EP1921269A1 - Turbine blade - Google Patents

Turbine blade Download PDF

Info

Publication number
EP1921269A1
EP1921269A1 EP06023377A EP06023377A EP1921269A1 EP 1921269 A1 EP1921269 A1 EP 1921269A1 EP 06023377 A EP06023377 A EP 06023377A EP 06023377 A EP06023377 A EP 06023377A EP 1921269 A1 EP1921269 A1 EP 1921269A1
Authority
EP
European Patent Office
Prior art keywords
cooling
ribs
turbine blade
rib
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06023377A
Other languages
German (de)
French (fr)
Inventor
Heinz-Jürgen Dr. Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06023377A priority Critical patent/EP1921269A1/en
Priority to US12/513,682 priority patent/US8215909B2/en
Priority to PCT/EP2007/061127 priority patent/WO2008055764A1/en
Priority to JP2009535661A priority patent/JP5329418B2/en
Priority to EP07821492.1A priority patent/EP2087207B1/en
Publication of EP1921269A1 publication Critical patent/EP1921269A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/181Two-dimensional patterned ridged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/34Arrangement of components translated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to a turbine blade.
  • Turbine blades particularly turbine blades for gas turbines, are exposed during operation to high temperatures which rapidly exceed the limit of material stress. This applies in particular to the areas in the vicinity of the flow inlet edge.
  • it has long been known to cool turbine blades suitable, so that they have a higher temperature resistance. With turbine blades, which have a higher temperature resistance, higher energy efficiencies can be achieved in particular.
  • Cooling cooling is probably the most common type of blade cooling.
  • This type of cooling cooling air is passed through channels in the interior of the blade and uses the convective effect to dissipate the heat.
  • impingement cooling a cooling air flow impinges on the blade surface from the inside. In this way, a very good cooling effect is made possible at the point of impact, but this is limited only to the narrow area of the point of impact and the closer environment.
  • This type of cooling is therefore usually used for cooling the flow inlet edge of a turbine blade, which is exposed to high temperature loads.
  • film cooling cooling air is directed out through openings in the turbine blade from the interior of the turbine blade. This cooling air flows around the turbine blade and forms an insulating layer between the hot process gas and the blade surface.
  • the types of cooling described are suitably combined depending on the application in order to achieve the most effective blade cooling possible.
  • coolants such as turbulators, which are usually provided in the form of ribs
  • turbulators which are usually provided in the form of ribs
  • These are arranged within the cooling channels provided for the convection flow, which run in the interior of the turbine blade.
  • the incorporation of fins in the cooling channels causes the flow of cooling air in the boundary layers to be detached and entangled. Due to the forced disruption of the flow, the heat transfer can be increased in the presence of a temperature difference between the cooling channel wall and the cooling air.
  • the ribbing constantly causes the flow to form new "recovery areas" in which a substantial increase in the local heat transfer coefficient can be achieved.
  • cooling channels are often formed in turbine blades parallel to and close to the flow inlet edge, to which cooling air is supplied by further cooling channels formed in the blades.
  • the convective cooling of the flow inlet edge realized in this way is usually supplemented by impingement cooling of the inner wall of the cooling channel extending near the flow inlet edge in the case of film-sensed blades.
  • convective cooling is intensified by turbulators disposed on the inner wall of the cooling duct.
  • the invention has for its object to provide a turbine blade whose flow inlet edge can be cooled compared to known solutions more effectively, both in existing as well as non-existing film cooling.
  • a turbine blade which has a plurality of ribs, which are arranged successively in a cooling channel which extends along a flow inlet edge, and in which each with two ribs a pair of ribs is formed, arranged the ribs in skating step shape are.
  • the inventively provided pairwise arrangement of the ribs in skate step shape causes over known solutions a greatly increased turbulence of the cooling air flowing in the cooling channel according to the invention, such that the cooling air flowing in the cooling channel from one rib of a rib-pair on the other rib of the ribs Pair is headed.
  • a greatly increased turbulence of the cooling air a greatly increased local heat transfer coefficient is connected, so that overall, compared to known solutions, a significantly more effective cooling, in particular in the region of the flow inlet edge, can be provided.
  • the turbine blade according to the invention can thus be exposed to higher gas temperatures, even if no film cooling is provided. If film cooling is provided, even higher gas temperatures are possible.
