  • Fig. 6 is a simplified side view of the system shown in Fig. 1, with a template positioned on the template transfer system;
  • Fig. 7 is a top down view of the template transfer system shown in Fig. 1;
  • Fig. 8 is a side view of the template transfer system shown in Fig. 1, in electrical communication with a voltage source;
  • Fig. 9 is a side view of the template transfer system shown in Fig. 1, in fluid communication with a pump system;
  • Fig. 10 is a side view of the lithographic system, shown in Fig. 1, with the motion stage positioned proximate to the template transfer system;
  • FIG. 11 is a side view of the lithographic system, shown in Fig. 1, with the docking system positioning the template transfer system to be in contact with the motion stage;
  • Fig. 12 is a detailed view of the interface between the template transfer system and the motion stage shown in Fig. 11;
  • Fig. 13 is a side view of the lithographic system shown in Fig. 1, with the template transfer system coupled to the motion stage;
  • Fig. 14 is a side view of the lithography system shown in Fig. 1, with an arm of the docking system being retracted;
  • Fig. 15 is a side view of the lithographic system shown in Fig. l, with the template transfer system having an orientation error;
  • FIG. 16 is a perspective view of the docking system shown in Fig. i, having a protrusion positioned thereon;
  • Fig. 17 is a side view of the lithographic system shown in Fig. 1, with the template transfer system, having an orientation error, coupled to the docking system;
  • FIG. 18 is a perspective view of the docking system shown in Fig. 1, having a plurality of protrusions positioned thereon;
  • a system 10 to form a relief pattern in a substrate 12 includes a stage support 14 having a motion stage 16, a template transfer system 18, and a docking system 20 positioned thereon, with template transfer system 18 being positioned between motion stage 16 and docking system 20. As shown, template transfer system 18 is coupled to docking system 20. However, template transfer system 18 may be coupled to motion stage 16, described further below.
  • Motion stage 16 holds substrate 12 on a chuck 22, with chuck 22 being any chuck including, but not limited to, vacuum and electromagnetic.
  • a template 24 Spaced-apart from stage support 14 is a template 24 having a mold 26 with a patterning surface 28 thereon. Patterning surface 28 may be substantially smooth and/or planar, or may be patterned so that one or more recesses are formed therein.
  • Template 24 is coupled to an imprint head 30 to facilitate movement of template 24.
  • a fluid dispense system 32 is coupled to be selectively placed in fluid communication with substrate 12 so as to deposit a polymerizable material 34 thereon. In a further embodiment, fluid dispense system 32 may be coupled to template transfer system 18.
  • a source 36 of energy 38 is coupled to direct energy 38 along a path 40.
  • Imprint head 30 and motion stage 16 are configured to arrange mold 26 and substrate 12, respectively, to be in superimposition, and disposed in path 40.
  • An optical system 37 may facilitate obtaining a desired alignment of mold 26 and substrate 12, described further below.
  • Either imprint head 30, motion stage 16, or both vary a distance between mold 26 and substrate 12 to define a desired volume therebetween that is filled by polymerizable material 34.
  • polymerizable material 34 is disposed upon substrate 12 before the desired volume is defined between mold 26 and substrate 12. However, polymerizable material 34 may fill the volume after the desired volume has been obtained.
  • source 36 After the desired volume is filled with polymerizable material 34, source 36 produces energy 38, which causes polymerizable material 34 to solidify and/or crosslink, forming polymeric material conforming to the shape of the patterning surface 28.
  • Control of this process is regulated by a processor 42 that is in data communication with motion stage 16, imprint head 30, fluid dispense system 32, source 36, and optical system 37 operating on a computer readable program stored in a memory
  • Motion stage 16 is comprised of a coupling system 46 to facilitate coupling with template transfer system 18, described further below.
  • Coupling system 46 is comprised of a coupling element 48 positioned on a side 50 of motion stage 16, with side 50 facing template transfer system 18.
  • Coupling element 48 may extend a distance ⁇ d 1 ' from side 50 and may have a geometrical shape selected from a flat plane, as shown in Fig. 2, or a vee, as shown in Fig. 3.
  • the selection of the type of coupling design for coupling element 48 is known to one skilled in the art and typically depends on the specific application which is desired.
  • coupling system 46 may comprise a plurality of coupling elements 48, with the plurality of coupling elements 48 comprising any combination of the above-mentioned geometrical shapes.
  • coupling system 46 is comprised of a pair of coupling elements 48a and 48b, as shown in Fig. 4, with coupling element 48a having a vee geometrical shape and coupling element 48b having a flat plane geometrical shape .
  • Motion stage 16 may comprise a plurality of air bearings (not shown) positioned between motion stage 16 and stage support 14. The air bearings (not shown) allow frictionless motion of the same about stage support 14.
  • motion stage 16 may be in data communication with processor 42 operating on a computer readable program stored in memory 44 to regulate a motion thereof.
  • docking system 20 is comprised of a docking body 52 coupled to a docking plate 54 by an arm 56. Arm 56 may be in communication with a motor 58. In a preferred embodiment, motor 58 may be a pneumatic actuator. Motor 58 translates arm 56 to place docking plate 54 in a desired position with respect to docking body 52. Positioned on a side 60 of docking plate 54 is a protrusion 62. Protrusion 62 may be employed to facilitate coupling of docking system 20 with template transfer system 18, described further below. Furthermore, docking system 20 may be in data communication with processor 42 operating on a computer readable program stored in memory 44 to regulate a motion thereof .
  • Template transfer system 18 is comprised of a body 64 having an optical detection system 66, a template holder 68, and a coupling means 70 positioned thereon.
  • body 64 may comprise a component 71, wherein component 71 may be any device that may interact with motion stage 16, template transfer system 18, docking system 20, imprint head 30, or any part of system 10 to produce a desired result.
  • Body 64 has a first side 72 and a second side 74, with first and second sides 72 and 74 being spaced- apart a distance ⁇ d 2 ' .
  • First side 72 faces docking system 20 and second side 74 faces motion stage 16.
  • Coupling means 70 may extend a distance *d 3 ' from second side 74.
