EP1900014A2 - Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film - Google Patents

Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film

Info

Publication number
EP1900014A2
EP1900014A2 EP06792480A EP06792480A EP1900014A2 EP 1900014 A2 EP1900014 A2 EP 1900014A2 EP 06792480 A EP06792480 A EP 06792480A EP 06792480 A EP06792480 A EP 06792480A EP 1900014 A2 EP1900014 A2 EP 1900014A2
Authority
EP
European Patent Office
Prior art keywords
substrate
layer
silicon
sic
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06792480A
Other languages
German (de)
French (fr)
Inventor
Patrick Soukiassian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Paris Sud Paris 11
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Universite Paris Sud Paris 11
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Universite Paris Sud Paris 11 filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1900014A2 publication Critical patent/EP1900014A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Definitions

  • the present invention relates to a substrate, in particular silicon carbide (SiC), covered by a thin layer of stoichiometric silicon nitride, for the manufacture of electronic components, and a process for obtaining such a layer. It applies in particular in microelectronics.
  • Silicon is currently the semiconductor material most used in the electronics industry, mainly because of the exceptional properties, especially insulating, of its native oxide, silicon dioxide (SiO 2 ). From this point of view, SiC is especially interesting since the passivation of its surface can be carried out by growth of SiO 2 under conditions similar to those of silicon.
  • Silicon carbide (SiC), semi ⁇ conductive compound IV - IV is therefore a very interesting material which is particularly suitable for devices and sensors of high power, high voltage, high frequency or high temperature and which can be monocrystalline (in cubic, hexagonal (there are more than 170 polytypes) or rhombohedral), polycrystalline, amorphous or porous.
  • MOS Metal Oxide Semiconductor
  • SiC-based electronic devices such as high-performance MOS transistors, and in particular those based on the hexagonal polytypes (H) of this material, are surface passivation, which is related to oxidation of SiC, and the insulating structures on SiC.
  • SiC Independently of its exceptional qualities as a semiconductor (a factor of merit up to 1000 times higher than that of Si, GaAs and InP), SiC has the same native oxide (SiO 2 ) as silicon, oxide whose insulating qualities remain to this day unequaled.
  • the present invention is part of this technological field and proposes a solution to one points of passage for the success of the SiC industry.
  • the present invention aims to solve the problems mentioned above and, in particular, the elimination of electronic interface states, it also allows to obtain interfaces as abrupt as possible and free of defects, as well as the elaboration devices less sensitive to the migration of dopants during the manufacture of microelectronic devices.
  • the inventors have also discovered a process for preparing this layer, having the property of limiting or blocking the diffusion of dopants and passivating the defects at the insulating / semiconductor interfaces (in particular SiO 2 / Si)
  • the present invention firstly relates to a substrate, in particular silicon carbide, for the manufacture of electronic components, this substrate being characterized in that it is covered with a thin layer of nitride of stoichiometric silicon.
  • the invention also relates to a process for obtaining a layer of stoichiometric silicon nitride on a substrate in the presence of at least one nitrogen gas, this process being characterized in that the The substrate is covered with a layer of material which is permeable to this nitrogen gas and in that the stoichiometric silicon nitride layer is able to form at the interface between the substrate and the layer of the material.
  • the substrate is able to receive the material or to promote its formation.
  • the material is furthermore capable of being oxidized.
  • the material is silicon.
  • this silicon is monocrystalline.
  • the layer of the material has a thickness between 0.5 nm and 20 nm.
  • the substrate is silicon carbide.
  • the silicon carbide is monocrystalline and has a ⁇ -SiC structure, in which case the face (100) is preferably used, or an ⁇ -SiC structure, in which case the (0001) face is preferably used.
  • the preparation of the surface of the substrate able to receive the monocrystalline silicon and / or to promote its formation comprises an auxiliary heating of the substrate to at least 1000 ° C., a substantially uniform auxiliary deposition of monocrystalline silicon on the surface of the heated substrate and at least one auxiliary annealing of the substrate after this deposit auxiliary, at least 65O 0 C, the total auxiliary annealing time being at least 7 minutes.
  • the silicon is deposited substantially uniformly on the surface of the substrate.
  • the silicon layer has a cubic structure and its thickness ranges from 0.5 nm to 20 nm.
  • the silicon is deposited on the substrate, this substrate being heated around 65O 0 C, the compound resulting from this deposit is then annealed at at least 65O 0 C, the total annealing time being at least 7 minutes, then cooled to a speed of at least 50 ° C / minute.
  • the preparation of the surface of the substrate preferably comprises a degassing of the substrate under ultrahigh vacuum (10 ⁇ 10 Torr or about 10-8 Pa) and then at least one annealing of this substrate followed by cooling of the substrate. It is preferable that the cooling is not too fast to avoid thermal shocks.
  • the silicon is deposited from a surface of a silicon sample, this surface being greater than the surface of the substrate, and the distance between these surfaces is between 2 cm and 3 cm.
  • the deposition of silicon may be followed by one or more anneals at temperatures of, for example, between 700 ° C. and 1000 ° C. It is preferable to check the quality of the deposit, for example by slow electron diffraction (LEED). or electrons fast (RHEED) or X-ray diffraction (XRD) or photoelectron (PED). Several anneals and deposits can thus be carried out until a silicon film is obtained.
  • the deposited silicon is cubic, the mesh parameter of the SiC being approximately equal to that of Si minus 20%.
  • the deposited silicon preferably has an atomic arrangement of the 3 ⁇ 2 type to prepare a ⁇ -SiC (100) and 4x3-type surface to prepare an ⁇ -SiC (OOOl) surface.
  • the nitrogen gas is preferably selected from nitrogen oxide NO, NO 2 , ammonia NH 3 , nitrous oxide N 2 O and atomic nitrogen.
  • NO is used; in this case, it is preferable to remove any oxide trace due to oxynitriding, in order to obtain a stoichiometric layer of silicon nitride (Si 3 N 4 ); to do this, it is advantageous to employ a heat treatment such as annealing of the surface, preferably at least 1000 ° C.
  • Exposure to NO can be carried out by various known methods, such as for example the exposure of the substrate to this gas via a tube or a gas inlet located in front of the substrate or not far from it so that the enclosure in which the gas exposure is carried out contains the desired amount of gas.
  • the exposure sufficiency can be monitored by spectrometry.
  • photoemission spectrometry in English, synchrotron radiation-based photoemission spectroscopy
  • heart levels Si 2p, C Is, O Is and N Is Si 2p, C Is, O Is and N Is.
  • the substrate is exposed to NO molecules under vacuum.
  • the exposure is preferably carried out under a diet of 100 langmuirs
  • the exposure is made from a gas line facing the surface of the substrate.
  • the gas line is placed at a distance D from the surface of the silicon carbide, D being preferably between 2 cm and 3 cm, so that the oxynitriding can take place homogeneously.
  • the exposure can be carried out independently at ambient temperature (from 10 ° C. to 30 ° C.) or up to 800 ° C. at 1000 ° C., in which case the substrate is heated by appropriate means, for example by Joule effect.
  • the annealing mentioned above can be carried out by appropriate means, for example by Joule effect; these means are preferably the same as those that can be used during exposure to NO.
  • the annealing is carried out at a temperature of between 800 ° C. and 1000 ° C., more particularly at 1000 ° C., the temperature at which it has been found that only oxygen has been eliminated.
  • the cooling is carried out under vacuum or in an inert atmosphere, preferably at a pressure ranging from 10 ⁇ 6 Pa to 10 ⁇ 5 Pa. To avoid a thermal shock, it is preferable that the cooling rate does not exceed 50 ° C. per minute.
  • the steps of exposure and removal of oxide are carried out simultaneously or continuously.
  • the present invention also relates to a method of manufacturing an electronic component, in particular a MOS device, on a substrate, in which process a silicon nitride layer is formed on the substrate by the method that is the subject of the invention.
  • FIG 1 schematically illustrates an installation for obtaining a stoichiometric silicon nitride Si 3 N 4 layer according to the invention
  • FIG. 2 is a schematic sectional view of an SiC substrate covered with such a layer according to the invention.
  • Figure 1 schematically illustrates an installation for obtaining a stoichiometric Si 3 N 4 layer according to the invention.
  • References 1, 2 and 3 respectively represent a monocrystalline SiC substrate, a structured monocrystalline Si thin layer, and a substrate support.
  • Reference 4 represents a gas line
  • the arrow 5 symbolizes the entry of the NO gas into the vacuum chamber 6.
  • the arrows 7 and 8 respectively symbolize pumping means and means for heating the substrate 1 for example by Joule effect.
  • the pumping means 7 make it possible to obtain the exposure regime for the NO molecules.
  • the substrate 1 lined with the Si layer 2 is mounted on the support 3.
  • the gas line 4 supplies the chamber 6 with NO molecules. It is positioned at a distance D from the surface of the substrate 1 of silicon carbide. This distance D is between 2 and 3 cm.
  • This exposure under vacuum leads to oxy-nitriding of the SiC substrate coated with the Si layer.
  • the exposure is carried out from the gas line 4 facing the surface of the silicon carbide coated with the Si layer.
  • the exposure is carried out at ambient temperature (10 ° C. to 30 ° C.) under a diet included, for example, between 100 langmuirs
  • this exposure can also be done at high temperature, up to a temperature of the order of 800 0 C to 1000 0 C.
  • the substrate is heated by means 8.
  • the exposure is followed by annealing at high temperature under ultra-high vacuum, for example at 1000 ° C.
  • the means for heating the substrate are used when an exposure at a temperature different from the ambient temperature is chosen. For exposure at ambient temperature, these means are therefore not implemented.
  • the means 8 for heating the substrate are also usable during the annealing of the substrate under vacuum, carried out after the exposure leading to the oxynitriding of the surface of the silicon carbide.
  • FIG. 2 shows the result of the implementation of the process according to the invention: the substrate 1 is covered with a layer 10 of stoichiometric Si 3 N 4 .
  • a layer 12 of non-stoichiometric Si 3 N 4 covers this layer 10 and the layer 12 is covered by a residual silicon layer 14.
  • this barrier makes it possible to prevent the diffusion of these dopants in the oxide layer of the SiO 2 / Si interfaces; this property remains valid for SiC.
  • This advantageous property is important because the presence of these dopants in the oxide layer causes a very significant degradation of the performance of the devices using such layers as, for example, the MOS devices.
  • WO 01/39257A corresponding to US Pat. No. 6,667,102 A, discloses a method of manufacturing a silicon oxide layer, intended to solve some of the above disadvantages, on a silicon carbide or silicon substrate. coated with a thin layer of silicon having a 4x3 surface structure.
  • This layer may particularly and advantageously be formed on a reconstructed 6H-SiC (0001) surface, for example 3 ⁇ 3, V 3 ⁇ V 3, 6 V 3 ⁇ 6 V 3 or 1 ⁇ 1.
  • 6H-SiC (0001) surface for example 3 ⁇ 3, V 3 ⁇ V 3, 6 V 3 ⁇ 6 V 3 or 1 ⁇ 1.
  • SiO interfaces are obtained. 2 / SiC abrupt, the transition being made almost on a few atomic layers between the substrate and the silicon layer formed.
  • the Si / SiC system can be "oxidized" by following, for example, the process described in WO 01/39257 A.
  • SiO 2 / SiC interface is obtained with, in addition to a layer of non-stoichiometric silicon nitride, a thin layer of stoichiometric Si 3 N 4 between the SiO 2 oxide and the SiC, which makes it possible to stop the diffusion of dopants. in the oxide layer during heat treatments used in the manufacture of electronic devices incorporating such layers. It is also possible to deposit a new layer of Si in order to obtain a more or less thick layer of SiO 2 .
  • nitriding and thin film oxy-nitriding is the role played by the two silicon compounds in the passivation of defects at the SiO 2 / SiC interfaces.
  • the process for obtaining the nitriding layer according to the invention is very advantageous alone or in combination with that described in WO 01/39257 A.
  • the first example relates to the oxynitriding of a 3 ⁇ 2 structured ⁇ -SiC (100) surface and to the formation of a sub-stoichiometric silicon nitride.
  • ⁇ - SiC (IOO) 3x2 3x2 reconstruction
  • Direct oxy-nitriding of the SiC surface is then carried out.
  • the surface ⁇ -SiC (100) 3 ⁇ 2 which has been prepared, is exposed to NO by evaporation under vacuum, from a gas line facing the surface of the silicon carbide.
  • the exposure is carried out at room temperature (approximately 10-30 ° C.), under a regime situated for example between 100 and 10,000 languages, that is to say between approximately 10 -2 Pa ⁇ s and approximately 1 Pa. s.
  • This exposure can also be carried out at elevated temperature, up to a temperature of the order of 800 ° C. to 1000 ° C.
  • Thermal anneals to 65O 0 C lead to the formation of oxynitrides (Si-O x -N y ) richer in nitrogen, this effect being already known for silicon.
  • the anneals are carried out independently, under vacuum or under an inert atmosphere.
  • SiC sample is similar to that obtained with the Si. It is found that annealing at a temperature of 1000 0 C eliminates oxygen and leaves only a single reaction product that is composed of a sub-stoichiometric silicon nitride of small thickness (ranging from an atomic layer to several nanometers), whose presence is highlighted by observing the electronic levels of heart Si 2p and N Is, while the absence of oxygen is evidenced by the electronic heart level 0 Is.
  • the SiC carbon plane, located under the nitride, is not directly affected because it is the subsurface Si atoms that are involved in the oxynitriding process. A similar situation has been observed in the interaction of oxygen with the SiC surface.
  • a second example relates to the oxynitriding of the ⁇ -SiC (100) 3 ⁇ 2 surface modified by a thin layer of Si (3 ⁇ 2 structure) deposited and to the formation of a stoichiometric Si nitride (Si 3 N 4). ).
  • Si 3 N 4 stoichiometric Si nitride
  • silicon is deposited in a substantially uniform manner.
  • the exposure is made at room temperature (10 to 3O 0 C), located under a scheme, for example, between 100 and 10000 langmuirs langmuirs, i.e. between about 10 -2 Pa. S to about 1 Pa s. Note that this exposure also operates at high temperature, up to a temperature of the order of 800 0 C to 1000 0 C.
  • oxy-nitrides are obtained which are located under the surface, this time under the Si thin film, above the first SiC carbon plane. at the interface of these two layers.
  • the Si 3 N 4 film is very thin (between one and ten atomic monolayers) but its thickness is sufficient to block the diffusion of the dopants, without altering the qualities of the SiO 2 insulation layer that is can grow on the Si layer after obtaining the stoichiometric Si 3 N 4 layer.
  • a third example relates to the oxynitriding of the ⁇ -SiC (OOO1) 3x3 surface, on which a layer of Si (several atomic layers in formation 4x3) has been deposited, and to the formation of stoichiometric silicon nitride ( If 3 N 4 ).
  • the oxy-nitriding is also carried out on a monocrystalline silicon carbide substrate, having a 3 ⁇ 3 structured ⁇ -SiC (0001) surface.
  • the oxy-nitriding experimental method described in the foregoing is applied to hexagonal silicon carbide coated with a pre-deposited Si layer, forming a 4x3 cubic Si structure.
  • oxy-nitriding SiC coated with Si 4x3 is carried out.
  • the silicon carbide, coated with the Si 4x3 silicon layer thus prepared is exposed to NO molecules by evaporation under vacuum, from a gas line facing the surface of the coated silicon carbide.
  • the exposure is carried out at ambient temperature (approximately 10 to 30 ° C.) under a regime of, for example, between 100 and 10,000 langmuirs, that is to say between approximately 10 ⁇ 2 Pa ⁇ s and approximately 1 Pa. s. Note that this exposure also works at high temperature, up to a temperature of the order of 800 0 C to 1000 0 C. As in the case of the ⁇ -SiC surface (100)
  • 3x2 of the silicon carbide coated with the layer of Si 3x2, oxy-nitrides are again obtained which are located under the surface, under the thin film of Si, above the first carbon plane of the SiC.
  • annealing at 1000 ° C f not only is a nitride of Si sub-stoichiometric as before, but also a very thin layer (one to ten atomic layers) of Si 3 N 4 consisting of Si nitride stoichiometric which is also located under the Si layer, above the carbon plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention concerns a substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and a method for obtaining such a film. The method for obtaining the film on the substrate (1) in the presence of at least one nitrogen-containing gas, consists in coating a layer (2) of a material permeable to said gas and causing the silicon nitride film to be formed at the interface between the substrate and the material layer. The invention is applicable in particular in microelectronics.

