EP1920219A1 - Sensor array - Google Patents

Sensor array

Info

Publication number
EP1920219A1
EP1920219A1 EP06819051A EP06819051A EP1920219A1 EP 1920219 A1 EP1920219 A1 EP 1920219A1 EP 06819051 A EP06819051 A EP 06819051A EP 06819051 A EP06819051 A EP 06819051A EP 1920219 A1 EP1920219 A1 EP 1920219A1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
magnetic
sensor
sensor arrangement
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06819051A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Welsch
Matthias Moerbe
Christian Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1920219A1 publication Critical patent/EP1920219A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the invention relates to a sensor arrangement according to the preamble of the independent claim.
  • a magnetic sensor arrangement for evaluating the signals of a magnetic field-sensitive sensor element is already known, in which the magnetic field changes caused by a moving encoder element and the switching edges caused thereby are evaluable.
  • an output signal for generating the switching edges is effected.
  • a field amplifier is provided, preferably a soft-magnetic element which is arranged on the side remote from the transmitter element behind the sensor element in order to increase the measuring sensitivity by focusing the field at the location of the measurement.
  • an apparatus for determining a torque exerted on a shaft wherein the shaft has a first shaft portion and a second shaft portion and the two shaft portions are rotatable relative to each other.
  • the first shaft section is surrounded by a multi-pole magnet ring connected to it.
  • a stator holder is fixed, wherein two stator elements are attached to the stator holder and each stator element in the axial direction protruding fingers, wherein the fingers are assigned to the existing between the poles of the magnetic ring gaps. In this arrangement, however, no difference signal of the detected magnetic field is formed.
  • EP 1424541 A2 relates to the determination of a torque (small angle measurement)
  • the present invention is directed to the detection of a movement (incremental measurement).
  • the field of application differs in principle. It is an object of the invention to improve the signal evaluation. This object is solved by the features of the independent claim.
  • the inventive sensor arrangement according to the features of the independent claim has the advantage that the soft magnetic collecting element, which picks up the magnetic field of at least two similar magnetic poles and supplies the sensor element sen, a decoupling of the geometry of the donor element and the sensor element permits.
  • the soft-magnetic collecting elements collect the magnetic flux of the respective north or south poles, preferably a multipole ring, and guide it to the difference-based sensor element at such a location, so that the two magnetic-field-sensitive cells of the sensor element always experience magnetic flux density signals phase-shifted by 180 °.
  • the phase position is independent of the respective pole length of Mehrolgeberelements, since the adaptation via the soft magnetic collecting elements takes place.
  • a very wide range of pole pitches can be covered with a single differential sensor element (for example, a differential Hall IC) with a fixed sensor cell spacing.
  • An additional advantage is the reduction of the pitch error (ie the deviation of the real switching points of the sensor element from the ideal value of the multipole encoder) by averaging the magnetic flux density over several poles.
  • the collecting elements are designed as a comb structure.
  • the distances between the comb extensions can be individually adapted to the respective donor element.
  • the same sensor element with a fixed cell spacing of the two magneto-sensitive cells can always be used.
  • the phase position of the magnetic flux density signals at the two magnetically sensitive cells can always be set to 180 ° (optimum). So you always get the maximum possible difference signal of the two magnetically sensitive cells.
  • Due to the large number of comb extensions a collection effect is created, which leads to an increase in signal.
  • the collection of the magnetic flux from several poles causes an averaging effect and thus a reduction of the division error.
  • This can be used to reduce both the single and the sum pitch error (exact numbering of the individual division errors at the respective switching point).
  • a return element and / or a ferromagnetic structure of the sensor element are provided in order to minimize the air gap between the tap structure and the return path.
  • FIG. 1 shows a model of an axially magnetized multipole wheel with a north pole, a south pole and an inner ring as well as soft magnetic pickups which are designed as semicircles,
  • Figure 2 shows a detail of the arrangement of Figure 1 for more accurate Darstel- hung the arrangement of the sensor element with return element
  • FIG. 3 shows the angle-dependent signal profile of the magnetic flux density B detected by the two magnet-sensitive cells and the difference signal derived therefrom.
  • a donor element 10 consists of a ring 12, which alternately has north poles 14 and south poles 16 as an axially magnetized multipole wheel.
  • the ring 12 is used as metallic carrier executed ring on which the separate multipole ring is applied.
  • a first semi-circular collecting element 18 is arranged, which is equipped with first comb extensions 26, which extend from the ring structure in the direction of the magnetic poles 14, 16 in the axial direction.
  • a second collecting element 20 is provided, which is also axially spaced as the first collecting element 18 is equipped with corresponding second comb extensions 28.
  • first and second comb extensions 26, 28 are in each case selected such that they are adapted in the circumferential direction to the geometry of the magnetic poles 14, 16 of the transmitter element 10.
