EP1888473A2 - Substrats de verre pour ecrans plats - Google Patents

Substrats de verre pour ecrans plats

Info

Publication number
EP1888473A2
EP1888473A2 EP06794442A EP06794442A EP1888473A2 EP 1888473 A2 EP1888473 A2 EP 1888473A2 EP 06794442 A EP06794442 A EP 06794442A EP 06794442 A EP06794442 A EP 06794442A EP 1888473 A2 EP1888473 A2 EP 1888473A2
Authority
EP
European Patent Office
Prior art keywords
glass substrate
substrate according
glass
weight
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06794442A
Other languages
German (de)
English (en)
Inventor
Emmanuel Lecomte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1888473A2 publication Critical patent/EP1888473A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/102Glass compositions containing silica with 40% to 90% silica, by weight containing lead
    • C03C3/108Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing boron

Definitions

  • the present invention relates to glass substrates suitable for use in the manufacture of flat screens and having aluminosilicate-type compositions containing low levels of alkaline oxides.
  • Flat screens can be produced by different technologies, among which the main ones are PDP (Plasma Display Panel) and LCD (Liquid Crystal Display) technologies. These two technologies require the use of glass substrates, but impose extremely different properties on these substrates, so that their chemical composition must be specifically adapted to each of them.
  • LCD technology implements manufacturing processes in which thin glass sheets are used as substrates for the deposition of thin film transistors by techniques used in the semiconductor industry for electronics, among which the techniques high temperature deposition, photolithography, etching by etching. Many requirements in terms of properties of the glass stem from these processes, in particular as regards their mechanical, chemical and thermal resistance.
  • the thermal stability of the glass is essential to avoid any deformation.
  • a lower annealing temperature of at least 600 ° C. and even 65 ° C. is then required. This temperature is commonly called “Strain point” and corresponds to the temperature at which the glass has a viscosity equal to 10 14 ' 5 poises.
  • Stress point corresponds to the temperature at which the glass has a viscosity equal to 10 14 ' 5 poises.
  • a low coefficient of expansion is also necessary to avoid too large a variation of the dimensions of the glass substrate as a function of temperature.
  • a good agreement between the coefficient of expansion of silicon and that of glass is however essential to avoid the generation of mechanical stresses between glass and silicon.
  • the glass substrate of the coefficient of expansion should be between 25 and 35.10 "-7 / ° C, measured in the temperature range 25-300 0 C.
  • the etching used for etching silicon must not degrade the glass substrate, and especially its surface. These attacks being carried out by acids, it is essential that the glass substrate has a very high resistance to acid corrosion.
  • the weight of the substrate is minimized, which translates the glass used into a requirement of low density (density).
  • the low density in the same way as the Young's modulus, also plays a role in avoiding the deflection of large substrates and thus facilitating the handling of said substrates during all the steps of the screen manufacturing process.
  • Some properties of glass are also important in the industrial feasibility of glass substrates.
  • a high temperature viscosity that is too high would have consequences in economic terms since it would increase energy expenditure and reduce the life of glass melting furnaces.
  • compositions partially meeting these specifications are known from patent applications WO 00/32528 and US 2004/43887 and consist mainly of silica (SiO 2 ), alumina (Al 2 O 3 ), boron oxides. (B 2 O 3 ) and calcium (CaO). These glasses are free of alkaline oxides and comprise low levels, advantageously zero divalent oxides other than calcium oxide. The Young's modulus values obtained, however, are insufficient and range from 60 to 70GPa.
  • the present invention aims to improve the compositions described in the aforementioned documents by increasing their Young's modulus, while maintaining good properties in terms of density, thermal stability and coefficient of expansion.
  • the invention also aims to provide economic compositions in terms of cost resulting from the raw materials and the amount of energy to be supplied for the manufacture of glass substrates.
  • the subject of the invention is a glass substrate having a chemical composition comprising the following constituents within the limits defined below expressed in percentages by weight:
  • R 2 O designates the alkaline oxides (mainly oxides of sodium, potassium and litihium).