Description

SUBSTRAT, NOTAMMENT EN CARBURE DE SILICIUM, RECOUVERT SUBSTRATE, IN PARTICULAR SILICON CARBIDE, COVERED
PAR UNE COUCHE MINCE DE NITRURE DE SILICIUM STOECHIOMETRIQUE, POUR LA FABRICATION DE COMPOSANTSTHROUGH A STOICHIOMETRIC SILICON NITRIDE THIN LAYER FOR COMPONENT MANUFACTURE
ELECTRONIQUES, ET PROCEDE D'OBTENTION D'UNE TELLE COUCHEELECTRONICS, AND METHOD FOR OBTAINING SUCH A LAYER
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
La présente invention concerne un substrat, notamment en carbure de silicium, (SiC) , recouvert par une couche mince de nitrure de silicium stoechiométrique, pour la fabrication de composants électroniques, ainsi qu'un procédé d'obtention d'une telle couche. Elle s'applique notamment en microélectronique .The present invention relates to a substrate, in particular silicon carbide (SiC), covered by a thin layer of stoichiometric silicon nitride, for the manufacture of electronic components, and a process for obtaining such a layer. It applies in particular in microelectronics.
ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART
Le silicium est actuellement le matériau semi-conducteur le plus utilisé dans l'industrie électronique, principalement à cause des propriétés exceptionnelles, notamment isolantes, de son oxyde natif, le dioxyde de silicium (SiO2) . De ce point de vue, le SiC est spécialement intéressant puisque la passivation de sa surface peut être réalisée par croissance de SiO2, dans des conditions similaires à celles du silicium.Silicon is currently the semiconductor material most used in the electronics industry, mainly because of the exceptional properties, especially insulating, of its native oxide, silicon dioxide (SiO 2 ). From this point of view, SiC is especially interesting since the passivation of its surface can be carried out by growth of SiO 2 under conditions similar to those of silicon.
Le carbure de silicium (SiC) , semi¬ conducteur composé IV - IV, est donc un matériau très intéressant, qui convient en particulier aux dispositifs et capteurs de grande puissance, de haute tension, de grande fréquence ou de haute température et qui peut être monocristallin (sous forme cubique, hexagonale (il y a plus de 170 polytypes) ou rhomboédrique) , polycristallin, amorphe ou poreux.Silicon carbide (SiC), semi ¬ conductive compound IV - IV, is therefore a very interesting material which is particularly suitable for devices and sensors of high power, high voltage, high frequency or high temperature and which can be monocrystalline (in cubic, hexagonal (there are more than 170 polytypes) or rhombohedral), polycrystalline, amorphous or porous.
Ses propriétés en font un matériau de choix dans l'industrie des dispositifs MOS (pour « Métal Oxide Semiconductor ») , des capteurs de gaz, particulièrement dans les domaines où les températures sont élevées.Its properties make it a material of choice in the Metal Oxide Semiconductor (MOS) industry, gas sensors, especially in high temperature areas.
Récemment, d'importants progrès ont été accomplis dans la connaissance des surfaces de ce matériau et des interfaces de SiC, avec les isolants et les métaux. Les sujets importants pour le succès des dispositifs électroniques à base de SiC, comme les transistors MOS performants, et en particulier de ceux qui sont fondés sur les polytypes hexagonaux (H) de ce matériau, sont la passivation de surface, qui est liée à l'oxydation de SiC, et les structures isolantes sur SiC.Recently, significant progress has been made in understanding the surfaces of this material and SiC interfaces, with insulators and metals. Important topics for the success of SiC-based electronic devices, such as high-performance MOS transistors, and in particular those based on the hexagonal polytypes (H) of this material, are surface passivation, which is related to oxidation of SiC, and the insulating structures on SiC.
Indépendamment de ses qualités exceptionnelles en tant que semi-conducteur (facteur de mérite jusqu'à 1000 fois supérieur à ceux du Si, du GaAs et de l'InP), le SiC a le même oxyde natif (SiO2) que le silicium, oxyde dont les qualités isolantes restent à ce jour inégalées.Independently of its exceptional qualities as a semiconductor (a factor of merit up to 1000 times higher than that of Si, GaAs and InP), SiC has the same native oxide (SiO 2 ) as silicon, oxide whose insulating qualities remain to this day unequaled.
Cependant, l'oxydation classique (oxydation directe) des surfaces de SiC conduit en général à la formation d'oxydes de silicium contenant du carbone, qui ont de médiocres propriétés électriques, et à des interfaces SiO2/SiC qui ne sont pas abruptes, la transition entre SiC et SiO2 se faisant sur plusieurs couches atomiques, et n'améliorent pas lesdites propriétés .However, the conventional oxidation (direct oxidation) of SiC surfaces generally leads to the formation of carbon-containing silicon oxides, which have poor electrical properties, and to SiO 2 / SiC interfaces which are not steep, the transition between SiC and SiO 2 occurring on several atomic layers, and do not improve said properties.
En outre, on sait que pendant certains traitements subis lors de la fabrication de composants électroniques fondés sur les technologies utilisant le silicium, des dopants peuvent migrer d'une couche à l'autre et entraîner la formation de défauts qui altèrent les propriétés du matériau. Récemment, des procédés permettant de fabriquer des plaques (en anglais, wafers) de SiC hexagonal (polytype 4H, qui a le plus grand gap électronique) de très grande qualité, équivalente ou supérieure à celle du silicium, et quasiment sans aucun défaut, ont été proposés.In addition, it is known that during certain treatments during the manufacture of electronic components based on technologies using silicon, dopants can migrate from one layer to another and cause the formation of defects that alter the properties of the material. Recently, methods for manufacturing hexagonal SiC (polytype 4H, which has the largest electronic gap) plates of high quality, equivalent or superior to that of silicon, and almost without any defect, have been proposed.
A ce sujet, on se reportera à l'article de Nakamura et al., Nature, 430, 1009, 2004.In this regard, reference is made to the article by Nakamura et al., Nature, 430, 1009, 2004.
Ces progrès technologiques, qui sont sans précédent dans la classe des semi-conducteurs à gap électronique élevé (comprenant, particulièrement, outre le SiC, le diamant, les nitrures III-V et le ZnO) , ouvrent la voie à de nombreuses applications.These technological advances, which are unprecedented in the class of high electron gap semiconductors (including, in particular, besides SiC, diamond, III-V nitrides and ZnO), open the way for many applications.
La récente mise au point de telles plaques mono-cristallines de grande taille (soit environ 5 cm) est de nature à stimuler considérablement la recherche technologique dans ce domaine.The recent development of such large mono-crystalline plates (about 5 cm) is likely to stimulate considerably the technological research in this field.
EXPOSE DE L'INVENTIONSUMMARY OF THE INVENTION
La présente invention fait partie de ce domaine technologique et propose une solution à l'un des points de passage obligés pour le succès de la filière SiC.The present invention is part of this technological field and proposes a solution to one points of passage for the success of the SiC industry.
La présente invention a pour but de résoudre les problèmes mentionnés plus haut et, notamment, l'élimination des états électroniques d'interfaces, elle permet également l'obtention d'interfaces aussi abruptes que possibles et exemptes de défauts, ainsi que l'élaboration de dispositifs moins sensibles à la migration de dopants lors de la fabrication de dispositifs microélectroniques.The present invention aims to solve the problems mentioned above and, in particular, the elimination of electronic interface states, it also allows to obtain interfaces as abrupt as possible and free of defects, as well as the elaboration devices less sensitive to the migration of dopants during the manufacture of microelectronic devices.
Les auteurs de la présente Invention ont découvert de manière surprenante que l'utilisation d'une couche très mince de nitrure de silicium stoechiométrique (Si3N4), formée à la surface d'un substrat de carbure de silicium, permettait de résoudre les problèmes rencontrés jusqu'à présent.The authors of the present invention have surprisingly discovered that the use of a very thin layer of stoichiometric silicon nitride (Si 3 N 4 ), formed on the surface of a silicon carbide substrate, made it possible to solve problems encountered so far.
Les inventeurs ont également découvert un procédé de préparation de cette couche, possédant la propriété de limiter ou de bloquer la diffusion de dopants et de passiver les défauts aux interfaces isolant/ semi-conducteur (notamment SiO2/Si)The inventors have also discovered a process for preparing this layer, having the property of limiting or blocking the diffusion of dopants and passivating the defects at the insulating / semiconductor interfaces (in particular SiO 2 / Si)
De façon précise, la présente invention a tout d'abord pour objet un substrat, notamment en carbure de silicium, destiné à la fabrication de composants électroniques, ce substrat étant caractérisé en ce qu'il est recouvert d'une couche mince de nitrure de silicium stoechiométrique.Specifically, the present invention firstly relates to a substrate, in particular silicon carbide, for the manufacture of electronic components, this substrate being characterized in that it is covered with a thin layer of nitride of stoichiometric silicon.
