EP1934387B1 - Verfahren zur entschichtung eines gasturbinenbauteils - Google Patents

Verfahren zur entschichtung eines gasturbinenbauteils Download PDF

Info

Publication number
EP1934387B1
EP1934387B1 EP06805384.2A EP06805384A EP1934387B1 EP 1934387 B1 EP1934387 B1 EP 1934387B1 EP 06805384 A EP06805384 A EP 06805384A EP 1934387 B1 EP1934387 B1 EP 1934387B1
Authority
EP
European Patent Office
Prior art keywords
bath
layer
turbine component
remove
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06805384.2A
Other languages
English (en)
French (fr)
Other versions
EP1934387A1 (de
Inventor
Karl-Heinz Manier
Thomas Uihlein
Carl-Stefan Thöne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solut Chemie AB GmbH
MTU Aero Engines AG
Original Assignee
Solut Chemie AB GmbH
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solut Chemie AB GmbH, MTU Aero Engines AG filed Critical Solut Chemie AB GmbH
Priority to PL06805384T priority Critical patent/PL1934387T3/pl
Publication of EP1934387A1 publication Critical patent/EP1934387A1/de
Application granted granted Critical
Publication of EP1934387B1 publication Critical patent/EP1934387B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • the invention relates to a method for stripping a gas turbine component according to.
  • Components of a gas turbine such as the rotor blades, are provided with special anti-wear coatings to provide oxidation resistance, corrosion resistance, or erosion resistance on the surfaces.
  • the components of gas turbines are subject to wear during operation of the same or can be damaged in any other way. In order to repair damage, it is generally necessary to remove or remove the wear protection coating from the component to be repaired in regions, partially or even in total.
  • the removal or removal of coatings is also referred to as stripping. In the stripping process, a distinction is made between those in which stripping takes place by mechanical means, by chemical means or by electrochemical means.
  • wear protection coatings are designed as so-called multilayer coatings consisting of several alternately applied to the gas turbine component layers. So it is e.g. it is possible that a wear protection coating designed as a multilayer coating comprises a relatively soft, metallic layer and a relatively hard, ceramic layer, which are applied to the gas turbine component repeatedly alternately in succession. Furthermore, wear-resistant coatings are known in practice, in which more than two different layers are alternately applied successively to the gas turbine component, e.g.
  • Multilayer coatings of four alternatingly applied successively to the gas turbine component layers namely a first, adapted to the material composition of the gas turbine component metallic and thus relatively soft layer, a relatively soft, metallic layer of a metal alloy material, a third, relatively hard graded metal Ceramic layer and a fourth relatively hard, ceramic layer.
  • the publication US 5,972,424 A discloses a method for stripping turbine components.
  • the method comprises a treatment in an alkaline solution for removing the thermal protective layer and an acid treatment for removing the metallic adhesive layer. This coating also provides protection against wear.
  • the publication US 2005/152805 A1 discloses a method for refurbishment Turbine components with a wear protection coating.
  • the upper wear protection layer is removed mechanically, a metallic diffusion layer is chemically removed.
  • the present invention is based on the problem to provide a novel method for stripping a gas turbine component.
  • the gas turbine component is alternately positioned in two different chemical baths, a first bath excluding removal of the or each relatively hard ceramic layer and a second bath excluding removal of the or each relatively soft metallic layer the wear protection coating is used.
  • the component with a multilayer wear protection coating alternately in different baths, wherein the different baths selectively ablate either a relatively hard, ceramic layer or a relatively soft, metallic layer of the wear protection coating to be removed.
  • a method is proposed for the first time, with the aid of which gas turbine components can be effectively freed from a so-called multilayer wear protection coating without the risk of damage to the gas turbine component.