  • a high degree of turbulence is formed on the flowed-on ribs, which, in combination with impingement cooling effects and a strong increase in surface area on the cooling air side, leads to efficient use of cooling air and equalization of the temperature distribution.
  • the two ribs of a rib pair are arranged in the cooling channel such that a flow of a cooling medium flowing in the cooling channel, preferably in the form of cooling air, from one rib of the rib pair essentially transversely to the other rib of the rib pair.
  • the two ribs of a rib pair include a predetermined angle, and a total cooling capacity of the two ribs of a rib pair is adjusted over the angle to a predetermined cooling requirement for the flow inlet edge in the vicinity of the rib pair.
  • the extent of the turbulence of the cooling air and thus also the local heat transfer coefficient can be selectively influenced, so that cooling adapted to a local cooling requirement for the flow inlet edge can be realized.
  • the cooling capacity of a pair of ribs can be increased by increasing the angle enclosed by the two ribs of the ribbed pair.
  • the temperature distribution at the flow inlet edge can be "made uniform" by means of this practical development, since according to the invention comparatively hot spots of the flow inlet edge by appropriately trained rib pairs a correspondingly strong cooling and vice versa, so that an effective cooling of the flow inlet edge can be realized which counteracts an inhomogeneous temperature distribution.
  • An inhomogeneous temperature distribution is associated with high thermal loads, which adversely affect the life of the turbine. This applies in particular to turbine blades which are used in axially through-flow turbines in which an inhomogeneous temperature distribution along the radial direction is formed for the flow inlet edge.
  • the ribs extend projecting from a wall bounding the cooling channel into the cooling channel, the ribs preferably being formed integrally with the bounding wall.
  • the rib pairs are mounted within an insert which is inserted into the cooling channel.
  • an insert is provided according to the invention, which can optionally be removed from the turbine blade, preferably in the form of a guide vane, to adapt, for example, the angular position of the rib pairs of a given application.
  • the casting of the turbine blade can also be kept simple, so that the turbine blade according to the invention can also be produced without elaborately designed casting cores.
  • the cooling channel extends parallel to the flow inlet edge continuously through the turbine blade to provide effective cooling along the entire extent of the flow inlet edge.
  • FIG. 1 shows a sketch-like sectional view of a turbine blade 10 according to the invention through its flow inlet edge 12.
  • the section according to the sectional surface A-A of FIG. 1 is shown in FIG. 3, this being a sketch-like sectional view of the front section of a turbine blade 10 according to the invention.
  • a cooling channel 14 extending parallel to the flow inlet edge 12 is formed near the flow inlet edge 12 (ie, a radially extending channel 14 in the case of axially through-flowed turbines).
  • a number of pairs of ribs 24 are arranged in succession in this, the individual ribs 18 of each rib pair 24 being set transversely to each other by a predetermined angle ⁇ .
  • the ribs 18 of a pair of ribs 24, viewed along the cooling channel extension, are arranged offset to one another.
  • the ribs 18 of each pair 24 and the ribs 18 of immediately adjacent pairs 24 are thus arranged overlapping in skating step shape.
  • the cooling air When flowing through the cooling channel 14, the cooling air is alternately deflected by the individual ribs 18 of each pair 24. A high degree of turbulence is formed on the flowed-on ribs 18, which, in combination with impingement cooling effects and the associated cooling air-side surface enlargement, leads to an efficient use of cooling air.
  • the angle is ⁇ in larger than in the edge regions of the turbine blade 10, so as to cool the middle, during operation usually strongly heated area of the flow inlet edge 12 stronger than the edge regions of the flow inlet edge 12.
  • Suitable values for the angle ⁇ which are adapted to the respective cooling requirement, according to the invention are in the range of about 60 ° to 90 °.
  • the individual ribs 18 of a pair 24 extend predominantly from a front wall Alternatively, however, the ribs 18 may be fixed on one side only to the front wall 16 without extending to the rear wall 20. Likewise, the ribs may also be part of an insert which can be inserted in the cooling channel 14.
  • the cooling air can preferably be guided in the direction of the front wall 16 by suitably setting the angular position ⁇ , in order to achieve the most effective possible cooling of the flow inlet edge 12.
  • provided angular sizes are in the range of about 30 ° to 60 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The blade (10) has a set of fins (18) arranged in a cooling channel (14) in a sequence of one following the other. The cooling channel extends along a length of a flow-inlet edge (12), where a pair of fins is formed with the respective ribs. The fins are arranged in a shape of ice-skating-step. The fins are formed with front and rear walls (16, 20) in single-piece, and the cooling channel extends parallel to the flow-inlet edge.