  • Silica (SiO 2 ) is an essential element of the vast majority of industrial glasses. It is a formative element of the vitreous network, which influences all the properties of the glass. Too small amounts of silica (below 58%) would result in both a deterioration of glass stability vis-à-vis devitrification, too low resistance to acid corrosion, too much density and a coefficient of dilation too high. It is preferable that the silica content is greater than or equal to 60%, even 62% and even 63%. On the other hand, too high levels (above 72%) result in an unacceptable increase in viscosity, making the melting process difficult. glass.
  • the silica content of the glasses according to the invention is therefore advantageously less than or equal to 70%, even 68% and even 66%.
  • Titanium oxide (TiO 2 ) is an essential element of the composition of the glass substrates according to the present invention.
  • the inventors have demonstrated the strong influence of this oxide on the increase of the Young's modulus. Even if this influence begins to be felt for values of 0.8%, contents greater than 1%, or even greater than or equal to 1, 2% are preferred. Too high levels result in a decrease in the light transmission of the glass, accompanied by unacceptable yellowing.
  • the titanium oxide content must therefore be less than or equal to 3%, and advantageously less than or equal to 2%.
  • the addition of a very small amount of cobalt oxide (CoO), advantageously of the order of 5 to 50 ppm, especially 10 to 20 ppm, may contribute to reducing the yellowing.
  • US Pat. No. 5,851,939 discloses strontium oxide-rich, calcium oxide-poor, titanium oxide-rich glass compositions for improving acid resistance, but does not disclose the positive influence of this oxide on increase in Young's modulus.
  • Boron oxide (B 2 O 3 ) is also a network forming element, which contributes to the decrease of liquidus temperature, density and coefficient of expansion. It also has the advantage over silica of reducing the viscosity at high temperature and thus to facilitate melting of the glass.
  • the glass substrates according to the invention therefore comprise at least 2% of boron oxide, and advantageously at least 6%, or even 8%, 9.5% and even 10%. Too high levels of boron oxide, however, have a negative impact on the cost of the raw materials used and on the Strain point. For these reasons, the boron oxide content must be less than or equal to 15%, and advantageously 13% or even 12%.
  • Alumina increases the Strain point and the Young's modulus. Its content is therefore advantageously greater than or equal to 12% or even 14%.
  • a high alumina content has the disadvantage of greatly increasing the viscosity at high temperature, and decreasing the resistance to corrosion in acidic medium and the resistance of the glass to the devitrification (especially by increasing the temperature of liquidus).
  • the alumina content of the glasses according to the invention is therefore advantageously less than or equal to 22%, even 20% and even 18%.
  • An alumina content of between 14 and 15% is a good compromise.
  • Lime (CaO) is essential to reduce the viscosity of glass at high temperatures.
  • Its content is therefore greater than or equal to 5%, preferably greater than or equal to 6%, even 7% or 8%, and even 8.5%. Too high a content is however detrimental to obtaining a low coefficient of expansion. A content of less than or equal to 10% is preferred.
  • the glasses according to the invention make it possible to use a high content of CaO, in particular strictly greater than 8%, without observing degradation of the resistance in an acidic medium, as could be expected from the above-mentioned US Pat. No. 5,851,939. .
  • a boron oxide content greater than or equal to 11%, even 12% and less than or equal to 13% is associated with a lime content less than or equal to 9% and greater than or equal to 6% or even 7%.
  • Magnesia is an optional element of the present invention. Its beneficial influence on the Young's modulus is unfortunately compensated by a rapid degradation of the devitrification properties resulting in an increase in liquidus temperature and crystallization rates.
  • the MgO content is therefore preferably less than or equal to 2%, or even less than 1% and even 0.5%.
  • the glasses do not contain magnesium oxide, with the exception of impurities that are difficult to avoid (less than 0.1%).
  • the oxides of barium (BaO) and of strontium (SrO) have a detrimental influence on the density of the glass, which leads to advantageously limiting the content of one and / or the other to 3% or less, in particular 2 %, or even 1% or even 0.5% or 0.1%.
  • the glasses according to the invention advantageously do not contain oxides of strontium and / or barium, with the exception of unavoidable impurities.
  • Zinc oxide (ZnO) is also advantageously absent from the glass compositions according to the invention, because of undesirable reactions when the glass sheet is produced by the "float" process, in which the glass is poured onto a bath of water. molten tin under a reducing atmosphere. The reducing conditions necessary to avoid the oxidation of the tin bath lead indeed, for the glasses containing too high ZnO contents, a reduction of this metal zinc oxide which forms a haze on the glass sheet.
