EP1906095B1 - Method for regulating the exhaust air volume flow from the cooking chamber of an oven - Google Patents

Method for regulating the exhaust air volume flow from the cooking chamber of an oven Download PDF

Info

Publication number
EP1906095B1
EP1906095B1 EP07016039.5A EP07016039A EP1906095B1 EP 1906095 B1 EP1906095 B1 EP 1906095B1 EP 07016039 A EP07016039 A EP 07016039A EP 1906095 B1 EP1906095 B1 EP 1906095B1
Authority
EP
European Patent Office
Prior art keywords
temperature
cooking chamber
exhaust air
fan
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07016039.5A
Other languages
German (de)
French (fr)
Other versions
EP1906095A3 (en
EP1906095A2 (en
Inventor
Herbert BERKENKÖTTER
Ulrich Dr. Sillmen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miele und Cie KG
Original Assignee
Miele und Cie KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miele und Cie KG filed Critical Miele und Cie KG
Priority to PL07016039T priority Critical patent/PL1906095T3/en
Publication of EP1906095A2 publication Critical patent/EP1906095A2/en
Publication of EP1906095A3 publication Critical patent/EP1906095A3/en
Application granted granted Critical
Publication of EP1906095B1 publication Critical patent/EP1906095B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2021Arrangement or mounting of control or safety systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2007Removing cooking fumes from oven cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/32Arrangements of ducts for hot gases, e.g. in or around baking ovens
    • F24C15/322Arrangements of ducts for hot gases, e.g. in or around baking ovens with forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/087Arrangement or mounting of control or safety devices of electric circuits regulating heat

Definitions

  • the invention relates to a method for controlling the exhaust air volume flow from a cooking chamber of a baking oven, wherein the exhaust air volume flow is discharged through a blower to the environment.
  • a method for controlling the exhaust air flow from a cooking chamber is known.
  • a suction fan is controlled as a function of a temperature measured during the cooking process in the vapor extraction channel.
  • the DE 102 18 792 A1 discloses a method in which by means of two temperature sensors, a time-varying temperature gradient is detected in the cooking chamber, in order then to minimize the temperature gradient via a heating of the cooking chamber.
  • this temperature is measured over a period of time, wherein a predetermined setpoint, when the temperature exceeds this setpoint, then the speed of the fan high, up to the point where the temperature falls below a predetermined setpoint, until again a temperature change is made, which is above the upper setpoint, then the control of the fan is increased again, etc.
  • the fume extraction on the cooking chamber should be operated so that the cooking chamber does not leave the cooking chamber due to overpressure at unauthorized points, supply air openings, leaks. Wrasen should leave the oven by means of a volumetric flow controllable suction only via the designated exhaust port and there possibly located oxidation catalyst.
  • a sensor according to the prior art is known, which determines how much must be extracted. The less suctioned, the lower the energy losses of the cooking appliance.
  • a disadvantage of this known from the prior art embodiment is that the required extraction has been adapted inadequate adaptation to the needs so far usually.
  • the fan speed correlates with the oven temperature. It is assumed that at high temperature more vapors in the furnace chamber is formed than at lower, and therefore must be extracted more strongly. But there is no close link to the actual needs.
  • a disadvantage of the type of fan speed control it is also considered that a continuous speed control, which binds particular computing capacity in the controller.
  • the problem is to describe or provide an alternative method for controlling the exhaust air volume flow from a cooking chamber of a baking oven, which has a close coupling to the need, and manages without an additional opening in the oven.
  • a method is proposed, wherein for controlling the exhaust air volume flow from the cooking chamber of a baking oven during the cooking process in a first time interval at mutually different locations of the oven a first temperature T1 by a first temperature sensor and a second temperature T2 by a second temperature sensor substantially be measured automatically at the same time, so that the temperature difference between T1 and T2 is formed in an electrical control of the oven, and depending on the temperature difference, the speed of the fan or the opening degree of a bypass valve is determined to change the exhaust air volume flow conveyed by the fan, and in a subsequent second time interval, the thus determined rotational speed of the fan or the opening degree of the bypass valve is kept substantially constant, wherein the two time intervals are repeated alternately during the cooking process.
  • the strength of the suction is varied in the first time interval between low and heavy suction. So you start with the low suction. If the temperature difference between the two temperature sensors in the cooking chamber initially does not change, no cold kitchen room air is drawn through the supply air openings into the cooking chamber. Only when it is extracted so strongly that cold kitchen room air is drawn into the cooking chamber, the temperature difference begins to change.
  • the first temperature sensor connected to the usual temperature control for regulating the cooking chamber temperature is kept at its value by the control and the associated radiator control.
  • the second temperature sensor is influenced more or less than the first temperature sensor by the cool air that is now drawn into the cooking chamber. That is, the temperature difference between them becomes larger or smaller.
  • the degree of Wrasenabsaugung at the so-recognized point at which just cool kitchen room air is drawn into the oven is for a second time interval, for. B. over some, for example, 10 minutes, maintained as an orientation threshold, before rechecking whether the optimal extraction performance is now present, ie before again a first time interval is started.
  • a setting is stored in the electronics that determines the required fume extraction for the following second time interval as a function of this threshold. This can z. On the recognized threshold, slightly below or above it. After the second time interval, the first time interval is again started to determine the required suction for the next second time interval, etc.
  • T1 of the first temperature sensor connected to the temperature control is constant.
  • delta is equal to temperature T2 minus T1
  • T2 results in constancy.
  • a smaller difference thus corresponds to a smaller T2.
  • T1 is measured by means of a temperature sensor. This is typically located in the upper part of the cooking chamber near the grill body. With the help of T1, the temperature in the middle of the cooking chamber should be regulated to the setpoint set by the user. Since T1 is much closer to the radiator as at the middle of the cabinet, z. B. in operation T1 and cooking chamber center temperature sometimes greatly different.
  • the difference is called offset.
  • the offset is stored for each operating mode and for any desired oven temperature, ie the setpoint temperature for the cooking chamber, usually in the memory of the electronics.
  • the exhaust fan starts at the detection of the appropriate suction fan speed, at low speed or at the speed 0.
  • T2 is measured in the cooking chamber.
  • T1 and T2 are not the same.
  • T2 initially remains constant when increasing the exhaust fan speed. Due to its different geometric position relative to the radiators and to the supply air inflows in the cooking chamber, T2 normally has a value other than T1.
  • T1 remains unchanged during the change in the exhaust fan speed, or in other words, the heating control is running so that T1 remains constant, which is the task of the oven temperature control.
  • T2 remains at the starting value at low blower speed as long as no cold air is sucked through openings in the cooking chamber into the cooking chamber.
  • the temperature changes T2.
  • the delta between T2 and T1 changes.
  • the change in the delta is positive or negative. The sign of the change is unimportant for the recognition of the required suction power. All that matters is to recognize the change in the delta between T2 and T1.
  • the principle for the detection of the searched threshold is thus, first observation of a suction blower independent T2 value; at the desired exhaust power during the increase of the fan speed, a change of T2 from its start value, which was at the low start fan speed at the beginning of the respective detection time interval, as the respective first time interval, begins. How strong the deviation from the initial value must be, so that the deviation is definitively and reliably recognized as a change, is state of the art. You could z. B. set, with 10% deviation from the stable T2 initial value, ie from the T2 start value, this is detected as a change. The threshold was then exceeded, it is so strongly sucked that cold air into the oven is sucked. It is sucked off so much that in the cooking chamber no overpressure caused by the vapor. The expected temperature difference change depends on the operating mode, the oven temperature T1 and the mounting locations of the temperature sensors for the measurement of T 1 and T2.
  • the particularly advantageous effect which ensures a demand-adapted fume extraction with the lowest possible energy consumption and optimum extraction, is achieved by arranging only one additional temperature sensor of known type within the cooking chamber without additional measuring openings in the cooking chamber for the purpose of sensing.
  • the temperature difference between the two temperatures T1 and T2 is formed for the first time after a predetermined heating during the cooking process and the duration of the first time interval selected so short that the temperature difference between T1 and T2 in the cooking chamber at a constant exhaust air volume flow remains substantially constant during the first time interval.
  • the speed of the fan is during the first time interval, starting from a low speed, in which only part of the resulting during cooking steam as exhaust air volume flow through the blower to the environment is increased automatically or continuously in stages until the temperature difference between T1 and T2 is not equal to a measured at the beginning of the first interval start temperature difference, T1 minus T2 or T2 minus T1, and that depending on the last speed, the speed of the fan or the opening degree of a bypass door for the second time interval is set automatically.
  • the temperature T1 of the cooking chamber exhaust air is advantageously measured with the first temperature sensor and the temperature T2 in the lower cooking chamber region with the second temperature sensor.
  • the temperature T1 is kept substantially constant by means of a cooking chamber heating and a temperature control during the first time interval.
  • an oven for carrying out the method in which a second temperature sensor for measuring a second temperature T2 of the cooking chamber is arranged to control the exhaust air volume flow to or in the oven, wherein the two temperature sensors are arranged such that the Temperatures T1 and T2 at two different locations of the cooking chamber can be detected, and that in the evaluation of the two temperatures T1 and T2, a temperature difference can be determined, and depending on the speed of the blower or the opening degree of a arranged in the exhaust passage bypass valve, the is in signal transmission connection with the electrical control, is automatically adjustable.
  • the first temperature sensor in the upper region of the cooking chamber and the second temperature sensor in the lower region of the cooking chamber are arranged in an advantageous manner.
  • the first temperature sensor cooperates with the cooking chamber heating in such a way that the temperature T1 can be regulated substantially to a constant value during the first time interval.
  • the FIG. 1 shows in the schematic representation of the regulation of an exhaust air volume flow 1 from the cooking chamber 2 of a baking oven 3 by a blower 4 to the environment.
  • the rotational speed 5 is controlled as a function of a measurement by the temperature difference T1 to T2 by means of temperature sensors 9 and 10 in the cooking chamber 2 of the oven 3.
  • an electronics 6 is provided between the blower 4 and the temperature sensor 9 and 10, which processes the sensor signals for speed control. It can occur in the cooking chamber 2 due to leaks supply air 7.
  • the first temperature sensor 9 is arranged in the upper region of the cooking chamber.
  • the second temperature sensor 10 is arranged at a location other than the first temperature sensor 9 in the cooking chamber, for detecting a temperature difference delta T between the two temperature sensors 9 and 10.
  • the electronics 6 for varying the exhaust air volume flow 1 is state of the art and can, for example, the speed of the blower 4 or the control of the opening degree of a bypass flap 8, in the FIG. 2 is shown on the suction side of the fan 4, as in the FIG. 3 is shown, control.
  • An inlet air opening 11 may be a structurally provided opening through which the cool kitchen room air can be drawn into the cooking chamber 2 when it is sucked out of the cooking chamber 2.
  • the supply air opening 11 may also be one or more air leaks on the oven 3, which are almost unavoidable, such as gaps in the door or lamp sealing area or on the bushings for a radiator of a Garraumbenatureung 12. This is particularly in the FIG. 3 shown.
  • a first temperature T1 by the first temperature sensor 9 and a second temperature T2 by a second temperature sensor 10 substantially simultaneously measured automatically, and the temperature difference between T1 and T2 formed in the electronic control unit 6 of the oven 3.
  • the rotational speed 5 of the fan 4 or the opening degree of a bypass valve 8 is determined to change the volume of exhaust air 1 conveyed by the fan 4.
  • a subsequent second time interval for example the time interval between "I" and "II" in FIG Fig.
  • the thus determined rotational speed of the fan 4 or the opening degree of the bypass flap 8 is kept substantially constant, wherein the two time intervals are repeated alternately during the cooking process. Due to this design, in particular computing capacity is saved because only in the shorter time interval, the first time interval, is measured.
  • the temperature difference between the two temperatures T1 and T2 is formed here for the first time after a predetermined heating phase during the cooking process.
  • the duration of the first time interval is selected to be so short that the temperature difference between T1 and T2 in the cooking chamber 2 remains substantially constant for a constant exhaust air volume flow 1 during the first time interval.
  • the speed 5 of the blower 4 is during the first time interval, see "I" in Fig. 4 , starting from a low speed, in which only a part of the Wrasens produced during the cooking process is discharged as exhaust air volume flow 1 through the fan 4 to the environment, automatically increased continuously or in stages until the temperature difference between T1 and T2 unequal to one at the beginning of the first time interval measured start temperature difference.
  • the speed of the fan 4 or the opening degree of the bypass door 8 for the second time interval see the time interval between "I” and "II” in Fig. 4 , automatically set.
  • the temperature T1 of the cooking chamber exhaust air is measured here, with the second temperature sensor 10 here, the temperature T2 is measured in the lower Garraum Suite.
  • the temperature T1 is kept substantially constant by means of the cooking chamber heating 12 and a temperature control during the first time interval.
  • FIG. 4 is shown how changes over time the exhaust air volume flow 1 and the differential temperature between T1 and T2 during the first time interval. See also “I” and “II” in Fig. 4 , In the two examples, there is a reduction in the temperature difference due to cold supply air 7.
  • FIG. 4 An exemplary course of the exhaust air volume flow 1 is in the Fig. 4 by a curve a and the course of the differential temperature is represented by a curve b, wherein the course of the exhaust air volume flow 1 corresponds to the course of the fan speed of the fan 4.
  • Fig. 4 can be seen in the course of the first time interval shown here by way of example, the fan speed and thus the exhaust air volume flow 1, starting from a low initial speed, continuously increased. See curve a.
  • the differential temperature, curve b remains essentially constant.
  • the orientation threshold of the rotational speed of the fan 4 is found for the second time interval directly following the exemplary first time interval , This place is in Fig. 4 by the beginning drop of the differential temperature, curve b, recognizable. While at low Wrasenanfall results in the cooking chamber 2 for the orientation threshold a relatively low fan speed or a relatively low exhaust air volume flow 1, the orientation threshold is at a large Wrasenanfall in the cooking chamber 2 and thus the fan speed higher, see Fig. 4 , Although it is possible to use a uniform duration for each first time interval in the course of a cooking process, as in Fig.
  • the invention also relates to a baking oven 3 for carrying out the method according to the invention.
  • the oven 3 comprises a fan 4 for discharging exhaust air 1 from the cooking chamber 2 by an exhaust duct to the environment, and an electric control 6 with an evaluation circuit and a memory which is in signal transmission connection with the first temperature sensor 9 and the fan 4.
  • a second temperature sensor 10 for measuring a second temperature T2 of the cooking chamber is arranged to control the exhaust air volume flow 1 on or in the oven, wherein the temperature sensors 9 and 10 are arranged such that the temperatures T1 and T2 at two different locations of the cooking chamber.
  • a temperature difference can be determined, and depending on the speed 5 of the blower 4 or the degree of opening of a arranged in the exhaust passage bypass valve 8, which is in signal communication with the electrical control 6, automatically adjustable.
  • the first temperature sensor 9 is arranged in the upper region of the cooking chamber 2 and the second temperature sensor 10 in the lower region of the cooking chamber 2.
  • the first temperature sensor 9 interacts with the cooking chamber heating 12 in such a way that the temperature T1 is regulated substantially to a constant value during the first time interval.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Stoves And Ranges (AREA)
  • Electric Ovens (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regelung des Abluftvolumenstroms aus einem Garraum eines Backofens, wobei der Abluftvolumenstrom durch ein Gebläse an die Umgebung abgegeben wird.The invention relates to a method for controlling the exhaust air volume flow from a cooking chamber of a baking oven, wherein the exhaust air volume flow is discharged through a blower to the environment.