Description

Die Erfindung betrifft eine Turbinenschaufel. Turbinenschaufeln, insbesondere Turbinenschaufeln für Gasturbinen, werden während des Betriebs hohen Temperaturen ausgesetzt, welche schnell die Grenze der Materialbeanspruchung überschreiten. Dies gilt insbesondere für die Bereiche in Umgebung der Strömungseintrittskante. Um Turbinenschaufeln auch bei hohen Temperaturen einsetzen zu können, ist es schon seit langem bekannt, Turbinenschaufeln geeignet zu kühlen, so dass sie eine höhere Temperaturbeständigkeit aufweisen. Mit Turbinenschaufeln, die eine höhere Temperaturbeständigkeit aufweisen, lassen sich insbesondere höhere energetische Wirkungsgrade erzielen.The invention relates to a turbine blade. Turbine blades, particularly turbine blades for gas turbines, are exposed during operation to high temperatures which rapidly exceed the limit of material stress. This applies in particular to the areas in the vicinity of the flow inlet edge. In order to use turbine blades even at high temperatures, it has long been known to cool turbine blades suitable, so that they have a higher temperature resistance. With turbine blades, which have a higher temperature resistance, higher energy efficiencies can be achieved in particular.

Bekannte Kühlarten sind unter anderem die Konvektionskühlung, die Prallkühlung und die Filmkühlung. Bei der Konvektionskühlung handelt es sich wohl um die am weitesten verbreitete Art der Schaufelkühlung. Bei dieser Kühlungsart führt man Kühlluft durch Kanäle im Schaufelinneren und nutzt den konvektiven Effekt, um die Wärme abzuführen. Bei der Prallkühlung prallt ein Kühlluftstrom von innen auf die Schaufeloberfläche. Auf diese Weise wird im Auftreffpunkt eine sehr gute Kühlwirkung ermöglicht, die allerdings nur auf den engen Bereich des Auftreffpunkts und die nähere Umgebung beschränkt ist. Diese Art der Kühlung wird deshalb meist zur Kühlung der Strömungseintrittskante einer Turbinenschaufel verwendet, die hohen Temperaturbelastungen ausgesetzt ist. Bei der Filmkühlung wird Kühlluft über Öffnungen in der Turbinenschaufel vom Inneren der Turbinenschaufel nach außen geführt. Diese Kühlluft umströmt die Turbinenschaufel und bildet eine isolierende Schicht zwischen dem heißen Prozessgas und der Schaufeloberfläche aus. Die beschriebenen Kühlarten werden je nach Anwendungsfall geeignet kombiniert, um eine möglichst wirksame Schaufelkühlung zu erzielen.Well-known types of cooling include convection cooling, impingement cooling and film cooling. The convection cooling is probably the most common type of blade cooling. In this type of cooling, cooling air is passed through channels in the interior of the blade and uses the convective effect to dissipate the heat. During impingement cooling, a cooling air flow impinges on the blade surface from the inside. In this way, a very good cooling effect is made possible at the point of impact, but this is limited only to the narrow area of the point of impact and the closer environment. This type of cooling is therefore usually used for cooling the flow inlet edge of a turbine blade, which is exposed to high temperature loads. In film cooling, cooling air is directed out through openings in the turbine blade from the interior of the turbine blade. This cooling air flows around the turbine blade and forms an insulating layer between the hot process gas and the blade surface. The types of cooling described are suitably combined depending on the application in order to achieve the most effective blade cooling possible.

Ergänzend zu den oben beschriebenen Kühlarten ist die Verwendung von Kühlmitteln, wie Turbulatoren, die meist in Form von Rippen bereitgestellt sind, sehr verbreitet. Diese sind innerhalb der für die Konvektionsströmung vorgesehenen Kühlkanäle angeordnet, die im Inneren der Turbinenschaufel verlaufen. Der Einbau von Rippen in den Kühlkanälen bewirkt, dass die Strömung der Kühlluft in den Grenzschichten abgelöst und verwirbelt wird. Durch die so erzwungene Störung der Strömung kann bei einem vorliegenden Temperaturunterschied zwischen Kühlkanalwand und Kühlluft der Wärmeübergang gesteigert werden. Durch die Berippung wird die Strömung ständig dazu veranlasst neue "Wiederanlegegebiete" zu bilden, in denen eine wesentliche Steigerung des lokalen Wärmeübergangskoeffizienten erzielt werden kann.In addition to the types of cooling described above, the use of coolants, such as turbulators, which are usually provided in the form of ribs, is very common. These are arranged within the cooling channels provided for the convection flow, which run in the interior of the turbine blade. The incorporation of fins in the cooling channels causes the flow of cooling air in the boundary layers to be detached and entangled. Due to the forced disruption of the flow, the heat transfer can be increased in the presence of a temperature difference between the cooling channel wall and the cooling air. The ribbing constantly causes the flow to form new "recovery areas" in which a substantial increase in the local heat transfer coefficient can be achieved.

Zur Kühlung der während des Betriebs thermisch meist sehr stark beanspruchten Strömungseintrittskante bzw. Vorderkante von Turbinenschaufeln sind in Turbinenschaufeln oft parallel und nahe zur Strömungseintrittskante verlaufende Kühlkanäle ausgebildet, denen durch weitere in den Schaufeln ausgebildete Kühlkanäle Kühlluft zugeführt wird. Die so realisierte konvektive Kühlung der Strömungseintrittskante wird bei filmgefühlten Schaufeln meist durch eine Prallkühlung der Innenwand des nahe der Strömungseintrittskante verlaufenden Kühlkanals ergänzt. In Anwendungen, bei denen keine Filmkühlung der Turbinenschaufeln vorgenommen wird, wird die konvektive Kühlung durch an der Innenwand des Kühlkanals angeordnete Turbulatoren intensiviert.In order to cool the flow inlet edge or leading edge of turbine blades, which are usually subjected to very high temperatures during operation, cooling channels are often formed in turbine blades parallel to and close to the flow inlet edge, to which cooling air is supplied by further cooling channels formed in the blades. The convective cooling of the flow inlet edge realized in this way is usually supplemented by impingement cooling of the inner wall of the cooling channel extending near the flow inlet edge in the case of film-sensed blades. In applications where film cooling of the turbine blades is not performed, convective cooling is intensified by turbulators disposed on the inner wall of the cooling duct.

Sowohl bei filmgekühlten als auch bei nicht filmgekühlten Schaufeln besteht gegenwärtig hinsichtlich der Kühlung der Strömungseintrittskante noch deutlicher Verbesserungsbedarf.For both film-cooled and non-film-cooled blades, there is still a clear need for improvement with regard to the cooling of the flow entry edge.

Der Erfindung liegt die Aufgabe zugrunde, eine Turbinenschaufel anzugeben, deren Strömungseintrittskante gegenüber bekannten Lösungen wirksamer gekühlt werden kann, und zwar sowohl bei vorhandener als auch bei nicht vorhandener Filmkühlung.The invention has for its object to provide a turbine blade whose flow inlet edge can be cooled compared to known solutions more effectively, both in existing as well as non-existing film cooling.