  • the glasses according to the invention preferably do not contain zirconium oxide, zinc oxide, strontium oxide and barium oxide.
  • the alkaline oxides (R 2 O collectively refer to these oxides, among which are found the oxides of sodium, potassium and lithium) must be limited to very low levels, preferably less than 0.5% and even 0.1 %, 0.05% or 0.01%. Nil quantities of alkaline oxides (with the exception of traces from raw materials) are clearly preferred. The alkaline oxides tend to migrate towards the glass surface and considerably degrade the semiconducting properties of the silicon deposited on the substrate.
  • the glass substrate according to the invention has a chemical composition comprising the following constituents within the limits defined below expressed in percentages by weight:
  • the glass substrates according to the invention may contain other elements than those listed above. These may be finely introduced refining agents or other oxides, usually introduced unintentionally as impurities and not substantially modifying the way in which the substrates according to the invention solve the technical problem involved.
  • the impurity content of the glasses according to the invention is less than or equal to about 5% and even 3%, or even 2% or 1%.
  • the glass compositions according to the invention preferably comprise chemical agents intended for the refining of the glass, that is to say the elimination of gaseous inclusions contained in the mass of glass during the melting step.
  • the refining agents used are, for example, oxides of arsenic or antimony, halogens such as fluorine or chlorine, tin or cerium oxide, sulphates, or a mixture of such compounds.
  • halogens such as fluorine or chlorine
  • tin or cerium oxide, sulphates or a mixture of such compounds.
  • the combination of tin oxide and chlorine has proved particularly effective and is therefore preferred in the context of the present invention.
  • the compositions according to the invention advantageously do not contain oxides of arsenic or antimony, because of their high toxicity.
  • the glass substrates according to the invention may also contain small quantities of other oxides such as zirconium oxide or rare earth oxides such as lanthanum or yttrium, but generally do not contain them, with the exception of traces originating from impurities contained in the raw materials or from the dissolution of elements contained in the refractory materials constituting the glass melting furnace.
  • zirconium oxide ZrO 2
  • its content is not greater than 3%, or even 2%, because the liquidus temperature is strongly affected by the presence of this oxide.
  • the glass substrates according to the invention preferably have a lower expansion coefficient than or equal to 35.10 "7 / ° C or 33.10" 7 / ° C.
  • Their Strain point is advantageously greater than or equal to 63O 0 C, and even at 65O 0 C. Thanks to the use of titanium oxide, the Young's modulus of the substrates according to the invention is generally greater than 70GPa or even 72GPa .
  • the temperature corresponding to the viscosity at which the glass is formed, ie about 10,000 Poises, temperature denoted "Tlog4" is preferably less than or equal to 135O 0 C.
  • the invention also relates to a continuous process for obtaining the substrates according to the invention comprising the steps of melting in a glass furnace a vitrifiable mixture of suitable composition, and of forming a glass sheet by spilling on a bath of molten tin (float process).
  • the melting temperature is advantageously less than 1700 ° C., or even 165 ° C.
  • the invention finally relates to a flat screen, in particular of the LCD type ("liquid-crystal display”) or OLED ("organic light emitting diodes”), comprising a glass substrate according to the invention.
  • LCD liquid-crystal display
  • OLED organic light emitting diodes
  • Comparative example C1 is a representative glass of the teaching of the application WO 00/32528, similar to Examples 10 to 13 and 17 of this same application, and corresponding to an LCD screen composition used industrially. Examples 1 to 3 correspond to the teaching of the present invention.
  • Table 1 indicates, in addition to the chemical composition expressed in percentages by mass, the following physical properties:
  • the upper annealing temperature called “Annealing point", expressed in O C, approximately corresponding to the temperature at which the viscosity is 10 13 Poises (10 12 Pa.s), measured according to the NF B30-105 standard, the temperature at which the viscosity is 10 4 Poises (10 3 Pa.s), denoted T (log4), the latter being measured according to ISO 7884-2 and approximately corresponding to the viscosity at which the glass is poured onto the bath molten metal during the float process, the optical transmission for a wavelength of 400 nm measured on a 1 mm thick glass sample,
  • Table 2 shows other examples of compositions according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