Es ist bekannt Backöfen mit Kühlventilatoren auszustatten, die einerseits empfindliche Komponenten, vor allem die elektronische Steuerung sowie Teile der Umgebung vor Überhitzung schützen und andererseits den Garraum von übermäßigem Dampf befreien. Außerdem soll eine zu hohe Dampfkonzentration im Garraum sowie der Austritt von Dampf an Leckagestellen verhindert werden. Denn aufgrund von unterschiedlichen Dampfentwicklungen, hervorgerufen durch verschiedenes Backgut bei vergleichbaren Temperaturen, sowie wegen der stark vom momentanen Zustand insbesondere der Backofenwand abhängigen Kondensation von Dampf an kühleren Flächen, ist die bisher verwendete Steuerung des Kühlventilators aufgrund der Heizleistung des Ofens oder seiner Innentemperatur unbefriedigend.It is known to equip ovens with cooling fans, on the one hand protect sensitive components, especially the electronic control and parts of the environment from overheating and on the other hand, free the cooking chamber of excessive steam. In addition, too high a vapor concentration in the cooking chamber and the escape of steam at leakage points should be prevented. Because due to different steam developments, caused by different baked goods at comparable temperatures, and because of the strong current state of the oven wall in particular dependent condensation of steam on cooler surfaces, the previously used control of the cooling fan due to the heating power of the furnace or its internal temperature is unsatisfactory.

Aus der DE 38 04 678 A1 ist beispielsweise ein Verfahren zur Regelung des Abluftstroms aus einem Garraum bekannt. Hierzu wird ein Absauggebläse in Abhängigkeit einer während des Garvorgangs in dem Wrasenabzugskanal gemessenen Temperatur geregelt.From the DE 38 04 678 A1 For example, a method for controlling the exhaust air flow from a cooking chamber is known. For this purpose, a suction fan is controlled as a function of a temperature measured during the cooking process in the vapor extraction channel.

Ein ähnliches Verfahren offenbart die DE 25 18 750 B2 .A similar method discloses the DE 25 18 750 B2 ,

Ferner ist es aus der DE 102 11 522 A1 bekannt, die Drehzahl eines Gebläses zur Erzeugung einer Luftströmung in dem Garraum zwischen Null und einer Höchstdrehzahl einzustellen und so die Luftabsaugung aus dem Garraum zu regulieren. Zur Steuerung der Abluftmenge wird die Verwendung eines Sauerstoffsensors vorgeschlagen.Furthermore, it is from the DE 102 11 522 A1 It is known to set the speed of a fan for generating an air flow in the cooking chamber between zero and a maximum speed and thus to regulate the air extraction from the cooking chamber. To control the amount of exhaust air, the use of an oxygen sensor is proposed.