Diese Aufgabe ist erfindungsgemäß mit einer Turbinenschaufel gelöst, die mehrere Rippen aufweist, welche aufeinanderfolgend in einem Kühlkanal angeordnet sind, der sich längs einer Strömungseintrittskante erstreckt, und bei der mit jeweils zwei Rippen ein Rippen-Paar gebildet ist, dessen Rippen in Schlittschuhschritt-Form angeordnet sind.This object is achieved according to the invention with a turbine blade, which has a plurality of ribs, which are arranged successively in a cooling channel which extends along a flow inlet edge, and in which each with two ribs a pair of ribs is formed, arranged the ribs in skating step shape are.

Die erfindungsgemäß vorgesehene paarweise Anordnung der Rippen in Schlittschuhschritt-Form bewirkt gegenüber bekannten Lösungen eine stark erhöhte Verwirbelung der in dem erfindungsgemäßen Kühlkanal strömenden Kühlluft, derart, dass die in dem Kühlkanal strömende Kühlluft von einer Rippe eines Rippen-Paars auf die andere Rippe des Rippen-Paars geleitet wird. Mit der stark erhöhten Verwirbelung der Kühlluft ist ein stark erhöhter lokaler Wärmeübergangskoeffizient verbunden, so dass insgesamt betrachtet gegenüber bekannten Lösungen eine deutlich wirksamere Kühlung, insbesondere im Bereich der Strömungseintrittskante bereitgestellt werden kann. Insgesamt betrachtet kann die erfindungsgemäße Turbinenschaufel somit höheren Gastemperaturen ausgesetzt werden, selbst wenn keine Filmkühlung vorgesehen ist. Sofern Filmkühlung vorgesehen ist, sind noch höhere Gastemperaturen möglich. Ferner bildet sich an den angeströmten Rippen ein hoher Turbulenzgrad aus, der in Kombination mit Prallkühlungseffekten und einer starken kühlluftseitigen Oberflächenvergrößerung zu einer effizienten Kühlluftausnutzung und einer Vergleichmäßigung der Temperaturverteilung führt.The inventively provided pairwise arrangement of the ribs in skate step shape causes over known solutions a greatly increased turbulence of the cooling air flowing in the cooling channel according to the invention, such that the cooling air flowing in the cooling channel from one rib of a rib-pair on the other rib of the ribs Pair is headed. With the greatly increased turbulence of the cooling air, a greatly increased local heat transfer coefficient is connected, so that overall, compared to known solutions, a significantly more effective cooling, in particular in the region of the flow inlet edge, can be provided. Overall, the turbine blade according to the invention can thus be exposed to higher gas temperatures, even if no film cooling is provided. If film cooling is provided, even higher gas temperatures are possible. Furthermore, a high degree of turbulence is formed on the flowed-on ribs, which, in combination with impingement cooling effects and a strong increase in surface area on the cooling air side, leads to efficient use of cooling air and equalization of the temperature distribution.

Bei einer vorteilhaften Weiterbildung der Erfindung sind die beiden Rippen eines Rippen-Paars derart in dem Kühlkanal angeordnet, dass eine Strömung eines in dem Kühlkanal strömenden Kühlmediums, vorzugsweise in Form von Kühlluft, von einer Rippe des Rippen-Paars im wesentlichen quer auf die andere Rippe des Rippen-Paars geleitet wird. Durch diese erfindungsgemäß vorgesehene Strömungsführung der in dem Kühlkanal strömenden Kühlluft wird eine besonders hohe Verwirbelung im Bereich des Rippen-Paars realisiert, einhergehend mit einem sehr hohen lokalen Wärmeübergangskoeffizienten und einer entsprechend stark ausgebildeten Kühlungswirkung.In an advantageous development of the invention, the two ribs of a rib pair are arranged in the cooling channel such that a flow of a cooling medium flowing in the cooling channel, preferably in the form of cooling air, from one rib of the rib pair essentially transversely to the other rib of the rib pair. By virtue of this flow guidance provided according to the invention for the cooling air flowing in the cooling duct, a particularly high turbulence is realized in the region of the ribbed pair, accompanied by a very high local heat transfer coefficient and a correspondingly highly developed cooling effect.

Bei einer praktischen Weiterbildung der Erfindung schließen die beiden Rippen eines Rippen-Paars einen vorbestimmten Winkel ein, und ein gesamtes Kühlvermögen der beiden Rippen eines Rippen-Paars ist über den Winkel einem vorgegebenen Kühlbedarf für die Strömungseintrittskante in der Umgebung des Rippen-Paars angepasst.In a practical embodiment of the invention, the two ribs of a rib pair include a predetermined angle, and a total cooling capacity of the two ribs of a rib pair is adjusted over the angle to a predetermined cooling requirement for the flow inlet edge in the vicinity of the rib pair.

Erfindungsgemäß kann durch Veränderung der Winkelstellung der Rippen eines Rippen-Paars das Ausmaß der Verwirbelung der Kühlluft und somit auch der lokale Wärmeübergangskoeffizient gezielt beeinflusst werden, so dass eine einem lokalen Kühlbedarf für die Strömungseintrittskante angepasste Kühlung realisiert werden kann. Hierbei kann erfindungsgemäß das Kühlvermögen eines Rippen-Paares durch Vergrößerung des Winkels, der von den beiden Rippen des Rippen-Paars eingeschlossen wird, vergrößert werden. Insgesamt betrachtet kann mittels dieser praktischen Weiterbildung die Temperaturverteilung an der Strömungseintrittskante "vergleichmässigt" werden, da erfindungsgemäß an vergleichsweise heißen Stellen der Strömungseintrittskante durch geeignet ausgebildete Rippen-Paare eine entsprechend starke Kühlung erfolgt und umgekehrt, so dass eine wirksame Kühlung der Strömungseintrittskante realisiert werden kann, die einer inhomogenen Temperaturverteilung entgegenwirkt.According to the invention, by changing the angular position of the ribs of a fin-pair, the extent of the turbulence of the cooling air and thus also the local heat transfer coefficient can be selectively influenced, so that cooling adapted to a local cooling requirement for the flow inlet edge can be realized. In this case, according to the invention, the cooling capacity of a pair of ribs can be increased by increasing the angle enclosed by the two ribs of the ribbed pair. Overall, the temperature distribution at the flow inlet edge can be "made uniform" by means of this practical development, since according to the invention comparatively hot spots of the flow inlet edge by appropriately trained rib pairs a correspondingly strong cooling and vice versa, so that an effective cooling of the flow inlet edge can be realized which counteracts an inhomogeneous temperature distribution.