L'invention concerne aussi un procédé d'obtention d'une couche de nitrure de silicium stoechiométrique sur un substrat en présence d'au moins un gaz azoté, ce procédé étant caractérisé en ce que le substrat est recouvert d'une couche d'un matériau qui est perméable à ce gaz azoté et en ce que la couche de nitrure de silicium stoechiométrique est apte à se former à l'interface entre le substrat et la couche du matériau.The invention also relates to a process for obtaining a layer of stoichiometric silicon nitride on a substrate in the presence of at least one nitrogen gas, this process being characterized in that the The substrate is covered with a layer of material which is permeable to this nitrogen gas and in that the stoichiometric silicon nitride layer is able to form at the interface between the substrate and the layer of the material.
On précise que le substrat est apte à recevoir le matériau ou à promouvoir sa formation.It is specified that the substrate is able to receive the material or to promote its formation.
Selon un mode de mise en œuvre préféré du procédé objet de l'invention, le matériau est en outre susceptible d'être oxydé.According to a preferred embodiment of the method which is the subject of the invention, the material is furthermore capable of being oxidized.
De préférence, le matériau est le silicium. De façon avantageuse, ce silicium est monocristallin.Preferably, the material is silicon. Advantageously, this silicon is monocrystalline.
Il est préférable que la couche du matériau ait une épaisseur comprise entre 0,5 nm et 20 nm. De préférence, le substrat est le carbure de silicium. Avantageusement, le carbure de silicium est monocristallin et a une structure β-SiC, auquel cas on utilise de préférence la face (100), ou une structure α-SiC, auquel cas on utilise de préférence la face (0001) .It is preferable that the layer of the material has a thickness between 0.5 nm and 20 nm. Preferably, the substrate is silicon carbide. Advantageously, the silicon carbide is monocrystalline and has a β-SiC structure, in which case the face (100) is preferably used, or an α-SiC structure, in which case the (0001) face is preferably used.
Pour le dépôt de la couche de silicium, on peut se reporter au document WO 01/39257 A, correspondant à US 6 667 102 A.For the deposition of the silicon layer, reference can be made to WO 01/39257 A, corresponding to US 6 667 102 A.
Avantageusement, la préparation de la surface du substrat apte à recevoir le silicium monocristallin et/ou à promouvoir sa formation comprend un chauffage auxiliaire du substrat à au moins 10000C, un dépôt auxiliaire sensiblement uniforme de silicium monocristallin sur la surface du substrat chauffé et au moins un recuit auxiliaire du substrat après ce dépôt auxiliaire, à au moins 65O0C, le temps total de recuit auxiliaire étant d'au moins 7 minutes.Advantageously, the preparation of the surface of the substrate able to receive the monocrystalline silicon and / or to promote its formation comprises an auxiliary heating of the substrate to at least 1000 ° C., a substantially uniform auxiliary deposition of monocrystalline silicon on the surface of the heated substrate and at least one auxiliary annealing of the substrate after this deposit auxiliary, at least 65O 0 C, the total auxiliary annealing time being at least 7 minutes.
Selon l'invention, il est préférable que le silicium soit déposé de manière sensiblement uniforme sur la surface du substrat. Avantageusement, la couche de silicium a une structure cubique et son épaisseur va de 0,5 nm à 20 nm.According to the invention, it is preferable that the silicon is deposited substantially uniformly on the surface of the substrate. Advantageously, the silicon layer has a cubic structure and its thickness ranges from 0.5 nm to 20 nm.
De préférence, le silicium est déposé sur le substrat, ce substrat étant chauffé autour de 65O0C, le composé résultant de ce dépôt est ensuite recuit à au moins 65O0C, le temps total de recuit étant d'au moins 7 minutes, puis refroidi à une vitesse d'au moins 50°C/minute.Preferably, the silicon is deposited on the substrate, this substrate being heated around 65O 0 C, the compound resulting from this deposit is then annealed at at least 65O 0 C, the total annealing time being at least 7 minutes, then cooled to a speed of at least 50 ° C / minute.
Avant le chauffage auxiliaire mentionné plus haut, la préparation de la surface du substrat comprend de préférence un dégazage du substrat sous ultravide (10~10 Torr soit environ 10"8Pa) puis au moins un recuit de ce substrat suivi d'un refroidissement du substrat. Il est préférable que le refroidissement ne soit pas trop rapide pour éviter les chocs thermiques.Before the auxiliary heating mentioned above, the preparation of the surface of the substrate preferably comprises a degassing of the substrate under ultrahigh vacuum (10 ~ 10 Torr or about 10-8 Pa) and then at least one annealing of this substrate followed by cooling of the substrate. It is preferable that the cooling is not too fast to avoid thermal shocks.
Selon un mode de mise en œuvre préféré de l'invention, le silicium est déposé à partir d'une surface d'un échantillon de silicium, cette surface étant supérieure à la surface du substrat, et la distance entre ces surfaces est comprise entre 2 cm et 3 cm.According to a preferred embodiment of the invention, the silicon is deposited from a surface of a silicon sample, this surface being greater than the surface of the substrate, and the distance between these surfaces is between 2 cm and 3 cm.
Le dépôt de silicium peut être suivi d'un ou plusieurs recuits à des températures comprises par exemple entre 7000C et 10000C. Il est préférable de vérifier la qualité du dépôt, par exemple, par diffraction d'électrons lents (LEED) ou d'électrons rapides (RHEED) ou par diffraction de rayons X (XRD) ou de photoélectrons (PED) . Plusieurs recuits et dépôts peuvent ainsi être effectués jusqu'à l'obtention d'un film de silicium. De manière préférentielle, le silicium déposé est cubique, le paramètre de maille du SiC étant environ égal à celui de Si moins 20%.The deposition of silicon may be followed by one or more anneals at temperatures of, for example, between 700 ° C. and 1000 ° C. It is preferable to check the quality of the deposit, for example by slow electron diffraction (LEED). or electrons fast (RHEED) or X-ray diffraction (XRD) or photoelectron (PED). Several anneals and deposits can thus be carried out until a silicon film is obtained. Preferably, the deposited silicon is cubic, the mesh parameter of the SiC being approximately equal to that of Si minus 20%.
Le silicium déposé possède préférentiellement un arrangement atomique de type 3x2 pour préparer une surface β-SiC(lOO) et de type 4x3 pour préparer une surface α-SiC(OOOl).The deposited silicon preferably has an atomic arrangement of the 3 × 2 type to prepare a β-SiC (100) and 4x3-type surface to prepare an α-SiC (OOOl) surface.
Dans la présente invention, le gaz azoté est de préférence choisi parmi l'oxyde d'azote NO, NO2, l'ammoniac NH3, l'oxyde nitreux N2O et l'azote atomique. Avantageusement, on utilise NO ; dans ce cas, il est préférable d'éliminer toute trace d'oxyde due à 1' oxynitruration, afin d'obtenir une couche stoechiométrique de nitrure de silicium (Si3N4) ; pour ce faire, il est avantageux d'employer un traitement thermique tel qu'un recuit de la surface, de préférence à au moins 10000C.In the present invention, the nitrogen gas is preferably selected from nitrogen oxide NO, NO 2 , ammonia NH 3 , nitrous oxide N 2 O and atomic nitrogen. Advantageously, NO is used; in this case, it is preferable to remove any oxide trace due to oxynitriding, in order to obtain a stoichiometric layer of silicon nitride (Si 3 N 4 ); to do this, it is advantageous to employ a heat treatment such as annealing of the surface, preferably at least 1000 ° C.
L'exposition à NO peut être effectuée par diverses méthodes connues, comme par exemple l'exposition du substrat à ce gaz par l'intermédiaire d'un tube ou d'une entrée de gaz située en face du substrat ou non loin de ce dernier, de telle sorte que l'enceinte dans laquelle on réalise l'exposition au gaz contienne la quantité de gaz souhaitée.Exposure to NO can be carried out by various known methods, such as for example the exposure of the substrate to this gas via a tube or a gas inlet located in front of the substrate or not far from it so that the enclosure in which the gas exposure is carried out contains the desired amount of gas.
La suffisance d'exposition peut être contrôlée par spectrométrie . Avantageusement, on emploie la spectrométrie de photoémission (en anglais, synchrotron radiation-based photoemission spectroscopy) sur les niveaux de cœur Si 2p, C Is, O Is et N Is.The exposure sufficiency can be monitored by spectrometry. Advantageously, photoemission spectrometry (in English, synchrotron radiation-based photoemission spectroscopy) on heart levels Si 2p, C Is, O Is and N Is.
Selon un mode de réalisation particulier de l'invention, le substrat est exposé à des molécules de NO sous vide. Dans ce cas, l'exposition est de préférence réalisée sous un régime de 100 langmuirsAccording to a particular embodiment of the invention, the substrate is exposed to NO molecules under vacuum. In this case, the exposure is preferably carried out under a diet of 100 langmuirs
(environ 10~2 Pa. s) à 10000 langmuirs (environ 1 Pa. s).(about 10 ~ 2 Pa. s) to 10000 langmuirs (about 1 Pa. s).