Die DE 102 18 792 A1 offenbart ein Verfahren, bei dem mittels zweier Temperatursensoren ein zeitlich veränderliches Temperaturgefälle in dem Garraum detektiert wird, um anschließend das Temperaturgefälle über eine Beheizung des Garraums zu minimieren.The DE 102 18 792 A1 discloses a method in which by means of two temperature sensors, a time-varying temperature gradient is detected in the cooking chamber, in order then to minimize the temperature gradient via a heating of the cooking chamber.

Um insbesondere hier eine auf den Garvorgang abgestimmte Regelung des Abluftvolumenstroms herbei zu führen, die durch das Gebläse und hier durch die Regelung der Drehzahl erfolgt, wird gemäß der EP 1 156 282 vorgeschlagen, als Regelungstemperatur mindestens einen Wert mit dem Druckgefälle zwischen dem Inneren des Ofens und seiner Umgebung variierenden physikalischen Parameter zu messen. Somit wird gewährleistet, dass das Gebläse mit seiner Drehzahl an den jeweiligen Garvorgang anpassend geregelt wird. Bei der Ausführungsform des Standes der Technik wird hierzu die Temperatur über einen Zeitraum gemessen, wobei ein vorgegebener Sollwert, wenn die Temperatur diesen Sollwert überschreitet, dann die Drehzahl des Gebläses hoch regelt, bis zu dem Punkt, wo die Temperatur wieder einen vorgegebenen Sollwert unterschreitet, bis wieder eine Temperaturänderung erfolgt, die über dem oberen Sollwert liegt, wobei dann die Regelung des Gebläses wieder erhöht wird usw.In order to bring about, in particular, a regulation of the exhaust air volume flow coordinated with the cooking process, which is effected by the blower and here by the control of the rotational speed, is carried out in accordance with the EP 1 156 282 proposed to measure as a control temperature at least one value with the pressure gradient between the interior of the furnace and its environment varying physical parameters. This ensures that the fan is adjusted with its speed to the respective cooking process. In the Embodiment of the prior art, this temperature is measured over a period of time, wherein a predetermined setpoint, when the temperature exceeds this setpoint, then the speed of the fan high, up to the point where the temperature falls below a predetermined setpoint, until again a temperature change is made, which is above the upper setpoint, then the control of the fan is increased again, etc.

Bei dieser nach dem Stand der Technik bekannten Regelung des Drehzahlgebläses ist diese abhängig von der Heiztemperatur im Ofen, wobei insbesondere durch den Ablass- oder Abluftvolumenstrom entsprechend die Temperaturen herunter geregelt werden, so dass über den Garprozess ein Temperaturverlauf erzielt wird, der sich zwischen einem unteren und einem oberen Sollwert einstellt.In this known from the prior art control of the speed fan, this is dependent on the heating temperature in the oven, in particular by the discharge or exhaust air volume flow according to the temperatures are controlled down, so that over the cooking process, a temperature profile is achieved, which is between a lower and an upper setpoint.

Zum optimalen Betrieb eines Gargerätes soll die Wrasenabsaugung am Garraum so betrieben werden, dass Wrasen den Garraum nicht durch Überdruck an unerlaubten Stellen, Zuluftöffnungen, Lecks, verlässt. Wrasen soll den Backofen mittels einer volumenstromsteuerbaren Absaugung nur über die dafür vorgesehene Abluftöffnung und den sich dort ggf. befindlichen Oxidationskatalysator verlassen. Dafür ist eine Mindestabsaugung erforderlich. Hierzu ist, wie beschrieben, eine Sensorik gemäß dem Stand der Technik bekannt, die ermittelt wie stark abgesaugt werden muss. Je weniger abgesaugt wird, desto geringer sind die Energieverluste des Gargerätes.For optimum operation of a cooking appliance, the fume extraction on the cooking chamber should be operated so that the cooking chamber does not leave the cooking chamber due to overpressure at unauthorized points, supply air openings, leaks. Wrasen should leave the oven by means of a volumetric flow controllable suction only via the designated exhaust port and there possibly located oxidation catalyst. For a minimum extraction is required. For this purpose, as described, a sensor according to the prior art is known, which determines how much must be extracted. The less suctioned, the lower the energy losses of the cooking appliance.

Nachteilig bei dieser nach dem Stand der Technik bekannten Ausführung ist es, dass die erforderliche Absaugleistung bisher in der Regel nur unzureichend an den Bedarf angepasst ist. Zum Beispiel gibt es die Realisierung, dass die Gebläsedrehzahl mit der Backofentemperatur korreliert. Dabei wird davon ausgegangen, dass bei hoher Temperatur mehr Wrasen im Ofenraum entsteht als bei niedriger, und dass deshalb stärker abgesaugt werden muss. Es gibt aber keine enge Ankopplung an den tatsächlichen Bedarf. Als nachteilig bei der Art der Gebläsedrehzahlregelung wird es ebenfalls angesehen, dass eine kontinuierliche Drehzahlregelung erfolgt, was insbesondere Rechenkapazitäten in der Steuerung bindet.A disadvantage of this known from the prior art embodiment is that the required extraction has been adapted inadequate adaptation to the needs so far usually. For example, there is the realization that the fan speed correlates with the oven temperature. It is assumed that at high temperature more vapors in the furnace chamber is formed than at lower, and therefore must be extracted more strongly. But there is no close link to the actual needs. A disadvantage of the type of fan speed control, it is also considered that a continuous speed control, which binds particular computing capacity in the controller.

Somit stellt sich für die Erfindung das Problem, ein alternatives Verfahren zur Regelung des Abluftvolumenstroms aus einem Garraum eines Backofens zu beschreiben bzw. bereit zu stellen, das eine enge Ankopplung an den Bedarf hat, und das ohne eine zusätzliche Öffnung im Garraum auskommt.Thus, for the invention, the problem is to describe or provide an alternative method for controlling the exhaust air volume flow from a cooking chamber of a baking oven, which has a close coupling to the need, and manages without an additional opening in the oven.

Das Problem wird durch Anspruch 1 gelöst; vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.The problem is solved by claim 1; advantageous developments emerge from the subclaims.

Gemäß der Erfindung wird ein Verfahren vorgeschlagen, wobei zur Regelung des Abluftvolumenstroms aus dem Garraum eines Backofens während des Garvorganges in einem ersten Zeitintervall an voneinander verschiedenen Orten des Garraums eine erste Temperatur T1 durch einen ersten Temperatursensor und eine zweite Temperatur T2 durch einen zweiten Temperatursensor im Wesentlichen zeitgleich automatisch gemessen werden, so dass die Temperaturdifferenz zwischen T1 und T2 in einer elektrischen Steuerung des Backofens gebildet wird, und in Abhängigkeit der Temperaturdifferenz die Drehzahl des Gebläses oder der Öffnungsgrad einer Bypass-Klappe zur Veränderung des durch das Gebläse geförderten Abluftvolumenstroms ermittelt wird, und in einem darauf folgenden zweiten Zeitintervall die so ermittelte Drehzahl des Gebläses oder der Öffnungsgrad der Bypassklappe im Wesentlichen konstant gehalten wird, wobei die beiden Zeitintervalle während des Garvorganges alternierend wiederholt werden.According to the invention, a method is proposed, wherein for controlling the exhaust air volume flow from the cooking chamber of a baking oven during the cooking process in a first time interval at mutually different locations of the oven a first temperature T1 by a first temperature sensor and a second temperature T2 by a second temperature sensor substantially be measured automatically at the same time, so that the temperature difference between T1 and T2 is formed in an electrical control of the oven, and depending on the temperature difference, the speed of the fan or the opening degree of a bypass valve is determined to change the exhaust air volume flow conveyed by the fan, and in a subsequent second time interval, the thus determined rotational speed of the fan or the opening degree of the bypass valve is kept substantially constant, wherein the two time intervals are repeated alternately during the cooking process.