Eine inhomogene Temperaturverteilung ist mit großen thermischen Belastungen verbunden, die sich nachteilig auf die Lebensdauer der Turbine auswirken. Die gilt insbesondere für Turbinenschaufeln, die in axial durchströmten Turbinen zum Einsatz kommen, bei denen sich für die Strömungseintrittskante eine inhomogene Temperaturverteilung entlang der radialen Richtung ausbildet.An inhomogeneous temperature distribution is associated with high thermal loads, which adversely affect the life of the turbine. This applies in particular to turbine blades which are used in axially through-flow turbines in which an inhomogeneous temperature distribution along the radial direction is formed for the flow inlet edge.

Bei einer weiteren praktischen Weiterbildung erstrecken sich die Rippen von einer den Kühlkanal begrenzenden Wand abstehend in den Kühlkanal hinein, wobei die Rippen bevorzugt einstückig mit der begrenzenden Wand ausgebildet sind.In a further practical development, the ribs extend projecting from a wall bounding the cooling channel into the cooling channel, the ribs preferably being formed integrally with the bounding wall.

Bei einer vorteilhaften Weiterbildung der Erfindung sind die Rippen-Paare innerhalb eines Einsatzes angebracht, der in den Kühlkanal eingeschoben ist. Auf diese Weise wird erfindungsgemäß ein Einsatz bereitgestellt, der gegebenenfalls aus der Turbinenschaufel, vorzugsweise in Form einer Leitschaufel, entnommen werden kann, um beispielsweise die Winkelstellung der Rippen-Paare einer gegeben Anwendung anzupassen. Gleichfalls lässt sich so auch der Guss der Turbinenschaufel einfach halten, so dass die erfindungsgemäße Turbinenschaufel auch ohne aufwändig gestaltete Gusskerne hergestellt werden kann.In an advantageous embodiment of the invention, the rib pairs are mounted within an insert which is inserted into the cooling channel. In this way, an insert is provided according to the invention, which can optionally be removed from the turbine blade, preferably in the form of a guide vane, to adapt, for example, the angular position of the rib pairs of a given application. Likewise, the casting of the turbine blade can also be kept simple, so that the turbine blade according to the invention can also be produced without elaborately designed casting cores.

Bei einer weiteren vorteilhaften Weiterbildung der Erfindung erstreckt sich der Kühlkanal parallel zur Strömungseintrittskante durchgehend durch die Turbinenschaufel, um eine wirksame Kühlung entlang der gesamten Erstreckung der Strömungseintrittskante bereitzustellen.In a further advantageous embodiment of the invention, the cooling channel extends parallel to the flow inlet edge continuously through the turbine blade to provide effective cooling along the entire extent of the flow inlet edge.

Nachfolgend wird ein Ausführungsbeispiel einer erfindungsgemäßen Turbinenschaufel anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:

FIG 1
eine skizzenhafte Schnittdarstellung einer erfindungsgemäßen Turbinenschaufel durch deren Strömungseintrittskante,
FIG 2
eine Turbinenschaufel mit einem Kühlkanal und mit darin angeordneten Rippen und
FIG 3
einen Längsschnitt durch die Turbinenschaufel entlang ihrer Strömungseintrittskante.
Hereinafter, an embodiment of a turbine blade according to the invention will be explained in more detail with reference to the accompanying drawings. Show it:
FIG. 1
a sketch-like sectional view of a turbine blade according to the invention by the flow inlet edge,
FIG. 2
a turbine blade with a cooling channel and arranged therein ribs and
FIG. 3
a longitudinal section through the turbine blade along its flow inlet edge.