  • first comb extensions 26 and second comb extensions 28 are arranged offset from one another in such a way that with central alignment of the poles 14, 16 over the comb extensions 26, 28, the first comb extensions 26 pick off the magnetic field of the north poles 14, while the second comb extensions 28 in this Position the magnetic field of south pole 16 tap.
  • the collecting elements 18, 20 are arranged fixed relative to the moving donor element 10.
  • the tapped from the collecting elements 18,20 magnetic field is supplied via formed at the end of the webs of the collecting elements 18, 20 extensions a sensor element 22, which is thus arranged between the collecting elements 18, 20.
  • the sensor element 22 comprises two cells which are sensitive to the magnetic field, here referred to as the right or left magnetic field-sensitive cell.
  • the left magnetic field-sensitive cell detects the magnetic flux density B supplied by the second collecting element 20, which changes sinusoidally as a function of the angle (rotation of the encoder element 10 relative to the sensor element 22).
  • the first collecting element 18 supplies the tapped magnetic flux density B to the right-hand magnetically sensitive cell, which has the sinusoidal profile marked 30.
  • the output 30 of the right magnetosensitive cell is 180 ° out of phase with the output 32 of the left magnetically responsive cell. From the two output signals 30, 32 a difference signal 34 is formed by subtraction, which has the sinusoidal waveform shown in Figure 3 with respect to the output signals 30, 32 correspondingly doubled amplitude. By subtraction disturbing external fields can be suppressed.
  • the magnetic sensor arrangement shown is used, for example, for position, rotational speed or position detection, as used, for example, for controlling motors or in the gearbox. Be or driving dynamics control in motor vehicles used for measurement purposes.
  • the movement of the ferromagnetic donor element 10 is detected by a sensor element 22 arranged stationary relative to the donor element 10.
  • This magnetic field-sensitive sensor element 22 can be based as a Hall sensor or on another magnetic field sensor technology such. AMR, GMR or TMR.
  • Collecting element 18, 20 consist of two half-rings with comb structure, consisting of first comb extensions 26 and second comb extensions 28 of soft magnetic material, each collecting the magnetic flux of one polar species (north pole 14, south pole 16) and leading in the direction of the sensor element 22.
  • the distances between the comb extensions 26, 28 can be individually adapted to the respective encoder element 10.
  • a donor element 10 for example, a Multipolrad could be used.
  • First comb extensions 26 and second comb extensions 28 are preferably offset by the length of one pole of the encoder element 10. As a result, it is achieved that only the magnetic flux of one pole type is removed from a collecting element 18,
  • the sensor element 22 consists for example of a right magnetic field-sensitive cell and a left magnetic field-sensitive cell, as could be the case with a Hall sensor. Its magnetic-field-sensitive cells each detect only a specific magnetic field direction. Thus, one cell sensitive to the magnetic field could detect the magnetic field component which is directed perpendicularly from the transmitter element 10 to the sensor element 22, while the other magnetic field sensitive cell detects the component of the magnetic field which is oriented from above in the direction of the transmitter element 10.
  • the right magnetic-sensitive cell detects the supplied component of the magnetic flux density B oriented in the detection direction of the right magnetic-field-sensitive cell.
  • the left magnetic-field-sensitive cell detects the supplied component of the magnetic flux density B in the detection direction of the left magnetic-field-sensitive cell.
  • the two cells emit output signals 30, 32 phase-shifted by 180 °.
  • Integrated in the sensor element 22 is a circuit which forms the difference between the output signal 30 of the right magnetically sensitive cell and the output signal 32 of the left magnetically sensitive cell, so that the difference signal 34 is formed.
  • the phase shift optimally by 180 ° doubles the amplitude of the likewise sinusoidal difference signal 34, which improves the evaluation.
  • the difference Signal 34 is a measure of the angle between the encoder element 10 and the sensor element 22 fixed relative to the encoder element 10.
  • a return element 24 is provided, which is arranged between the first and second collecting element 18, 20, preferably such that that of the collecting elements 18, 20 each tapped magnetic field is supplied to the corresponding magnetaxe cells.
  • a sensor element with a ferromagnetic lead frame could be used to minimize the air gap between tap structure 18, 20 and inference.
  • the sensor arrangement according to the invention has the effect of averaging and thus a reduction of the pitch error.
  • the pitch error is the deviation of the real switching point of the IC compared to the ideal switching time at ideal magnetic field course over a pole.
  • the magnetic circuit can be used in differential magnetic field sensors whose excitation is carried out by means of multipole elements. Prerequisite is the ability to access a large part of the multipole elements such as a cap sensor.
  • the proposed Sensoranordung is particularly suitable for speed sensor on the wheel, for example, a motor vehicle, as a speed sensor in the transmission or in Linearweg-, angle or proximity sensors, in which the magnetic field changes induced by moving magnetic pole elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Disclosed is a sensor array for evaluating the signals of a magnetically sensitive sensor, in which the changes in the magnetic field caused by a moved transmitting element (10) are evaluated by forming the difference. The transmitting element (10) is fitted with a plurality of magnetic poles (14, 16). A soft magnetic collecting element (18, 20) is provided which taps the magnetic field of at least two magnetic poles (14, 16) of the same kind and feeds said magnetic field to the sensor element (22).