  • the first bath which serves solely to remove the or each relatively hard ceramic layer is an acid of a hydrogen peroxide solution and at least one sodium salt and / or potassium salt of an organic acid contained therein.
  • the first bath may comprise a nitrogen-containing organic compound.
  • the first bath has a pH between 3 and 5.
  • the second bath which serves exclusively for removing the or each relatively soft, metallic layer, is a base of an aqueous solution of at least one alkali hydroxide or alkaline earth hydroxide with silicon and / or phosphorus contained therein, the second bath having a pH of has at least 12.
  • the first bath is a 5% to 50% hydrogen peroxide solution with 10 g / l to 100 g / l sodium salts of organic acids.
  • the first bath may have 1 g / L to 10 g / L of a nitrogen-containing organic compound.
  • the second bath is preferably a 2% to 50% alkali hydroxide solution containing 1 g / l to 200 g / l of silicon and / or 10 g / l to 100 g / l of phosphorus.
  • the gas turbine component is positioned to remove a relatively hard, ceramic layer in the first bath at a temperature between 10 ° C and 70 ° C for a period of 1-60 minutes per 1 nm thickness of the layer to be removed .
  • the gas turbine component is positioned in the second bath at a temperature between 20 ° C and 150 ° C for a period of 10-120 minutes per 1 nm thickness of the layer to be removed.
  • the inventive method is used for stripping of coated with multilayer wear protection coatings gas turbine components, the multilayer wear protection coatings from at least two different, alternately successively arranged layers, namely alternately arranged one behind the other ceramic, relatively hard layers and metallic, relatively soft layers are formed.
  • the method is used for stripping gas turbine components, on which a wear protection coating of four different, alternately successive layers are applied.
  • the first layer is preferably formed of titanium or palladium or platinum.
  • a second layer is applied, which is preferably formed by a TiCrAl material.
  • the third layer is followed by a grading layer, which is formed from a TiAlN1-x material.
  • the third layer is followed by a fourth layer of titanium aluminum nitride (TiAlN).
  • TiAlN titanium aluminum nitride
  • a first bath exclusively removes the or each relatively hard, ceramic layer and a second bath solely for removing the or any relatively soft, metallic layer of the wear-resistant coating.
  • the first bath which serves exclusively to remove the or each relatively hard ceramic layer, is an acid of a hydrogen peroxide solution and at least one sodium salt and / or potassium salt of an organic acid contained therein.
  • the first bath may comprise a nitrogen-containing organic compound.
  • the first bath is formed from a 5% to 50% hydrogen peroxide solution with 10 g / l to 100 g / l sodium salts of organic acids.
  • the pH of this first bath is between 3 and 5.
  • the second bath which serves exclusively to remove the or each relatively soft, metallic layer, is a base of an aqueous solution of at least one alkali hydroxide or an alkaline earth hydroxide with silicon and / or phosphorus contained therein.
  • the second bath is a base of a 2% to 50% alkali hydroxide solution with 1 g / l to 200 g / l of silicon compounds and 10 g / l to 100 g / l of phosphorus compounds.
  • the pH of this second bath is at least 12.
  • the first bath is an acid of a 10% hydrogen peroxide solution with 70 g / l of ethylenediaminetetraacetate sodium salt and 20 g / l of phenol-4-sulfonic acid sodium salt and a 20% in the second bath Alkali hydroxide solution with 100 g / l silicon compounds and 50 g / l phosphorus compounds.
  • the gas turbine component is alternately positioned in the first bath and the second bath, with the first bath selectively removing only the hard, ceramic layers and the second bath only serves to remove the soft, metallic layers.
  • a gas turbine component is accordingly positioned in the first bath, for which purpose the first bath has a temperature between 10 ° C and 70 ° C.
  • the temperature of this bath is in the order of the room temperature, ie at about 20 ° C.