L'invention a pour objet un substrat de verre présentant une composition chimique comprenant les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux : SiO<SUB>2</SUB> 58 à 72 TiO<SUB>2</SUB> 0,8 à 3 B<SUB>2</SUB>O<SUB>3</SUB> 2 à 15 AI<SUB>2</SUB>O<SUB>3</SUB> 10 à 25 CaO 5 à 12 MgO 0 à 3 BaO 0 à 6 SrO 0 à 4 ZnO 0 à 3 R<SUB>2</SUB>O 0 à 1.

Description

SUBSTRATS DE VERRE POUR ECRANS PLATS
La présente invention concerne des substrats de verre susceptibles d'être utilisés pour la fabrication d'écrans plats et présentant des compositions du type aluminosilicates contenant de faibles teneurs en oxydes alcalins. Les écrans plats peuvent être produits par différentes technologies, parmi lesquelles les principales sont les technologies PDP (Plasma Display Panel) et LCD (Liquid Crystal Display). Ces deux technologies requièrent l'utilisation de substrats en verre, mais imposent des propriétés extrêmement différentes à ces substrats, si bien que leur composition chimique doit être spécifiquement adaptée à chacune d'elles.
La technologie LCD met en œuvre des procédés de fabrication dans lesquels des feuilles de verre mince sont utilisées comme substrats pour le dépôt de transistors en couche mince par des techniques utilisées dans l'industrie des semi-conducteurs pour l'électronique, parmi lesquelles les techniques de dépôt à haute température, la photolithographie, la gravure par attaque chimique. De nombreuses exigences en terme de propriétés du verre découlent de ces procédés, notamment quant à leur résistance mécanique, chimique et thermique.
Compte tenu des hautes températures employées pour le dépôt des couches minces de silicium, la stabilité thermique du verre est primordiale pour éviter toute déformation. Une température inférieure de recuit d'au moins 6000C et même 65O0C est alors requise. Cette température est communément appelée « Strain point » et correspond à la température à laquelle le verre présente une viscosité égale à 1014'5 poises. Un faible coefficient de dilatation est également nécessaire pour éviter une trop forte variation des dimensions du substrat de verre en fonction de la température. Un bon accord entre le coefficient de dilatation du silicium et celui du verre est toutefois indispensable pour éviter la génération de contraintes mécaniques entre le verre et le silicium. Le coefficient de dilatation du substrat de verre doit donc être compris entre 25 et 35.10"7/°C, mesuré dans la gamme de température 25-3000C.
L'attaque chimique utilisée pour la gravure du silicium ne doit pas dégrader le substrat de verre, et notamment sa surface. Ces attaques étant réalisées par des acides, il est indispensable que le substrat de verre présente une résistance à la corrosion acide très élevée.
Compte tenu de l'augmentation constante de la taille des écrans plats, il est également important que le poids du substrat soit minimisé, ce qui se traduit pour le verre employé en une exigence de faible densité (masse volumique). La faible densité, au même titre que le module de Young, joue également un rôle pour éviter la flèche des substrats de grande taille et ainsi faciliter la manipulation desdits substrats pendant toutes les étapes du procédé de fabrication des écrans.
Certaines propriétés du verre sont également importantes quant à la faisabilité industrielle des substrats de verre. En particulier, une viscosité à haute température trop élevée aurait des conséquences en termes économiques puisqu'elle augmenterait les dépenses énergétiques et diminuerait la durée de vie des fours de fusion du verre. Il est également primordial que le verre ne dévitrifie pas à trop haute température (la température de liquidus doit donc être limitée) et/ou avec des vitesses de cristallisation élevées, car cela nuirait à la faisabilité du formage sous forme de feuilles de verre plat.
Des compositions répondant partiellement à ce cahier des charges sont connues des demandes de brevet WO 00/32528 et US 2004/43887 et sont principalement constituées de silice (SiO2), d'alumine (AI2O3), d'oxydes de bore (B2O3) et de calcium (CaO). Ces verres sont exempts d'oxydes alcalins et comprennent de faibles teneurs, avantageusement nulles en oxydes divalents autres que l'oxyde de calcium. Les valeurs de module de Young obtenues sont cependant insuffisantes et s'étalent de 60 à 70GPa.
La présente invention a pour but d'améliorer les compositions décrites dans les documents susmentionnés en augmentant leur module de Young, tout en maintenant de bonnes propriétés en termes de densité, de stabilité thermique et de coefficient de dilatation. L'invention a également pour but de proposer des compositions économiques en terme de coût résultant des matières premières et de la quantité d'énergie à fournir pour la fabrication des substrats de verre.
L'invention a pour objet un substrat de verre présentant une composition chimique comprenant les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux :
SiO2 58 à 72
TiO2 0,8 à 3
B2O3 2 à 15
AI2O3 10 à 25
CaO 5 à 12
MgO 0 à 3
BaO 0 à 6
SrO 0 à 4
ZnO 0 à 3
R2O 0 à 1
R2O désignant les oxydes alcalins (principalement oxydes de sodium, de potassium et de litihium).
La silice (SiO2) est un élément essentiel de la grande majorité des verres industriels. Il s'agit d'un élément formateur du réseau vitreux, qui influe sur toutes les propriétés du verre. De trop faibles quantités de silice (en dessous de 58%) entraîneraient à la fois une dégradation de la stabilité du verre vis-à-vis de la dévitrification, une trop faible résistance à la corrosion acide, une densité trop importante et un coefficient de dilatation trop élevé. Il est préférable que la teneur en silice soit supérieure ou égale à 60%, voire 62% et même 63%. En revanche, de trop fortes teneurs (au-dessus de 72%) ont pour conséquence une augmentation inacceptable de la viscosité, rendant difficile le processus de fusion du verre. La teneur en silice des verres selon l'invention est donc avantageusement inférieure ou égale à 70%, voire 68% et même 66%.