Préférentiellement , l'exposition est réalisée à partir d'une ligne de gaz faisant face à la surface du substrat. La ligne de gaz est placée à une distance D de la surface du carbure de silicium, D étant de préférence comprise entre 2 cm et 3 cm, de telle sorte que l' oxy-nitruration puisse avoir lieu de façon homogène . L'exposition peut se faire indépendamment à température ambiante (de 1O0C à 3O0C) ou jusqu'à 800 à 10000C, auquel cas le substrat est chauffé par des moyens appropriés, par exemple par effet Joule.Preferably, the exposure is made from a gas line facing the surface of the substrate. The gas line is placed at a distance D from the surface of the silicon carbide, D being preferably between 2 cm and 3 cm, so that the oxynitriding can take place homogeneously. The exposure can be carried out independently at ambient temperature (from 10 ° C. to 30 ° C.) or up to 800 ° C. at 1000 ° C., in which case the substrate is heated by appropriate means, for example by Joule effect.
Le recuit mentionné plus haut peut être réalisé par des moyens appropriés, par exemple par effet Joule ; ces moyens sont de préférence les mêmes que ceux qui peuvent être employés lors de l'exposition au NO.The annealing mentioned above can be carried out by appropriate means, for example by Joule effect; these means are preferably the same as those that can be used during exposure to NO.
De préférence, le recuit est effectué à une température comprise entre 8000C et 10000C, plus particulièrement à 10000C, température à partir de laquelle on a constaté que seul l'oxygène était éliminé. Avantageusement, le refroidissement est réalisé sous vide ou sous atmosphère inerte, de préférence à une pression allant de 10~6 Pa à 10~5 Pa. Pour éviter un choc thermique, il est préférable que la vitesse de refroidissement ne dépasse pas 5O0C par minute .Preferably, the annealing is carried out at a temperature of between 800 ° C. and 1000 ° C., more particularly at 1000 ° C., the temperature at which it has been found that only oxygen has been eliminated. Advantageously, the cooling is carried out under vacuum or in an inert atmosphere, preferably at a pressure ranging from 10 ~ 6 Pa to 10 ~ 5 Pa. To avoid a thermal shock, it is preferable that the cooling rate does not exceed 50 ° C. per minute.
Selon un mode de réalisation particulier de l'invention, les étapes d'exposition et d'élimination d'oxyde (de préférence par recuit) sont effectuées simultanément ou de manière continue.According to a particular embodiment of the invention, the steps of exposure and removal of oxide (preferably by annealing) are carried out simultaneously or continuously.
La présente invention concerne aussi un procédé de fabrication d'un composant électronique, notamment d'un dispositif MOS, sur un substrat, procédé dans lequel on forme une couche de nitrure de silicium sur le substrat par le procédé objet de l'invention.The present invention also relates to a method of manufacturing an electronic component, in particular a MOS device, on a substrate, in which process a silicon nitride layer is formed on the substrate by the method that is the subject of the invention.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :The present invention will be better understood on reading the description of exemplary embodiments given below, purely by way of indication and in no way limiting, with reference to the appended drawings in which:
-la figure 1 illustre schématiquement une installation permettant l'obtention d'une couche de nitrure de silicium stcechiométrique Si3N4 conformément à l'invention, etFIG 1 schematically illustrates an installation for obtaining a stoichiometric silicon nitride Si 3 N 4 layer according to the invention, and
- la figure 2 est une vue en coupe schématique d'un substrat de SiC recouvert d'une telle couche conformément à l'invention.- Figure 2 is a schematic sectional view of an SiC substrate covered with such a layer according to the invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
La figure 1 illustre schématiquement une installation permettant l'obtention d'une couche de Si3N4 stcechiométrique conformément à l'invention. Les références 1, 2 et 3 représentent respectivement un substrat de SiC monocristallin, une couche mince de Si monocristallin structuré et un support de substrat. La référence 4 représente une ligne de gazFigure 1 schematically illustrates an installation for obtaining a stoichiometric Si 3 N 4 layer according to the invention. References 1, 2 and 3 respectively represent a monocrystalline SiC substrate, a structured monocrystalline Si thin layer, and a substrate support. Reference 4 represents a gas line
NO. La flèche 5 symbolise l'entrée du gaz NO dans l'enceinte à vide 6. Les flèches 7 et 8 symbolisent respectivement des moyens de pompage et des moyens de chauffage du substrat 1 par exemple par effet Joule. Dans l'enceinte 6 a lieu la formation de la couche de Si3N4. Les moyens de pompage 7 permettent l'obtention du régime d'exposition aux molécules NO.NO. The arrow 5 symbolizes the entry of the NO gas into the vacuum chamber 6. The arrows 7 and 8 respectively symbolize pumping means and means for heating the substrate 1 for example by Joule effect. In the chamber 6 takes place the formation of the Si 3 N 4 layer. The pumping means 7 make it possible to obtain the exposure regime for the NO molecules.
Le substrat 1 garni de la couche 2 de Si est monté sur le support 3. La ligne de gaz 4 alimente l'enceinte 6 en molécules NO. Elle est positionnée à une distance D de la surface du substrat 1 en carbure de silicium. Cette distance D est comprise entre 2 et 3 cm.The substrate 1 lined with the Si layer 2 is mounted on the support 3. The gas line 4 supplies the chamber 6 with NO molecules. It is positioned at a distance D from the surface of the substrate 1 of silicon carbide. This distance D is between 2 and 3 cm.
De manière non limitative et conformément à un exemple de l'invention, on expose le substrat 1 de carbure de silicium, garni de la couche mince 2 de silicium monocristallin, dont l'épaisseur vaut par exemple au moins 0,5 nm (ce qui correspond à plusieurs plans atomiques de silicium) , à des molécules de NO, sous vide, dans l'enceinte 6. Cette exposition sous vide conduit à une oxy-nitruration du substrat de SiC revêtu de la couche de Si. L'exposition est réalisée à partir de la ligne de gaz 4 faisant face à la surface du carbure de silicium revêtu de la couche de Si. De manière non limitative, l'exposition est faite à température ambiante (1O0C à 3O0C), sous un régime compris, par exemple, entre 100 langmuirsIn a nonlimiting manner and according to an example of the invention, the substrate 1 of silicon carbide, lined with the thin layer 2 of monocrystalline silicon, whose thickness is for example at least 0.5 nm (which corresponds to several atomic silicon planes), to NO molecules, under vacuum, in the chamber 6. This exposure under vacuum leads to oxy-nitriding of the SiC substrate coated with the Si layer. The exposure is carried out from the gas line 4 facing the surface of the silicon carbide coated with the Si layer. In a non-limiting manner, the exposure is carried out at ambient temperature (10 ° C. to 30 ° C.) under a diet included, for example, between 100 langmuirs
(environ 10~2 Pa. s) et 10000 langmuirs (environ 1 Pa. s) .(about 10 ~ 2 Pa. s) and 10,000 langmuirs (about 1 Pa. s).
Notons que cette exposition peut aussi se faire à température élevée, jusqu'à une température de l'ordre de 8000C à 10000C. Dans ce cas, le substrat est chauffé par les moyens 8.Note that this exposure can also be done at high temperature, up to a temperature of the order of 800 0 C to 1000 0 C. In this case, the substrate is heated by means 8.
L'exposition est suivie d'un recuit à haute température sous ultravide, par exemple à 10000C.The exposure is followed by annealing at high temperature under ultra-high vacuum, for example at 1000 ° C.
Comme on l'a vu, les moyens de chauffage du substrat sont utilisés lorsque l'on choisit une exposition à une température différente de la température ambiante. Pour une exposition à température ambiante, ces moyens ne sont donc pas mis en œuvre.As we have seen, the means for heating the substrate are used when an exposure at a temperature different from the ambient temperature is chosen. For exposure at ambient temperature, these means are therefore not implemented.
Les moyens 8 de chauffage du substrat sont aussi utilisables lors du recuit du substrat sous vide, effectué après l'exposition conduisant à 1 ' oxy- nitruration de la surface du carbure de silicium.The means 8 for heating the substrate are also usable during the annealing of the substrate under vacuum, carried out after the exposure leading to the oxynitriding of the surface of the silicon carbide.
On voit sur la figure 2 le résultat de la mise en œuvre du procédé conforme à l'invention : le substrat 1 est recouvert d'une couche 10 de Si3N4 stoechiométrique . Une couche 12 de Si3N4 non- stoechiométrique recouvre cette couche 10 et la couche 12 est recouverte par une couche de silicium résiduel 14. Parmi les propriétés remarquables du Si3N4 stœchiométrique, il faut mentionner son aptitude à servir de barrière de diffusion pour les dopants ; cette barrière permet d'empêcher la diffusion de ces dopants dans la couche d'oxyde des interfaces SiO2/Si ; cette propriété reste valable pour le SiC. Cette propriété avantageuse est importante car la présence de ces dopants dans la couche d'oxyde entraîne une dégradation très significative des performances des dispositifs utilisant de telles couches comme, par exemple, les dispositifs MOS.FIG. 2 shows the result of the implementation of the process according to the invention: the substrate 1 is covered with a layer 10 of stoichiometric Si 3 N 4 . A layer 12 of non-stoichiometric Si 3 N 4 covers this layer 10 and the layer 12 is covered by a residual silicon layer 14. Amongst the remarkable properties of stoichiometric Si 3 N 4 , it is necessary to mention its ability to serve as a barrier to diffusion for dopants; this barrier makes it possible to prevent the diffusion of these dopants in the oxide layer of the SiO 2 / Si interfaces; this property remains valid for SiC. This advantageous property is important because the presence of these dopants in the oxide layer causes a very significant degradation of the performance of the devices using such layers as, for example, the MOS devices.