Um zu ermitteln wie stark zu einem Zeitpunkt abgesaugt werden muss, wird die Stärke der Absaugung in dem ersten Zeitintervall zwischen niedriger und starker Absaugung variiert. So beginnt man mit der niedrigen Absaugung. Ändert sich die Temperaturdifferenz zwischen den zwei Temperatursensoren im Garraum zunächst nicht, so wird keine kalte Küchenraumluft durch die Zuluftöffnungen in den Garraum nachgezogen. Erst wenn so stark abgesaugt wird, dass kalte Küchenraumluft in den Garraum nachgezogen wird, beginnt sich die Temperaturdifferenz zu ändern. Der mit der üblichen Temperaturregelung zur Regelung der Garraumtemperatur verbundene erste Temperatursensor wird durch die Regelung und die damit verbundene Heizkörperansteuerung auf seinem Wert gehalten. Der zweite Temperatursensor wird durch die nun in den Garraum nachgezogene kühle Luft mehr oder weniger als der erste Temperatursensor beeinflusst. Das heißt, die Temperaturdifferenz zwischen beiden wird größer oder kleiner. Ob die Temperaturdifferenz größer oder kleiner wird ist abhängig davon, wie die Temperaturdifferenz gebildet wird. Sie ändert sich. Maßgeblich ist nur, dass sich die Temperaturdifferenz bei Variation der Absaugleistung erst ändert, wenn so stark abgesaugt wird, dass kalte Küchenraumluft durch Lecks oder Zuluftöffnungen in den Garraum gesaugt wird. Das Maß der Wrasenabsaugung an dem so erkannten Punkt, an dem gerade kühle Küchenraumluft in den Garraum nachgezogen wird, wird für ein zweites Zeitintervall, z. B. über einige, beispielsweise 10 Minuten, als Orientierungsschwelle beibehalten, bevor erneut geprüft wird, ob die optimale Absaugleistung nun vorliegt, d.h. bevor erneut ein erstes Zeitintervall gestartet wird. Je nach Wunsch ist in der Elektronik eine Einstellung hinterlegt, die die erforderliche Wrasenabsaugung für das folgende zweite Zeitintervall als Funktion dieser Schwelle ermittelt. Das kann z. B. auf der erkannten Schwelle sein, leicht darunter oder darüber. Nach dem zweiten Zeitintervall wird erneut das erste Zeitintervall gestartet, um die erforderliche Absaugung für das nächste zweite Zeitintervall zu ermitteln usw.In order to determine how much must be extracted at a time, the strength of the suction is varied in the first time interval between low and heavy suction. So you start with the low suction. If the temperature difference between the two temperature sensors in the cooking chamber initially does not change, no cold kitchen room air is drawn through the supply air openings into the cooking chamber. Only when it is extracted so strongly that cold kitchen room air is drawn into the cooking chamber, the temperature difference begins to change. The first temperature sensor connected to the usual temperature control for regulating the cooking chamber temperature is kept at its value by the control and the associated radiator control. The second temperature sensor is influenced more or less than the first temperature sensor by the cool air that is now drawn into the cooking chamber. That is, the temperature difference between them becomes larger or smaller. Whether the temperature difference becomes larger or smaller depends on how the temperature difference is formed. She changes. Decisive is only that the temperature difference with variation of the suction only changes when it is so strongly sucked that cold kitchen room air is sucked through leaks or Zuluftöffnungen into the oven. The degree of Wrasenabsaugung at the so-recognized point at which just cool kitchen room air is drawn into the oven, is for a second time interval, for. B. over some, for example, 10 minutes, maintained as an orientation threshold, before rechecking whether the optimal extraction performance is now present, ie before again a first time interval is started. Depending on your preference, a setting is stored in the electronics that determines the required fume extraction for the following second time interval as a function of this threshold. This can z. On the recognized threshold, slightly below or above it. After the second time interval, the first time interval is again started to determine the required suction for the next second time interval, etc.

Somit ergibt sich, dass die Temperatur T1, des mit der Temperaturregelung verbundenen ersten Temperatursensors, konstant ist. Wird als Differenztemperatur definiert, Delta ist gleich Temperatur T2 minus T1, so ergibt sich T2 minus Konstanz. Dann entspricht einer kleineren Differenz somit ein kleineres T2. Zur Temperaturregelung des Gargerätes wird eine Temperatur T1 mittels eines Temperatursensors gemessen. Dieser befindet sich typisch im oberen Bereich des Garraums in der Nähe des Grillkörpers. Mit Hilfe von T1 soll die Temperatur in der Garraummitte auf den vom Benutzer eingestellten Sollwert geregelt werden. Da T1 viel näher am Heizkörper liegt als an der Garraummitte, sind z. B. im Betrieb T1 und Garraummittentemperatur teilweise stark unterschiedlich.This means that the temperature T1 of the first temperature sensor connected to the temperature control is constant. Defined as differential temperature, delta is equal to temperature T2 minus T1, then T2 results in constancy. Then a smaller difference thus corresponds to a smaller T2. For temperature control of the cooking appliance, a temperature T1 is measured by means of a temperature sensor. This is typically located in the upper part of the cooking chamber near the grill body. With the help of T1, the temperature in the middle of the cooking chamber should be regulated to the setpoint set by the user. Since T1 is much closer to the radiator as at the middle of the cabinet, z. B. in operation T1 and cooking chamber center temperature sometimes greatly different.

Die Differenz wird Offset genannt. Das Offset ist für jede Betriebsart und für jede gewünschte Ofentemperatur, also die Solltemperatur für den Garraum, in der Regel im Speicher der Elektronik hinterlegt. Das Absauggebläse startet bei der Detektion der geeigneten Absauggebläsedrehzahl, bei niedriger Drehzahl oder bei der Drehzahl 0. In der Garraummitte oder an einer anderen Position wird im Garraum noch eine zweite Temperatur T2 gemessen. In der Regel sind die Werte von T1 und T2 nicht gleich. T2 bleibt bei der Steigerung der Abluftgebläsedrehzahl zunächst konstant. T2 hat aufgrund seiner anderen geometrischen Lage zu den Heizkörpern und zu den Zuluftzuströmungen im Garraum normalerweise einen anderen Wert als T1. T1 bleibt während der Veränderung der Absauggebläsedrehzahl unverändert, oder anders ausgedrückt, die Heizregelung läuft gerade so, dass T1 konstant bleibt, was die Aufgabe der Ofentemperaturregelung ist. T2 bleibt solange auf dem Startwert bei niedriger Gebläsedrehzahl, wie keine kalte Luft durch Öffnungen des Garraumes in den Garraum gesaugt wird. Ab der Absauggebläseleistung, also der Gebläsedrehzahl, bei der begonnen wird, neben der Absaugung des entstehenden Wrasens zusätzlich noch kalte Luft in den Garraum zu saugen, verändert sich die Temperatur T2. Das Delta zwischen T2 und T1 verändert sich. Je nach den Strömungsverhältnissen der in den Garraum gesaugten kalten Luft ist die Veränderung des Deltas positiv oder negativ. Zur Erkennung der erforderlichen Absaugleistung ist das Vorzeichen der Änderung unwichtig. Es kommt dabei nur darauf an, die Änderung des Deltas zwischen T2 und T1 zu erkennen. Das Prinzip zur Detektion der gesuchten Schwelle ist also, erst Beobachtung eines absauggebläseleistungsunabhängigen T2-Wertes; bei der gesuchten Absaugleistung während der Erhöhung der Gebläsedrehzahl beginnt eine Änderung von T2 gegenüber seinem Startwert, der bei der niedrigen Start-Gebläsedrehzahl zu Beginn des jeweiligen Detektionszeitintervalls, als des jeweiligen ersten Zeitintervalls, vorlag. Wie stark die Abweichung vom Anfangswert sein muss, damit die Abweichung endgültig und sicher als Änderung erkannt wird, ist Stand der Technik. Man könnte z. B. setzen, bei 10%-iger Abweichung vom stabilen T2-Anfangswert, also vom T2-Startwert, wird dies als Änderung erkannt. Die Schwelle wurde dann überschritten, es wird so stark abgesaugt, dass kalte Luft in den Garraum gesaugt wird. Es wird so stark abgesaugt, dass im Garraum kein Überdruck durch den Wrasen entsteht. Die erwartete Temperaturdifferenzänderung hängt dabei von der Betriebsart, der Ofentemperatur T1 und den Anbringungsorten der Temperatursensoren zur Messung von T 1 und T2 ab.The difference is called offset. The offset is stored for each operating mode and for any desired oven temperature, ie the setpoint temperature for the cooking chamber, usually in the memory of the electronics. The exhaust fan starts at the detection of the appropriate suction fan speed, at low speed or at the speed 0. In the middle of the cooking chamber or at another position, a second temperature T2 is measured in the cooking chamber. As a rule, the values of T1 and T2 are not the same. T2 initially remains constant when increasing the exhaust fan speed. Due to its different geometric position relative to the radiators and to the supply air inflows in the cooking chamber, T2 normally has a value other than T1. T1 remains unchanged during the change in the exhaust fan speed, or in other words, the heating control is running so that T1 remains constant, which is the task of the oven temperature control. T2 remains at the starting value at low blower speed as long as no cold air is sucked through openings in the cooking chamber into the cooking chamber. From the exhaust fan power, ie the fan speed at which is started to suck in addition to the suction of the resulting Wrasens additionally cold air in the oven, the temperature changes T2. The delta between T2 and T1 changes. Depending on the flow conditions of the cold air drawn into the cooking chamber, the change in the delta is positive or negative. The sign of the change is unimportant for the recognition of the required suction power. All that matters is to recognize the change in the delta between T2 and T1. The principle for the detection of the searched threshold is thus, first observation of a suction blower independent T2 value; at the desired exhaust power during the increase of the fan speed, a change of T2 from its start value, which was at the low start fan speed at the beginning of the respective detection time interval, as the respective first time interval, begins. How strong the deviation from the initial value must be, so that the deviation is definitively and reliably recognized as a change, is state of the art. You could z. B. set, with 10% deviation from the stable T2 initial value, ie from the T2 start value, this is detected as a change. The threshold was then exceeded, it is so strongly sucked that cold air into the oven is sucked. It is sucked off so much that in the cooking chamber no overpressure caused by the vapor. The expected temperature difference change depends on the operating mode, the oven temperature T1 and the mounting locations of the temperature sensors for the measurement of T 1 and T2.