L'oxyde de titane (TiO2) est un élément essentiel de la composition des substrats de verre selon la présente invention. Les inventeurs ont mis en évidence la forte influence de cet oxyde sur l'augmentation du module de Young. Même si cette influence commence à être ressentie pour des valeurs de 0,8%, des teneurs supérieures à 1%, voire supérieures ou égales à 1 ,2% sont préférées. De trop fortes teneurs entraînent en revanche une diminution de la transmission lumineuse du verre, s'accompagnant d'un jaunissement inacceptable. La teneur en oxyde de titane doit donc être inférieure ou égale à 3%, et avantageusement inférieure ou égale à 2%. L'ajout d'une très faible quantité d'oxyde de cobalt (CoO), avantageusement de l'ordre de 5 à 50ppm, notamment de 10 à 20ppm peut contribuer à diminuer le jaunissement. Le brevet US 5,851 ,939 décrit des compositions de verre riches en oxyde de strontium, pauvres en oxyde de calcium et contenant de l'oxyde de titane pour améliorer la résistance aux acides, mais ne décrit pas l'influence positive de cet oxyde sur l'augmentation du module de Young.
L'oxyde de bore (B2O3) est également un élément formateur de réseau, qui contribue à la diminution de la température de liquidus, de la densité et du coefficient de dilatation. Il présente également l'avantage par rapport à la silice de diminuer la viscosité à haute température et donc de faciliter la fusion du verre. Les substrats de verre selon l'invention comprennent donc au moins 2% d'oxyde de bore, et avantageusement au moins 6%, voire 8%, 9,5% et même 10%. De trop fortes teneurs en oxyde de bore ont cependant un impact négatif sur le coût des matières premières employées et sur le Strain point. Pour ces raisons, la teneur en oxyde de bore doit être inférieure ou égale à 15%, et avantageusement à 13%, voire 12%.
L'alumine (AI2O3) permet d'augmenter le Strain point et le module de Young. Sa teneur est donc avantageusement supérieure ou égale à 12%, voire 14%. Une teneur élevée en alumine a cependant comme inconvénient d'augmenter fortement la viscosité à haute température, et de diminuer la résistance à la corrosion en milieu acide et la résistance du verre à la dévitrification (notamment en augmentant la température de liquidus). La teneur en alumine des verres selon l'invention est donc avantageusement inférieure ou égale à 22%, voire 20% et même 18%. Une teneur en alumine comprise entre 14 et 15% constitue un bon compromis. La chaux (CaO) est indispensable pour diminuer la viscosité du verre à haute température. Sa teneur est donc supérieure ou égale à 5%, de préférence supérieure ou égale à 6%, voire 7% ou 8%, et même 8,5%. Une teneur trop élevée est en revanche préjudiciable à l'obtention d'un faible coefficient de dilatation. Une teneur inférieure ou égale à 10% est préférée. Les verres selon l'invention permettent d'employer une teneur en CaO élevée, en particulier strictement supérieure à 8%, sans observer de dégradation de la résistance en milieu acide, comme cela pouvait être attendu à la lecture du brevet US 5,851 ,939 susmentionné.
Selon un mode de réalisation préféré permettant d'obtenir un très bon compromis entre un Strain point élevé et un faible coefficient de dilatation, une teneur en oxyde de bore supérieure ou égale à 11%, voire 12% et inférieure ou égale à 13% est associée avec une teneur en chaux inférieure ou égale à 9% et supérieure ou égale à 6%, voire 7%.
La magnésie (MgO) est un élément optionnel de la présente invention. Son influence bénéfique sur le module de Young est malheureusement compensée par une dégradation rapide des propriétés de dévitrification se traduisant par une augmentation de la température de liquidus et des vitesses de cristallisation. La teneur en MgO est donc de préférence inférieure ou égale à 2%, voire inférieure à 1% et même à 0,5%. Selon un mode de réalisation préféré, les verres ne contiennent pas d'oxyde de magnésium, à l'exception d'impuretés difficilement évitables (moins de 0,1%).
Les oxydes de baryum (BaO) et de strontium (SrO) présentent une influence néfaste sur la densité du verre, ce qui conduit à limiter avantageusement la teneur de l'un et/ou de l'autre à 3% ou moins, notamment 2%, voire 1% ou même 0,5% ou 0,1%. Les verres selon l'invention ne contiennent avantageusement pas d'oxydes de strontium et/ou de baryum, à l'exception d'impuretés inévitables. L'oxyde de zinc (ZnO) est également avantageusement absent des compositions de verre selon l'invention, du fait de réactions indésirables lorsque la feuille de verre est produite par le procédé « float », dans lequel le verre est déversé sur un bain d'étain en fusion sous atmosphère réductrice. Les conditions réductrices nécessaires pour éviter l'oxydation du bain d'étain entraînent en effet, pour les verres contenant de trop fortes teneurs en ZnO, une réduction de cet oxyde en zinc métallique qui forme un voile sur la feuille de verre.
Les verres selon l'invention ne contiennent de préférence pas d'oxyde de zirconium, de zinc, de strontium et de baryum. Les oxydes alcalins (R2O désignant collectivement ces oxydes, parmi lesquels on trouve les oxydes de sodium ,de potassium et de lithium) doivent être limités à de très faibles teneurs, de préférence à moins de 0,5% et même 0,1 %, 0,05% ou 0,01 %. Des quantités nulles en oxydes alcalins (à l'exception de traces provenant des matières premières) sont nettement préférées. Les oxydes alcalins ont en effet tendance à migrer vers la surface du verre et à dégrader considérablement les propriétés semi-conductrices du silicium déposé sur le substrat.