On connaît, par WO 01/39257A, correspondant à US 6 667 102 A, un procédé de fabrication d'une couche d' oxyde de silicium, visant à résoudre une partie des inconvénients précédents, sur un substrat en carbure de silicium ou en silicium, revêtu d'une couche mince de silicium ayant une structure de surface 4x3. Cette couche peut particulièrement et avantageusement être formée sur une surface 6H-SiC (0001) reconstruite par exemple 3x3, V3 x V3 , 6V3 x 6V3 ou 1 x 1. Dans ce cas, il a été montré que l'on obtenait des interfaces SiO2/SiC abruptes, la transition se faisant quasiment sur quelques couches atomiques entre le substrat et la couche de silicium formée . Après obtention de la couche de Si3N4 stoechiométrique par le procédé exposé plus haut, on peut « oxyder » le système Si/SiC en suivant par exemple le procédé décrit dans WO 01/39257 A.WO 01/39257A, corresponding to US Pat. No. 6,667,102 A, discloses a method of manufacturing a silicon oxide layer, intended to solve some of the above disadvantages, on a silicon carbide or silicon substrate. coated with a thin layer of silicon having a 4x3 surface structure. This layer may particularly and advantageously be formed on a reconstructed 6H-SiC (0001) surface, for example 3 × 3, V 3 × V 3, 6 V 3 × 6 V 3 or 1 × 1. In this case, it has been shown that SiO interfaces are obtained. 2 / SiC abrupt, the transition being made almost on a few atomic layers between the substrate and the silicon layer formed. After obtaining the stoichiometric Si 3 N 4 layer by the process described above, the Si / SiC system can be "oxidized" by following, for example, the process described in WO 01/39257 A.
On obtient alors une interface SiO2/SiC avec, outre une couche de nitrure de silicium non- stcechiométrique, une fine couche de Si3N4 stcechiométrique entre l'oxyde SiO2 et le SiC, ce qui permet de stopper la diffusion de dopants dans la couche d'oxyde lors des traitements thermiques utilisés lors de la fabrication de dispositifs électroniques incorporant de telles couches. On peut également déposer une nouvelle couche de Si afin d' obtenir une couche de SiO2 plus ou moins épaisse.An SiO 2 / SiC interface is obtained with, in addition to a layer of non-stoichiometric silicon nitride, a thin layer of stoichiometric Si 3 N 4 between the SiO 2 oxide and the SiC, which makes it possible to stop the diffusion of dopants. in the oxide layer during heat treatments used in the manufacture of electronic devices incorporating such layers. It is also possible to deposit a new layer of Si in order to obtain a more or less thick layer of SiO 2 .
Un autre avantage de la nitruration et de l' oxy-nitruration en couche mince est le rôle joué par les deux composés du silicium dans la passivation des défauts aux interfaces SiO2/SiC.Another advantage of nitriding and thin film oxy-nitriding is the role played by the two silicon compounds in the passivation of defects at the SiO 2 / SiC interfaces.
En effet, les défauts résultants de l'oxydation du SiC engendrent des états électroniques d'interfaces qui ont des conséquences désastreuses sur la mobilité des porteurs de charge, ce qui altère de façon très importante la réponse en fréquence des dispositifs micro-électroniques dans lesquels ils sont incorporés . De ce point de vue, le procédé d'obtention de la couche par nitruration conformément à l'invention est très avantageux seul ou en combinaison avec celui qui est décrit dans WO 01/39257 A.Indeed, the defects resulting from the oxidation of SiC generate electronic interface states which have disastrous consequences on the mobility of the charge carriers, which very significantly alters the frequency response of the microelectronic devices in which they are incorporated. From this point of view, the process for obtaining the nitriding layer according to the invention is very advantageous alone or in combination with that described in WO 01/39257 A.
On donne, dans ce qui suit, d'autres exemples de la présente invention.In the following, other examples of the present invention are given.
L'observation des niveaux de cœur dont il est question dans ces autres exemples est réalisée par spectrométrie de photoémission pouvant utiliser le rayonnement synchroton (en anglais, synchrotron radiation-based photoemission spectroscopy) .The observation of the heart levels referred to in these other examples is carried out by photoemission spectrometry that can use synchrotron radiation (in English, synchrotron radiation-based photoemission spectroscopy).
Le premier exemple est relatif à 1 ' oxy- nitruration d'une surface β-SiC(lOO) structurée 3x2 et à la formation d'un nitrure de silicium sous- stcechiornétrique On prépare une surface (100) de carbure de silicium cubique ayant la reconstruction 3x2 (β- SiC(IOO) 3x2). Pour ce qui concerne la préparation d'une telle surface, connue de l'homme du métier, on se référera par exemple à l'article de Physical Review Letters, Soukiassian et al. 77, 2013 (1996), ou à WO 01/39257 A.The first example relates to the oxynitriding of a 3 × 2 structured β-SiC (100) surface and to the formation of a sub-stoichiometric silicon nitride. A surface (100) of cubic silicon carbide having the 3x2 reconstruction (β- SiC (IOO) 3x2). With regard to the preparation of such a surface, known to those skilled in the art, reference will be made for example to the article of Physical Review Letters, Soukiassian et al. 77, 2013 (1996), or to WO 01/39257 A.
On procède alors à 1 ' oxy-nitruration directe de la surface du SiC. Pour ce faire, on expose la surface β-SiC(lOO) 3x2, que l'on a préparée, à du NO par évaporation sous vide, à partir d'une ligne de gaz faisant face à la surface du carbure de silicium. L'exposition est faite à température ambiante (environ 10-300C), sous un régime situé, par exemple entre 100 et 10000 langmuirs, c'est-à-dire entre environ 10~2 Pa. s et environ 1 Pa. s. Cette exposition peut aussi se faire à température élevée, jusqu'à une température de l'ordre de 8000C à 10000C.Direct oxy-nitriding of the SiC surface is then carried out. To do this, the surface β-SiC (100) 3 × 2, which has been prepared, is exposed to NO by evaporation under vacuum, from a gas line facing the surface of the silicon carbide. The exposure is carried out at room temperature (approximately 10-30 ° C.), under a regime situated for example between 100 and 10,000 languages, that is to say between approximately 10 -2 Pa · s and approximately 1 Pa. s. This exposure can also be carried out at elevated temperature, up to a temperature of the order of 800 ° C. to 1000 ° C.
L'interaction de l'oxyde d'azote NO avec la surface, réalisée à température ambiante (environ 10 à 3O0C), donne des produits d' oxy-nitruration du silicium de type Si-Ox-Ny. Ces oxy-nitrures croissent sous la surface, les atomes de Si constitutifs de la surface n'étant pas affectés.The interaction of the nitrogen oxide NO with the surface, carried out at ambient temperature (approximately 10 to 30 ° C.), gives oxy-nitriding products of Si-O x -N y type silicon. These oxynitrides grow below the surface, the constituent Si atoms of the surface being unaffected.
Des recuits thermiques vers 65O0C conduisent à la formation d' oxy-nitrures (Si-Ox-Ny) plus riche en azote, cet effet étant déjà connu pour le silicium. Les recuits sont effectués indépendamment, sous vide ou sous atmosphère inerte.Thermal anneals to 65O 0 C lead to the formation of oxynitrides (Si-O x -N y ) richer in nitrogen, this effect being already known for silicon. The anneals are carried out independently, under vacuum or under an inert atmosphere.
Ils sont réalisés par exemple en faisant passer un courant dans l'échantillon et en contrôlant la température grâce à un pyromètre. Ils peuvent être également réalisés par bombardement électronique, ou encore en plaçant l'échantillon dans un four. Le résultat obtenu avec l'échantillon à base de SiC est similaire à celui obtenu avec le Si. On constate qu'un recuit à une température voisine de 10000C élimine tout l'oxygène et ne laisse qu'un seul produit de réaction qui est composé d'un nitrure de silicium sous-stcechiométrique de faible épaisseur (allant d'une couche atomique à plusieurs namomètres), dont la présence est mise en évidence en observant les niveaux électroniques de cœur Si 2p et N Is, alors que l'absence d'oxygène est mise en évidence grâce au niveau électronique de cœur 0 Is.They are made for example by passing a current in the sample and controlling the temperature with a pyrometer. They can be also by electron bombardment, or by placing the sample in an oven. The result obtained with the SiC sample is similar to that obtained with the Si. It is found that annealing at a temperature of 1000 0 C eliminates oxygen and leaves only a single reaction product that is composed of a sub-stoichiometric silicon nitride of small thickness (ranging from an atomic layer to several nanometers), whose presence is highlighted by observing the electronic levels of heart Si 2p and N Is, while the absence of oxygen is evidenced by the electronic heart level 0 Is.