FIG 1 zeigt eine skizzenhafte Schnittdarstellung einer erfindungsgemäßen Turbinenschaufel 10 durch deren Strömungseintrittskante 12. Der Schnitt gemäß der Schnittfläche A-A der FIG 1 ist in FIG 3 gezeigt, wobei dieser eine skizzenhafte Schnittdarstellung des vorderen Abschnitts einer erfindungsgemäßen Turbinenschaufel 10 ist. Im Inneren der Turbinenschaufel 10 ist nahe der Strömungseintrittskante 12 ein sich parallel zur Strömungseintrittskante 12 erstreckender Kühlkanal 14 ausgebildet (also ein sich radial erstreckender Kanal 14 bei axial durchströmten Turbinen). Entlang des Kühlkanals 14 sind in diesem aufeinanderfolgend eine Anzahl von Rippen-Paaren 24 (in FIG 1 ausgeblendet) angeordnet, wobei die einzelnen Rippen 18 jedes Rippen-Paars 24 um einen vorgegebenen Winkel α zueinander quer gestellt sind. Zudem sind die Rippen 18 eines Rippen-Paares 24, entlang der Kühlkanalerstreckung betrachtet, zueinander versetzt angeordnet. Die Rippen 18 jedes Paares 24 als auch die Rippen 18 unmittelbar benachbarter Paare 24 sind dabei also überlappend in Schlittschuhschritt-Form angeordnet.1 shows a sketch-like sectional view of a turbine blade 10 according to the invention through its flow inlet edge 12. The section according to the sectional surface A-A of FIG. 1 is shown in FIG. 3, this being a sketch-like sectional view of the front section of a turbine blade 10 according to the invention. In the interior of the turbine blade 10, a cooling channel 14 extending parallel to the flow inlet edge 12 is formed near the flow inlet edge 12 (ie, a radially extending channel 14 in the case of axially through-flowed turbines). Along the cooling channel 14, a number of pairs of ribs 24 (hidden in FIG. 1) are arranged in succession in this, the individual ribs 18 of each rib pair 24 being set transversely to each other by a predetermined angle α. In addition, the ribs 18 of a pair of ribs 24, viewed along the cooling channel extension, are arranged offset to one another. The ribs 18 of each pair 24 and the ribs 18 of immediately adjacent pairs 24 are thus arranged overlapping in skating step shape.

Bei Durchströmung des Kühlkanals 14 wird die Kühlluft abwechselnd von den einzelnen Rippen 18 jedes Paars 24 umgelenkt. An den angeströmten Rippen 18 bildet sich ein hoher Turbulenzgrad aus, der in Kombination mit Prallkühlungseffekten und der einhergehenden kühlluftseitigen Oberflächenvergrößerung zu einer effizienten Kühlluftausnutzung führt. Vorliegend ist der Winkel α im mittleren Bereich der Turbinenschaufel 10 größer als in den Randbereichen der Turbinenschaufel 10, um so den mittleren, während des Betriebs in der Regel stark erhitzten Bereich der Strömungseintrittskante 12 stärker zu kühlen als die Randbereiche der Strömungseintrittskante 12. Durch eine Vergrößerung des Winkels α wird die Kühlluft stärker umgelenkt, mit einer einhergehenden stärkeren Verwirbelung, die letztlich im Vergleich zu kleineren Winkeln eine ausgeprägtere Steigerung des lokalen Wärmeübergangskoeffizienten zur Folge hat. Letztlich kann so erfindungsgemäß der sich bei Einsatz der Turbinenschaufel 10 entlang der Strömungseintrittskante 12 ausbildenden inhomogenen Temperaturverteilung entgegengewirkt werden. Geeignete Werte für den Winkel α, die dem jeweiligen Kühlbedarf angepasst sind, liegen erfindungsgemäß im Bereich von ca. 60° bis 90°.When flowing through the cooling channel 14, the cooling air is alternately deflected by the individual ribs 18 of each pair 24. A high degree of turbulence is formed on the flowed-on ribs 18, which, in combination with impingement cooling effects and the associated cooling air-side surface enlargement, leads to an efficient use of cooling air. In the present case, the angle is α in larger than in the edge regions of the turbine blade 10, so as to cool the middle, during operation usually strongly heated area of the flow inlet edge 12 stronger than the edge regions of the flow inlet edge 12. By increasing the angle α, the cooling air more deflected, with a concomitant increased turbulence, which ultimately results in a more pronounced increase in the local heat transfer coefficient compared to smaller angles. Finally, according to the invention, the inhomogeneous temperature distribution that forms when the turbine blade 10 is used along the flow inlet edge 12 can be counteracted. Suitable values for the angle α, which are adapted to the respective cooling requirement, according to the invention are in the range of about 60 ° to 90 °.

In FIG 2 ist die skizzenhafte Schnittdarstellung des vorderen Abschnitts der erfindungsgemäßen Turbinenschaufel 10 gemäß FIG 1 im Detail dargestellt, mit einer ebenen Schnittfläche rechtwinkelig zur Strömungseintrittskante 12. Wie dieser Zeichnung zu entnehmen ist, erstrecken sich die einzelnen Rippen 18 eines Paares 24 vorwiegend von einer Vorderwand 16 des Kühlkanals 14 bis einer Rückwand 20 des Kühlkanals 14. Alternativ können die Rippen 18 jedoch nur an der Vorderwand 16 einseitig befestigt sein, ohne sich bis zur Rückwand 20 zu erstrecken. Gleichfalls können die Rippen auch Teil eines Einsatzes sein, welcher in der Kühlkanal 14 einschiebbar ist.1, with a flat sectional surface at right angles to the flow inlet edge 12. As can be seen from this drawing, the individual ribs 18 of a pair 24 extend predominantly from a front wall Alternatively, however, the ribs 18 may be fixed on one side only to the front wall 16 without extending to the rear wall 20. Likewise, the ribs may also be part of an insert which can be inserted in the cooling channel 14.

Ergänzend zur Variation des Kühlvermögens über den Winkel α kann durch geeignete Einstellung der Winkelstellung β die Kühlluft bevorzugt in Richtung Vorderwand 16 geführt werden, um eine möglichst wirksame Kühlung der Strömungseintrittskante 12 zu erzielen. Erfindungsgemäß vorgesehene Winkelgrößen liegen hierbei im Bereich von ca. 30° bis 60°.In addition to the variation of the cooling capacity over the angle α, the cooling air can preferably be guided in the direction of the front wall 16 by suitably setting the angular position β, in order to achieve the most effective possible cooling of the flow inlet edge 12. According to the invention provided angular sizes are in the range of about 30 ° to 60 °.