  • Optical detection system 66 may comprise a microscope in optical communication with a camera.
  • Coupling means 70 facilitates coupling of template transfer system 18 to motion stage 16, described further below.
  • coupling means 70 has a spherical geometry.
  • coupling means 70 may have any geometry desired to facilitate coupling of template transfer system 18 to motion stage 16.
  • Template transfer system 18 may further comprise a plurality of air bearings (not shown) to allow frictionless motion of the same about stage support 14. The plurality of air bearings (not shown) may be the same as those mentioned-above with respect to motion stage 16.
  • Fig. 6 shown is a simplified side view of a portion of system 10, shown in Fig. 1.
  • Template 24 may be removable from imprint head 30 of system 10, and thus, another template may then be installed in imprint head 30. For example, if template 24 wears out or is damaged, a replacement template may be installed, or a template with a different mold (i.e. structure or pattern) may be installed to imprint a different structure. To that end, template 24 may be stored on template transfer system 18. More specifically, template 24 may be supported on template holder 68 of template transfer system 18 by a gas film, the gas film preventing contact between template 24 and template holder 68. [0038] Referring to Fig. 7, template holder 68 may comprise pins 76 having a first set 80 and a second set 82. First set 80 and second set 82 may be spaced-apart diagonally from one another.
  • Pins 76 facilitate a self aligning motion of template 24. More specifically, one set of first set 80 and second set 82 may be stationary while the remaining set of first set 80 and second set 82 may be moveable with respect to the stationary set of first set 80 and second set 82.
  • the stationary set of first set 80 and second set 82 provides a reference location upon template holder 68 to facilitate positioning of template 24 thereupon.
  • the moveable set of first set 80 and second set 82 may exert a force upon template 24 such that template 24 contacts the stationary set of first set 80 and second set 82.
  • each of first and second sets 80 and 82 each comprise two pins. However, in a further embodiment, each of first and second sets 80 and 82 may comprise any desired amount of pins to facilitate orientation of template 24 with respect to template holder 68.
  • template transfer system 18 is coupled to docking system 20.
  • template transfer system 18 is comprised of a cord 84 placing template transfer system
  • coupling source 86 is comprised of a voltage source, as shown in Fig. 8. As a result, an electric field may be created between template transfer system 18 and docking system 20 to couple template transfer system 18 to docking system 20.
  • coupling source 86 is comprised of a pump system, as shown in Fig. 9. As a result, a vacuum may be created between template transfer system 18 and docking system 20 to couple template transfer system 18 to docking system 20.
  • cord 84 may also place template transfer system 18 in electrical communication with a power source (not shown) . Control of coupling of template transfer system 18 may be regulated by processor 42, shown in Fig. 1, that is data communication with template transfer system 18 and coupling source 86 operating on a computer readable program stored in memory 44, shown in Fig. 1.
  • template 24 may be positioned into a close proximity to imprint head 30 such that template 24 may be secured to imprint head 30 by vacuum and/or mechanical contact.
  • template transfer system 18 may be coupled to motion stage 16 to position template 24 in a close proximity to imprint head 30.
  • motion stage 16 is translated such that the same is in a close proximity to template transfer system 18.
  • a collision between template transfer system 18 and motion stage 16 while translating motion stage 16 may result in, inter alia, structural comprise in system 10, misalignment of template transfer system 18 with respect to motion stage 16, and damage to template 24 and/or substrate 12, shown in Fig. 1, all of which are undesirable.
  • a system and method to minimize, if not prevent, a probability of a collision between template transfer system 18 and motion stage 16 is described below.
  • motion stage 16 is positioned proximate to template transfer system 18.
  • motion stage 16 has a range of motion associated therewith, i.e., a distance through which motion stage 16 may translate about stage support 14.
  • the range of motion of motion stage 16 has a periphery associated therewith, i.e., a maximum amount of distance motion stage 16 may translate about stage support 14.
  • motion stage 16 is translated to be spaced-apart a distance ⁇ d 4 ' from surface 60, shown in Fig. 5, of docking plate 54, with distance ⁇ d 4 ' being at the periphery of the range of motion of motion stage 16.
  • Distance ⁇ d 4 ' is greater than distance ⁇ d 2 ' and thus, motion stage 16 is spaced- apart from template transfer system 18 defining a gap 88 therebetween.
  • distance ⁇ d 4 ' may be greater than the sum of distances ⁇ d 1 ', x d 2 ' and ⁇ d 3 ' , shown in Fig. 1.
  • gap 88 may be greater than the sum of distances ⁇ d 3 ' and ⁇ d 4 ' , shown in Fig. 1.
  • motion stage 16 may be brought into a close proximity to template transfer system 18 while minimizing, if not preventing, a probability of a collision between motion stage 16 and template transfer system 18 while translating motion stage 16.
  • docking system 20 may position template transfer system 18 to be in contact with motion stage 16. More specifically, arm 56 creates a gap 90 between docking body 52 and docking plate 54, with docking plate 54 being positioned a distance ⁇ d 5 ' from docking body 52. Creation of gap 90 by arm 56 may be controlled by a force-controlled method wherein transmission of excessive force to motion stage 16 is minimized, if not prevented. [0044] To that end, as a result of creation of gap 90, template transfer system 18 may be positioned to be in contact with motion stage 16.
  • template transfer system 18 may be positioned in contact with motion stage 16 without causing translational motion of motion stage 16. Template transfer system 18 may then be transferred from docking system 20 to motion stage 16 by coupling template transfer system 18 to motion stage 16 and decoupling template transfer system 18 from docking system 20. [0045] Specifically, coupling system 46 of motion stage 16 is brought into contact with coupling means 70 of template transfer system 18 to mate coupling system 46 with coupling means 70 to form a point of contact therebetween. Movement of template transfer system 18 may be constrained along a plurality of degrees of freedom depending on a type of coupling design employed for coupling system
  • template transfer system 18 is decoupled from docking system 20 and coupled to motion stage 16.