Selon un mode de réalisation préféré, le substrat de verre selon l'invention présente une composition chimique comprenant les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux :
SiO2 60 à 70
TiO2 1 ,2 à 2
B2O3 6 à 13
AI2O3 12 à 18 CaO 5 à 10
MgO 0 à 3
BaO, SrO, ZnO < 0,1
R2O < 0,1
Les substrats de verre selon l'invention peuvent contenir d'autres éléments que ceux listés supra. Il peut s'agir d'agents affinants, introduits volontairement, ou d'autres oxydes, introduits généralement involontairement sous forme d'impuretés et ne modifiant pas substantiellement la manière dont les substrats selon l'invention résolvent le problème technique en jeu. D'une manière générale, la teneur en impuretés des verres selon l'invention est inférieure ou égale à environ 5% et même 3%, voire 2% ou 1%.
Les compositions de verre selon l'invention comprennent de préférence des agents chimiques destinés à l'affinage du verre, c'est-à-dire à l'élimination des inclusions gazeuses contenues dans la masse de verre lors de l'étape de fusion. Les agents affinants utilisés sont par exemple les oxydes d'arsenic ou d'antimoine, les halogènes tels que le fluor ou le chlore, l'oxyde d'étain ou de cérium, les sulfates, ou un mélange de tels composés. L'association d'oxyde d'étain et de chlore s'est révélée particulièrement efficace et est donc préférée dans le cadre de la présente invention. Les compositions selon l'invention ne contiennent avantageusement pas d'oxydes d'arsenic ou d'antimoine, du fait de leur toxicité élevée.
Les substrats de verre selon l'invention peuvent également contenir de faibles quantités d'autres oxydes tels que l'oxyde de zirconium ou des oxydes de terres rares comme le lanthane ou ryttrium, mais n'en contiennent généralement pas, à l'exception de traces provenant d'impuretés contenues dans les matières premières ou provenant de la dissolution d'éléments contenus dans les matériaux réfractaires constitutifs du four de fusion du verre. Dans le cas où les verres selon l'invention contiennent de l'oxyde de zirconium (ZrO2), qui peut être utile pour améliorer encore le module de Young, sa teneur n'est pas supérieure à 3%, voire 2%, car la température de liquidus est fortement affectée par la présence de cet oxyde.
Les substrats de verre selon l'invention présentent de préférence un coefficient de dilatation inférieur ou égal à 35.10"7/°C, voire 33.10"7/°C. Leur Strain point est avantageusement supérieur ou égal à 63O0C, et même à 65O0C. Grâce à l'emploi de l'oxyde de titane, le module de Young des substrats selon l'invention est généralement supérieur à 70GPa, voire 72GPa. La température correspondant à la viscosité à laquelle le verre est formé, soit environ 10000 Poises, température notée « Tlog4 » est de préférence inférieure ou égale à 135O0C. L'invention a également pour objet un procédé continu d'obtention des substrats selon l'invention comprenant les étapes de fusion dans un four à verre d'un mélange vitrifiable de composition adéquate, et de formage d'une feuille de verre par déversement sur un bain d'étain en fusion (procédé float). La température de fusion est avantageusement inférieure à 17000C, voire 165O0C.
L'invention a enfin pour objet un écran plat, notamment du type LCD (« liquid-crystal display ») ou OLED (« organic light emitting diodes »), comprenant un substrat de verre selon l'invention.
Les avantages de l'invention sont illustrés à l'aide des exemples non- limitatifs suivants, présentés dans les tableaux 1 et 2.
L'exemple comparatif C1 est un verre représentatif de l'enseignement de la demande WO 00/32528, proche des exemples 10 à 13 et 17 de cette même demande, et correspondant à une composition d'écran LCD exploitée industriellement. Les exemples 1 à 3 correspondent à l'enseignement de la présente invention.
Le tableau 1 indique, outre la composition chimique exprimée en pourcentages massiques, les propriétés physiques suivantes :
- le module de Young, exprimé en GPa, mesuré selon la norme ASTM C 1259-01 ,
- le coefficient de dilatation entre 25 et 3000C, mesuré selon la norme NF B30-103, exprimé en 10"7/°C,
- la masse volumique ou « densité » (en g.cm"3), mesurée selon la méthode dite « d'Archimède », - le « Strain point », exprimé en 0C, correspondant approximativement à la température à laquelle la viscosité vaut 1014'5 Poises (1O13'5 Pa.s), mesuré selon la norme NF B30-105,
- la température supérieure de recuisson, appelée « Annealing point », exprimée en 0C, correspondant approximativement à la température à laquelle la viscosité vaut 1013 Poises (1012 Pa.s), mesurée selon la norme NF B30-105, la température à laquelle la viscosité est 104 Poises (103 Pa.s), notée T(log4), cette dernière étant mesurée selon la norme ISO 7884-2 et correspondant approximativement à la viscosité à laquelle le verre est déversé sur le bain métallique fondu pendant le procédé float, la transmission optique pour une longueur d'ondes de 400nm mesurée sur un échantillon de verre de 1 mm d'épaisseur,
Tableau 1
La comparaison entre les exemples selon l'invention et l'exemple comparatif met en évidence l'effet bénéfique de l'oxyde de titane sur l'augmentation du module de Young, les autres propriétés restant en grande partie inchangées.
Le tableau 2 présente d'autres exemples de compositions selon l'invention.
Tableau 2