  • the gas turbine component is placed in this bath for a period of 1 to 60 minutes per 1 nm thickness of the ceramic, relatively hard layer to be removed.
  • the gas turbine component is positioned in the second bath, the temperature of the second bath being between 20 ° C and 150 ° C, preferably the temperature of the second bath is 80 ° C.
  • the component is positioned in the second bath for a period between 10 minutes and 120 minutes per 1 nm thickness of the metallic, relatively soft layer to be removed. Between the repositioning of a gas turbine component to be stripped between the two baths, the gas turbine component can be purged.
  • wear protection coatings of gas turbine components can be effectively removed without the risk of damage to the gas turbine component.
  • wear protection coatings can be completely or even partially removed from a gas turbine component, with partial removal of the wear protection coatings either submerged in the baths by a gas turbine component, or areas of the gas turbine component not to be stripped prior to immersion in the corresponding bath with a protective layer of z. B. wax are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • ing And Chemical Polishing (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Detergent Compositions (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Entschichtung eines Gasturbinenbauteils nach.
  • Bauteile einer Gasturbine, wie zum Beispiel die Laufschaufeln, sind zur Bereitstellung einer Oxidationsbeständigkeit, einer Korrosionsbeständigkeit oder auch einer Erosionsbeständigkeit an den Oberflächen mit speziellen Verschleißschutzbeschichtungen versehen. Die Bauteile von Gasturbinen unterliegen während des Betriebs derselben einem Verschleiß oder können auf sonstige Art und Weise beschädigt werden. Zur Reparatur von Beschädigungen ist es in der Regel erforderlich, vom zu reparierenden Bauteil die verschleißschutzbeschichtung bereichsweise, teilweise oder auch insgesamt zu entfernen bzw. abzutragen. Das Entfernen bzw. Abtragen von Beschichtungen bezeichnet man auch als Entschichten. Bei den Entschichtungsverfahren unterscheidet man solche, bei denen die Entschichtung auf mechanischem Wege, chemischem Wege oder elektrochemischem Wege erfolgt.
  • Üblicherweise sind Verschleißschutzbeschichtungen als sogenannte Multilayer-Beschichtungen ausgeführt, die aus mehreren wechselweise auf das Gasturbinenbauteil aufgebrachten Lagen bestehen. So ist es z.B. möglich, dass eine als Multilayer-Beschichtung ausgeführte Verschleißschutzbeschichtung eine relativ weiche, metallische Lage und eine relativ harte, keramische Lage umfasst, die mehrfach wechselweise hintereinander auf das Gasturbinenbauteil aufgebracht sind. Weiterhin sind aus der Praxis verschleißscrutzbeschichtungen bekannt, bei welchen mehr als zwei unterschiedliche Lagen wechselweise hintereinander auf das Gasturbinenbauteil aufgebracht sind, so z.B. Multilayer-Beschichtungen aus jeweils vier wechselweise hintereinander auf das Gasturbinenbauteil aufgebrachten Lagen, nämlich einer ersten, an die Werkstoffzusammensetzung des Gasturbinenbauteils angepassten metallischen und damit relativ weichen Lage, einer ebenfalls relativ weichen, metallische Lage aus einem Metalllegierungswerkstoff, einer dritten, relativ harten gradierten Metall-Keramik-Lage sowie einer vierten relativ harten, keramischen Lage.
  • Die Druckschrift US 5,972,424 A offenbart ein Verfahren zur Entschichtung vcn Turbinenbauteilen. Das Verfahren umfasst eine Behandlung in einer alkalische Lösung zur Entfernung der thermischen Schutzschicht sowie eine Säurebehandlung zur Entfernung der metallischen Haftschicht. Diese Beschichtung bietet auch einen Schutz gegen verschleiß.
  • Die Druckschrift US 2005/152805 A1 offenbart ein Verfahren zur Wideraufbereitung von Turbinenbauteilen mit einer Verschleißschutzbeschichtung. Die oberste Verschleißschutzschicht wird mechanisch entfernt, eine metallische Diffusionsschicht wird chemisch entfernt.
  • Aus dem Stand der Technik ist bislang kein Verfahren bekannt, mit Hilfe dessen als Multilayer-Beschichtungen ausgebildete verschleißschutzbeschichtungen effektiv entfernt werden können, ohne dass die Gefahr von Beschädigungen des Gasturbinenbauteils besteht.
  • Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zur Entschichtung eines Gasturbinenbauteils zu schaffen.
  • Dieses Problem wird durch ein Verfahren zur Entschichtung eines Gasturbinenbauteils im Sinne von Anspruch 1 gelöst. Erfindungsgemäß wird zum Entfernen der mehrlagigen bzw. mehrschichtigen Verschleißschutzbeschichtung das Gasturbinenbauteil wechselweise in zwei unterschiedlichen chemischen Bädern positioniert, wobei ein erstes Bad ausschließlich dem Entfernen der oder jeder relativ harten, keramischen Lage und ein zweites Bad ausschließlich dem Entfernen der oder jeder relativ weichen, metallischen Lage der Verschleißschutzbeschichtung dient.
  • Im Sinne der hier vorliegenden Erfindung wird vorgeschlagen, das Bauteil mit einer Multilayer-Verschleißschutzbeschichtung wechselweise in unterschiedlichen Bädern anzuordnen, wobei die unterschiedlichen Bäder selektiv entweder eine relativ harte, keramische Lage oder eine relativ weiche, metallische Lage der zu entfernenden Verschleißschutzbeschichtung abtragen. Hierdurch wird erstmals ein Verfahren vorgeschlagen, mit Hilfe dessen Gasturbinenbauteile effektiv von einer sogenannten Multilayer-Verschleißschutzbeschichtung befreit werden können, ohne dass die Gefahr von Beschädigungen des Gasturbinenbauteils besteht.
  • Das erste Bad, welches ausschließlich dem Entfernen der oder jeder relativ harten, keramischen Lage dient, ist eine Säure aus einer Wasserstoffperoxydlösung und mindestens einem darin enthaltenen Natriumsalz und/oder Kaliumsalz einer organischen Säure. Zusätzlich zum Natriumsalz und/oder Kaliumsalz kann das erste Bad eine stickstoffhaltige organische Verbindung aufweisen. Das erste Bad weist einen pH-Wert zwischen 3 und 5 auf.
  • Das zweite Bad, welches ausschließlich dem Entfernen der oder jeder relativ weichen, metallischen Lage dient, ist eine Base aus einer wässrigen Lösung mindestens eines Alkalihydroxids oder Erdalkalihydroxids mit darin enthaltenem Silizium und/oder Phosphor bzw., wobei das zweite Bad einen pH-wert von mindestens 12 aufweist.
  • Vorzugsweise ist das erste Bad eine 5%ige bis 50%ige wasserstoffperoxydlösung mit 10 g/l bis 100 g/l Natriumsalzen organischer Säuren. Zusätzlich zu den Natriumsalzen kann das erste Bad 1 g/l bis 10 g/l einer stickstoffhaltigen organischen Verbindung aufweisen. Das zweite Bad ist vorzugsweise eine 2%ige bis 50%ige Alkalihydroxidlösung mit 1 g/l bis 200 g/l Silizium und/oder 10 g/l bis 100 g/l Phosphor.
  • Nach einer weiteren vorteilhaften Weiterbildung der Erfindung wird das Gasturbinenbauteil zum Entfernen einer relativ harten, keramischen Lage in dem ersten Bad bei einer Temperatur zwischen 10°C und 70°C für eine Zeitdauer von 1-60 Minuten pro 1 nm Dicke der zu entfernenden Lage positioniert. Zum Entfernen einer relativ weichen, metallischen Lage wird das Gasturbinenbauteil in dem zweiten Bad bei einer Temperatur zwischen 20°C und 150°C für eine Zeitdauer von 10-120 Minuten pro 1 nm Dicke der zu entfernenden Lage positioniert.
  • Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ein Ausführungsbeispiel der Erfindung wird nachfolgend in größerem Detail beschrieben.
  • Das erfindungsgemäße Verfahren dient dem Entschichten von mit Multilayer-Verschleißschutzbeschichtungen beschichteten Gasturbinenbauteilen, wobei die Multilayer-Verschleißschutzbeschichtungen aus mindestens zwei unterschiedlichen, wechselweise hintereinander angeordneten Lagen, nämlich aus wechselweise hintereinander angeordneten keramischen, relativ harten Lagen sowie metallischen, relativ weichen Lagen gebildet sind. Das Verfahren dient dem Entschichten von Gasturbinenbauteilen, auf welche eine Verschleißschutzbeschichtung aus vier unterschiedlichen, wechselweise aufeinander folgenden Lagen aufgebracht sind.
  • Bei einem Gasturbinenbauteil, welches aus einem Titanbasiswerkstoff gebildet ist, ist die erste Lage vorzugsweise aus Titan oder Palladium oder Platin gebildet. Auf die erste Lage ist eine zweite Lage aufgebracht, die vorzugsweise von einem TiCrAl-Werkstoff gebildet wird. Als dritte Lage schließt sich eine Gradierungsschicht an, die aus einem TiAlN1-x Werkstoff gebildet ist. An die dritte Lage schließt sich eine vierte Lage aus Titanaluminiumnitrid (TiAlN) an. Diese vier Lagen sind wiederum zur Bildung einer mehrlagigen bzw. mehrschichtigen Verschleißschutzbeschichtung wechselweise hintereinander auf das Gasturbinenbauteil aufgebracht, wobei die erste und zweite Lage jeweils metallisch und relativ weich und die dritte und vierte Lage jeweils keramisch und relativ hart sind.