Claims (7)

Turbinenschaufel (10), mit mehreren Rippen (18), welche aufeinanderfolgend in einem Kühlkanal (14) angeordnet sind, der sich längs einer Strömungseintrittskante (12) erstreckt, und bei der mit jeweils zwei Rippen (18) ein Rippen-Paar (24) gebildet ist, dessen Rippen (18) in Schlittschuhschritt-Form angeordnet sind.A turbine blade (10) having a plurality of ribs (18) disposed sequentially in a cooling passage (14) extending along a flow entrance edge (12) and having a rib pair (24) each having two ribs (18). is formed, the ribs (18) are arranged in skate step shape. Turbinenschaufel (10) nach Anspruch 1,
bei der die beiden Rippen (18) eines Rippen-Paars (24) einen vorbestimmten Winkel einschließen, und dass ein gesamtes Kühlvermögen der beiden Rippen (18) eines Rippen-Paars (24) über den Winkel einem vorgegebenen Kühlbedarf für die Strömungseintrittskante (12) in der Umgebung des Rippen-Paars (24) angepasst ist.
Turbine blade (10) according to claim 1,
in which the two ribs (18) of a rib pair (24) enclose a predetermined angle, and in that a total cooling capacity of the two ribs (18) of a rib pair (24) over the angle corresponds to a predetermined cooling requirement for the flow inlet edge (12). is adapted in the vicinity of the rib pair (24).
Turbinenschaufel (10) nach Anspruch 1 oder 2,
bei der die beiden Rippen (18) eines Rippen-Paars (24) derart in dem Kühlkanal (14) angeordnet sind, dass eine Strömung eines in dem Kühlkanal (14) strömenden Kühlmediums von einer Rippe (18) des Rippen-Paars (24) im wesentlichen quer auf die andere Rippe (18) des Rippen-Paars (24) geleitet wird.
Turbine blade (10) according to claim 1 or 2,
in which the two ribs (18) of a rib pair (24) are arranged in the cooling channel (14) such that a flow of a cooling medium flowing in the cooling channel (14) flows from a rib (18) of the rib pair (24). is directed substantially transversely to the other rib (18) of the rib-pair (24).
Turbinenschaufel (10) nach einem der vorangehenden Ansprüche,
bei der sich die Rippen (18) von einer den Kühlkanal (14) begrenzenden Wand (16, 20) abstehend in den Kühlkanal (14) hinein erstrecken.
Turbine blade (10) according to one of the preceding claims,
in which the ribs (18) extend projecting into the cooling channel (14) from a wall (16, 20) delimiting the cooling channel (14).
Turbinenschaufel (10) nach Anspruch 4,
bei der die Rippen (18) einstückig mit der begrenzenden Wand (16, 20) ausgebildet sind.
Turbine blade (10) according to claim 4,
wherein the ribs (18) are formed integrally with the limiting wall (16, 20).
Turbineschaufel (10) nach einem der Ansprüche 1 bis 4,
bei der die Rippen-Paare (24) innerhalb eines Einsatzes angebracht sind, der in den Kühlkanal (14) eingeschoben ist.
Turbine blade (10) according to one of claims 1 to 4,
wherein the rib pairs (24) are mounted within an insert which is inserted into the cooling channel (14).
Turbinenschaufel (10) nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass sich der Kühlkanal (14) parallel zur Strömungseintrittskante (12) durchgehend durch die Turbinenschaufel (10) erstreckt.
Turbine blade (10) according to one of the preceding claims,
characterized in that extending the cooling channel (14) parallel to the flow inlet edge (12) continuously through the turbine blade (10).
EP06023377A 2006-11-09 2006-11-09 Turbine blade Withdrawn EP1921269A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06023377A EP1921269A1 (en) 2006-11-09 2006-11-09 Turbine blade
US12/513,682 US8215909B2 (en) 2006-11-09 2007-10-18 Turbine blade
PCT/EP2007/061127 WO2008055764A1 (en) 2006-11-09 2007-10-18 Turbine blade
JP2009535661A JP5329418B2 (en) 2006-11-09 2007-10-18 Turbine blade
EP07821492.1A EP2087207B1 (en) 2006-11-09 2007-10-18 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06023377A EP1921269A1 (en) 2006-11-09 2006-11-09 Turbine blade

Publications (1)

Publication Number Publication Date
EP1921269A1 true EP1921269A1 (en) 2008-05-14

Family

ID=37909821

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06023377A Withdrawn EP1921269A1 (en) 2006-11-09 2006-11-09 Turbine blade
EP07821492.1A Not-in-force EP2087207B1 (en) 2006-11-09 2007-10-18 Turbine blade

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07821492.1A Not-in-force EP2087207B1 (en) 2006-11-09 2007-10-18 Turbine blade

Country Status (4)

