EP1882888A1 - Heat pump system, in particular for air conditioning a building - Google Patents

Heat pump system, in particular for air conditioning a building Download PDF

Info

Publication number
EP1882888A1
EP1882888A1 EP06025558A EP06025558A EP1882888A1 EP 1882888 A1 EP1882888 A1 EP 1882888A1 EP 06025558 A EP06025558 A EP 06025558A EP 06025558 A EP06025558 A EP 06025558A EP 1882888 A1 EP1882888 A1 EP 1882888A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
heat
refrigerant
pump system
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06025558A
Other languages
German (de)
French (fr)
Inventor
Erwin Dietz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1882888A1 publication Critical patent/EP1882888A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures

Definitions

  • the invention generally relates to a heat pump system and in particular to a system for air conditioning of a building, a vehicle or an aircraft.
  • Heat pumps also called steam chillers
  • They absorb a heat flow at a low temperature and, together with the consumption of the work required for compaction, dissipate it at a higher temperature than the heat flow.
  • Such chillers therefore transport heat against a temperature gradient and consume energy for this purpose.
  • From heat pump the expert speaks when the chiller is used for heating. If it is used for cooling, the skilled person speaks of a refrigerating machine.
  • heat pump systems which are used both for heating and for cooling, as it relates to the present invention according to one embodiment.
  • the present invention has for its object to provide a heat pump system, in particular for the air conditioning of a building, which on the one hand has a simple and inexpensive construction and on the other hand optimally utilizes existing energy.
  • the heat pump system according to the invention can be executed both as a building heat pump system, vehicle heat pump system or aircraft heat pump system. Of course, other objects can be heated and / or cooled by means of a heat pump system according to the invention.
  • the heat pump according to the invention a refrigerant circuit, in particular a single refrigerant circuit, in which a compressor, an expansion valve and a plurality of heat exchangers are connected in series, that is, the heat exchangers are successively from the refrigerant of the refrigerant circuit flows through.
  • a first heat exchanger and a second heat exchanger both a capacitor function and an evaporator function, that is, each of the two heat exchanger operates in a first switching state with removal of heat from the refrigerant as a condenser and in a second switching state Supply of heat in the refrigerant as an evaporator.
  • the first heat exchanger works as a condenser
  • the second works as an evaporator and vice versa.
  • the switching state of the two heat exchangers is determined on the one hand by the order in which they are flowed through successively. To the Others, the switching state is determined by whether the refrigerant flows first through the provided in the refrigerant circuit expansion valve and then through the corresponding heat exchanger or first through the heat exchanger and then through the expansion valve.
  • the setting of the flow direction or the change of the sequence of flow, both the order of the two heat exchangers relative to each other and the flow order with respect to the expansion valve is determined by a provided in the refrigerant circuit direction reversing valve, which in a first switching position, the first heat exchanger as the evaporator and the second heat exchanger can work as a condenser and in a second switching position the first heat exchanger as a condenser and the second heat exchanger as an evaporator.
  • At least one third heat exchanger is also provided, which has a desuperheater and / or condenser function for the refrigerant flowing through it in the refrigerant circuit.
  • a fourth and in particular a fifth heat exchanger are provided in the refrigerant circuit flows through the refrigerant, which may be, for example, in their function and / or identical to the third heat exchanger.