  • Zum Entfernen solcher mehrlagiger bzw. mehrschichtiger Verschleißschutzbeschichtungen von einem Gasturbinenbauteil wird im Sinne der hier vorliegenden Erfindung vorgeschlagen, das Gasturbinenbauteil wechselweise in zwei unterschiedlichen chemischen Bädern zu positionieren, wobei ein erstes Bad ausschließlich dem Entfernen der oder jeder relativ harten, keramischen Lage und ein zweites Bad ausschließlich dem Entfernen der oder jeder relativ weichen, metallischen Lage der Verschleißschutzbeschichtung dient.
  • Bei dem ersten Bad, welches ausschließlich dem Entfernen der oder jeder relativ harten, keramischen Lage dient, handelt es sich um eine Säure aus einer Wasserstoffperoxydlösung und mindestens einem darin enthaltenen Natriumsalz und/oder Kaliumsalz einer organischen Säure. Zusätzlich zum Natriumsalz und/oder Kaliumsalz kann das erste Bad eine stickstoffhaltige organische Verbindung aufweisen.
  • Vorzugsweise wird das erste Bad von einer 5%igen bis 50%igen Wasserstoffperoxydlösung mit 10 g/l bis 100 g/l Natriumsalzen organischer Säuren gebildet. Der pH-Wert dieses ersten Bads liegt zwischen 3 und 5.
  • Bei dem zweiten Bad, welches ausschließlich dem Entfernen der oder jeder relativ weichen, metallischen Lage dient, handelt es sich um eine Base aus einer wässrigen Lösung mindestens eines Alkalihydroxids oder eines Erdalkalihydroxids mit darin enthaltenem Silizium und/oder Phosphor.
  • Vorzugsweise ist das zweite Bad eine Base aus einer 2%igen bis 50%igen Alkalihydroxidlösung mit 1 g/l bis 200 g/l Siliziumverbindungen und 10 g/l bis 100 g/l Phosphorverbindungen. Der pH-Wert dieses zweiten Bads beträgt mindestens 12.
  • In einem konkreten Ausführungsbeispiel handelt es sich bei dem ersten Bad um eine Säure aus einer 10%igen Wasserstoffperoxydlösung mit 70 g/l Ethylendiamintetraacetat-Natriumsalz und 20 g/l Phenol-4-Sulfonsäure-Natriumsalz und bei dem zweiten Bad um eine 20%ige Alkalihydroxidlösung mit 100 g/l Siliziumverbindungen und 50 g/l Phosphorverbindungen.
  • Wie bereits erwähnt, wird das Gasturbinenbauteil zum Entfernen der Verschleißschutzbeschichtung wechselweise in dem ersten Bad sowie dem zweiten Bad positioniert, wobei das erste Bad selektiv lediglich dem Entfernen der harten, keramischen Lagen und das zweite Bad ausschließlich dem Entfernen der weichen, metallischen Lagen dient. Zum Entfernen einer keramischen Lage wird ein Gasturbinenbauteil demnach in dem ersten Bad positioniert, wobei hierzu das erste Bad eine Temperatur zwischen 10°C und 70°C aufweist. Vorzugsweise liegt die Temperatur dieses Bads in der Größenordnung der Raumtemperatur, also bei in etwa 20°C. Das Gasturbinenbauteil wird in diesem Bad für eine Zeitdauer von 1 bis 60 Minuten pro 1 nm Dicke der zu entfernenden keramischen, relativ harten Lage angeordnet. Zum Entschichten einer metallischen, relativ weichen Lage der Verschleißschutzbeschichtung wird das Gasturbinenbauteil im zweiten Bad positioniert, wobei die Temperatur des zweiten Bads zwischen 20°C und 150°C beträgt, vorzugsweise liegt die Temperatur des zweiten Bads bei 80°C. Das Bauteil wird im zweiten Bad für eine Zeitdauer zwischen 10 Minuten und 120 Minuten pro 1 nm Dicke der zu entfernenden metallischen, relativ weichen Lage positioniert. Zwischen dem Umpositionieren eines zu entschichtenden Gasturbinenbauteils zwischen den beiden Bädern kann das Gasturbinenbauteil gespült werden.
  • Mit dem erfindungsgemäßen Verfahren lassen sich sogenannte Multilayer-Verschleißschutzbeschichtungen von Gasturbinenbauteilen effektiv entfernen, ohne dass die Gefahr von Beschädigungen des Gasturbinenbauteils besteht. Mit Hilfe des erfindungsgemäßen Verfahrens können Verschleißschutzbeschichtungen von einem Gasturbinenbauteil vollständig oder auch lediglich teilweise entfernt werden, wobei zum teilweisen Entfernen der Verschleißschutzbeschichtungen ein Gasturbinenbauteil entweder nur teilweise in die Bäder eingetaucht wird, oder wobei nicht zu entschichtende Bereiche des Gasturbinenbauteils vor dem Eintauchen in das entsprechende Bad mit einer Schutzschicht aus z. B. Wachs versehen werden.