Description

Sensoranordnungsensor arrangement
Stand der TechnikState of the art
Die Erfindung geht aus von einer Sensoranordnung nach der Gattung des unabhängigen Anspruchs. Aus der DE 10357147 Al ist bereits eine Magnetsensoranordnung zur Aus- wertung der Signale eines magnetfeldempfindlichen Sensorelements bekannt, bei der die durch ein bewegtes Geberelement verursachten Magnetfeldänderungen und die dadurch bewirkten Schaltflanken auswertbar sind. Bei einer Vorbeibewegung des mit Permanen- tenmagneten versehenen Geberelements am ortsfesten Sensorelement wird ein Ausgangssignal zur Erzeugung der Schaltflanken bewirkt. Hierbei ist ein Feldverstärker vorgese- hen, vorzugsweise ein weichmagnetisches Element, das an der dem Geberelement abgewandten Seite hinter dem Sensorelement angeordnet ist, um am Ort der Messung die Messempfindlichkeit durch Fokussierung des Feldes zu erhöhen.The invention relates to a sensor arrangement according to the preamble of the independent claim. From DE 10357147 Al a magnetic sensor arrangement for evaluating the signals of a magnetic field-sensitive sensor element is already known, in which the magnetic field changes caused by a moving encoder element and the switching edges caused thereby are evaluable. In the case of a passing movement of the donor element provided with permanent magnets on the stationary sensor element, an output signal for generating the switching edges is effected. In this case, a field amplifier is provided, preferably a soft-magnetic element which is arranged on the side remote from the transmitter element behind the sensor element in order to increase the measuring sensitivity by focusing the field at the location of the measurement.
Aus der EP 1424541 A2 ist eine Vorrichtung zum Bestimmen eines auf eine Welle aus- geübten Drehmoments bekannt, wobei die Welle einen ersten Wellenabschnitt und einen zweiten Wellenabschnitt aufweist und die beiden Wellenabschnitte gegeneinander verdrehbar sind. Den ersten Wellenabschnitt umgibt ein mit diesem verbundener Multi- pol-Magnetring. An einem zweiten Wellenabschnitt ist ein Statorhalter befestigt, wobei am Statorhalter zwei Statorelemente befestigt sind und jedes Statorelement in axialer Richtung abragende Finger aufweist, wobei die Finger den zwischen den Polen des Magnetringes vorhandenen Lücken zugeordnet sind. Bei dieser Anordnung wird jedoch kein Differenzsignal des erfassten Magnetfeldes gebildet. Während sich die EP 1424541 A2 auf die Bestimmung eines Drehmoments (Kleinwinkelmessung), zielt vorliegende Erfindung auf die Erfassung einer Bewegung (Inkrementalmessung) ab. Somit unterscheidet sich das Anwendungsgebiet grundsätzlich. Es ist Aufgabe der Erfindung, die Signalauswertung zu verbessern. Diese Aufgabe wird gelöst durch die Merkmale des unabhängigen Anspruchs.From EP 1424541 A2 an apparatus for determining a torque exerted on a shaft is known, wherein the shaft has a first shaft portion and a second shaft portion and the two shaft portions are rotatable relative to each other. The first shaft section is surrounded by a multi-pole magnet ring connected to it. At a second shaft portion, a stator holder is fixed, wherein two stator elements are attached to the stator holder and each stator element in the axial direction protruding fingers, wherein the fingers are assigned to the existing between the poles of the magnetic ring gaps. In this arrangement, however, no difference signal of the detected magnetic field is formed. While EP 1424541 A2 relates to the determination of a torque (small angle measurement), the present invention is directed to the detection of a movement (incremental measurement). Thus, the field of application differs in principle. It is an object of the invention to improve the signal evaluation. This object is solved by the features of the independent claim.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Sensoranordnung nach den Merkmalen des unabhängigen Anspruchs hat dem gegenüber den Vorteil, dass das weichmagnetische Sammelelement, das das Magnetfeld zumindest zweier gleichartiger magnetischer Pole abgreift und dem Sen- sorelement zuführt, eine Entkopplung der Geometrie des Geberelements und des Sensorelements zulässt. Die weichmagnetischen Sammelelemente sammeln den magnetischen Fluss der jeweiligen Nord- beziehungsweise Südpole, vorzugsweise eines Multipolrings und führen ihn an einer solchen Stelle dem auf Differenzbildung basierenden Sensorelement zu, sodass die zwei magnetfeldempfindlichen Zellen des Sensorlelements immer um 180° phasenverschobene magnetische Flussdichtesignale erfahren. Somit ist die Phasenlage unabhängig von der jeweiligen Pollänge des Multipolgeberelements, da die Anpassung über die weichmagnetischen Sammelelemente erfolgt. Dadurch können mit einem einzigen Differenz-Sensorelement (beispielsweise ein Differenz-Hall-IC) bei festem Sen- sorzellenabstand verschiedenste Polteilungen abgedeckt werden. Einen zusätzlichen Vor- teil bildet die Reduzierung des Teilungsfehlers (d. h. die Abweichung der realen Schaltpunkte des Sensorelements vom Idealwert des Multipol-Gebers) durch die Mittelung der magnetischen Flussdichte über mehrere Pole.The inventive sensor arrangement according to the features of the independent claim has the advantage that the soft magnetic collecting element, which picks up the magnetic field of at least two similar magnetic poles and supplies the sensor element sen, a decoupling of the geometry of the donor element and the sensor element permits. The soft-magnetic collecting elements collect the magnetic flux of the respective north or south poles, preferably a multipole ring, and guide it to the difference-based sensor element at such a location, so that the two magnetic-field-sensitive cells of the sensor element always experience magnetic flux density signals phase-shifted by 180 °. Thus, the phase position is independent of the respective pole length of Mehrolgeberelements, since the adaptation via the soft magnetic collecting elements takes place. As a result, a very wide range of pole pitches can be covered with a single differential sensor element (for example, a differential Hall IC) with a fixed sensor cell spacing. An additional advantage is the reduction of the pitch error (ie the deviation of the real switching points of the sensor element from the ideal value of the multipole encoder) by averaging the magnetic flux density over several poles.