Country Link
US (1) US8215909B2 (en)
EP (2) EP1921269A1 (en)
JP (1) JP5329418B2 (en)
WO (1) WO2008055764A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076660A1 (en) * 2010-09-28 2012-03-29 Spangler Brandon W Conduction pedestals for a gas turbine engine airfoil
US8920122B2 (en) 2012-03-12 2014-12-30 Siemens Energy, Inc. Turbine airfoil with an internal cooling system having vortex forming turbulators
WO2018153796A1 (en) * 2017-02-24 2018-08-30 Siemens Aktiengesellschaft A turbomachine blade or vane having a cooling channel with a criss-cross arrangement of pins
GB2574368A (en) * 2018-04-09 2019-12-11 Rolls Royce Plc Coolant channel with interlaced ribs
US10787932B2 (en) 2018-07-13 2020-09-29 Honeywell International Inc. Turbine blade with dust tolerant cooling system
US10669862B2 (en) * 2018-07-13 2020-06-02 Honeywell International Inc. Airfoil with leading edge convective cooling system
US10989067B2 (en) 2018-07-13 2021-04-27 Honeywell International Inc. Turbine vane with dust tolerant cooling system
GB201902997D0 (en) 2019-03-06 2019-04-17 Rolls Royce Plc Coolant channel
US11230929B2 (en) 2019-11-05 2022-01-25 Honeywell International Inc. Turbine component with dust tolerant cooling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395212A (en) * 1991-07-04 1995-03-07 Hitachi, Ltd. Member having internal cooling passage
US5472316A (en) * 1994-09-19 1995-12-05 General Electric Company Enhanced cooling apparatus for gas turbine engine airfoils
DE19526917A1 (en) * 1995-07-22 1997-01-23 Fiebig Martin Prof Dr Ing Longitudinal swirl generating roughening elements
US5695321A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
EP1380724A2 (en) * 2002-07-11 2004-01-14 Mitsubishi Heavy Industries, Ltd. Cooled turbine blade
EP1637699A2 (en) * 2004-09-09 2006-03-22 General Electric Company Offset coriolis turbulator blade

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416585A (en) * 1980-01-17 1983-11-22 Pratt & Whitney Aircraft Of Canada Limited Blade cooling for gas turbine engine
JP3396360B2 (en) * 1996-01-12 2003-04-14 三菱重工業株式会社 Gas turbine cooling blade
DE19634238A1 (en) * 1996-08-23 1998-02-26 Asea Brown Boveri Coolable shovel
US5797726A (en) * 1997-01-03 1998-08-25 General Electric Company Turbulator configuration for cooling passages or rotor blade in a gas turbine engine
EP0892149B1 (en) * 1997-07-14 2003-01-22 ALSTOM (Switzerland) Ltd Cooling system for the leading edge of a hollow blade for a gas turbine engine
EP1191189A1 (en) * 2000-09-26 2002-03-27 Siemens Aktiengesellschaft Gas turbine blades
US8690538B2 (en) * 2006-06-22 2014-04-08 United Technologies Corporation Leading edge cooling using chevron trip strips
US20070297916A1 (en) * 2006-06-22 2007-12-27 United Technologies Corporation Leading edge cooling using wrapped staggered-chevron trip strips

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395212A (en) * 1991-07-04 1995-03-07 Hitachi, Ltd. Member having internal cooling passage
US5695321A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
US5472316A (en) * 1994-09-19 1995-12-05 General Electric Company Enhanced cooling apparatus for gas turbine engine airfoils
DE19526917A1 (en) * 1995-07-22 1997-01-23 Fiebig Martin Prof Dr Ing Longitudinal swirl generating roughening elements
EP1380724A2 (en) * 2002-07-11 2004-01-14 Mitsubishi Heavy Industries, Ltd. Cooled turbine blade
EP1637699A2 (en) * 2004-09-09 2006-03-22 General Electric Company Offset coriolis turbulator blade

Also Published As

Publication number Publication date
JP2010509535A (en) 2010-03-25
US20100054952A1 (en) 2010-03-04
JP5329418B2 (en) 2013-10-30
EP2087207B1 (en) 2016-04-20
US8215909B2 (en) 2012-07-10
EP2087207A1 (en) 2009-08-12
WO2008055764A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
EP2087206B1 (en) Turbine blade
EP2087207B1 (en) Turbine blade
EP1223308B1 (en) Turbomachine component
EP1113145B1 (en) Blade for gas turbines with metering section at the trailing edge
DE60018817T2 (en) Chilled gas turbine blade
DE60025074T2 (en) Method for cooling a wall of a turbomachine blade
DE602005000350T2 (en) Turbine stator blade with improved cooling
EP1320661B1 (en) Gas turbine blade
DE2320581C2 (en) Gas turbine with air-cooled turbine blades
EP2828484B1 (en) Turbine blade
EP3658751B1 (en) Blade for a turbine blade
EP2611990B1 (en) Turbine blade for a gas turbine
DE102011000878B4 (en) Turbine blade with shielded coolant supply channel
EP0798448A2 (en) System and device to cool a wall which is heated on one side by hot gas
DE60122050T2 (en) Turbine vane with insert with areas for impingement cooling and convection cooling
DE2060123A1 (en) Turbine rotor blade with cooling channels running from the blade root to the blade end
WO2008092725A1 (en) Turbine bucket
CH705185A1 (en) Blade for a gas turbine and processes for manufacturing such a blade.
EP3263838A1 (en) Turbine blade having internal cooling passage
EP1207269B1 (en) Gas turbine vane
EP3087254B1 (en) Component that can be charged with hot gas for a gas turbine and sealing assembly with such a component
EP3232001A1 (en) Rotor blade for a turbine
DE112015003273T5 (en) turbocharger
EP1445423B1 (en) Cooled turbomachine blade
EP0992653A1 (en) Film-cooled components with triangular cross section cooling holes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081115

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566