  • the fourth and in particular the fifth heat exchanger each have a desuperheater and / or condenser function.
  • the third, the fourth and in particular the fifth heat exchanger in the refrigerant circuit are connected in immediate succession, that is, the output of the third heat exchanger is connected exclusively via a pipe or a flow channel to the input of the fourth heat exchanger, and the output of the fourth heat exchanger is particularly exclusive connected via a pipe or via a flow channel with the input of the fifth heat exchanger.
  • the pipelines or the Flow channels can be carried out substantially free of pressure losses and in particular free of valves and the like.
  • the amount of heat removed from the refrigerant in the individual heat exchangers can be determined by a predetermined supply of a heat carrier, for example a liquid, in particular water, on a secondary side of those heat exchangers.
  • a heat carrier for example a liquid, in particular water
  • the heat capacity or the mass flow of the secondary-side liquid determines the heat flow absorbed by the refrigerant.
  • the third heat exchanger can be connected via a fluid circuit with a service water boiler loading pump with a domestic water boiler for heating domestic water.
  • the fourth heat exchanger may, for example, be arranged in a heating circuit, in particular a high-temperature heating circuit, with a heating-circuit pump.
  • the fifth heat exchanger may, for example, be arranged in a heating circuit, in particular a low-temperature heating circuit, with a heating-circuit pump.
  • the temperature level at the respective outlet of the individual heat exchangers is thus determined solely by the secondary heat dissipation with respect to the individual heat exchangers.
  • the third and in particular the fourth heat exchanger depending on the amount of heat removed, as a desuperheater and the fifth heat exchanger to work as a capacitor.
  • the fourth and the fifth heat exchanger work without heat transfer or as additional capacitors.
  • the de-icing function in the heat exchangers three to five may thus be referred to as sliding.
  • the third heat exchanger already works as a condenser and thus in this a significant amount of heat is transferred to the liquid circuit with the domestic water boiler, large amounts of hot water can be heated.
  • the heat energy transported by the refrigerant is distributed to a plurality of heat exchangers, for example the third, fourth and fifth heat exchangers.
  • the usable heat energy in the refrigerant which is composed of the compression work and the heat energy received in the condenser in the flow direction before the expansion valve, wherein in particular an additional heat input into the refrigerant via one or more operating as an evaporator heat exchanger (for cooling), for example, is 10 up to 30 kW, especially 20 kW.
  • any of the heat exchangers with desuperheater and / or condenser function (third to fifth heat exchanger) dissipate heat from the refrigerant, if no corresponding heat demand is present.
  • the condenser operates in front of the expansion valve as the desuperheater and condenser (condenser) for the refrigerant.
  • the inventive solution it is thus possible, a plurality of series-connected heat exchanger due to a variable heat dissipation from the refrigerant in the individual heat exchangers, in particular by a variable secondary side mass flow (based on the heat exchanger) optimally in their performance from 0 to 100 percent to use adjustable, and set the desuperheating and liquefaction of the gaseous refrigerant targeted in one or more of the heat exchanger.
  • FIG. 1 shows the refrigerant circuit 1, in which a compressor 10 (refrigerant compressor) and three heat exchangers, namely the third heat exchanger 24, the fourth heat exchanger 19 and the fifth heat exchanger 16, are arranged directly behind one another in the flow direction.
  • a direction reversing valve 11 is arranged, which determines whether the emerging from the fifth heat exchanger 16 refrigerant first through the second heat exchanger 7, which then works as a capacitor (shown in Figure 1), or the first heat exchanger. 4 , which then operates as a condenser (shown in FIG. 2).