In einer zweckmäßigen Weiterbildung ist vorgesehen, dass die Sammelelemente als Kammstruktur ausgeführt werden. Die Abstände der Kammfortsätze können dabei individuell an das jeweilige Geberelement angepasst werden. Somit kann für eine verschiedene Anzahl von Multipolpaaren wie auch für unterschiedliche Leseradien am Multipol- rad immer das gleiche Sensorelement mit einem festen Zellenabstand der beiden magnetempfindlichen Zellen benutzt werden. Die Phasenlage der magnetischen Flussdichtesig- nale an den beiden magnetempfindlichen Zellen kann dabei immer auf 180° (Optimum) eingestellt werden. So erhält man stets das maximal mögliche Differenzsignal der beiden magnetempfindlichen Zellen. Durch die Vielzahl an Kammfortsätzen entsteht ein Sammeleffekt, der zu einer Signalerhöhung führt. Gleichzeitig bewirkt die Sammelung des magnetischen Flusses von mehreren Polen einen Mittelungseffekt und somit eine Reduk- tion des Teilungsfehlers. Durch diese Mittelung können Magnetfeldinhomogenitäten und Längenunterschiede bei den Pollängen ausgeglichen werden. Damit lässt sich sowohl der Einzel- als auch der Summenteilungsfehler (vorzeichengenaue Summierung der Einzelteilungsfehler am jeweiligen Schaltpunkt) reduzieren.In an expedient development it is provided that the collecting elements are designed as a comb structure. The distances between the comb extensions can be individually adapted to the respective donor element. Thus, for a different number of multipole pairs, as well as for different reading radii at the multipole wheel, the same sensor element with a fixed cell spacing of the two magneto-sensitive cells can always be used. The phase position of the magnetic flux density signals at the two magnetically sensitive cells can always be set to 180 ° (optimum). So you always get the maximum possible difference signal of the two magnetically sensitive cells. Due to the large number of comb extensions, a collection effect is created, which leads to an increase in signal. At the same time, the collection of the magnetic flux from several poles causes an averaging effect and thus a reduction of the division error. By this averaging magnetic field inhomogeneities and Length differences in the pole lengths are compensated. This can be used to reduce both the single and the sum pitch error (exact numbering of the individual division errors at the respective switching point).
In einer zweckmäßigen Weiterbildung ist vorgesehen, dass ein Rückschlusselement und/oder eine ferromagnetische Struktur des Sensorelements vorgesehen ist, um den Luftspalt zwischen Abgriffstruktur und Rückschluss zu minimieren. Dadurch wird die Signalauswertung weiter verbessert.In an expedient refinement, provision is made for a return element and / or a ferromagnetic structure of the sensor element to be provided in order to minimize the air gap between the tap structure and the return path. As a result, the signal evaluation is further improved.
Weitere zweckmäßige Weiterbildungen ergeben sich aus weiteren abhängigen Ansprüchen und aus der Beschreibung.Further expedient developments emerge from further dependent claims and from the description.
Zeichnungdrawing
Ein Ausführungsbeispiel der erfindungsgemäßen Sensoranordnung ist in der Zeichnung dargestellt und wird nachfolgend näher erläutert.An embodiment of the sensor arrangement according to the invention is shown in the drawing and will be explained in more detail below.
Es zeigen:Show it:
Die Figur 1 ein Modell eines axialmagnetisierten Multipolrads mit Nordpol, Südpol und Innenring sowie weichmagnetischen Abnehmern, die als Halbkreise ausgeführt sind,FIG. 1 shows a model of an axially magnetized multipole wheel with a north pole, a south pole and an inner ring as well as soft magnetic pickups which are designed as semicircles,
Figur 2 ein Ausschnitt aus der Anordnung der Figur 1 zur genaueren Darstel- hing der Anordnung des Sensorelements mit Rückschlusselement, sowieFigure 2 shows a detail of the arrangement of Figure 1 for more accurate Darstel- hung the arrangement of the sensor element with return element, and
Figur 3 den winkelabhängigen Signalverlauf der von den beiden magnetempfindlichen Zellen erfassten magnetischen Flussdichte B sowie das dar- aus abgeleitete Differenzsignal.FIG. 3 shows the angle-dependent signal profile of the magnetic flux density B detected by the two magnet-sensitive cells and the difference signal derived therefrom.
Beschreibung des AusführungsbeispielsDescription of the embodiment
Ein Geberelement 10 besteht aus einem Ring 12, der als axial magnetisiertes Multipolrad wechselnd Nordpole 14 und Südpole 16 aufweist. Der Ring 12 ist als metallischer Träger- ring ausgeführt, auf den der separate Multipolring aufgebracht ist. Axial beabstandet von den Nordpolen 14 und Südpolen 16 ist ein erstes halbkreisförmiges Sammelelement 18 angeordnet, welches mit ersten Kammfortsätzen 26, die sich von der Ringstruktur in Richtung zu den magnetischen Polen 14, 16 in axialer Richtung erstrecken, ausgestattet ist. Weiterhin ist ein zweites Sammelelement 20 vorgesehen, welches ebenfalls axial beabstandet wie das erste Sammelelement 18 mit entsprechenden zweiten Kammfortsätzen 28 ausgestattet ist. Die Geometrie der ersten und zweiten Kammfortsätze 26, 28 ist jeweils so gewählt, dass sie in Umfangsrichtung an die Geometrie der magnetischen Pole 14, 16 des Geberelements 10 angepasst sind. Allerdings sind erste Kammfortsätze 26 und zweite Kammfortsätze 28 in der Weise gegeneinander versetzt angeordnet, dass bei mittiger Ausrichtung der Pole 14, 16 über den Kammfortsätzen 26, 28 die ersten Kammfortsätze 26 beispielsweise das Magnetfeld der Nordpole 14 abgreifen, während die zweiten Kammfortsätze 28 in dieser Position das Magnetfeld der Südpole 16 abgreifen. Die Sammelelemente 18,20 sind gegenüber dem sich bewegendem Geberelement 10 festste- hend angeordnet. Das von den Sammelelementen 18,20 abgegriffene Magnetfeld wird über am Ende der Stege der Sammelelemente 18, 20 ausgebildeten Fortsätzen einem Sensorelement 22 zugeführt, welches somit zwischen den Sammelelementen 18, 20 angeordnet ist. Auf der von dem Sammelelement 18, 20 abgewandten Seite des Sensorelements 22 ist ein Rückschlusselement 24 angeordnet, das die magnetischen Feldlinien zum je- weils entgegengesetzten Pol führt. Das Sensorelement 22 umfasst