Claims (8)

  1. Verfahren zur Entschichtung eines Gasturbinenbauteils, nämlich zum vollständigen oder teilweisen Entfernen einer mehrlagigen bzw. mehrschichtigen Verschleißschutzbeschichtung von der Oberfläche des Gasturbinenbauteils, wobei die Verschleißschutzbeschichtung relativ harte, keramische Lagen und relativ weiche, metallische Lagen umfasst, mit jeweils mindestens einer ersten Lage aus Titan, Palladium oder Platin, einer zweiten Lage aus einem TiCrAl-Werkstoff, einer dritten Lage aus einem TiAlN(1-x)-Werkstoff und einer vierten Lage aus TiAlN, wobei zum Entfernen der mehrlagigen bzw. mehrschichtigen Verschleißschutzbeschichtung das Gasturbinenbauteil wechselweise in zwei unterschiedlichen chemischen Bädern positioniert wird, wobei ein erstes Bad ausschließlich dem Entfernen jeder relativ harten, keramischen Lage und ein zweites Bad ausschließlich dem Entfernen jeder relativ weichen, metallischen Lage der Verschleißschutzbeschichtung dient, dadurch gekennzeichnet,
    dass das erste Bad, welches ausschließlich dem Entfernen jeder relativ harten, keramischen Lage dient, eine Säure aus einer Wasserstoffperoxydlösung und mindestens einem darin enthaltenen Natriunsalz und/oder Kaliumsalz einer organischen Säure ist, und dass das zweite Bad, welches ausschließlich dem Entfernen jeder relativ weichen, metallischen Lage dient, eine Base aus einer wässrigen Lösung mindestens eines Alkalihydroxids oder eines Erdalkalihydroxids mit darin enthaltenem Silizium und/oder Phosphor ist.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das erste Bad eine 5%ige bis 50%ige Wasserstoffperoxydlösung mit 10 g/l bis 100 g/l Natriumsalzen organischer Säuren ist.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass das erste Bad einen pH-Wert zwischen 3 und 5 aufweist.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass das Gasturbinenbauteil zum Entfernen einer relativ harten, keramischen Lage in dem ersten Bad bei einer Temperatur zwischen 10°C und 70°C für eine Zeitdauer von 1-60 Minuten pro 1 nm Dicke der zu entfernenden Lage positioniert wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass das zweite Bad eine 2%ige bis 50%ige Alkalihydroxidlösung mit 1 g/l bis 200 g/l Silizium und/oder 10 g/l bis 100 g/l Phosphor ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass das zweite Bad einen pH-Wert von größer als 12 aufweist.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass das Gasturbinenbauteil zum Entfernen einer relativ weichen, metallischen Lage in dem zweiten Bad bei einer Temperatur zwischen 20°C und 150°C für eine Zeitdauer von 10-120 Minuten pro 1 nm Dicke der zu entfernenden Lage positioniert wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass das erste Bad eine Säure aus einer 10%igen Wasserstoffperoxydlösung mit 70g/l Ethylendiamintetraacetat-Natriumsalz und 20g/l Phenol-4-Sulfonsäure-Natriumsalz ist.
EP06805384.2A 2005-10-14 2006-10-10 Verfahren zur entschichtung eines gasturbinenbauteils Expired - Fee Related EP1934387B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06805384T PL1934387T3 (pl) 2005-10-14 2006-10-10 Sposób odwarstwiania elementu turbiny gazowej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005049249.5A DE102005049249B4 (de) 2005-10-14 2005-10-14 Verfahren zur Entschichtung eines Gasturbinenbauteils
PCT/DE2006/001766 WO2007041998A1 (de) 2005-10-14 2006-10-10 Verfahren zur entschichtung eines gasturbinenbauteils