  • the refrigerant then flows through the working as an evaporator heat exchanger - the first heat exchanger 4 in Figure 1 and the second heat exchanger 7 in Figure 2 - and then back to the compressor 10, which pumps the gaseous refrigerant into the compressed gas line 9.
  • the direction reversing valve 11 has, according to the embodiment shown, three connections, namely a fixed connection, via which the direction reversing valve 11 is connected to the last of the three heat exchangers 24, 19, 16, and two with respect to their flow direction reversible lines 5, 6, of which one each serves as a suction line for the compressor 10 and the other as a pressure line with not yet expanded refrigerant.
  • the first heat exchanger 4 which is designed as a refrigerant-air heat exchanger to cool the surrounding air inside the building ( Figure 1) or to heat (Figure 2), a cold medium-liquid heat exchanger 2 is connected in parallel with which the liquid, in particular water, cooled ( Figure 1) or heated ( Figure 2) can be.
  • this liquid may be a liquid conducted through an air-conditioned ceiling.
  • the refrigerant liquid flow with expanded refrigerant from the line 3 divides into two parallel streams, one of which is passed through the first heat exchanger 4 and the heat exchanger 2, before these two streams in the line 5 again be united.
  • the second heat exchanger 7, the expansion valve 8 and the compressor 10 and the direction reversing valve 11 are arranged in an outdoor unit 25, which is arranged outside of the building to be air conditioned or on the outside of the building.
  • the third to fifth heat exchangers 24, 19, 16 and the first heat exchanger 4 and optionally, the cooling medium-liquid heat exchanger 2 are disposed within the building.
  • the third heat exchanger 24 is connected via a water circuit heat transfer to a domestic water boiler 22.
  • the water in the heat transferring circuit is circulated by the dhw boiler charge pump 23. Due to the power output of the service water boiler charge pump 23, the amount of water circulated in the water cycle between the third heat exchanger 24 and the domestic water boiler 22 and, hereunder, the amount of heat transferred from the third heat exchanger 24 to the domestic water boiler 22 is determined.
  • the fourth heat exchanger 24 may also be integrated directly in the domestic water boiler 22' for heating domestic water.
  • the refrigerant of the refrigerant circuit 1 flows directly through the domestic water boiler 22 'to heat the domestic water in the domestic water boiler 22' in a refrigerant-water heat exchanger and thereby to deprive the refrigerant and optionally to condense.
  • the fourth heat exchanger 19 is connected to a high-temperature heating circuit 20.
  • the circulated amount of water is determined by the heating circuit pump 21.
  • the fifth heat exchanger 16 is arranged in a low-temperature heating circuit 18. Here, the circulated amount of water via the heating circuit 17 is determined.
  • the second heat exchanger 7 provided in the outdoor unit 25 is designed as a refrigerant-air heat exchanger, which is flowed around or flowed through by outside air, the energy balance for heating the building becomes worse with decreasing outside air temperature.
  • this heat exchanger 12th is designed as a refrigerant-water heat exchanger for a water-carrying ground probe.
  • This heat exchanger 12 is connected via a suction line 13 to the refrigerant line before the refrigerant inlet of the compressor 10, and further connected via a fluid line 14 with an expansion valve 15 to the line between the last of the three heat exchangers 24, 19, 16 and the direction reversing valve 11.
  • the ground probe may also be implemented as a refrigerant-flowed ground probe.
  • the refrigerant-water heat exchanger could be omitted and the soil probe itself would work as a heat exchanger connected in parallel to the second heat exchanger 7.
  • an additional bypass around the first heat exchanger 4 may be provided from the line 5 to the line 3 (not shown). This bypass can be made entirely within the outdoor unit 25.