zwei magnetfeldemp- fϊndliche Zellen, hier als rechte beziehungsweise linke magnetfeldempfindliche Zelle bezeichnet. Die linke magnetfeldempfindliche Zelle erfasst die vom zweiten Sammelelement 20 zugeführte magnetische Flussdichte B, welche sich sinusförmig in Abhängigkeit vom Winkel (Verdrehung des Geberelements 10 gegenüber dem Sensorelement 22) ver- ändert. Das erste Sammelelement 18 führt der rechten magnetempfϊndlichen Zelle die abgegriffene magnetische Flussdichte B zu, welche den mit 30 gekennzeichneten sinusförmigen Verlauf aufweist. Das Ausgangssignal 30 der rechten magnetempfindlichen Zelle ist gegenüber dem Ausgangssignal 32 der linken magnetempfϊndlichen Zelle um 180° phasenverschoben. Aus den beiden Ausgangssignalen 30, 32 wird über Differenzbildung ein Differenzsignal 34 gebildet, welches den in Figur 3 gezeigten sinusförmigen Verlauf aufweist mit gegenüber den Ausgangssignalen 30, 32 entsprechend verdoppelter Amplitude. Durch die Differenzbildung können störende Fremdfelder unterdrückt werden.A donor element 10 consists of a ring 12, which alternately has north poles 14 and south poles 16 as an axially magnetized multipole wheel. The ring 12 is used as metallic carrier executed ring on which the separate multipole ring is applied. Axially spaced from the north poles 14 and south poles 16, a first semi-circular collecting element 18 is arranged, which is equipped with first comb extensions 26, which extend from the ring structure in the direction of the magnetic poles 14, 16 in the axial direction. Furthermore, a second collecting element 20 is provided, which is also axially spaced as the first collecting element 18 is equipped with corresponding second comb extensions 28. The geometry of the first and second comb extensions 26, 28 is in each case selected such that they are adapted in the circumferential direction to the geometry of the magnetic poles 14, 16 of the transmitter element 10. However, first comb extensions 26 and second comb extensions 28 are arranged offset from one another in such a way that with central alignment of the poles 14, 16 over the comb extensions 26, 28, the first comb extensions 26 pick off the magnetic field of the north poles 14, while the second comb extensions 28 in this Position the magnetic field of south pole 16 tap. The collecting elements 18, 20 are arranged fixed relative to the moving donor element 10. The tapped from the collecting elements 18,20 magnetic field is supplied via formed at the end of the webs of the collecting elements 18, 20 extensions a sensor element 22, which is thus arranged between the collecting elements 18, 20. On the side remote from the collecting element 18, 20 side of the sensor element 22, a return element 24 is arranged, which leads the magnetic field lines to the respective opposite pole. The sensor element 22 comprises two cells which are sensitive to the magnetic field, here referred to as the right or left magnetic field-sensitive cell. The left magnetic field-sensitive cell detects the magnetic flux density B supplied by the second collecting element 20, which changes sinusoidally as a function of the angle (rotation of the encoder element 10 relative to the sensor element 22). The first collecting element 18 supplies the tapped magnetic flux density B to the right-hand magnetically sensitive cell, which has the sinusoidal profile marked 30. The output 30 of the right magnetosensitive cell is 180 ° out of phase with the output 32 of the left magnetically responsive cell. From the two output signals 30, 32 a difference signal 34 is formed by subtraction, which has the sinusoidal waveform shown in Figure 3 with respect to the output signals 30, 32 correspondingly doubled amplitude. By subtraction disturbing external fields can be suppressed.
Die gezeigte Magnetsensoranordnung wird beispielsweise zur Weg-, Drehzahl- oder Po- sitionsdetektion verwendet, wie sie z.B. zur Steuerung von Motoren oder auch im Getrie- be- oder Fahrdynamiksteuerungen bei Kraftfahrzeugen zu Messzwecken eingesetzt werden. Die Bewegung des ferromagnetischen Geberelements 10 wird von einem gegenüber dem Geberelement 10 ortsfest angeordneten Sensorelement 22 erfasst. Dieses magnet- feldempfϊndliche Sensorelement 22 kann als Hallsensor oder auf einer anderen Magnet- feldsensor- Technologie beruhen wie z. B. AMR, GMR oder TMR. Erstes und zweitesThe magnetic sensor arrangement shown is used, for example, for position, rotational speed or position detection, as used, for example, for controlling motors or in the gearbox. Be or driving dynamics control in motor vehicles used for measurement purposes. The movement of the ferromagnetic donor element 10 is detected by a sensor element 22 arranged stationary relative to the donor element 10. This magnetic field-sensitive sensor element 22 can be based as a Hall sensor or on another magnetic field sensor technology such. AMR, GMR or TMR. First and second
Sammelelement 18, 20 bestehen aus zwei Halbringen mit Kammstruktur, bestehend aus ersten Kammfortsätzen 26 und zweiten Kammfortsätzen 28 aus weichmagnetischem Material, die jeweils den magnetischen Fluss einer Polart (Nordpol 14, Südpol 16) sammeln und in Richtung des Sensorelements 22 führen. Die Abstände der Kammfortsätze 26, 28 lassen sich individuell an das jeweilige Geberelement 10 anpassen. Als Geberelement 10 könnte beispielsweise ein Multipolrad verwendet werden. Anstelle der Detektion einer Rotationsbewegung könnte das beschriebene Prinzip jedoch auch zur Linearbewegungs- erfassung verwendet werden. Erste Kammfortsätze 26 und zweite Kammfortsätze 28 sind vorzugsweise um die Länge eines Pols des Geberelements 10 versetzt. Dadurch wird er- reicht, dass lediglich der magnetische Fluss einer Polart von einem Sammelelement 18,Collecting element 18, 20 consist of two half-rings with comb structure, consisting of first comb extensions 26 and second comb extensions 28 of soft magnetic material, each collecting the magnetic flux of one polar species (north pole 14, south pole 16) and leading in the direction of the sensor element 22. The distances between the comb extensions 26, 28 can be individually adapted to the respective encoder element 10. As a donor element 10, for example, a Multipolrad could be used. However, instead of detecting a rotational movement, the described principle could also be used for linear motion detection. First comb extensions 26 and second comb extensions 28 are preferably offset by the length of one pole of the encoder element 10. As a result, it is achieved that only the magnetic flux of one pole type is removed from a collecting element 18,