Claims

REVENDICATIONS
1. Substrat de verre, caractérisé en ce qu'il présente une composition chimique comprenant les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux :
SiO2 58 à 72
TiO2 0,8 à 3
B2O3 2 à 15 AI2O3 10 à 25
CaO 5 à 12
MgO 0 à 3
BaO 0 à 6
SrO 0 à 4 ZnO 0 à 3
R2O 0 à 1 R2O désignant les oxydes alcalins
2. Substrat de verre selon la revendication 1 , comprenant de l'oxyde de titane (TiO2) en une teneur massique comprise entre 1 ,2% et 2%.
3. Substrat de verre selon l'une des revendications précédentes, comprenant de l'oxyde de silicium (SiO2) en une teneur massique supérieure ou égale à 62%.
4. Substrat de verre selon l'une des revendications précédentes, comprenant de l'oxyde de bore (B2O3) en une teneur massique supérieure ou égale à 9,5%.
5. Substrat de verre selon l'une des revendications précédentes, comprenant de l'alumine (AI2O3) en une teneur massique comprise entre 12 et 18%.
6. Substrat de verre selon l'une des revendications précédentes, comprenant de la chaux (CaO) en une teneur massique supérieure ou égale à 7%.
7. Substrat de verre selon l'une des revendications précédentes, comprenant de la chaux (CaO) en une teneur massique comprise entre 7 et 9% et de l'oxyde de bore (B2O3) en une teneur comprise entre 11 et 13%.
8. Substrat de verre selon l'une des revendications précédentes, caractérisé en ce qu'il ne comprend pas de magnésie (MgO).
9. Substrat de verre selon l'une des revendications précédentes, comprenant de l'oxyde de baryum (BaO) en une teneur ne dépassant pas 3%.
10. Substrat de verre selon l'une des revendications précédentes, comprenant de l'oxyde de strontium (SrO) en une teneur ne dépassant pas 3%.
1 1. Substrat de verre selon l'une des revendications précédentes caractérisé en ce qu'il ne comprend pas d'oxydes de baryum (BaO) et/ou de strontium (SrO).
12. Substrat de verre selon l'une des revendications précédentes, comprenant de l'oxyde de cobalt en une teneur massique comprise entre 5 et 50ppm.
13. Substrat de verre selon la revendication 1 , présentant une composition chimique comprenant les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux :
SiO2 60 à 70
TiO2 1 ,2 à 2
B2O3 6 à 13
AI2O3 12 à 18
CaO 5 à 10
MgO 0 à 3
BaO, SrO, ZnO < 0,1
R2O < 0,1 14. Procédé continu d'obtention des substrats selon l'une des revendications 1 à 13 comprenant les étapes de fusion dans un four à verre d'un mélange vitrifiable de composition adéquate, et de formage d'une feuille de verre par déversement sur un bain d'étain en fusion. 15. Ecran plat comprenant un substrat de verre selon l'une des revendications 1 à 13.
EP06794442A 2005-05-27 2006-05-18 Substrats de verre pour ecrans plats Withdrawn EP1888473A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0551390A FR2886288B1 (fr) 2005-05-27 2005-05-27 Substrats de verre pour ecrans plats
PCT/FR2006/050459 WO2007000540A2 (fr) 2005-05-27 2006-05-18 Substrats de verre pour ecrans plats

Publications (1)

Publication Number Publication Date
EP1888473A2 true EP1888473A2 (fr) 2008-02-20

Family

ID=35431885

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06794442A Withdrawn EP1888473A2 (fr) 2005-05-27 2006-05-18 Substrats de verre pour ecrans plats

Country Status (7)

Country Link
US (1) US20080194394A1 (fr)
EP (1) EP1888473A2 (fr)
JP (1) JP2008542164A (fr)
KR (1) KR20080017013A (fr)
CN (1) CN101184701A (fr)
FR (1) FR2886288B1 (fr)
WO (1) WO2007000540A2 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737709B2 (ja) * 2004-03-22 2011-08-03 日本電気硝子株式会社 ディスプレイ基板用ガラスの製造方法
EP1746076A1 (fr) * 2005-07-21 2007-01-24 Corning Incorporated Procédé de fabrication d'une feuille de verre avec refroidissement rapide
EP1837312B2 (fr) * 2006-03-20 2015-07-22 Schott AG Verre de lithium-aluminium-silicate avec cycle court de céramisation
JP5703535B2 (ja) * 2006-05-23 2015-04-22 日本電気硝子株式会社 無アルカリガラス基板
JP2013173670A (ja) * 2006-05-23 2013-09-05 Nippon Electric Glass Co Ltd 無アルカリガラスおよび無アルカリガラス基板
US7709406B2 (en) * 2007-07-31 2010-05-04 Corning Incorporation Glass compositions compatible with downdraw processing and methods of making and using thereof
JP2010080389A (ja) * 2008-09-29 2010-04-08 Panasonic Corp プラズマディスプレイパネル
TWI494286B (zh) * 2009-03-19 2015-08-01 Nippon Electric Glass Co 無鹼玻璃
JP2011063464A (ja) * 2009-09-16 2011-03-31 Nippon Electric Glass Co Ltd プラズマディスプレイ用ガラス板
JP5537144B2 (ja) * 2009-12-16 2014-07-02 AvanStrate株式会社 ガラス組成物とそれを用いたフラットパネルディスプレイ用ガラス基板
US8999871B2 (en) * 2011-05-25 2015-04-07 Nippon Electric Glass Co., Ltd. High refractive index glass
KR101384741B1 (ko) * 2011-09-02 2014-04-14 주식회사 엘지화학 무알칼리 유리 및 그 제조 방법
EP3033310B1 (fr) 2013-08-15 2021-03-10 Corning Incorporated Verre boroaluminosilicaté dopé aux alcalis et exempt d'alcalis
CN105980147B (zh) 2013-08-15 2020-07-24 康宁公司 中至高cte玻璃以及包含其的玻璃制品
TW202304826A (zh) * 2016-02-22 2023-02-01 美商康寧公司 無鹼硼鋁矽酸鹽玻璃