Der besonders vorteilhafte Effekt, der eine bedarfsangepasste Wrasenabsaugung bei möglichst niedrigstem Energieverbrauch und optimaler Absaugung gewährleistet, wird dadurch erreicht, dass zur Sensierung nur ein zusätzlicher Temperatursensor bekannter Art innerhalb des Garraums ohne zusätzliche Messöffnungen im Garraum angeordnet wird.The particularly advantageous effect, which ensures a demand-adapted fume extraction with the lowest possible energy consumption and optimum extraction, is achieved by arranging only one additional temperature sensor of known type within the cooking chamber without additional measuring openings in the cooking chamber for the purpose of sensing.

In Weiterbildung der Erfindung wird die Temperaturdifferenz zwischen den beiden Temperaturen T1 und T2 erstmalig nach Ablauf einer vorher festgelegten Aufheizphase während des Garvorganges gebildet und die Dauer des ersten Zeitintervalls derart kurz gewählt, dass die Temperaturdifferenz zwischen T1 und T2 in dem Garraum bei einem gleich bleibenden Abluftvolumenstrom während des ersten Zeitintervalls im Wesentlichen konstant bleibt.In a further development of the invention, the temperature difference between the two temperatures T1 and T2 is formed for the first time after a predetermined heating during the cooking process and the duration of the first time interval selected so short that the temperature difference between T1 and T2 in the cooking chamber at a constant exhaust air volume flow remains substantially constant during the first time interval.

Die Drehzahl des Gebläses wird während des ersten Zeitintervalls, ausgehend von einer niedrigen Drehzahl, bei der lediglich ein Teil des während des Garvorgangs entstehenden Wrasens als Abluftvolumenstrom durch das Gebläse an die Umgebung abgegeben wird, kontinuierlich oder in Stufen automatisch erhöht bis die Temperaturdifferenz zwischen T1 und T2 ungleich einer zu Beginn des ersten Intervalls gemessenen Starttemperaturdifferenz, T1 minus T2 oder T2 minus T1 ist, und dass in Abhängigkeit der letzten Drehzahl die Drehzahl des Gebläses oder der Öffnungsgrad einer Bypassklappe für das zweite Zeitintervall automatisch festgelegt wird.The speed of the fan is during the first time interval, starting from a low speed, in which only part of the resulting during cooking steam as exhaust air volume flow through the blower to the environment is increased automatically or continuously in stages until the temperature difference between T1 and T2 is not equal to a measured at the beginning of the first interval start temperature difference, T1 minus T2 or T2 minus T1, and that depending on the last speed, the speed of the fan or the opening degree of a bypass door for the second time interval is set automatically.

Dabei wird mit dem ersten Temperatursensor vorteilhafterweise die Temperatur T1 der Garraumabluft gemessen und mit dem zweiten Temperatursensor die Temperatur T2 im unteren Garraumbereich. Die Temperatur T1 wird mittels einer Garraumbeheizung und einer Temperaturregelung während des ersten Zeitintervalls im Wesentlichen konstant gehalten.In this case, the temperature T1 of the cooking chamber exhaust air is advantageously measured with the first temperature sensor and the temperature T2 in the lower cooking chamber region with the second temperature sensor. The temperature T1 is kept substantially constant by means of a cooking chamber heating and a temperature control during the first time interval.

Nach einer vorteilhaften Weiterbildung der Erfindung wird ein Backofen zur Durchführung des Verfahrens bereitgestellt, bei dem zur Steuerung des Abluftvolumenstroms an oder in dem Backofen ein zweiter Temperatursensor zur Messung einer zweiten Temperatur T2 des Garraums angeordnet ist, wobei die beiden Temperatursensoren derart angeordnet sind, dass die Temperaturen T1 und T2 an zwei voneinander verschiedenen Orten des Garraums erfassbar sind, und dass in der Auswerteschaltung aus den beiden Temperaturen T1 und T2 eine Temperaturdifferenz ermittelbar ist, und in Abhängigkeit davon die Drehzahl des Gebläses oder der Öffnungsgrad einer in der Abluftleitung angeordneten Bypassklappe, die mit der elektrischen Steuerung in Signalübertragungsverbindung steht, automatisch einstellbar ist.According to an advantageous development of the invention, an oven for carrying out the method is provided, in which a second temperature sensor for measuring a second temperature T2 of the cooking chamber is arranged to control the exhaust air volume flow to or in the oven, wherein the two temperature sensors are arranged such that the Temperatures T1 and T2 at two different locations of the cooking chamber can be detected, and that in the evaluation of the two temperatures T1 and T2, a temperature difference can be determined, and depending on the speed of the blower or the opening degree of a arranged in the exhaust passage bypass valve, the is in signal transmission connection with the electrical control, is automatically adjustable.

Darüber hinaus sind in vorteilhafter Weise der erste Temperatursensor im oberen Bereich des Garraums und der zweite Temperatursensor im unteren Bereich des Garraums angeordnet. Hierbei wirkt der erste Temperatursensor mit der Garraumbeheizung derart zusammen, dass die Temperatur T1 während des ersten Zeitintervalls im Wesentlichen auf einen konstanten Wert regelbar ist.In addition, the first temperature sensor in the upper region of the cooking chamber and the second temperature sensor in the lower region of the cooking chamber are arranged in an advantageous manner. In this case, the first temperature sensor cooperates with the cooking chamber heating in such a way that the temperature T1 can be regulated substantially to a constant value during the first time interval.

Ein Ausführungsbeispiel der Erfindung wird anhand der nachstehenden Figuren 1 bis 4 näher erläutert; dabei zeigen:

Figur 1:
Eine erste Prinzipskizze zur Regelung des Abluftvolumenstroms aus einem Garraum eines Backofens mit zwei Temperatursensoren;
Figur 2:
Eine weitere Ausführung gemäß der Figur 1 mit einer Bypass-Klappe;
Figur 3:
Eine weitere Ausführung gemäß der Figur 2;
Figur 4:
Ein Diagramm von verschiedenen Messzyklen über die Zeit.
An embodiment of the invention will become apparent from the following FIGS. 1 to 4 explained in more detail; show:
FIG. 1:
A first schematic diagram for controlling the exhaust air volume flow from a cooking chamber of a baking oven with two temperature sensors;
FIG. 2:
Another embodiment according to the FIG. 1 with a bypass flap;
FIG. 3:
Another embodiment according to the FIG. 2 ;
FIG. 4:
A diagram of different measuring cycles over time.

Die Figur 1 zeigt in der Prinzipdarstellung die Regelung eines Abluftvolumenstroms 1 aus dem Garraum 2 eines Backofens 3 durch ein Gebläse 4 an die Umgebung. Dabei wird die Drehzahl 5 in Abhängigkeit einer durch die Messung der Temperaturdifferenz T1 zu T2 mittels Temperatursensoren 9 und 10 im Garraum 2 des Backofens 3 gesteuert. Hierzu ist zwischen dem Gebläse 4 und dem Temperatursensor 9 und 10 eine Elektronik 6 vorgesehen, die die Sensorsignale zur Drehzahlregulierung verarbeitet. Dabei kann in dem Garraum 2 aufgrund von Leckagestellen Zuluft 7 eintreten. Der erste Temperatursensor 9 ist im oberen Bereich des Garraums angeordnet. Der zweite Temperatursensor 10 ist an einem anderen Ort als dem ersten Temperatursensor 9 im Garraum angeordnet, zur Erfassung einer Temperaturdifferenz Delta T zwischen beiden Temperatursensoren 9 und 10.The FIG. 1 shows in the schematic representation of the regulation of an exhaust air volume flow 1 from the cooking chamber 2 of a baking oven 3 by a blower 4 to the environment. In this case, the rotational speed 5 is controlled as a function of a measurement by the temperature difference T1 to T2 by means of temperature sensors 9 and 10 in the cooking chamber 2 of the oven 3. For this purpose, an electronics 6 is provided between the blower 4 and the temperature sensor 9 and 10, which processes the sensor signals for speed control. It can occur in the cooking chamber 2 due to leaks supply air 7. The first temperature sensor 9 is arranged in the upper region of the cooking chamber. The second temperature sensor 10 is arranged at a location other than the first temperature sensor 9 in the cooking chamber, for detecting a temperature difference delta T between the two temperature sensors 9 and 10.

Die Elektronik 6 zur Variierung des Abluftvolumenstromes 1 ist Stand der Technik und kann zum Beispiel die Drehzahl des Gebläses 4 oder die Ansteuerung des Öffnungsgrades einer Bypass-Klappe 8, die in der Figur 2 dargestellt ist, an der Saugseite des Gebläses 4, wie dies auch in der Figur 3 dargestellt ist, steuern. Eine Zuluftöffnung 11 kann eine konstruktiv vorgesehene Öffnung sein, durch die die kühle Küchenraumluft in den Garraum 2 nachgezogen werden kann, wenn aus dem Garraum 2 abgesaugt wird. Die Zuluftöffnung 11 kann aber auch eine oder mehrere Luftlecks am Backofen 3 sein, die beinahe unvermeidlich sind, wie zum Beispiel Spalte im Tür- oder Lampendichtungsbereich oder an den Durchführungen für einen Heizkörper einer Garraumbeheizung 12. Dies ist insbesondere in der Figur 3 dargestellt.The electronics 6 for varying the exhaust air volume flow 1 is state of the art and can, for example, the speed of the blower 4 or the control of the opening degree of a bypass flap 8, in the FIG. 2 is shown on the suction side of the fan 4, as in the FIG. 3 is shown, control. An inlet air opening 11 may be a structurally provided opening through which the cool kitchen room air can be drawn into the cooking chamber 2 when it is sucked out of the cooking chamber 2. The supply air opening 11 may also be one or more air leaks on the oven 3, which are almost unavoidable, such as gaps in the door or lamp sealing area or on the bushings for a radiator of a Garraumbeheizung 12. This is particularly in the FIG. 3 shown.