20 gesammelt wird.20 is collected.
Das Sensorelement 22 besteht beispielsweise aus einer rechten magnetfeldempfindlichen Zelle und einer linken magnetfeldempfϊndlichen Zelle, wie dies bei einem Hall-Sensor der Fall sein könnte. Dessen magnetfeldempfindliche Zellen detektieren jeweils nur eine bestimmte Magnetfeldrichtung. So könnte die eine magnetfeldempfϊndliche Zelle die Magnetfeldkomponente detektieren, die senkrecht vom Geberelement 10 zum Sensorelement 22 gerichtet ist, während die andere magnetfeldempfϊndliche Zelle die Komponente des Magnetfelds erfasst, die von oben in Richtung auf das Geberelement 10 orien- tiert ist. Die rechte magnetempfϊndliche Zelle detektiert die zugeführte Komponente der magnetische Flussdichte B, die in der Detektionsrichtung der rechten magnetfeldempfϊndlichen Zelle orientiert ist. Die linke magnetfeldempfϊndliche Zelle erfasst die zugeführte Komponente der magnetischen Flussdichte B in Detektionsrichtung der linken magnetfeldempfϊndlichen Zelle. Bei der entsprechenden geometrischen Anordnung geben die beiden Zellen um 180° phasenverschobene Ausgangssignale 30, 32 ab. In dem Sensorelement 22 ist ein Schaltkreis integriert, der die Differenz bildet aus dem Ausgangssignal 30 der rechten magnetempfϊndlichen Zelle und dem Ausgangssignal 32 der linken mag- netempfϊndlichen Zelle, so dass das Differenzsignal 34 entsteht. Durch die Phasenverschiebung optimalerweise um 180° verdoppelt sich die Amplitude des ebenfalls sinus- förmigen Differenzsignals 34, wodurch sich die Auswertung verbessert. Das Differenz- signal 34 ist ein Maß des Winkels zwischen Geberelement 10 und gegenüber dem Geberelement 10 feststehenden Sensorelement 22.The sensor element 22 consists for example of a right magnetic field-sensitive cell and a left magnetic field-sensitive cell, as could be the case with a Hall sensor. Its magnetic-field-sensitive cells each detect only a specific magnetic field direction. Thus, one cell sensitive to the magnetic field could detect the magnetic field component which is directed perpendicularly from the transmitter element 10 to the sensor element 22, while the other magnetic field sensitive cell detects the component of the magnetic field which is oriented from above in the direction of the transmitter element 10. The right magnetic-sensitive cell detects the supplied component of the magnetic flux density B oriented in the detection direction of the right magnetic-field-sensitive cell. The left magnetic-field-sensitive cell detects the supplied component of the magnetic flux density B in the detection direction of the left magnetic-field-sensitive cell. In the case of the corresponding geometric arrangement, the two cells emit output signals 30, 32 phase-shifted by 180 °. Integrated in the sensor element 22 is a circuit which forms the difference between the output signal 30 of the right magnetically sensitive cell and the output signal 32 of the left magnetically sensitive cell, so that the difference signal 34 is formed. The phase shift optimally by 180 ° doubles the amplitude of the likewise sinusoidal difference signal 34, which improves the evaluation. The difference Signal 34 is a measure of the angle between the encoder element 10 and the sensor element 22 fixed relative to the encoder element 10.
Um die magnetischen Feldlinien zum jeweils entgegengesetzten Pol zu führen und die Magnetfeldlinien an die Detektionsrichtung der magnetfeldempfϊndlichen Zellen anzupassen, ist ein Rückschlusselement 24 vorgesehen, welches zwischen erstem und zweitem Sammelelement 18, 20 angeordnet ist, vorzugsweise so, dass das von den Sammelelementen 18, 20 jeweils abgegriffene Magnetfeld den entsprechenden magnetempfindli- chen Zellen zugeführt ist. Anstelle eines separaten Rückschlusselements 24 könnte eine Sensorelement mit einem ferromagnetischen Lead-Frame verwendet werden zur Minimierung des Luftspalts zwischen Abgriffstruktur 18, 20 und Rückschluss.In order to guide the magnetic field lines to the respective opposite pole and to adapt the magnetic field lines to the detection direction of the magnetic field sensitive cells, a return element 24 is provided, which is arranged between the first and second collecting element 18, 20, preferably such that that of the collecting elements 18, 20 each tapped magnetic field is supplied to the corresponding magnetempfindlich cells. Instead of a separate return element 24, a sensor element with a ferromagnetic lead frame could be used to minimize the air gap between tap structure 18, 20 and inference.
Die erfindungsgemäße Sensoranordnung hat den Effekt der Mittelung und somit eine Reduktion des Teilungsfehlers zur Folge. Der Teilungsfehler ist die Abweichung des realen Schaltpunkts des ICs gegenüber dem idealen Schaltzeitpunkt bei idealem Magnetfeldverlauf über einem Pol.The sensor arrangement according to the invention has the effect of averaging and thus a reduction of the pitch error. The pitch error is the deviation of the real switching point of the IC compared to the ideal switching time at ideal magnetic field course over a pole.
Der Magnetkreis kann in magnetischen Differenzfeldsensoren eingesetzt werden, deren Anregung mittels Multipolelementen erfolgt. Vorraussetzung ist die Zugangsmöglichkeit zu einem großen Teil der Multipolelemente wie beispielsweise bei einem Kappensensor.The magnetic circuit can be used in differential magnetic field sensors whose excitation is carried out by means of multipole elements. Prerequisite is the ability to access a large part of the multipole elements such as a cap sensor.
Die vorgeschlagene Sensoranordung eignet sich insbesondere für Drehzahlfühler am Rad beispielsweise eines Kraftfahrzeugs, als Drehzahlsensor im Getriebe oder bei Linearweg-, Winkel- oder Näherungssensoren, bei denen die Magnetfeldänderungen durch bewegte magnetische Polelemente induziert werden. The proposed Sensoranordung is particularly suitable for speed sensor on the wheel, for example, a motor vehicle, as a speed sensor in the transmission or in Linearweg-, angle or proximity sensors, in which the magnetic field changes induced by moving magnetic pole elements.