Le plan de carbone du SiC, situé sous le nitrure, n'est pas affecté directement car ce sont les atomes de Si situés sous la surface qui sont impliqués dans le processus d' oxy-nitruration . Une situation similaire a été observée dans l'interaction de l'oxygène avec la surface de SiC. Un deuxième exemple est relatif à 1 ' oxy- nitruration de la surface β-SiC(lOO) 3x2 modifiée par une couche mince de Si (de structure 3x2) déposée et à la formation d'un nitrure de Si stœchiométrique (Si3N4). Pour remédier à la nature non- stœchiométrique de la couche de nitrure de silicium, on dépose, de façon sensiblement uniforme, du siliciumThe SiC carbon plane, located under the nitride, is not directly affected because it is the subsurface Si atoms that are involved in the oxynitriding process. A similar situation has been observed in the interaction of oxygen with the SiC surface. A second example relates to the oxynitriding of the β-SiC (100) 3 × 2 surface modified by a thin layer of Si (3 × 2 structure) deposited and to the formation of a stoichiometric Si nitride (Si 3 N 4). ). In order to remedy the non-stoichiometric nature of the silicon nitride layer, silicon is deposited in a substantially uniform manner.
(environ 2 à 3 couches atomiques de Si) sur la surface β-SiC(lOO) 3x2 du substrat. Pour ce qui concerne le protocole de dépôt de la couche de silicium, on se reportera à WO 01/39257 A. On procède alors à une oxy-nitruration du SiC revêtu de la couche de Si 3x2, de la même manière que pour 1 ' oxy-nitruration directe du SiC non revêtu d'une couche de Si, tel qu'illustré dans l'exemple précédent. Pour ce faire, on expose le carbure de silicium revêtu de la couche de silicium Si 3x2 ainsi préparée à des molécules de NO, par évaporation sous vide à partir d'une ligne de gaz faisant face à la surface du carbure de silicium revêtu de la couche de Si 3x2.(about 2 to 3 atomic layers of Si) on the β-SiC (100) 3 × 2 surface of the substrate. With regard to the deposition protocol of the silicon layer, reference is made to WO 01/39257 A. An oxy-nitriding of the SiC coated with the Si 3 × 2 layer is then carried out in the same manner as for the direct oxy-nitriding of SiC not coated with a Si layer, as illustrated in the preceding example. . To do this, the silicon carbide coated with the Si 3 × 2 silicon layer thus prepared is exposed to NO molecules by vacuum evaporation from a gas line facing the surface of the silicon carbide coated with the Si layer 3x2.
L'exposition est faite à température ambiante (10 à 3O0C), sous un régime situé, par exemple, entre 100 langmuirs et 10000 langmuirs, c'est- à-dire entre environ 10~2 Pa. s et environ 1 Pa. s. Notons que cette exposition fonctionne aussi à température élevée, jusqu'à une température de l'ordre de 8000C à 10000C.The exposure is made at room temperature (10 to 3O 0 C), located under a scheme, for example, between 100 and 10000 langmuirs langmuirs, i.e. between about 10 -2 Pa. S to about 1 Pa s. Note that this exposure also operates at high temperature, up to a temperature of the order of 800 0 C to 1000 0 C.
Comme dans le cas de la nitruration directe du SiC sans couche Si 3x2, on obtient de nouveau des oxy-nitrures qui sont localisés sous la surface, cette fois-ci sous le film mince de Si, au dessus du premier plan de carbone du SiC, à l'interface de ces deux couches .As in the case of the direct nitriding of SiC without Si 3x2 layer, oxy-nitrides are obtained which are located under the surface, this time under the Si thin film, above the first SiC carbon plane. at the interface of these two layers.
Cependant, il apparaît une différence importante : après un recuit à 10000C sous vide, on obtient non seulement un nitrure de Si sous- stcechiométrique comme ci-dessus, mais aussi une couche très mince (entre une et dix monocouches atomiques) de Si3N4, constituée de nitrure de Si stcechiométrique, qui est située aussi sous la couche de Si, au dessus du plan de carbone. La présence de cette couche de Si3N4 stcechiométrique est mise en évidence en observant les niveaux électroniques de cœur Si 2p et N Is, alors que l'absence d'oxygène est mise en évidence grâce au niveau électronique de cœur 0 Is.However, there appears a significant difference: after annealing at 1000 0 C under vacuum, not only is a nitride of Si sub-stoichiometric as above, but also a very thin layer (one to ten atomic layers) of Si 3 N 4 , consisting of stoichiometric Si nitride, which is also located under the Si layer, above the carbon plane. The presence of this layer of stoichiometric Si 3 N 4 is demonstrated by observing the electronic levels of Si 2p and N Is heart, while the absence of oxygen is evidenced by the electronic heart level 0 Is.
Dans ce cas, le film de Si3N4 est très mince (entre une et dix monocouches atomiques) mais son épaisseur est suffisante pour bloquer la diffusion des dopants, sans altérer les qualités de la couche d'isolant SiO2 que l'on peut faire croître sur la couche de Si après avoir obtenu la couche de Si3N4 stœchiométrique .In this case, the Si 3 N 4 film is very thin (between one and ten atomic monolayers) but its thickness is sufficient to block the diffusion of the dopants, without altering the qualities of the SiO 2 insulation layer that is can grow on the Si layer after obtaining the stoichiometric Si 3 N 4 layer.
Un troisième exemple est relatif à 1 ' oxy- nitruration de la surface α-SiC(OOOl) 3x3, sur laquelle une couche de Si (plusieurs couches atomiques en formation 4x3) a été déposée, et à la formation de nitrure de silicium stœchiométrique (Si3N4) .A third example relates to the oxynitriding of the α-SiC (OOO1) 3x3 surface, on which a layer of Si (several atomic layers in formation 4x3) has been deposited, and to the formation of stoichiometric silicon nitride ( If 3 N 4 ).
L ' oxy-nitruration est également réalisée sur un substrat de carbure de silicium monocristallin, ayant une surface α-SiC (0001) structurée 3x3. Le procédé expérimental d' oxy-nitruration décrit dans ce qui précède est appliqué au carbure de silicium hexagonal revêtu d'une couche de Si pré-déposée, formant une structure de Si cubique 4x3. Pour préparer une telle surface de SiC revêtue de Si 4x3, on utilise l'un des procédés connus, par exemple le procédé décrit dans WO 01/39257 A.The oxy-nitriding is also carried out on a monocrystalline silicon carbide substrate, having a 3 × 3 structured α-SiC (0001) surface. The oxy-nitriding experimental method described in the foregoing is applied to hexagonal silicon carbide coated with a pre-deposited Si layer, forming a 4x3 cubic Si structure. To prepare such a surface SiC coated with Si 4x3, one of the known methods is used, for example the method described in WO 01/39257 A.
Pour obtenir une couche de Si3N4, on procède à une oxy-nitruration du SiC revêtu de Si 4x3. A cet effet, on expose le carbure de silicium, revêtu de la couche de silicium Si 4x3 ainsi préparée, à des molécules de NO par évaporation sous vide, à partir d'une ligne de gaz faisant face à la surface du carbure de silicium revêtu.To obtain a layer of Si 3 N 4 , oxy-nitriding SiC coated with Si 4x3 is carried out. For this purpose, the silicon carbide, coated with the Si 4x3 silicon layer thus prepared, is exposed to NO molecules by evaporation under vacuum, from a gas line facing the surface of the coated silicon carbide.
L'exposition est faite à température ambiante (environ 10 à 3O0C), sous un régime situé, par exemple, entre 100 et 10000 langmuirs, c'est-à-dire entre environ 10~2 Pa. s et environ 1 Pa. s. Notons que cette exposition fonctionne aussi à température élevée, jusqu'à une température de l'ordre de 8000C à 10000C. Comme dans le cas de la surface β-SiC(lOO)The exposure is carried out at ambient temperature (approximately 10 to 30 ° C.) under a regime of, for example, between 100 and 10,000 langmuirs, that is to say between approximately 10 ~ 2 Pa · s and approximately 1 Pa. s. Note that this exposure also works at high temperature, up to a temperature of the order of 800 0 C to 1000 0 C. As in the case of the β-SiC surface (100)
3x2 du carbure de silicium revêtu de la couche de Si 3x2, on obtient de nouveau des oxy-nitrures qui sont localisés sous la surface, sous le film mince de Si, au dessus du premier plan de carbone du SiC. Après un recuit à 1000°Cf on obtient non seulement un nitrure de Si sous-stcechiométrique comme précédemment, mais aussi une couche très mince (entre une et dix monocouches atomiques) de Si3N4, constituée de nitrure de Si stcechiométrique, qui est située aussi sous la couche de Si, au dessus du plan de carbone.3x2 of the silicon carbide coated with the layer of Si 3x2, oxy-nitrides are again obtained which are located under the surface, under the thin film of Si, above the first carbon plane of the SiC. After annealing at 1000 ° C f not only is a nitride of Si sub-stoichiometric as before, but also a very thin layer (one to ten atomic layers) of Si 3 N 4 consisting of Si nitride stoichiometric which is also located under the Si layer, above the carbon plane.
La présence de cette couche de Si3N4 est mise en évidence en observant les niveaux électroniques de cœur Si 2p et N Is, alors que l'absence d'oxygène est mise en évidence grâce au niveau électronique de cœur O Is.The presence of this layer of Si 3 N 4 is demonstrated by observing the electronic levels of Si 2p and N Is heart, while the absence of oxygen is highlighted by the electronic heart level O Is.
Ainsi, la présence de la couche minceThus, the presence of the thin layer
(entre une et dix monocouches atomiques) de nitrure stœchiométrique Si3N4 formée sous la surface, près du plan de carbone, confirme l'utilité du procédé d' oxy- nitruration du substrat en présence d'une couche de silicium monocristallin. (Between one and ten atomic monolayers) of Si 3 N 4 stoichiometric nitride formed below the surface, near the carbon plane, confirms the utility of the substrate oxynitriding process in the presence of a monocrystalline silicon layer.