Bei dem erfindungsgemäßen Verfahren wird während des Garvorganges in einem ersten Zeitintervall entsprechend einem Messzyklus I, dargestellt in der Figur 4, an voneinander verschiedenen Orten des Garrraums 2 eine erste Temperatur T1 durch den ersten Temperatursensor 9 und eine zweite Temperatur T2 durch einen zweiten Temperatursensor 10 im Wesentlichen zeitgleich automatisch gemessen, und die Temperaturdifferenz zwischen T1 und T2 in der elektronischen Steuerung 6 des Backofens 3 gebildet. Dabei wird in Abhängigkeit der Temperaturdifferenz die Drehzahl 5 des Gebläses 4 oder der Öffnungsgrad einer Bypass-Klappe 8 zur Veränderung des durch das Gebläse 4 geförderten Abluftvolumenstroms 1 ermittelt. In einem darauf folgenden zweiten Zeitintervall, beispielsweise das Zeitintervall zwischen "I" und "II" in Fig. 4, wird die so ermittelte Drehzahl des Gebläses 4 oder der Öffnungsgrad der Bypassklappe 8 im Wesentlichen konstant gehalten, wobei die beiden Zeitintervalle während des Garvorganges alternierend wiederholt werden. Aufgrund dieser Ausbildung wird insbesondere Rechenkapazität eingespart, weil nur in dem kürzeren Zeitintervall, dem ersten Zeitintervall, gemessen wird.In the method according to the invention is during the cooking process in a first time interval corresponding to a measuring cycle I, shown in the FIG. 4 , At a different locations of the Garrraums 2 a first temperature T1 by the first temperature sensor 9 and a second temperature T2 by a second temperature sensor 10 substantially simultaneously measured automatically, and the temperature difference between T1 and T2 formed in the electronic control unit 6 of the oven 3. In this case, depending on the temperature difference, the rotational speed 5 of the fan 4 or the opening degree of a bypass valve 8 is determined to change the volume of exhaust air 1 conveyed by the fan 4. In a subsequent second time interval, for example the time interval between "I" and "II" in FIG Fig. 4 , the thus determined rotational speed of the fan 4 or the opening degree of the bypass flap 8 is kept substantially constant, wherein the two time intervals are repeated alternately during the cooking process. Due to this design, in particular computing capacity is saved because only in the shorter time interval, the first time interval, is measured.

Die Temperaturdifferenz zwischen den beiden Temperaturen T1 und T2 wird hier erstmalig nach Ablauf einer vorher festgelegten Aufheizphase während des Garvorgangs gebildet. Dabei ist die Dauer des ersten Zeitintervalls derart kurz gewählt, dass die Temperaturdifferenz zwischen T1 und T2 in dem Garraum 2 bei einem gleich bleibenden Abluftvolumenstrom 1 während des ersten Zeitintervalls im Wesentlichen konstant bleibt. Die Drehzahl 5 des Gebläses 4 wird während des ersten Zeitintervalls, siehe "I" in Fig. 4, ausgehend von einer niedrigen Drehzahl, bei der lediglich ein Teil des während des Garvorgangs entstehenden Wrasens als Abluftvolumenstrom 1 durch das Gebläse 4 an die Umgebung abgegeben wird, kontinuierlich oder in Stufen automatisch erhöht, bis die Temperaturdifferenz zwischen T1 und T2 ungleich einer zu Beginn des ersten Zeitintervalls gemessenen Starttemperaturdifferenz ist. In Abhängigkeit der letzten Drehzahl wird die Drehzahl des Gebläses 4 oder der Öffnungsgrad der Bypass-Klappe 8 für das zweite Zeitintervall, siehe das Zeitintervall zwischen "I" und "II" in Fig. 4, automatisch festgelegt.The temperature difference between the two temperatures T1 and T2 is formed here for the first time after a predetermined heating phase during the cooking process. In this case, the duration of the first time interval is selected to be so short that the temperature difference between T1 and T2 in the cooking chamber 2 remains substantially constant for a constant exhaust air volume flow 1 during the first time interval. The speed 5 of the blower 4 is during the first time interval, see "I" in Fig. 4 , starting from a low speed, in which only a part of the Wrasens produced during the cooking process is discharged as exhaust air volume flow 1 through the fan 4 to the environment, automatically increased continuously or in stages until the temperature difference between T1 and T2 unequal to one at the beginning of the first time interval measured start temperature difference. Depending on the last speed, the speed of the fan 4 or the opening degree of the bypass door 8 for the second time interval, see the time interval between "I" and "II" in Fig. 4 , automatically set.

Mit dem ersten Temperatursensor 9 wird hier die Temperatur T1 der Garraumabluft gemessen, wobei mit dem zweiten Temperatursensor 10 hier die Temperatur T2 im unteren Garraumbereich gemessen wird. Hierbei wird die Temperatur T1 mittels der Garraumbeheizung 12 und einer Temperaturregelung während des ersten Zeitintervalls im Wesentlichen konstant gehalten.With the first temperature sensor 9, the temperature T1 of the cooking chamber exhaust air is measured here, with the second temperature sensor 10 here, the temperature T2 is measured in the lower Garraumbereich. In this case, the temperature T1 is kept substantially constant by means of the cooking chamber heating 12 and a temperature control during the first time interval.

Gemäß der Figur 4 ist dargestellt, wie sich über die Zeit der Abluftvolumenstrom 1 und die Differenztemperatur zwischen T1 und T2 während des ersten Zeitintervalls ändert. Siehe auch "I" und "II" in Fig. 4. In den beiden Beispielen gibt es eine Verringerung der Temperaturdifferenz durch kalte Zuluft 7.According to the FIG. 4 is shown how changes over time the exhaust air volume flow 1 and the differential temperature between T1 and T2 during the first time interval. See also "I" and "II" in Fig. 4 , In the two examples, there is a reduction in the temperature difference due to cold supply air 7.

Ein exemplarischer Verlauf des Abluftvolumenstroms 1 ist in der Fig. 4 durch eine Kurve a und der Verlauf der Differenztemperatur ist durch eine Kurve b dargestellt, wobei der Verlauf des Abluftvolumenstroms 1 dem Verlauf der Gebläsedrehzahl des Gebläses 4 entspricht. Wie aus Fig. 4 ersichtlich, wird im Verlauf des hier exemplarisch gezeigten ersten Zeitintervalls die Gebläsedrehzahl und damit der Abluftvolumenstrom 1, ausgehend von einer niedrigen Anfangsdrehzahl, kontinuierlich erhöht. Siehe Kurve a. Zu Beginn des ersten Zeitintervalls und auch während der ersten Phase der Drehzahlerhöhung bleibt die Differenztemperatur, Kurve b, im Wesentlichen konstant. Sobald eine Drehzahl und damit ein Abluftvolumenstrom 1 erreicht ist, bei dem gerade frische, kühle Küchenraumluft 7 durch die Zuluftöffnung 11 in den Garraum 2 eingesaugt wird, ist die Orientierungsschwelle der Drehzahl des Gebläses 4 für das an das exemplarische erste Zeitintervall direkt anschließende zweite Zeitintervall gefunden. Diese Stelle ist in Fig. 4 durch den beginnenden Abfall der Differenztemperatur, Kurve b, erkennbar. Während sich bei geringem Wrasenanfall im Garraum 2 für die Orientierungsschwelle eine relativ niedrige Gebläsedrehzahl bzw. ein relativ niedriger Abluftvolumenstrom 1 ergibt, liegt die Orientierungsschwelle bei einem großen Wrasenanfall in dem Garraum 2 und damit die Gebläsedrehzahl höher, siehe Fig. 4. Zwar ist es möglich, eine einheitliche Dauer für jedes erste Zeitintervall im Verlauf eines Garvorgangs zu verwenden, wie dies auch in Fig. 4 gezeigt ist. Aus Gründen der Zeitersparnis und der Optimierung der Wrasenabsaugung aus dem Garraum 2 ist es jedoch vorteilhaft, das jeweilige erste Zeitintervall bereits dann zu beenden, wenn die Orientierungsschwelle für die Drehzahl des Gebläses 4 für das zweite Zeitintervall auf die vorgenannte Weise ermittelt worden ist. Für die zweiten Zeitintervalle hingegen wird zweckmäßigerweise eine einheitliche Dauer verwendet.An exemplary course of the exhaust air volume flow 1 is in the Fig. 4 by a curve a and the course of the differential temperature is represented by a curve b, wherein the course of the exhaust air volume flow 1 corresponds to the course of the fan speed of the fan 4. How out Fig. 4 can be seen in the course of the first time interval shown here by way of example, the fan speed and thus the exhaust air volume flow 1, starting from a low initial speed, continuously increased. See curve a. At the beginning of the first time interval and also during the first phase of the speed increase, the differential temperature, curve b, remains essentially constant. As soon as a rotational speed and thus an exhaust air volumetric flow 1 is reached, in which fresh, cool kitchen space air 7 is sucked through the supply air opening 11 into the cooking chamber 2, the orientation threshold of the rotational speed of the fan 4 is found for the second time interval directly following the exemplary first time interval , This place is in Fig. 4 by the beginning drop of the differential temperature, curve b, recognizable. While at low Wrasenanfall results in the cooking chamber 2 for the orientation threshold a relatively low fan speed or a relatively low exhaust air volume flow 1, the orientation threshold is at a large Wrasenanfall in the cooking chamber 2 and thus the fan speed higher, see Fig. 4 , Although it is possible to use a uniform duration for each first time interval in the course of a cooking process, as in Fig. 4 is shown. For reasons of time saving and the optimization of the Wrasenabsaugung from the cooking chamber 2, however, it is advantageous to end the respective first time interval already when the orientation threshold for the speed of the fan 4 has been determined for the second time interval in the aforementioned manner. On the other hand, a uniform duration is expediently used for the second time intervals.