Publications (2)

Publication Number Publication Date
EP1934387A1 EP1934387A1 (de) 2008-06-25
EP1934387B1 true EP1934387B1 (de) 2015-06-17

Family

ID=37605754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06805384.2A Expired - Fee Related EP1934387B1 (de) 2005-10-14 2006-10-10 Verfahren zur entschichtung eines gasturbinenbauteils

Country Status (6)

Country Link
US (1) US9212555B2 (de)
EP (1) EP1934387B1 (de)
JP (1) JP2009511804A (de)
DE (1) DE102005049249B4 (de)
PL (1) PL1934387T3 (de)
WO (1) WO2007041998A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377324B2 (en) * 2005-06-10 2013-02-19 Acromet Technologies Inc. Methods for removing coatings from a metal component
US8262870B2 (en) * 2005-06-10 2012-09-11 Aeromet Technologies, Inc. Apparatus, methods, and compositions for removing coatings from a metal component
DE102007022832A1 (de) * 2007-05-15 2008-11-20 Mtu Aero Engines Gmbh Verfahren zur Entschichtung eines Bauteils
DE102010034336B4 (de) 2010-08-14 2013-05-29 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Entfernen einer Schicht von einer Oberfläche eines Körpers
US10316414B2 (en) * 2016-06-08 2019-06-11 United Technologies Corporation Removing material with nitric acid and hydrogen peroxide solution
US10377968B2 (en) 2017-06-12 2019-08-13 General Electric Company Cleaning compositions and methods for removing oxides from superalloy substrates
US10501839B2 (en) * 2018-04-11 2019-12-10 General Electric Company Methods of removing a ceramic coating from a substrate
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438901A (en) * 1965-10-22 1969-04-15 Neiko I Vassileff Metal treating bath and chelating agent for metal reactive acid baths
US3833414A (en) 1972-09-05 1974-09-03 Gen Electric Aluminide coating removal method
US4746369A (en) * 1982-01-11 1988-05-24 Enthone, Incorporated Peroxide selective stripping compositions and method
US4900398A (en) * 1989-06-19 1990-02-13 General Motors Corporation Chemical milling of titanium
CA2071944C (en) 1990-10-19 1998-02-03 Jiinjen Albert Sue Stripping solution and process for stripping compounds of titanium from base metals
DE4101843C1 (en) 1991-01-23 1992-04-02 Eifeler Werkzeuge Gmbh, 4000 Duesseldorf, De Hard tool coating for economy - by stripping using tetra:sodium di:phosphate soln. and hydrogen peroxide
US5248386A (en) * 1991-02-08 1993-09-28 Aluminum Company Of America Milling solution and method
DE4110595C1 (en) 1991-04-02 1992-11-26 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De Wet-chemical removal of hard coatings from workpiece surfaces - comprises using hydrogen peroxide soln. stabilised by complex former e.g. potassium-sodium tartrate-tetra:hydrate
DE4339502C2 (de) 1993-11-24 1999-02-25 Thoene Carl Stefan Entschichtungslösung zum naßchemischen Entfernen von Hartstoffschichten und Verfahren zu deren Anwendung
JPH09109126A (ja) 1995-10-17 1997-04-28 Ngk Insulators Ltd ハニカム成形用口金の再生方法
EP1029117B1 (de) 1997-11-10 2004-08-25 Unaxis Trading AG Verfahren zum entschichten von körpern
US5972424A (en) 1998-05-21 1999-10-26 United Technologies Corporation Repair of gas turbine engine component coated with a thermal barrier coating
DE59914591D1 (de) * 1998-06-11 2008-02-07 Oerlikon Trading Ag Verfahren zum entschichten von hartstoffschichten
US6132520A (en) * 1998-07-30 2000-10-17 Howmet Research Corporation Removal of thermal barrier coatings
DE19924589A1 (de) 1999-05-28 2000-11-30 Thoene Carl Stefan Verfahren zum naßchemischen Entfernen von Hartstoffschichten auf Hartmetall-Substraten
US6488729B1 (en) * 1999-09-30 2002-12-03 Showa Denko K.K. Polishing composition and method
US6379749B2 (en) * 2000-01-20 2002-04-30 General Electric Company Method of removing ceramic coatings
US6355116B1 (en) * 2000-03-24 2002-03-12 General Electric Company Method for renewing diffusion coatings on superalloy substrates
US20020125215A1 (en) * 2001-03-07 2002-09-12 Davis Brian Michael Chemical milling of gas turbine engine blisks
US6793838B2 (en) * 2001-09-28 2004-09-21 United Technologies Corporation Chemical milling process and solution for cast titanium alloys
US6936543B2 (en) * 2002-06-07 2005-08-30 Cabot Microelectronics Corporation CMP method utilizing amphiphilic nonionic surfactants
US6916429B2 (en) * 2002-10-21 2005-07-12 General Electric Company Process for removing aluminosilicate material from a substrate, and related compositions
US7008553B2 (en) * 2003-01-09 2006-03-07 General Electric Company Method for removing aluminide coating from metal substrate and turbine engine part so treated
US7094450B2 (en) * 2003-04-30 2006-08-22 General Electric Company Method for applying or repairing thermal barrier coatings
US7078073B2 (en) * 2003-11-13 2006-07-18 General Electric Company Method for repairing coated components
US20050152805A1 (en) 2004-01-08 2005-07-14 Arnold James E. Method for forming a wear-resistant hard-face contact area on a workpiece, such as a gas turbine engine part
DE102004001392A1 (de) * 2004-01-09 2005-08-04 Mtu Aero Engines Gmbh Verschleißschutzbeschichtung und Bauteil mit einer Verschleißschutzbeschichtung
DE502005008787D1 (de) 2004-01-29 2010-02-11 Oerlikon Trading Ag Entschichtungsverfahren
US7271136B2 (en) * 2005-01-21 2007-09-18 Spray Nine Corporation Aircraft cleaner formula
US8377324B2 (en) * 2005-06-10 2013-02-19 Acromet Technologies Inc. Methods for removing coatings from a metal component
US7425278B2 (en) * 2006-11-28 2008-09-16 International Business Machines Corporation Process of etching a titanium/tungsten surface and etchant used therein
US20080169270A1 (en) * 2007-01-17 2008-07-17 United Technologies Corporation Method of removing a case layer from a metal alloy
US8623236B2 (en) * 2007-07-13 2014-01-07 Tokyo Ohka Kogyo Co., Ltd. Titanium nitride-stripping liquid, and method for stripping titanium nitride coating film