Abstract

The system has two heat exchangers (4, 7) switched with respect to an order of flow with a cooling medium relative to each other and with respect to an expansion valve (8). The heat exchanger (4) is operated as a vaporizer, and the heat exchanger (7) is operated as a condenser in a switching condition of a directional reversing valve (11). The heat exchanger (7) is operated as a condenser and the heat exchanger (4) is operated as the vaporizer in another switching condition of the reversing valve.

Description

Die Erfindung betrifft allgemein eine Wärmepumpenanlage und insbesondere eine solche zur Klimatisierung eines Gebäudes, eines Fahrzeugs oder eines Flugzeugs.The invention generally relates to a heat pump system and in particular to a system for air conditioning of a building, a vehicle or an aircraft.

Wärmepumpen, auch Dampfkältemaschinen genannt, sind bekannt. Sie nehmen bei einer niedrigen Temperatur einen Wärmestrom auf und geben ihn unter Verbrauch der zur Verdichtung notwendigen Arbeitsleistung mit dieser zusammen bei einer höheren Temperatur als Wärmestrom wieder ab. Solche Kältemaschinen transportieren demnach Wärme gegen ein Temperaturgefälle und verbrauchen dazu Energie. Von Wärmepumpe spricht der Fachmann dann, wenn die Kältemaschine zum Heizen genutzt wird. Wird sie zum Kühlen verwendet, so spricht der Fachmann von einer Kühlmaschine. Es ist jedoch auch üblich, solche Anlagen als Wärmepumpenanlagen zu bezeichnen, die sowohl zum Heizen als auch zum Kühlen genutzt werden, wie sie die vorliegende Erfindung gemäß einer Ausführungsform betrifft.Heat pumps, also called steam chillers, are known. They absorb a heat flow at a low temperature and, together with the consumption of the work required for compaction, dissipate it at a higher temperature than the heat flow. Such chillers therefore transport heat against a temperature gradient and consume energy for this purpose. From heat pump the expert speaks when the chiller is used for heating. If it is used for cooling, the skilled person speaks of a refrigerating machine. However, it is also common to refer to such systems as heat pump systems, which are used both for heating and for cooling, as it relates to the present invention according to one embodiment.

Besonders bei der Klimatisierung, insbesondere Beheizung, von Gebäuden ist man heutzutage aufgrund der hohen Energiepreise bestrebt, die im oder außerhalb des Gebäudes vorhandene Energie optimal auszunutzen. Hierzu wurde in der DE 20 2004 008 964 U1 bereits vorgeschlagen, in einem Wärmekreislauf einer Wärmekraftmaschine zwei parallel und unabhängig voneinander arbeitende Wechselaggregate aus Verdampfern und Kondensatoren vorzusehen, wobei die beiden Wechselaggregate mit ihren Verdampfern und Kondensatoren über ein Teilkreis-Umkehrventil funktionell so geändert werden können, dass der Verdampfer zu einem Kondensator und der Kondensator zu einem Verdampfer wird. Der gezeigte Wärmekreislauf ist jedoch sehr komplex und weist eine Vielzahl von Schalt-, Expansions- und Rückschlagventilen auf, um die gewünschten Wärmeströme zu erreichen. Die Komplexität führt zum einen zu hohen Herstellungs- und Wartungskosten und gibt zum anderen feste Temperaturniveaus in den einzelnen Aggregaten für die Wärmeübertragung vor.Especially in the air conditioning, especially heating, of buildings is nowadays due to the high energy prices strive to make optimum use of the energy available in or outside the building. This was done in the DE 20 2004 008 964 U1 already proposed to provide two parallel and independently operating changing units of evaporators and condensers in a heat cycle of a heat engine, the two change units with their evaporators and condensers can be functionally changed via a partial circuit reversing valve so that the evaporator to a condenser and the condenser becomes an evaporator. However, the heat cycle shown is very complex and has a variety of switching, expansion and check valves to achieve the desired heat flows. On the one hand, the complexity leads to high manufacturing and maintenance costs and on the other hand predetermines fixed temperature levels in the individual heat transfer units.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Wärmepumpenanlage, insbesondere zur Klimatisierung eines Gebäudes, anzugeben, welche einerseits einen einfachen und kostengünstigen Aufbau aufweist und andererseits vorhandene Energien optimal ausnutzt.The present invention has for its object to provide a heat pump system, in particular for the air conditioning of a building, which on the one hand has a simple and inexpensive construction and on the other hand optimally utilizes existing energy.

Die erfindungsgemäße Aufgabe wird durch eine Wärmepumpenanlage mit den Merkmalen von Anspruch 1 gelöst. Die abhängigen Ansprüche beschreiben vorteilhafte und besonders zweckmäßige Ausgestaltungen der Erfindung.The object of the invention is achieved by a heat pump system with the features of claim 1. The dependent claims describe advantageous and particularly expedient embodiments of the invention.

Die erfindungsgemäße Wärmepumpenanlage ist sowohl als Gebäudewärmepumpenanlage, Fahrzeugwärmepumpenanlage oder Flugzeugwärmepumpenanlage ausführbar. Selbstverständlich können auch andere Objekte mittels einer erfindungsgemäßen Wärmepumpenanlage beheizt und/oder gekühlt werden.The heat pump system according to the invention can be executed both as a building heat pump system, vehicle heat pump system or aircraft heat pump system. Of course, other objects can be heated and / or cooled by means of a heat pump system according to the invention.