Die Erfindung betrifft ebenfalls einen Backofen 3 zur Durchführung des erfindungsgemäßen Verfahrens. Dabei umfasst der Backofen 3 ein Gebläse 4 zum Ableiten von Abluft 1 aus dem Garraum 2 durch eine Abluftleitung an die Umgebung, sowie eine elektrische Steuerung 6 mit einer Auswerteschaltung und einem Speicher, die mit dem ersten Temperatursensor 9 und dem Gebläse 4 in Signalübertragungsverbindung steht. Hierzu ist zur Steuerung des Abluftvolumenstroms 1 an oder in dem Backofen ein zweiter Temperatursensor 10 zur Messung einer zweiten Temperatur T2 des Garraums angeordnet, wobei die Temperatursensoren 9 und 10 derart angeordnet sind, dass die Temperaturen T1 und T2 an zwei voneinander verschiedenen Orten des Garraums 2 erfassbar sind, und dass in der Auswerteschaltung aus den beiden Temperaturen T1 und T2 eine Temperaturdifferenz ermittelbar ist, und wobei in Abhängigkeit davon die Drehzahl 5 des Gebläses 4 oder der Öffnungsgrad einer in der Abluftleitung angeordneten Bypass-Klappe 8, die mit der elektrischen Steuerung 6 in Signalübertragungsverbindung steht, automatisch einstellbar ist.The invention also relates to a baking oven 3 for carrying out the method according to the invention. In this case, the oven 3 comprises a fan 4 for discharging exhaust air 1 from the cooking chamber 2 by an exhaust duct to the environment, and an electric control 6 with an evaluation circuit and a memory which is in signal transmission connection with the first temperature sensor 9 and the fan 4. For this purpose, a second temperature sensor 10 for measuring a second temperature T2 of the cooking chamber is arranged to control the exhaust air volume flow 1 on or in the oven, wherein the temperature sensors 9 and 10 are arranged such that the temperatures T1 and T2 at two different locations of the cooking chamber. 2 can be detected, and that in the evaluation of the two temperatures T1 and T2, a temperature difference can be determined, and depending on the speed 5 of the blower 4 or the degree of opening of a arranged in the exhaust passage bypass valve 8, which is in signal communication with the electrical control 6, automatically adjustable.

Wie aus den Figuren zu erkennen ist, ist der erste Temperatursensor 9 im oberen Bereich des Garraums 2 und der zweite Temperatursensor 10 im unteren Bereich des Garraums 2 angeordnet. In Weiterbildung wirkt der erste Temperatursensor 9 mit der Garraumbeheizung 12 derart zusammen, dass die Temperatur T1 während des ersten Zeitintervalls im Wesentlichen auf einen konstanten Wert geregelt ist.As can be seen from the figures, the first temperature sensor 9 is arranged in the upper region of the cooking chamber 2 and the second temperature sensor 10 in the lower region of the cooking chamber 2. In a further development, the first temperature sensor 9 interacts with the cooking chamber heating 12 in such a way that the temperature T1 is regulated substantially to a constant value during the first time interval.

Claims (6)

  1. Method for controlling the exhaust air volume flow (1) from a cooking chamber (2) of an oven (3), the exhaust air volume flow (1) being emitted to the surroundings by a fan (4) and a first temperature T1 being automatically measured by a first temperature sensor (9) and a second temperature T2 being automatically measured by a second temperature sensor (10) during the cooking process at substantially the same time in a first time period at different locations in the cooking chamber (2),
    characterised in that
    the temperature difference between T1 and T2 is established in an electrical control device (6) of the oven (3) and the speed (5) of the fan (4), starting from a low speed (5) at which only a part of the vapours produced during the cooking process is emitted to the surroundings by the fan (4) as the exhaust air volume flow (1), is automatically increased either continuously or in stages until the temperature difference between T1 and T2 is not equal to a starting temperature difference measured at the beginning of the time period, and in that, depending on said speed (5), the speed of the fan (4) or the degree to which a bypass cover (8), intended to change the exhaust air volume flow (1) conveyed by the fan (4), is open is automatically set for a second time period, which follows the first time period, the speed (5) of the fan (4) determined thus or the degree to which the bypass cover (8) is open being kept substantially constant and the two time periods being repeated alternately during the cooking process, and the temperature difference between the two temperatures T1 and T2 being established for the first time during the cooking process after a heating phase set beforehand has ended and the length of the first time interval being selected to be so short as to keep substantially constant the temperature difference between T1 and T2 in the cooking chamber (2) during the first time period while the exhaust air volume flow (1) remains the same.
  2. Method according to claim 1,
    characterised in that
    the temperature T1 of the cooking chamber exhaust air is measured by the first temperature sensor (9) and the temperature T2 in the lower region of the cooking chamber is measured by the second temperature sensor (10).
  3. Method according to either claim 1 or claim 2,
    characterised in that
    the temperature T1 is kept substantially constant during the first time period by means of a cooking-chamber heating device (12) and a temperature control device.
  4. Oven (3) for carrying out one of the methods according to claims 1 to 3, comprising a first temperature sensor (9) for detecting a first temperature T1 of the cooking chamber (2), a fan (4) for discharging exhaust air from the cooking chamber (2) to the surroundings through an exhaust air line, and an electrical control device (6) which has an evaluation circuit and a storage device and is connected for signal transmission to the first temperature sensor (9) and the fan (4),
    characterised in that
    a second temperature sensor (10) for measuring a second temperature T2 of the cooking chamber (2) is arranged on or in the oven (3) so as to control the exhaust air volume flow (1), the two temperature sensors (9) and (10) being arranged in such a way that the temperatures T1 and T2 can be detected at two different locations in the cooking chamber (2) and in that a temperature difference can be determined in the evaluation circuit from the two temperatures T1 and T2 and, depending on said difference, the speed of the fan (4) or the degree to which a bypass cover (8) is open can be automatically adjusted, which bypass cover is arranged in the exhaust air line and is connected for signal transmission to the electrical control device (6).
  5. Oven (3) according to claim 4,
    characterised in that
    the first temperature sensor (9) is arranged in the upper region of the cooking chamber (2) and the second temperature sensor (10) is arranged in the lower region of the cooking chamber (2).
  6. Oven (3) according to either claim 4 or claim 5,
    characterised in that
    the first temperature sensor (9) interacts with a cooking-chamber heating device (12) in such a way that temperature T1 can be controlled substantially to a constant value during the first time period.
EP07016039.5A 2006-09-14 2007-08-16 Method for regulating the exhaust air volume flow from the cooking chamber of an oven Not-in-force EP1906095B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07016039T PL1906095T3 (en) 2006-09-14 2007-08-16 Method for regulating the exhaust air volume flow from the cooking chamber of an oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006044039A DE102006044039B3 (en) 2006-09-14 2006-09-14 Baking oven`s cooking area air volume flow controlling method, involves selecting period of one of time intervals as short interval, where temperature difference between temperatures remains constant with same and stable air volume flow

Publications (3)

Publication Number Publication Date
EP1906095A2 EP1906095A2 (en) 2008-04-02
EP1906095A3 EP1906095A3 (en) 2011-04-06
EP1906095B1 true EP1906095B1 (en) 2014-01-22

Family

ID=38640101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07016039.5A Not-in-force EP1906095B1 (en) 2006-09-14 2007-08-16 Method for regulating the exhaust air volume flow from the cooking chamber of an oven

Country Status (5)