  • coupling source 86 shown in Fig. 8 creates an electric field therebetween
  • coupling source 86 shown in Fig. 10 creates a vacuum therebetween.
  • template transfer system 18 may be translated about stage support 14 via motion stage 16.
  • template transfer system 18 may be translated about stage support 14 to position template transfer system 18 in a desired position upon stage support 14 to facilitate coupling of template 24 to imprint head 30.
  • Optical detection system 66 may be employed in conjunction with optical system 37, shown in Fig. 1, to determine a presence and/or a position of template and/or template transfer system 18 with respect to imprint head 30.
  • Template 24 may then be coupled to imprint head 30, with imprint head 30 having vacuum and/or mechanical retention means for holding template 24, which are omitted for simplicity of illustration.
  • arm 56 of docking system 20 may be subsequently retracted such that docking plate 54 is positioned adjacent to docking body 52.
  • arm 56 may be retracted concurrently during positioning of template transfer system 18.
  • the above-mentioned system and method of transferring template transfer system 18 between docking system 20 and motion stage 16 may be implemented with template transfer system 18 absent of template 24.
  • a second motion stage (not shown) differing from motion stage 16 may be employed to obtain a desired position of template transfer system 18 upon stage support 14.
  • template transfer system 18 may be transferred from motion stage 16 to docking system 20 by employing the above-mentioned process implemented in reverse. As a result, a probability of a collision between template transfer system 18 and docking system 20 while translating motion stage 16 may be minimized, if not prevented, which may be desired.
  • transferring template transfer system 18 from motion stage 16 to docking system 20 minimizes a total mass that motion stage 16 may translate. Minimizing the total mass motion stage 16 may translate, and further, minimizing the inertial forces upon motion stage 16, may result in, inter alia, improving a positioning precession of motion stage 16, increasing a maximum velocity of motion stage 16, increasing a maximum acceleration of motion stage 16, and reducing step and settling times of motion stage 16. [0050] Referring to Fig. 1, it may also be desired to minimize a kinetic energy present during a collision between template transfer system 18 and motion stage 16 while translating motion stage 16.
  • a collision between template transfer system 18 and motion stage 16 may result in, inter alia, structural compromise in system 10, misalignment of template transfer system 18 with respect to motion stage 16, and damage to template 24 and/or substrate 12, all of which are undesirable. To that end, minimizing the kinetic energy present during the collision between template transfer system 18 and motion stage 16 while translating motion stage 16 may minimize, if not prevent, the above-mentioned effects.
  • motion stage 16 is positioned proximate to template transfer system 18 defining gap 88, shown in Fig. 10, therebetween. Docking system 20 then positions template transfer system 18 to be in contact with motion stage 16.
  • motion of template transfer system 18 and motion stage 16 occurs asynchronously. More specifically, translation of docking system 20 to place template transfer system 18 in contact with motion stage 16, as mentioned above, does not occur until translation of motion stage 16 has ceased. As a result, only one of template transfer system 18 and motion stage 16 is moving at a time. As a result, the total kinetic energy of system 10 during translation of motion stage 16 may be reduced, which may be desired. Furthermore, as mentioned above, minimizing the total mass motion stage 16 may translate may reduce the total kinetic energy of system 10.
  • Fig. 15 it may also be desired to control an orientation of template transfer system 18 with respect to docking system 20 to facilitate coupling of template transfer system 18 and docking system 20. More specifically, in the presence of an orientation error of template transfer system 18 with respect to docking system 20, it may be desired to maintain the orientation error of template transfer system 18 with respect to docking system 20 to minimize, if not prevent, motion of template transfer system 18 about the Z-axis.
  • the orientation error may be shown as first side 72 of template transfer system 18 forming an angle ⁇ with respect to a plane P 1 parallel to surface 60 of docking system 20.
  • docking plate 54 of docking system 20 comprises protrusion 62.
  • Protrusion 62 controls a point/line contact between docking plate 54 and template transfer system 18. More specifically, when coupling template transfer system 18 to docking system 20, protrusion 62 minimizes, if not prevents, pivoting motion of template transfer system 18 with respect to docking system 20. As shown in Fig. 17, template transfer system 18 is coupled to docking system 20 while maintaining the orientation error.
  • protrusion 62 may also minimize a probability, if not prevent, of a collision between template transfer system 18 and stage support 14 during coupling of template transfer system 18 and docking system 20.
  • protrusion 62 may also abrogate rotation of template transfer system 18 about the Z-axis, which may be desired.
  • docking plate 54 may comprise a plurality of protrusions 62, as shown in Fig. 18.
  • template transfer system 18 may comprise a latching system 92.
  • Latching system 92 comprises latches 94 and 96 that may mechanically couple template transfer system 18 to docking system 20 and motion stage 16, respectively.
  • Latching system 92 may be implemented during, inter alia, power loss and/or vacuum loss of system 10, shown in Fig. 1.
  • Latches 94 and 96 each comprise a shaft 98 having an end 100 and a coupling portion 102 having a pivot point 104. Latches 94 and 96 may each pivot about their respective pivot points 104. Ends 100 of latches 94 and 96 may extend beyond surfaces 72 and 74, shown in Figs. 1 and 5, of template transfer system 18, respectively. [0056] As shown in Fig. 19, latch 94 is placed in a first position and latch 96 is placed in a second position. As a result, latching portion 102 of latch 94 makes mechanical contact with docking plate 54 to couple template transfer body 20 to docking system 20. Furthermore, latch 96 is placed in the second position as a result of contact of end 100 of latch 96 with surface 60, shown in Fig.
  • latch 96 may be placed in the first position and latch 94 may be placed in the second position.
  • latching portion 102 of latch 96 makes mechanical contact with motion stage 16 coupling template transfer system 20 to motion stage 16.
  • Positioning of latch 94 in the second position may be analogous to positioning latch 96 in the second position, as mentioned above with respect to Fig. 19.