Claims

REVENDICATIONS
1. Substrat (1), notamment en carbure de silicium, destiné à la fabrication de composants électroniques, ce substrat étant caractérisé en ce qu'il est recouvert d'une couche mince (10) de nitrure de silicium stoechiométrique .1. Substrate (1), in particular of silicon carbide, intended for the manufacture of electronic components, this substrate being characterized in that it is covered with a thin layer (10) of stoichiometric silicon nitride.
2. Procédé d'obtention d'une couche de nitrure de silicium stoechiométrique (10) sur un substrat (1) en présence d'au moins un gaz azoté, ce procédé étant caractérisé en en ce que le substrat est recouvert d'une couche (2) d'un matériau qui est perméable à ce gaz azoté et en ce que la couche de nitrure de silicium est apte à se former à l'interface entre le substrat et la couche du matériau.2. Process for obtaining a stoichiometric silicon nitride layer (10) on a substrate (1) in the presence of at least one nitrogen gas, this method being characterized in that the substrate is covered with a layer (2) a material that is permeable to this nitrogen gas and that the silicon nitride layer is able to form at the interface between the substrate and the layer of the material.
3. Procédé selon la revendication 2, dans lequel le matériau est en outre susceptible d'être oxydé.3. The method of claim 2, wherein the material is further capable of being oxidized.
4. Procédé selon la revendication 3, dans lequel le matériau est le silicium.4. The method of claim 3, wherein the material is silicon.
5. Procédé selon l'une quelconque des revendications 2 à 4, dans lequel la couche (2) de matériau a une épaisseur comprise entre 0,5 nm et 20 nm.5. Method according to any one of claims 2 to 4, wherein the layer (2) of material has a thickness of between 0.5 nm and 20 nm.
6. Procédé selon l'une quelconque des revendications 2 à 5, dans lequel le substrat (1) est du carbure de silicium. The method of any one of claims 2 to 5, wherein the substrate (1) is silicon carbide.
7. Procédé selon la revendication 6, dans lequel le substrat (1) est du carbure de silicium monocristallin de structure β-SiC ou α-SiC.7. The method of claim 6, wherein the substrate (1) is monocrystalline silicon carbide of β-SiC or α-SiC structure.
8. Procédé selon la revendication 7, dans lequel la face recouverte du matériau est la face8. The method of claim 7, wherein the face covered with the material is the face.
(0001) dans le cas du substrat de carbure de silicium α-SiC, et la face (100) dans le cas du substrat de carbure de silicium β-SiC.(0001) in the case of the α-SiC silicon carbide substrate, and the face (100) in the case of the β-SiC silicon carbide substrate.
9. Procédé selon l'une quelconque des revendications 2 à 8, dans lequel la qualité de l'exposition au gaz azoté est contrôlée à l'aide de méthodes spectrométriques .The process of any one of claims 2 to 8, wherein the quality of the nitrogen gas exposure is monitored using spectrometric methods.
10. Procédé selon l'une quelconque des revendications 2 à 9, dans lequel le gaz azoté est choisi parmi l'oxyde d'azote NO, NO2, l'ammoniac NH3, l'oxyde nitreux N2O et l'azote atomique.10. Process according to any one of Claims 2 to 9, in which the nitrogen gas is chosen from nitrogen oxide NO, NO 2 , ammonia NH 3 , nitrous oxide N 2 O and nitrogen. atomic.
11. Procédé selon l'une quelconque des revendications 2 à 9, dans lequel le gaz azoté est l'oxyde d'azote et dans lequel le procédé comprend une étape d'élimination d'un oxyde formé lors de l'exposition au gaz azoté.11. Process according to any one of claims 2 to 9, wherein the nitrogen gas is nitrogen oxide and wherein the process comprises a step of removing an oxide formed during exposure to nitrogen gas. .
12. Procédé selon la revendication 11, dans lequel l'oxyde formé est éliminé par un traitement thermique . The process according to claim 11, wherein the oxide formed is removed by heat treatment.
13. Procédé selon la revendication 12, dans lequel l'oxyde formé est éliminé par un recuit à au moins 10000C.13. The method of claim 12, wherein the oxide formed is removed by annealing at least 1000 0 C.
14. Procédé selon l'une quelconque des revendications 11 à 13, dans lequel les étapes d'exposition et d'élimination sont effectuées simultanément .The method of any one of claims 11 to 13, wherein the exposing and eliminating steps are performed simultaneously.
15. Procédé de préparation d'une couche de nitrure de silicium sur un substrat (1) de carbure de silicium recouvert d'une couche (2) de silicium, ce procédé étant caractérisé en ce que l'on expose le substrat (1), dans une enceinte (6), à des molécules d'oxyde d'azote, et en ce que l'on élimine les oxydes, qui sont formés lors de cette exposition, par un traitement thermique.Process for the preparation of a silicon nitride layer on a substrate (1) of silicon carbide coated with a layer (2) of silicon, this process being characterized in that the substrate (1) is exposed , in an enclosure (6), to nitrogen oxide molecules, and in that the oxides, which are formed during this exposure, are removed by a heat treatment.
16. Procédé de passivation d'un substrat de carbure de silicium, caractérisé en ce qu'il comprend une étape de préparation d'une couche (10) de nitrure de silicium par le procédé selon l'une quelconque des revendications 2 à 14 et une étape d'oxydation de la surface du matériau.Process for the passivation of a silicon carbide substrate, characterized in that it comprises a step of preparing a layer (10) of silicon nitride by the method according to any one of Claims 2 to 14 and a step of oxidation of the surface of the material.
17. Procédé de fabrication d'un composant électronique, notamment d'un dispositif MOS, sur un substrat, procédé dans lequel on forme une couche de nitrure de silicium sur le substrat par le procédé selon l'une quelconque des revendications 2 à 15. 17. A method of manufacturing an electronic component, in particular a MOS device, on a substrate, in which process a silicon nitride layer is formed on the substrate by the method according to any one of claims 2 to 15.
EP06792480A 2005-07-05 2006-07-04 Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film Withdrawn EP1900014A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552060A FR2888399B1 (en) 2005-07-05 2005-07-05 SUBSTRATE, IN PARTICULAR SILICON CARBIDE, COVERED BY A STOICHIOMETRIC SILICON NITRIDE THIN LAYER, FOR THE MANUFACTURE OF ELECTRONIC COMPONENTS, AND METHOD OF OBTAINING SUCH A LAYER
PCT/EP2006/063858 WO2007003639A2 (en) 2005-07-05 2006-07-04 Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film