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678604B1 (fr) * 1991-07-02 1993-11-12 Saint Gobain Vitrage Internal Composition de verre trouvant application dans le domaine de l'electronique.
DK0564802T3 (da) * 1992-04-10 1997-03-10 Schott Glaswerke Bly- og bariumfrit krystalglas med høj lystransmission
FR2692883B1 (fr) * 1992-06-25 1994-12-02 Saint Gobain Vitrage Int Verres thermiquement stables et chimiquement résistants.
US5374595A (en) * 1993-01-22 1994-12-20 Corning Incorporated High liquidus viscosity glasses for flat panel displays
DE19680967B3 (de) * 1995-09-28 2012-03-01 Nippon Electric Glass Co., Ltd. Alkalifreies Glassubstrat
KR100262116B1 (ko) * 1995-09-28 2000-07-15 기시다 기요사쿠 무알칼리유리기판
DE19916296C1 (de) * 1999-04-12 2001-01-18 Schott Glas Alkalifreies Aluminoborosilicatglas und dessen Verwendung
DE19939789A1 (de) * 1999-08-21 2001-02-22 Schott Glas Alkalifreie Aluminoborosilicatgläser und deren Verwendungen
JP3353083B2 (ja) * 2000-05-10 2002-12-03 ホーコス株式会社 コラム固定形工作機械
JP2002308643A (ja) * 2001-02-01 2002-10-23 Nippon Electric Glass Co Ltd 無アルカリガラス及びディスプレイ用ガラス基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007000540A2 *

Also Published As

Publication number Publication date
FR2886288A1 (fr) 2006-12-01
JP2008542164A (ja) 2008-11-27
WO2007000540A3 (fr) 2007-08-09
CN101184701A (zh) 2008-05-21
KR20080017013A (ko) 2008-02-25
US20080194394A1 (en) 2008-08-14
FR2886288B1 (fr) 2007-07-06
WO2007000540A2 (fr) 2007-01-04

Similar Documents

Publication Publication Date Title
WO2007000540A2 (fr) Substrats de verre pour ecrans plats
WO2007104885A2 (fr) Substrats de verre pour ecrans plats
KR100994095B1 (ko) 무알칼리 유리, 그 제조 방법 및 액정 디스플레이 패널
US9505650B2 (en) Non-alkali glass substrate
KR101020694B1 (ko) 무알칼리 유리
FR2675795A1 (fr) Verre non alcalin.
EP0854117A1 (fr) Compositions de verre silico-sodo-calcique et leurs applications
EP0576362B1 (fr) Verres thermiquement stables et chimiquement résistants
TW201305082A (zh) 平面面板顯示器用玻璃基板及其製造方法
JP5109225B2 (ja) 無アルカリガラスおよび液晶ディスプレイパネル
JP5234387B2 (ja) 無アルカリガラスおよび無アルカリガラス基板並びにその製造方法
FR3008695A1 (fr) Verre aluminosilicate dont la composition est exempte de metaux alcalins, convenant comme substrat de plaques de cuisson pour chauffage a induction
WO2007074248A1 (fr) Procede d&#39;affinage du verre et produit obtenu
JP5013304B2 (ja) ディスプレイ用ガラス基板
TW201938501A (zh) 玻璃
EP0526272A1 (fr) Verres pour substrats destinés à l&#39;électronique et produits en résultant
WO2008149021A2 (fr) Substrats de verre pour ecrans de visualisation
WO2020080163A1 (fr) Plaque de verre sans alcali
EP1631529A2 (fr) Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats.
TW201518240A (zh) 無鹼玻璃
FR2744114A1 (fr) Verre leger de qualite optique exempt de plomb et d&#39;arsenic
WO2008031997A2 (fr) Ecran de visualisation
FR3090624A1 (fr) Verres aluminoborosilicates de cuivre et leurs utilisations
JP6631942B2 (ja) 無アルカリガラス板
FR2928367A1 (fr) Ecran de visualisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080211

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LECOMTE, EMMANUEL

17Q First examination report despatched

Effective date: 20080526

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091201