Claims

Ansprüche claims
1. Sensoranordnung zur Auswertung der Signale eines magnetfeldempfindlichen Sen- sorelements (22), bei dem die durch ein Geberelement (10) verursachten Magnetfeldänderungen durch Differenzbildung ausgewertet sind, wobei das Geber element (10) eine Vielzahl magnetischer Pole (14, 16) aufweist, dadurch gekennzeichnet, dass zumindest ein weichmagnetisches Sammelelement (18, 20) vorgesehen ist, das das Magnetfeld zumindest zweier gleichartiger magnetischer Pole (14, 16) des Geber- elements (10) abgreift und dem Sensorelement (22) zuführt, wobei das Geber element1. Sensor arrangement for evaluating the signals of a magnetic field-sensitive sensor element (22), in which the magnetic field changes caused by a transmitter element (10) are evaluated by subtraction, wherein the transmitter element (10) has a plurality of magnetic poles (14, 16), characterized in that at least one soft magnetic collecting element (18, 20) is provided, which picks up the magnetic field of at least two similar magnetic poles (14, 16) of the encoder element (10) and the sensor element (22) feeds, wherein the encoder element
(10) und das Sammelelement (18, 20) gegeneinander beweglich angeordnet sind.(10) and the collecting element (18, 20) are arranged to move against each other.
2. Sensoranordnung nach Anspruch 1, dadurch gekennzeichnet, dass das Sammelelement (18, 20) als Kammstruktur ausgeführt ist.2. Sensor arrangement according to claim 1, characterized in that the collecting element (18, 20) is designed as a comb structure.
3. Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein zweites Sammelelement (20) vorgesehen ist zum Abgreifen des Magnetfelds zumindest zweier gleichartiger magnetischer Pole (16).3. Sensor arrangement according to one of the preceding claims, characterized in that a second collecting element (20) is provided for picking up the magnetic field of at least two similar magnetic poles (16).
4. Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Sensorelement (22) zwei magnetfeldempfϊndliche Zellen, vorzugsweise Hall-Zellen, umfasst.4. Sensor arrangement according to one of the preceding claims, characterized in that the sensor element (22) comprises two magnetic field-sensitive cells, preferably Hall cells.
5. Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeich- net, dass ein Differenzsignal (34) aus einem Ausgangssignal (30) der ersten magnetfeldempfindlichen Zelle und aus einem Ausgangssignal (32) der zweiten magnetfeldempfindlichen Zelle gebildet ist.5. Sensor arrangement according to one of the preceding claims, characterized marked, that a difference signal (34) from an output signal (30) of the first magnetic field-sensitive cell and an output signal (32) of the second magnetic field-sensitive cell is formed.
6. Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Rückschlusselement (24) vorgesehen ist zum Schließen des magneti- sehen Kreises der unterschiedlich magnetisierten Pole (14, 16). 6. Sensor arrangement according to one of the preceding claims, characterized in that a return element (24) is provided for closing the magnetic see circle of the differently magnetized poles (14, 16).
7. Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Geberelement (10) als Multipolrad ausgeführt ist.7. Sensor arrangement according to one of the preceding claims, characterized in that the transmitter element (10) is designed as a multipole wheel.
8. Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Sammelelement (18, 20) in Richtung zum Geberelement (10) orientierte Kammfortsätze (26, 28) aufweist.8. Sensor arrangement according to one of the preceding claims, characterized in that the collecting element (18, 20) in the direction of the encoder element (10) oriented comb extensions (26, 28).
9. Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeich- net, dass die Kammfortsätze (26, 28) der geometrischen Struktur des Geberelements9. Sensor arrangement according to one of the preceding claims, characterized marked, that the comb extensions (26, 28) of the geometric structure of the donor element
(10) angepasst sind. (10) are adjusted.
EP06819051A 2005-08-25 2006-07-17 Sensor array Withdrawn EP1920219A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005040168A DE102005040168A1 (en) 2005-08-25 2005-08-25 sensor arrangement
PCT/EP2006/064318 WO2007023036A1 (en) 2005-08-25 2006-07-17 Sensor array

Publications (1)