Also Published As

Publication number Publication date
DE102005049249A1 (de) 2007-04-19
EP1934387A1 (de) 2008-06-25
JP2009511804A (ja) 2009-03-19
WO2007041998A1 (de) 2007-04-19
DE102005049249B4 (de) 2018-03-29
PL1934387T3 (pl) 2016-03-31
US9212555B2 (en) 2015-12-15
US20090302004A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
EP1934387B1 (de) Verfahren zur entschichtung eines gasturbinenbauteils
CH635018A5 (de) Verfahren zum aufbringen einer oberflaechenschicht durch fusionsschweissen.
DE10237042B4 (de) Zusammensetzung und Verfahren zur Resistentfernung
EP2147131B1 (de) Verfahren zum thermochemischen passivieren von edelstahl
EP1632589B1 (de) Verfahren zur Entfernung von Oberflächenbereichen eines Bauteils
EP2591872A1 (de) Umschmelzverfahren und anschließendes Auffüllen und Bauteil
EP3118352B1 (de) Verfahren zum galvanischen beschichten von tial-legierungen
DE102019134298A1 (de) Verfahren zum Herstellen eines Stahlflachprodukts mit einer metallischen Schutzschicht auf Basis von Zink und einer auf einer Oberfläche der metallischen Schutzschicht erzeugten Phosphatierschicht und derartiges Stahlflachprodukt
EP1752562A1 (de) Verfahren zum Entfernen eines Schichtbereichs eines Bauteils
WO2006042506A1 (de) Verfahren zur herstellung eines mit einer verschleissschutzbeschichtung beschichteten bauteils
DE10065406A1 (de) Verfahren zum Reparieren von Schadstellen an einem Metallbauteil
DE3125565A1 (de) "elektrochemisches entmetallisierungsbad und ein verfahren zum entmetallisieren"
EP1743053B1 (de) Verfahren zur herstellung einer beschichtung
DE10043148B4 (de) Verfahren zur Erhöhung der Korrosionsbeständigkeit eines Werkstücks aus Titan oder einer Titanlegierung und Verwendung des Verfahrens
EP2581473B1 (de) Verfahren zur Korrosionsschutzbehandlung eines Werkstücks aus einem Aluminiumwerkstoff, insbesondere aus einer Aluminiumknetlegierung
WO2008138301A1 (de) Verfahren zur entschichtung eines bauteils
DE19536312C1 (de) Verfahren zur Herstellung eines mehrlagig beschichteten Bauteils mit Bohrungen
DE102005011011A1 (de) Bauteil, insbesondere Gasturbinenbauteil
EP3126542B1 (de) Zweistufen-vorbehandlung von aluminium umfassend beize und passivierung
DE102020106543A1 (de) Verfahren zum Verzinken eines Bauteils, insbesondere für ein Kraftfahrzeug, sowie Bauteil für ein Kraftfahrzeug
EP3357630A1 (de) Verfahren und vorrichtung zum reparieren einer beschädigten schaufelspitze einer gepanzerten und mit einer schaufelbeschichtung versehenen turbinenschaufel
DE102022211828A1 (de) Neubeschichtung von Oberflächen und Komponente
DE102005036426B4 (de) Verfahren zum Beschichten von Stahlprodukten
DE102007028294B4 (de) Vorrichtung und Verfahren zum Freilegen von in einer Aluminium-Matrix eingebetteten Silizium-Kristallen an einer Oberfläche eines Werkstücks
DE102004053135A1 (de) Verfahren zum Abtragen einer Beschichtung von einem Bauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB PL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB PL

17Q First examination report despatched

Effective date: 20121211

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AB SOLUT CHEMIE GMBH

Owner name: MTU AERO ENGINES AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/28 20060101ALI20150210BHEP

Ipc: C23F 1/44 20060101ALI20150210BHEP

Ipc: F01D 5/00 20060101ALI20150210BHEP

Ipc: C23G 1/10 20060101AFI20150210BHEP

INTG Intention to grant announced

Effective date: 20150224

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014388

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014388

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160318

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190930

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191023

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191022

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191023

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006014388

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201010