Abstract

The present invention is directed towards an imprint lithography system including, inter alia, a docking plate; a motion stage having a range of motion associated therewith, the range of motion having a periphery spaced-apart 'from the docking plate a first distance; and a body, having first and second opposed sides spaced- apart a second distance, selectively coupled between the docking plate and the motion stage, the first distance being greater than the second distance to minimize a probability of a collision between the docking plate, the motion stage and the body while transferring the body between the docking plate and the motion stage.

Description

SYSTEM TO TRANSFER A TEMPLATE TRANSFER BODY BETWEEN A MOTION STAGE AND A DOCKING PLATE
BACKGROUND OF THE INVENTION
[0001] The field of the invention relates generally to nano- fabrication of structures . More particularly, the present invention is directed to a system to transfer a body between a motion stage and a docking system.
[0002] Nano-fabrication involves the fabrication of very small structures, e.g., having features on the order of nano-meters or smaller. One area in which nano-fabrication has had a sizeable impact is in the processing of integrated circuits. As the semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, nano-fabrication becomes increasingly important. Nano-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed. Other areas of development in which nano- fabrication has been employed include biotechnology, optical technology, mechanical systems and the like. [0003] An exemplary nano-fabrication technique is commonly referred to as imprint lithography. Exemplary imprint lithography processes are described in detail in numerous publications, such as United States published patent application 2004/0065976 filed as United States patent application 10/264,960, entitled, "Method and a Mold to Arrange Features on a Substrate to Replicate Features having Minimal Dimensional Variability" ,- United States published patent application 2004/0065252 filed as United States patent application 10/264,926, entitled "Method of Forming a Layer on a Substrate to Facilitate Fabrication of Metrology Standards"; and United States published patent application 2004/0046271 filed as United States patent application 10/235,314, (U.S. Patent Number 6,936,194) entitled "Functional Patterning Material for imprint Lithography Processes," all of which are assigned to the assignee of the present invention. [0004] The fundamental imprint lithography technique disclosed in each of the aforementioned United States published patent applications includes formation of a relief pattern in a polymerizable layer and transferring a pattern corresponding to the relief pattern into an underlying substrate. The substrate may be positioned upon a motion stage to obtain a desired position to facilitate patterning thereof. To that end, a template is employed spaced-apart from the substrate with a formable liquid present between the template and the substrate. The liquid is solidified to form a solidified layer that has a pattern recorded therein that is conforming to a shape of the surface of the template in contact with the liquid. The template is then separated from the solidified layer such that the template and the substrate are spaced-apart. The substrate and the solidified layer are then subjected to processes to transfer, into the substrate, a relief image that corresponds to the pattern in the solidified layer.
[0005] Imprint lithography systems often use an imprint head with the template, which can be installed and removed from the imprint head. This allows the imprint lithography system to be used to imprint different patterns. In this manner, the imprint lithography system may be used to fabricate various types of circuits or other devices, or imprint various structures on a substrate. [0006] United States patent number 6,805,054 to Meissl et al . , which is assigned to the assignee of the present invention, describes a template transfer system having a template positioned thereupon, wherein relative movement is created between the motion stage and the imprint head to place the template transfer system and the imprint head in superimposition to transfer the template to the imprint head. [0007] To that end, it may be desired to provide an improved system of controlling the atmosphere between a mold and a substrate.
SUMMARY OF THE INVENTION
[0008] The present is directed towards an imprint lithography system including, inter alia, a docking plate; a motion stage having a range of motion associated therewith, the range of motion having a periphery spaced-apart from the docking plate a first distance; and a body, having first and second opposed sides spaced-apart a second distance, selectively coupled between the docking plate and the motion stage, the first distance being greater than the second distance to minimize, if not prevent, a probability of a collision between the docking plate, the motion stage and the body while transferring the body between the docking plate and the motion stage. These and other embodiments are described fully below. BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Fig. 1 is a side view of a lithography system having a template transfer system, a docking system, and a motion stage positioned thereon; [0010] Fig. 2 is a perspective view of a first embodiment of a coupling mechanism of the motion stage shown in Fig. 1; [0011] Fig. 3 is a perspective view of a second embodiment of a coupling mechanism of the motion stage shown in Fig. 1; and [0012] Fig. 4 is a top down view of the motion stage shown in Fig. 1;
[0013] Fig- 5 is a detailed view of the interface between the template transfer system and the docking system shown in Fig. 1; [0014] Fig. 6 is a simplified side view of the system shown in Fig. 1, with a template positioned on the template transfer system; [0015] Fig. 7 is a top down view of the template transfer system shown in Fig. 1;
[0016] Fig. 8 is a side view of the template transfer system shown in Fig. 1, in electrical communication with a voltage source; [0017] Fig. 9 is a side view of the template transfer system shown in Fig. 1, in fluid communication with a pump system;
[0018] Fig. 10 is a side view of the lithographic system, shown in Fig. 1, with the motion stage positioned proximate to the template transfer system;
[0019] Fig. 11 is a side view of the lithographic system, shown in Fig. 1, with the docking system positioning the template transfer system to be in contact with the motion stage;
[0020] Fig. 12 is a detailed view of the interface between the template transfer system and the motion stage shown in Fig. 11; [0021] Fig. 13 is a side view of the lithographic system shown in Fig. 1, with the template transfer system coupled to the motion stage;
[0022] Fig. 14 is a side view of the lithography system shown in Fig. 1, with an arm of the docking system being retracted; [0023] Fig. 15 is a side view of the lithographic system shown in Fig. l, with the template transfer system having an orientation error;
[0024] Fig. 16 is a perspective view of the docking system shown in Fig. i, having a protrusion positioned thereon; [0025] Fig. 17 is a side view of the lithographic system shown in Fig. 1, with the template transfer system, having an orientation error, coupled to the docking system;