Publications (1)

Publication Number Publication Date
EP1900014A2 true EP1900014A2 (en) 2008-03-19

Family

ID=36146953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06792480A Withdrawn EP1900014A2 (en) 2005-07-05 2006-07-04 Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film

Country Status (5)

Country Link
US (1) US20100012949A1 (en)
EP (1) EP1900014A2 (en)
JP (1) JP2009500837A (en)
FR (1) FR2888399B1 (en)
WO (1) WO2007003639A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446681B2 (en) * 2017-07-10 2019-10-15 Micron Technology, Inc. NAND memory arrays, and devices comprising semiconductor channel material and nitrogen
US10559466B2 (en) 2017-12-27 2020-02-11 Micron Technology, Inc. Methods of forming a channel region of a transistor and methods used in forming a memory array
US10297611B1 (en) 2017-12-27 2019-05-21 Micron Technology, Inc. Transistors and arrays of elevationally-extending strings of memory cells
JP7304577B2 (en) * 2019-11-27 2023-07-07 国立大学法人大阪大学 Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device
CN115244651B (en) * 2020-03-17 2023-08-08 日立能源瑞士股份公司 Insulated gate structure, wide-bandgap material power device with insulated gate structure and manufacturing method of wide-bandgap material power device
US11538919B2 (en) 2021-02-23 2022-12-27 Micron Technology, Inc. Transistors and arrays of elevationally-extending strings of memory cells

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998662A (en) * 1975-12-31 1976-12-21 General Electric Company Migration of fine lines for bodies of semiconductor materials having a (100) planar orientation of a major surface
US4735921A (en) * 1987-05-29 1988-04-05 Patrick Soukiassian Nitridation of silicon and other semiconductors using alkali metal catalysts
US4900710A (en) * 1988-11-03 1990-02-13 E. I. Dupont De Nemours And Company Process of depositing an alkali metal layer onto the surface of an oxide superconductor
FR2757183B1 (en) * 1996-12-16 1999-02-05 Commissariat Energie Atomique LONG LENGTH AND LONG STABILITY ATOMIC WIRES, PROCESS FOR PRODUCING THESE WIRES, APPLICATION IN NANO-ELECTRONICS
FR2801723B1 (en) * 1999-11-25 2003-09-05 Commissariat Energie Atomique HIGHLY OXYGEN-SENSITIVE SILICON LAYER AND METHOD FOR OBTAINING THE LAYER
US6844227B2 (en) * 2000-12-26 2005-01-18 Matsushita Electric Industrial Co., Ltd. Semiconductor devices and method for manufacturing the same
US20020088970A1 (en) * 2001-01-05 2002-07-11 Motorola, Inc. Self-assembled quantum structures and method for fabricating same
FR2823739B1 (en) * 2001-04-19 2003-05-16 Commissariat Energie Atomique PROCESS FOR MANUFACTURING UNIDIMENSIONAL NANOSTRUCTURES AND NANOSTRUCTURES OBTAINED THEREBY
FR2823770B1 (en) * 2001-04-19 2004-05-21 Commissariat Energie Atomique PROCESS FOR TREATING THE SURFACE OF A SEMICONDUCTOR MATERIAL, USING IN PARTICULAR HYDROGEN, AND SURFACE OBTAINED BY THIS PROCESS
JP4029595B2 (en) * 2001-10-15 2008-01-09 株式会社デンソー Method for manufacturing SiC semiconductor device
US7022378B2 (en) * 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOUKASSIAN ET AL: "Direct observation of a [beta]-SiC(100)-c(4*2) surface reconstruction", PHYSICAL REVIEW LETTERS, vol. 78, no. 5, 3 February 1997 (1997-02-03), APS (US), pages 907 - 910 *

Also Published As

Publication number Publication date
FR2888399A1 (en) 2007-01-12
WO2007003639A2 (en) 2007-01-11
US20100012949A1 (en) 2010-01-21
WO2007003639A3 (en) 2007-03-15
FR2888399B1 (en) 2008-03-14
JP2009500837A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
EP1290721B1 (en) Method of forming a gallium nitride layer
EP3420583B1 (en) Carrier for a semiconductor structure
EP1811560A1 (en) Method of manufacturing a composite substrate with improved electrical properties
WO2000015885A1 (en) Method for obtaining a monocrystalline germanium layer on a monocrystalline silicon substrate, and resulting products
EP1811561A1 (en) Method of manufacturing a composite substrate
EP1900014A2 (en) Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film
FR2742924A1 (en) METHOD FOR SELECTIVE DEPOSITION OF A REFRACTORY METAL SILICIDE ON SILICON AND SILICON PLATE METALLIZED THEREBY
EP4128328B1 (en) Method for manufacturing a composite structure comprising a thin layer made of monocrystalline sic on a carrier substrate made of sic
FR2942073A1 (en) METHOD FOR MAKING A LAYER OF CAVITIES
FR3104318A1 (en) METHOD FOR FORMING A HIGH STRENGTH HANDLING SUPPORT FOR COMPOSITE SUBSTRATE
CA2392445C (en) Silicon layer highly sensitive to oxygen and method for obtaining same
EP1936667B1 (en) Double plasma processing for achieving a structure having an ultra thin buried oxyde
FR2728103A1 (en) BASE SUBSTRATE IN SI COVERED WITH A CDTE OR CDZNTE LAYER RICH IN CD AND PROCESS FOR PRODUCING THE SAME
EP4070369A1 (en) Method for forming a handling substrate for a composite structure intended for rf applications and handling substrate
FR2787919A1 (en) Nitride growth substrate, especially for hetero epitaxial deposition of gallium nitride useful in optoelectronic devices, produced by bonding compliant thin films of growth and support substrates and thinning the growth substrate
EP1900012A1 (en) Highly oxygen-sensitive silicon layer and method for obtaining same
FR2851847A1 (en) RELAXATION OF A THIN FILM AFTER TRANSFER
FR3068506A1 (en) PROCESS FOR PREPARING A SUPPORT FOR A SEMICONDUCTOR STRUCTURE
EP1186024A1 (en) Method for making a silicon substrate comprising a buried thin silicon oxide film
EP1759406A1 (en) Method for metallizing the previously passivated surface of a semiconductor material and resulting material
WO2024115411A1 (en) Carrier comprising a charge-trapping layer, composite substrate comprising such a carrier and associated production methods
WO2024115410A1 (en) Carrier comprising a charge-trapping layer, composite substrate comprising such a carrier and associated production methods
WO2024115414A1 (en) Carrier comprising a charge-trapping layer, composite substrate comprising such a carrier and associated production methods
EP1656473A2 (en) Metal nano-objects, formed on semiconductor surfaces, and methods for making said nano-objects
FR3110282A1 (en) Manufacturing process of a semiconductor-on-insulator substrate for radiofrequency applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071206

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080502

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITE PARIS-SUD (PARIS XI)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110218