Publication Number Publication Date
EP1920219A1 true EP1920219A1 (en) 2008-05-14

Family

ID=36952640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819051A Withdrawn EP1920219A1 (en) 2005-08-25 2006-07-17 Sensor array

Country Status (4)

Country Link
US (1) US20090278530A1 (en)
EP (1) EP1920219A1 (en)
DE (1) DE102005040168A1 (en)
WO (1) WO2007023036A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013009371A1 (en) * 2013-06-05 2014-12-11 Carl Freudenberg Kg Arrangement with a ring and a sensor
DE102013221943A1 (en) * 2013-10-29 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg Sensor system for speed measurement with a pole wheel with linearized magnetic field
EP3543656A1 (en) * 2018-03-24 2019-09-25 Melexis Technologies SA Offaxis insensitive multipole magnet, and sensor system comprising same
CN116989828B (en) * 2023-09-28 2023-12-08 山西省机电设计研究院有限公司 Large-diameter magnetic ring encoder and detection method for absolute angle of magnetic ring encoder

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984474A (en) * 1988-09-30 1991-01-15 Copal Company Limited Torque sensor
DE3926328A1 (en) * 1989-08-09 1991-02-14 Magnetic Research And Trading DEVICE FOR MEASURING LENGTHS, ANGLES AND THE LIKE
FR2670286B1 (en) * 1990-12-05 1993-03-26 Moving Magnet Tech MAGNETIC POSITION AND SPEED SENSOR WITH HALL PROBE.
US5200697B1 (en) * 1991-11-27 1996-06-18 Ntn Toyo Bearing Co Ltd Hub and bearing assembly with integrated rotation sensor including a tone ring and annular transducer
US5491632A (en) * 1994-05-26 1996-02-13 General Motors Corporation Rotary encoder with neutral position
US5568048A (en) * 1994-12-14 1996-10-22 General Motors Corporation Three sensor rotational position and displacement detection apparatus with common mode noise rejection
US6880441B1 (en) * 1996-06-06 2005-04-19 International Business Machines Corporation Precision punch and die design and construction
FR2790549B1 (en) * 1999-03-03 2001-04-13 Moving Magnet Tech POSITION SENSOR WITH MAGNETO-SENSITIVE PROBE AND MAGNET RECESSED IN IRON
DE10222118B4 (en) * 2001-05-18 2006-10-05 Denso Corp., Kariya Torque sensor and electric power steering system with torque sensor
US6690160B2 (en) * 2002-04-22 2004-02-10 Deere & Company Position sensing apparatus
JP2004020527A (en) * 2002-06-20 2004-01-22 Nippon Soken Inc Torque sensor
JP3913657B2 (en) * 2002-10-02 2007-05-09 株式会社日本自動車部品総合研究所 Torque sensor
DE10256322A1 (en) * 2002-11-28 2004-06-09 Valeo Schalter Und Sensoren Gmbh Device for determining a torque exerted on a shaft
DE10316124A1 (en) * 2003-04-04 2004-10-28 Valeo Schalter Und Sensoren Gmbh Device for determining a torque exerted on a shaft
DE10357147A1 (en) * 2003-12-06 2005-06-30 Robert Bosch Gmbh The magnetic sensor system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007023036A1 *

Also Published As

Publication number Publication date
WO2007023036A1 (en) 2007-03-01
DE102005040168A1 (en) 2007-03-01
US20090278530A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
EP2748053B1 (en) Combined steering torque-steering angle sensor
EP1252491B1 (en) Sensor system for detecting an angle of rotation and/or a torque
DE102009033242A1 (en) Torque sensor arrangement with rotation angle index detection
WO2011085833A2 (en) Magnetic field sensor assembly for capturing travel on movable parts
EP1662232A1 (en) Linear position sensor
DE102007057050A1 (en) Sensor arrangement i.e. torque sensor, for use in steering system of motor vehicle, has additional stator with two stator elements and arranged on shaft section, where stator is directly or indirectly assigned to magnetic encoder
WO2014086525A1 (en) Sensor apparatus for determining at least one rotation property of a rotating element
EP0381963A1 (en) Sensor for the rotation angle of the steering wheel of a motor vehicle
WO2002016879A1 (en) Method for a phase angle correction during scanning of a code track
DE102010032061A1 (en) Device for measuring a rotation angle and / or a torque
EP0885375B1 (en) Linear drive with magnetoresistive sensors
EP0988510B1 (en) Travel sensor
DE102012202657A1 (en) Sensor arrangement for detecting rotational angles of rotary component installed in vehicle, has sensor that determines current position of movement transducer in translation region which represents rotation angle of rotary component
EP2516978A1 (en) Sensor assembly for combined speed-torque detection
EP1920219A1 (en) Sensor array
DE102004009839A1 (en) Rotation angle sensor
EP1610095B1 (en) Rotation detector for determining the absolute angular position of a shaft
EP1998147A2 (en) Measuring device for contactless calculation of a rotation angle with radially polarised magnets
WO2022008265A1 (en) Omnidirectional rotational speed and rotational direction sensor
AT520709B1 (en) Electromagnetic measuring system for the detection of length and angle based on the magnetoimpedance effect
WO2021004567A1 (en) Sensor assembly for sensing a steering torque and an absolute angular position, and sensor device having said sensor assembly
EP2734812A1 (en) Device for determining motion parameters
DE102011079633A1 (en) Magnetic sensor for measuring a magnetic field of a magnetic multipole and associated device for determining motion parameters
DE19935282A1 (en) Rotation angle measuring arrangement, having coupling between signal generator or sensor unit and rotating component, which transfers forces only in rotation direction
DE102014008676B4 (en) Device for the contactless detection of a phase position

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20080707

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110201