[0026] Fig. 18 is a perspective view of the docking system shown in Fig. 1, having a plurality of protrusions positioned thereon;
[0027] Fig. 19 is a side view of the lithographic system shown in Fig. 1, with the template transfer system having a latching system coupling the template transfer system to the docking system; and [0028] Fig. 20 is a side view of the lithographic system shown in Fig. 1, with the template transfer system having a latching system coupling the template transfer system to the motion stage.
DETAILED DESCRIPTION OF THE INVENTION
[0029] Referring to Fig. 1, a system 10 to form a relief pattern in a substrate 12 includes a stage support 14 having a motion stage 16, a template transfer system 18, and a docking system 20 positioned thereon, with template transfer system 18 being positioned between motion stage 16 and docking system 20. As shown, template transfer system 18 is coupled to docking system 20. However, template transfer system 18 may be coupled to motion stage 16, described further below.
[0030] Motion stage 16 holds substrate 12 on a chuck 22, with chuck 22 being any chuck including, but not limited to, vacuum and electromagnetic. Spaced-apart from stage support 14 is a template 24 having a mold 26 with a patterning surface 28 thereon. Patterning surface 28 may be substantially smooth and/or planar, or may be patterned so that one or more recesses are formed therein. Template 24 is coupled to an imprint head 30 to facilitate movement of template 24. A fluid dispense system 32 is coupled to be selectively placed in fluid communication with substrate 12 so as to deposit a polymerizable material 34 thereon. In a further embodiment, fluid dispense system 32 may be coupled to template transfer system 18. A source 36 of energy 38 is coupled to direct energy 38 along a path 40. Imprint head 30 and motion stage 16 are configured to arrange mold 26 and substrate 12, respectively, to be in superimposition, and disposed in path 40. An optical system 37 may facilitate obtaining a desired alignment of mold 26 and substrate 12, described further below. Either imprint head 30, motion stage 16, or both vary a distance between mold 26 and substrate 12 to define a desired volume therebetween that is filled by polymerizable material 34. [0031] Typically, polymerizable material 34 is disposed upon substrate 12 before the desired volume is defined between mold 26 and substrate 12. However, polymerizable material 34 may fill the volume after the desired volume has been obtained. After the desired volume is filled with polymerizable material 34, source 36 produces energy 38, which causes polymerizable material 34 to solidify and/or crosslink, forming polymeric material conforming to the shape of the patterning surface 28. Control of this process is regulated by a processor 42 that is in data communication with motion stage 16, imprint head 30, fluid dispense system 32, source 36, and optical system 37 operating on a computer readable program stored in a memory
44.
[0032] Motion stage 16 is comprised of a coupling system 46 to facilitate coupling with template transfer system 18, described further below. Coupling system 46 is comprised of a coupling element 48 positioned on a side 50 of motion stage 16, with side 50 facing template transfer system 18. Coupling element 48 may extend a distance ^d1' from side 50 and may have a geometrical shape selected from a flat plane, as shown in Fig. 2, or a vee, as shown in Fig. 3. The selection of the type of coupling design for coupling element 48 is known to one skilled in the art and typically depends on the specific application which is desired. In a further embodiment, coupling system 46 may comprise a plurality of coupling elements 48, with the plurality of coupling elements 48 comprising any combination of the above-mentioned geometrical shapes. In a preferred embodiment, coupling system 46 is comprised of a pair of coupling elements 48a and 48b, as shown in Fig. 4, with coupling element 48a having a vee geometrical shape and coupling element 48b having a flat plane geometrical shape . [0033] Motion stage 16 may comprise a plurality of air bearings (not shown) positioned between motion stage 16 and stage support 14. The air bearings (not shown) allow frictionless motion of the same about stage support 14. As mentioned above, motion stage 16 may be in data communication with processor 42 operating on a computer readable program stored in memory 44 to regulate a motion thereof. [0034] Referring to Figs. 1 and 5, docking system 20 is comprised of a docking body 52 coupled to a docking plate 54 by an arm 56. Arm 56 may be in communication with a motor 58. In a preferred embodiment, motor 58 may be a pneumatic actuator. Motor 58 translates arm 56 to place docking plate 54 in a desired position with respect to docking body 52. Positioned on a side 60 of docking plate 54 is a protrusion 62. Protrusion 62 may be employed to facilitate coupling of docking system 20 with template transfer system 18, described further below. Furthermore, docking system 20 may be in data communication with processor 42 operating on a computer readable program stored in memory 44 to regulate a motion thereof .
[0035] Template transfer system 18 is comprised of a body 64 having an optical detection system 66, a template holder 68, and a coupling means 70 positioned thereon. In a further embodiment, body 64 may comprise a component 71, wherein component 71 may be any device that may interact with motion stage 16, template transfer system 18, docking system 20, imprint head 30, or any part of system 10 to produce a desired result. Body 64 has a first side 72 and a second side 74, with first and second sides 72 and 74 being spaced- apart a distance λd2' . First side 72 faces docking system 20 and second side 74 faces motion stage 16. Coupling means 70 may extend a distance *d3' from second side 74. Optical detection system 66 may comprise a microscope in optical communication with a camera. Coupling means 70 facilitates coupling of template transfer system 18 to motion stage 16, described further below. As shown, coupling means 70 has a spherical geometry. However, in a further embodiment, coupling means 70 may have any geometry desired to facilitate coupling of template transfer system 18 to motion stage 16. [0036] Template transfer system 18 may further comprise a plurality of air bearings (not shown) to allow frictionless motion of the same about stage support 14. The plurality of air bearings (not shown) may be the same as those mentioned-above with respect to motion stage 16. [0037] Referring to Fig. 6, shown is a simplified side view of a portion of system 10, shown in Fig. 1. Template 24 may be removable from imprint head 30 of system 10, and thus, another template may then be installed in imprint head 30. For example, if template 24 wears out or is damaged, a replacement template may be installed, or a template with a different mold (i.e. structure or pattern) may be installed to imprint a different structure. To that end, template 24 may be stored on template transfer system 18. More specifically, template 24 may be supported on template holder 68 of template transfer system 18 by a gas film, the gas film preventing contact between template 24 and template holder 68. [0038] Referring to Fig. 7, template holder 68 may comprise pins 76 having a first set 80 and a second set 82. First set 80 and second set 82 may be spaced-apart diagonally from one another. Pins 76 facilitate a self aligning motion of template 24. More specifically, one set of first set 80 and second set 82 may be stationary while the remaining set of first set 80 and second set 82 may be moveable with respect to the stationary set of first set 80 and second set 82. The stationary set of first set 80 and second set 82 provides a reference location upon template holder 68 to facilitate positioning of template 24 thereupon. The moveable set of first set 80 and second set 82 may exert a force upon template 24 such that template 24 contacts the stationary set of first set 80 and second set 82. As shown, each of first and second sets 80 and 82 each comprise two pins. However, in a further embodiment, each of first and second sets 80 and 82 may comprise any desired amount of pins to facilitate orientation of template 24 with respect to template holder 68.