Country Link
US (1) US7699237B2 (en)
EP (1) EP1906095B1 (en)
DE (1) DE102006044039B3 (en)
ES (1) ES2445458T3 (en)
PL (1) PL1906095T3 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20090611A1 (en) * 2009-08-04 2011-02-05 Indesit Co Spa METHOD TO CHECK THE FUNCTIONING OF AN OVEN
US11022305B2 (en) 2010-06-04 2021-06-01 Maxitrol Company Control system and method for a solid fuel combustion appliance
US10234139B2 (en) * 2010-06-04 2019-03-19 Maxitrol Company Control system and method for a solid fuel combustion appliance
ITAN20110111A1 (en) * 2011-08-10 2013-02-11 Safir S R L CONDENSING HOOD FOR INDUSTRIAL OVENS, FOLLOWING FAN SPEED CONTROL.
ITAN20110110A1 (en) * 2011-08-10 2013-02-11 Safir S R L CONDENSING HOOD FOR INDUSTRIAL OVENS, PROVIDES IGNITION AND SHUTDOWN CONTROL.
US20130206015A1 (en) * 2011-08-12 2013-08-15 Bret David Jacoby Solid Fuel Grill Temperature Control System
US9427107B2 (en) 2011-09-13 2016-08-30 Iot Controls Llc Automated temperature control system for a solid-fueled cooker
ES2426018B1 (en) * 2012-04-18 2014-05-13 Arturo Bernal Granero Temperature control and regulation system for wood and coal cooking ovens and adapted oven
US10119708B2 (en) * 2013-04-23 2018-11-06 Alto-Shaam, Inc. Oven with automatic open/closed system mode control
US9841261B2 (en) * 2013-04-29 2017-12-12 Alto-Shaam, Inc. Combination oven with peak power control
GB2514116B (en) * 2013-05-13 2016-02-10 Intellistat Ltd Temperature control
WO2014190274A1 (en) 2013-05-23 2014-11-27 Duke Manufacturing Co. Food preparation apparatus and methods
US10918112B2 (en) 2013-05-23 2021-02-16 Duke Manufacturing Co. Dough preparation apparatus and methods
US9357787B2 (en) 2013-06-27 2016-06-07 Middleby Marshall Holdings Llc Forced moisture evacuation for rapid baking
EP3049727A1 (en) * 2013-09-27 2016-08-03 Arçelik Anonim Sirketi Cooking oven having a cooling fan and improved method of controlling the cooling fan of the cooking oven
CN104373984B (en) * 2014-11-19 2017-08-18 江苏元升厨卫电器有限公司 Integrated kitchen range fireproof device of flue
US9829201B2 (en) * 2015-01-19 2017-11-28 Haier Us Appliance Solutions, Inc. Oven appliance and a method for operating an oven appliance
CN104698894B (en) * 2015-03-16 2017-10-31 广东威灵电机制造有限公司 The permanent wind amount output control method and system of a kind of smoke exhaust ventilator
CN104698893B (en) * 2015-03-16 2017-10-31 广东威灵电机制造有限公司 The permanent wind amount output control method and system of a kind of smoke exhaust ventilator
CN104747487B (en) * 2015-03-16 2016-08-31 广东威灵电机制造有限公司 The permanent wind amount output control method of a kind of smoke exhaust ventilator and system
EP3124873A1 (en) * 2015-07-27 2017-02-01 Indesit Company S.p.A. Household cooking oven
DE102016215650A1 (en) * 2016-08-19 2018-02-22 BSH Hausgeräte GmbH Haushaltsgargerät
DE102016119703A1 (en) * 2016-10-17 2018-04-19 Kraussmaffei Technologies Gmbh Method and device for producing molded parts with a semi-finished product
DE102016119690B4 (en) * 2016-10-17 2020-01-23 Miwe Michael Wenz Gmbh Device for the thermal treatment of food under the influence of swaths with dynamic exhaust air control
EP3627053A1 (en) 2018-05-15 2020-03-25 Gas Technology Institute High efficiency convection oven
CN111998415A (en) * 2020-09-11 2020-11-27 华帝股份有限公司 Cooking equipment and oil smoke emission control method
CN112856526B (en) * 2021-01-20 2022-05-17 宁波方太厨具有限公司 Air volume self-adaptive adjusting method of range hood and range hood

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2518750B2 (en) * 1975-04-26 1979-06-28 E.G.O. Regeltechnik Gmbh, 7519 Oberderdingen Extractor hood over stoves or the like
GB1539967A (en) * 1975-04-26 1979-02-07 Ego Regeltech Proportional regulators for controlling the feed of electrical power
US4208572A (en) * 1977-05-20 1980-06-17 Despatch Industries, Inc. Oven
US4608961A (en) * 1984-04-30 1986-09-02 Lanham Machinery Company, Inc. Exhaust damper control
DE3804678A1 (en) * 1988-02-15 1989-08-24 Buderus Kuechentechnik Method for operating a baking oven with microwaves and electrical resistance heating
US6030205A (en) * 1995-08-18 2000-02-29 General Electric Company Gas oven control
DE10021235A1 (en) * 2000-04-29 2001-10-31 Aeg Hausgeraete Gmbh Domestic oven has a facility for smoking food items with a ventilation and control system
EP1156282B1 (en) * 2000-05-17 2005-11-16 V-Zug AG Cooking oven with venting system
IT1315481B1 (en) * 2000-07-25 2003-02-18 Gierre Srl FORCED CONVECTION OVEN FOR COOKING FOOD
FR2818359B1 (en) * 2000-12-15 2004-05-14 Thirode Grandes Cuisines Poligny OVEN DEVICE AND OVEN CONTROL METHOD
DE10211522A1 (en) * 2002-03-15 2003-09-25 Bsh Bosch Siemens Hausgeraete Oven, especially with a mechanism for pyrolytic self-cleaning comprises a controllable flap for controlling the airflow into oven
DE10218792A1 (en) * 2002-04-22 2003-11-06 Ego Elektro Geraetebau Gmbh Operating baking oven involves minimizing time varying spatial temperature drop in cooking chamber by suitably driving at least one additional heating device independently of first heating device
US6756570B2 (en) * 2002-11-22 2004-06-29 Maytag Corporation Cold start cooking system
JP3835804B2 (en) * 2004-02-10 2006-10-18 松下電器産業株式会社 Cooking device and cooking method
US7223944B2 (en) * 2004-04-01 2007-05-29 Kitabayashi Joey J Oven temperature control system
US7759617B2 (en) * 2004-11-03 2010-07-20 General Electric Company Gas range and method for using the same
US7420140B2 (en) * 2006-06-30 2008-09-02 General Electric Company Method and apparatus for controlling the energization of a cooking appliance
DE102006043933A1 (en) * 2006-09-14 2008-04-03 Miele & Cie. Kg Method for controlling the exhaust air volume flow from a cooking chamber of a baking oven

Also Published As

Publication number Publication date
ES2445458T3 (en) 2014-03-03
EP1906095A3 (en) 2011-04-06
EP1906095A2 (en) 2008-04-02
US7699237B2 (en) 2010-04-20
DE102006044039B3 (en) 2007-12-27
PL1906095T3 (en) 2014-05-30
US20080066661A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
EP1906095B1 (en) Method for regulating the exhaust air volume flow from the cooking chamber of an oven
EP1906096B1 (en) Method for regulating the exhaust air volume flow from the cooking chamber of an oven
EP3390916B1 (en) Method for operating a commercial cooking device and such a cooking device
EP2775215B1 (en) Baking oven with temperature limitation depending on the climate in the oven
EP3437476B1 (en) Cooking device and method for using a cooking device
EP1619443B1 (en) Oven with controllable ventilation
DE10051582C2 (en) Vehicle air conditioning
DE102008012395A1 (en) Oven with air outlet
DE102017204526A1 (en) Method for cooling an inverter, in particular a frequency converter in a heat pump cycle
EP1156282B1 (en) Cooking oven with venting system
EP3437477B1 (en) Cooking device and method for operating a cooking device
EP3434905A1 (en) Vacuum pump and method for operating a vacuum pump
DE102019216343A1 (en) Cooking device with specific supply air device
DE3405584C2 (en)
DE4112198A1 (en) Room humidity warning method - involves measuring room temperature over long period to determine critical point
DE19728578A1 (en) Method for control of a vehicles air conditioning evaporator temperature as a function of the exterior dew point.
DE102012212159A1 (en) Front loading exhaust air laundry drying apparatus e.g. exhaust air washer-dryer, has recovery aggregate for transferring heat from channel to passage and designed as heat pump that comprises vaporizer, condenser, compressor and valve
EP1308610B1 (en) Method and device for controlling a cooling system of an internal combustion engine
WO1996016363A1 (en) Process for regulating room temperature by using an air conditioning apparatus with a ventilator switched step-by-step
DE102017124916A1 (en) Control unit for a fluid delivery device
WO2020260131A1 (en) Operating a household cooking device with a cooling fan
DE10129885C1 (en) Process for regulating the heating power of a baking oven used in bakeries comprises integrating the difference between the theoretical temperature and the actual temperature over the baking time; and correcting the theoretical temperature
DE102014223799A1 (en) Method and system for operating a domestic appliance for drying laundry
EP4275498A1 (en) Stack oven
DE3731318C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20110510

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: ES

Ref legal event code: GC2A

Effective date: 20140210

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 650984

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2445458

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012718

Country of ref document: DE

Effective date: 20140306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502007012718

Country of ref document: DE

Effective date: 20140130

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

Ref country code: PL

Ref legal event code: LICE

Effective date: 20140228

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140522

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140522

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012718

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012718

Country of ref document: DE

Effective date: 20141023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20160812

Year of fee payment: 10

Ref country code: AT

Payment date: 20160822

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160829

Year of fee payment: 10

Ref country code: TR

Payment date: 20160803

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 650984

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200831

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012718

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301