[0039] Referring to Figs. 6, 8, and 9, template transfer system 18 is coupled to docking system 20. To that end, template transfer system 18 is comprised of a cord 84 placing template transfer system
18 in communication with a coupling source 86. In a first example, coupling source 86 is comprised of a voltage source, as shown in Fig. 8. As a result, an electric field may be created between template transfer system 18 and docking system 20 to couple template transfer system 18 to docking system 20. In a second example, coupling source 86 is comprised of a pump system, as shown in Fig. 9. As a result, a vacuum may be created between template transfer system 18 and docking system 20 to couple template transfer system 18 to docking system 20. In a further embodiment, cord 84 may also place template transfer system 18 in electrical communication with a power source (not shown) . Control of coupling of template transfer system 18 may be regulated by processor 42, shown in Fig. 1, that is data communication with template transfer system 18 and coupling source 86 operating on a computer readable program stored in memory 44, shown in Fig. 1.
[0040] Referring to Fig. 6, to transfer template 24 from template transfer system 18 to imprint head 30, template 24 may be positioned into a close proximity to imprint head 30 such that template 24 may be secured to imprint head 30 by vacuum and/or mechanical contact. To that end, template transfer system 18 may be coupled to motion stage 16 to position template 24 in a close proximity to imprint head 30.
[0041] To transfer template transfer system 18 from docking system 20 to motion stage IS, motion stage 16 is translated such that the same is in a close proximity to template transfer system 18.
However, it is desired to minimize, if not prevent, a probability of a collision between template transfer system 18 and motion stage 16 while translating motion stage 16. A collision between template transfer system 18 and motion stage 16 while translating motion stage 16 may result in, inter alia, structural comprise in system 10, misalignment of template transfer system 18 with respect to motion stage 16, and damage to template 24 and/or substrate 12, shown in Fig. 1, all of which are undesirable. To that end, a system and method to minimize, if not prevent, a probability of a collision between template transfer system 18 and motion stage 16 is described below.
[0'042] Referring to Fig. 10, to transfer template transfer system 18 from docking system 20 to motion stage 16, motion stage 16 is positioned proximate to template transfer system 18. To that end, motion stage 16 has a range of motion associated therewith, i.e., a distance through which motion stage 16 may translate about stage support 14. The range of motion of motion stage 16 has a periphery associated therewith, i.e., a maximum amount of distance motion stage 16 may translate about stage support 14. To that end, motion stage 16 is translated to be spaced-apart a distance ^d4' from surface 60, shown in Fig. 5, of docking plate 54, with distance λd4' being at the periphery of the range of motion of motion stage 16. Distance λd4' is greater than distance λd2' and thus, motion stage 16 is spaced- apart from template transfer system 18 defining a gap 88 therebetween. In a further embodiment, distance λd4' may be greater than the sum of distances ^d1', xd2' and Λd3' , shown in Fig. 1. Further, gap 88 may be greater than the sum of distances λd3' and λd4' , shown in Fig. 1. As a result, motion stage 16 may be brought into a close proximity to template transfer system 18 while minimizing, if not preventing, a probability of a collision between motion stage 16 and template transfer system 18 while translating motion stage 16.
[0043] Referring to Figs. 11 and 12, after positioning motion stage 16 distance λd4, ' shown in Fig. 10, from surface 60, shown in Fig. 5, of docking plate 54, docking system 20 may position template transfer system 18 to be in contact with motion stage 16. More specifically, arm 56 creates a gap 90 between docking body 52 and docking plate 54, with docking plate 54 being positioned a distance λd5' from docking body 52. Creation of gap 90 by arm 56 may be controlled by a force-controlled method wherein transmission of excessive force to motion stage 16 is minimized, if not prevented. [0044] To that end, as a result of creation of gap 90, template transfer system 18 may be positioned to be in contact with motion stage 16. In a further embodiment, template transfer system 18 may be positioned in contact with motion stage 16 without causing translational motion of motion stage 16. Template transfer system 18 may then be transferred from docking system 20 to motion stage 16 by coupling template transfer system 18 to motion stage 16 and decoupling template transfer system 18 from docking system 20. [0045] Specifically, coupling system 46 of motion stage 16 is brought into contact with coupling means 70 of template transfer system 18 to mate coupling system 46 with coupling means 70 to form a point of contact therebetween. Movement of template transfer system 18 may be constrained along a plurality of degrees of freedom depending on a type of coupling design employed for coupling system
46.
[0046] Further, to transfer template transfer system 18 from docking system 20 to motion stage 16, template transfer system 18 is decoupled from docking system 20 and coupled to motion stage 16. In a first example, to couple template transfer system 18 to motion stage 16, coupling source 86, shown in Fig. 8, creates an electric field therebetween, and in a second example, coupling source 86, shown in Fig. 10, creates a vacuum therebetween. [0047] Referring to Fig. 13, after transferring template transfer system 18 from docking system 20 to motion stage 16 and coupling template transfer system 18 to motion stage 16, template transfer system 18 may be translated about stage support 14 via motion stage 16. More specifically, template transfer system 18 may be translated about stage support 14 to position template transfer system 18 in a desired position upon stage support 14 to facilitate coupling of template 24 to imprint head 30. Optical detection system 66 may be employed in conjunction with optical system 37, shown in Fig. 1, to determine a presence and/or a position of template and/or template transfer system 18 with respect to imprint head 30. Template 24 may then be coupled to imprint head 30, with imprint head 30 having vacuum and/or mechanical retention means for holding template 24, which are omitted for simplicity of illustration. [0048] Referring to Fig. 14, after achieving the desired position of template transfer system 18 upon stage support 14, arm 56 of docking system 20 may be subsequently retracted such that docking plate 54 is positioned adjacent to docking body 52. However, in a further embodiment, arm 56 may be retracted concurrently during positioning of template transfer system 18. In a further embodiment, the above-mentioned system and method of transferring template transfer system 18 between docking system 20 and motion stage 16 may be implemented with template transfer system 18 absent of template 24. In a further embodiment, a second motion stage (not shown) differing from motion stage 16 may be employed to obtain a desired position of template transfer system 18 upon stage support 14. [0049] After coupling template 24 to imprint head 30, template transfer system 18 may be transferred from motion stage 16 to docking system 20 by employing the above-mentioned process implemented in reverse. As a result, a probability of a collision between template transfer system 18 and docking system 20 while translating motion stage 16 may be minimized, if not prevented, which may be desired.
Furthermore, transferring template transfer system 18 from motion stage 16 to docking system 20 minimizes a total mass that motion stage 16 may translate. Minimizing the total mass motion stage 16 may translate, and further, minimizing the inertial forces upon motion stage 16, may result in, inter alia, improving a positioning precession of motion stage 16, increasing a maximum velocity of motion stage 16, increasing a maximum acceleration of motion stage 16, and reducing step and settling times of motion stage 16. [0050] Referring to Fig. 1, it may also be desired to minimize a kinetic energy present during a collision between template transfer system 18 and motion stage 16 while translating motion stage 16. As mentioned above, a collision between template transfer system 18 and motion stage 16 may result in, inter alia, structural compromise in system 10, misalignment of template transfer system 18 with respect to motion stage 16, and damage to template 24 and/or substrate 12, all of which are undesirable. To that end, minimizing the kinetic energy present during the collision between template transfer system 18 and motion stage 16 while translating motion stage 16 may minimize, if not prevent, the above-mentioned effects. [0051] As mentioned above, to transfer template transfer system 18 from docking system 20 to motion stage 16, motion stage 16 is positioned proximate to template transfer system 18 defining gap 88, shown in Fig. 10, therebetween. Docking system 20 then positions template transfer system 18 to be in contact with motion stage 16. To that end, during transfer of template transfer system 18 between docking system 20 and motion stage 16, motion of template transfer system 18 and motion stage 16 occurs asynchronously. More specifically, translation of docking system 20 to place template transfer system 18 in contact with motion stage 16, as mentioned above, does not occur until translation of motion stage 16 has ceased. As a result, only one of template transfer system 18 and motion stage 16 is moving at a time. As a result, the total kinetic energy of system 10 during translation of motion stage 16 may be reduced, which may be desired. Furthermore, as mentioned above, minimizing the total mass motion stage 16 may translate may reduce the total kinetic energy of system 10.
[0052] Referring to Fig. 15, it may also be desired to control an orientation of template transfer system 18 with respect to docking system 20 to facilitate coupling of template transfer system 18 and docking system 20. More specifically, in the presence of an orientation error of template transfer system 18 with respect to docking system 20, it may be desired to maintain the orientation error of template transfer system 18 with respect to docking system 20 to minimize, if not prevent, motion of template transfer system 18 about the Z-axis. In the present example, the orientation error may be shown as first side 72 of template transfer system 18 forming an angle Φ with respect to a plane P1 parallel to surface 60 of docking system 20. [0053] Referring to Figs. 15 and 16, to that end, to maintain the orientation error of template transfer system 18 with respect to docking system 20, docking plate 54 of docking system 20 comprises protrusion 62. Protrusion 62 controls a point/line contact between docking plate 54 and template transfer system 18. More specifically, when coupling template transfer system 18 to docking system 20, protrusion 62 minimizes, if not prevents, pivoting motion of template transfer system 18 with respect to docking system 20. As shown in Fig. 17, template transfer system 18 is coupled to docking system 20 while maintaining the orientation error. [0054] In a further embodiment, protrusion 62 may also minimize a probability, if not prevent, of a collision between template transfer system 18 and stage support 14 during coupling of template transfer system 18 and docking system 20. In still a further embodiment, protrusion 62 may also abrogate rotation of template transfer system 18 about the Z-axis, which may be desired. In a further embodiment, docking plate 54 may comprise a plurality of protrusions 62, as shown in Fig. 18. [0055] Referring to Figs. 19 and 20, template transfer system 18 may comprise a latching system 92. Latching system 92 comprises latches 94 and 96 that may mechanically couple template transfer system 18 to docking system 20 and motion stage 16, respectively. Latching system 92 may be implemented during, inter alia, power loss and/or vacuum loss of system 10, shown in Fig. 1. Latches 94 and 96 each comprise a shaft 98 having an end 100 and a coupling portion 102 having a pivot point 104. Latches 94 and 96 may each pivot about their respective pivot points 104. Ends 100 of latches 94 and 96 may extend beyond surfaces 72 and 74, shown in Figs. 1 and 5, of template transfer system 18, respectively. [0056] As shown in Fig. 19, latch 94 is placed in a first position and latch 96 is placed in a second position. As a result, latching portion 102 of latch 94 makes mechanical contact with docking plate 54 to couple template transfer body 20 to docking system 20. Furthermore, latch 96 is placed in the second position as a result of contact of end 100 of latch 96 with surface 60, shown in Fig. 5, of docking plate 54. More specifically, upon contact of end 100 of latch 96 with surface 60, shown in Fig. 5, of docking plate 54, shaft 98 translates such that latch 96 pivots about pivot point 104 placing latch 96 in the second position. [0057] Referring to Fig. 20, in a further embodiment, latch 96 may be placed in the first position and latch 94 may be placed in the second position. As a result, latching portion 102 of latch 96 makes mechanical contact with motion stage 16 coupling template transfer system 20 to motion stage 16. Positioning of latch 94 in the second position may be analogous to positioning latch 96 in the second position, as mentioned above with respect to Fig. 19. [0058] The embodiments of the present invention described above are exemplary. Many changes and modifications may be made to the disclosure recited above, while remaining within the scope of the invention. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents .

Claims

WHAT IS CLAIMED IS:
1. A coupling system comprising: a docking plate having a protrusion positioned thereon, said protrusion controlling an orientation of a body in contact therewith to facilitate a coupling of said body to said docking plate.
2. The system as recited in claim 1 wherein said protrusion minimizes a pivoting of said body.
3. The system as recited in claim 1 wherein said protrusion has a cylindrical shape.
4. The system as recited in claim 1 wherein said docking plate comprises a plurality of protrusions.
5. The system as recited in claim 1 wherein said coupling system further includes a source of vacuum to couple said body to said docking plate .
6. The system as recited in claim 1 wherein said coupling system further includes a pump source to couple said body to said docking plate.
7. The system as recited in claim 1 wherein said docking plate and said body are positioned upon a stage support, with said protrusion minimizing a motion of said body in a direction orthogonal to said stage support.
8. A system comprising: a docking system,- a motion stage spaced-apart from said docking system a first distance, said motion stage having a range of motion associated therewith, with a periphery of said range of motion being spaced- apart from said docking system said first distance; and a body, having first and second opposed sides spaced-apart a second distance, selectively coupled between said docking system and said motion stage, with said first distance being greater than said second distance to minimize a probability of a collision between any of said docking system, said motion stage, and said body while transferring said body between said docking system and said motion stage.
9. The system as recited in claim 8 wherein said docking system comprises a docking body and a docking plate having an arm coupled therebetween, said arm being in communication with a motor to position said docking plate a third distance from said docking body, with said third distance being a difference between said first and second distances.
10. The system as recited in claim 8 wherein said docking plate comprises a docking body and a docking plate having an arm coupled therebetween, said arm having an additional range of motion associated therewith, with a periphery of said additional range of motion being spaced-apart from said docking system a third distance, with said third distance being a difference between said first and second distances .
11. The system as recited in claim 8 wherein said body comprises a latching system having first and second latches, wherein said first latch couples said body to said docking system and said second latch couples said body to said motion stage.
12. The system as recited in claim 8 wherein said system further includes a coupling source coupled to said body, with said coupling source selected from a group of coupling sources comprising a pump system and a voltage source.
13. The system as recited in claim 8 wherein said body includes a template holder having a template positioned thereon.
14. The system as recited in claim 8 wherein said system further includes a detection system to determine a presence and/or a position of said template.
15. The system as recited in claim 8 wherein said motion stage comprises a coupling element selected from a group of coupling elements comprising a flat and a vee.
16. The system as recited in claim 8, wherein said body- further includes a component that may interact with said docking system, said motion stage, or said body to produce a desired result.
17. A method of transferring a body between a motion stage and a docking system, said method comprising: positioning said body between said motion stage and said docking system, with said motion stage being spaced-apart from said docking system a distance; and transferring a coupling of said body between said motion stage and said docking system, with said distance being established to minimize a probability of a collision between any of said docking system, said motion stage and said body while transferring said body between said docking system and said motion stage .
18. The method as recited in claim 17 wherein said body comprises first and second opposed sides spaced-apart a length, with said distance being greater than said length.
19. The method as recited in claim 17 wherein said method further includes positioning a docking plate of said docking system to be spaced-apart from a docking body of said docking system after positioning said motion stage.
20. The method as recited in claim 19 wherein said method further includes positioning said docking plate adjacent to said docking body after transferring said coupling of said body between said motion stage and said docking system.
21. The method as recited in claim 17 wherein positioning said motion stage further includes creating a gap between said body and said motion stage when said body is coupled to said docking system.
22. The method as recited in claim 17 wherein said method further positioning a docking plate of said docking system to be spaced-apart a length from said docking body of said docking system, after positioning said motion stage, with said length being substantially equal to said gap.
23. The method as recited in claim 17 wherein positioning said motion stage further includes creating a gap between said docking system and said body when said body is coupled to said motion system.
24. The method as recited in claim 23 wherein said method further positioning a docking plate of said docking system to be spaced-apart a length from said docking body of said docking system, after positioning said motion stage, with said length being substantially equal to said gap.
25. The method as recited in claim 17 wherein transferring said coupling of said body from said motion stage to said docking system maximizes a velocity and/or an acceleration of said motion stage.
EP06786500A 2005-08-25 2006-07-06 System to transfer a template transfer body between a motion stage and a docking plate Withdrawn EP1934669A4 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/211,766 US7665981B2 (en) 2005-08-25 2005-08-25 System to transfer a template transfer body between a motion stage and a docking plate
US11/211,785 US20070074635A1 (en) 2005-08-25 2005-08-25 System to couple a body and a docking plate
US11/211,763 US20070064384A1 (en) 2005-08-25 2005-08-25 Method to transfer a template transfer body between a motion stage and a docking plate
PCT/US2006/026366 WO2007024345A2 (en) 2005-08-25 2006-07-06 System to transfer a template transfer body between a motion stage and a docking plate

Publications (2)

Publication Number Publication Date
EP1934669A2 true EP1934669A2 (en) 2008-06-25
EP1934669A4 EP1934669A4 (en) 2009-12-16

Family

ID=37772079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06786500A Withdrawn EP1934669A4 (en) 2005-08-25 2006-07-06 System to transfer a template transfer body between a motion stage and a docking plate

Country Status (3)

Country Link
EP (1) EP1934669A4 (en)
TW (1) TWI309198B (en)
WO (1) WO2007024345A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104523285B (en) * 2014-12-12 2016-09-21 广东东邦科技有限公司 A kind of electronic skin and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103666A2 (en) * 2003-05-14 2004-12-02 Molecular Imprints, Inc. Method, system, holder and assembly for transferring templates during imprint lithography processes
US6842221B1 (en) * 1999-03-12 2005-01-11 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method
EP1500980A1 (en) * 2003-07-22 2005-01-26 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905566A (en) * 1997-04-10 1999-05-18 International Business Machines Corporation Laser ablation top surface reference chuck
DE60028676T2 (en) * 1999-09-17 2007-01-04 Fuji Photo Film Co., Ltd., Minami-Ashigara Positioning method and positioning device
US6515736B1 (en) * 2000-05-04 2003-02-04 International Business Machines Corporation Reticle capturing and handling system
US6630988B2 (en) * 2001-06-28 2003-10-07 Intel Corporation Reticle stop block apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842221B1 (en) * 1999-03-12 2005-01-11 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method
WO2004103666A2 (en) * 2003-05-14 2004-12-02 Molecular Imprints, Inc. Method, system, holder and assembly for transferring templates during imprint lithography processes
EP1500980A1 (en) * 2003-07-22 2005-01-26 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007024345A2 *

Also Published As

Publication number Publication date
WO2007024345A3 (en) 2009-04-30
TW200714439A (en) 2007-04-16
EP1934669A4 (en) 2009-12-16
TWI309198B (en) 2009-05-01
WO2007024345A2 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
US8387482B2 (en) Method and system to control movement of a body for nano-scale manufacturing
US20090037004A1 (en) Method and System to Control Movement of a Body for Nano-Scale Manufacturing
EP1240550B1 (en) A process for separating a template from a substrate during imprint lithography, and associated imprint lithography process
US7504268B2 (en) Adaptive shape substrate support method
US7170589B2 (en) Apparatus to vary dimensions of a substrate during nano-scale manufacturing
EP1957249B1 (en) Method and system for double-sided patterning of substrates
JP2009200345A (en) Processing apparatus
US7665981B2 (en) System to transfer a template transfer body between a motion stage and a docking plate
US20050275311A1 (en) Compliant device for nano-scale manufacturing
WO2010008508A1 (en) Inner cavity system for nano-imprint lithography
US20070074635A1 (en) System to couple a body and a docking plate
US20070064384A1 (en) Method to transfer a template transfer body between a motion stage and a docking plate
EP1934669A2 (en) System to transfer a template transfer body between a motion stage and a docking plate
Shao et al. Monolithic design of a compliant template orientation stage for step imprint lithography
JP2021141259A (en) Determination method, imprint method, imprint apparatus, article manufacturing method, and program
Meissl et al. Precision Flexure Mechanisms in High Speed Nanopatterning Systems
TW200934723A (en) Multiple degrees of freedom (DOF) nano-piezoelectric platform

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080317

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

R17D Deferred search report published (corrected)

Effective date: 20090430

RIC1 Information provided on ipc code assigned before grant

Ipc: F16D 3/80 20060101AFI20090513BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20091118

RIC1 Information provided on ipc code assigned before grant

Ipc: G03F 7/00 20060101AFI20091112BHEP

17Q First examination report despatched

Effective date: 20100406

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100817