Abweichend vom genannten Stand der Technik weist die erfindungsgemäße Wärmepumpe einen Kältemittelkreislauf, insbesondere einen einzigen Kältemittelkreislauf, auf, in welchen ein Verdichter, ein Expansionsventil und eine Vielzahl von Wärmetauschern in Reihe zueinander geschaltet sind, das heißt, die Wärmetauscher werden nacheinander von dem Kältemittel des Kältemittelkreislaufs durchströmt. Von diesen nacheinander durchströmten Wärmetauschern weist wenigstens ein erster Wärmetauscher und ein zweiter Wärmetauscher sowohl eine Kondensatorfunktion als auch eine Verdampferfunktion auf, das heißt, jeder der beiden Wärmetauscher arbeitet in einem ersten Schaltzustand unter Abfuhr von Wärme aus dem Kältemittel als Kondensator und in einem zweiten Schaltzustand unter Zufuhr von Wärme in das Kältemittel als Verdampfer. Immer dann, wenn der erste Wärmetauscher als Kondensator arbeitet, arbeitet der zweite als Verdampfer und umgekehrt.Deviating from the cited prior art, the heat pump according to the invention a refrigerant circuit, in particular a single refrigerant circuit, in which a compressor, an expansion valve and a plurality of heat exchangers are connected in series, that is, the heat exchangers are successively from the refrigerant of the refrigerant circuit flows through. Of these successively flowed through heat exchangers, at least a first heat exchanger and a second heat exchanger both a capacitor function and an evaporator function, that is, each of the two heat exchanger operates in a first switching state with removal of heat from the refrigerant as a condenser and in a second switching state Supply of heat in the refrigerant as an evaporator. Whenever the first heat exchanger works as a condenser, the second works as an evaporator and vice versa.

Der Schaltzustand der beiden Wärmetauscher wird zum einen durch die Reihenfolge bestimmt, in welcher sie nacheinander durchströmt werden. Zum anderen wird der Schaltzustand dadurch bestimmt, ob das Kältemittel zunächst durch das im Kältemittelkreislauf vorgesehene Expansionsventil und dann durch den entsprechenden Wärmetauscher oder erst durch den Wärmetauscher und dann durch das Expansionsventil strömt.The switching state of the two heat exchangers is determined on the one hand by the order in which they are flowed through successively. To the Others, the switching state is determined by whether the refrigerant flows first through the provided in the refrigerant circuit expansion valve and then through the corresponding heat exchanger or first through the heat exchanger and then through the expansion valve.

Die Einstellung der Strömungsrichtung beziehungsweise die Änderung der Reihenfolge der Durchströmung, sowohl der Reihenfolge der beiden Wärmetauscher relativ zueinander als auch der Durchströmungsreihenfolge mit Bezug auf das Expansionsventil, wird durch ein im Kältemittelkreislauf vorgesehenes Richtungsumkehrventil bestimmt, welches in einer ersten Schaltstellung den ersten Wärmetauscher als Verdampfer und den zweiten Wärmetauscher als Kondensator und in einer zweiten Schaltstellung den ersten Wärmetauscher als Kondensator und den zweiten Wärmetauscher als Verdampfer arbeiten lässt.The setting of the flow direction or the change of the sequence of flow, both the order of the two heat exchangers relative to each other and the flow order with respect to the expansion valve is determined by a provided in the refrigerant circuit direction reversing valve, which in a first switching position, the first heat exchanger as the evaporator and the second heat exchanger can work as a condenser and in a second switching position the first heat exchanger as a condenser and the second heat exchanger as an evaporator.

Erfindungsgemäß ist ferner wenigstens ein dritter Wärmetauscher vorgesehen, der eine Enthitzer- und/oder Kondensatorfunktion für das durch ihn im Kältemittelkreislauf durchströmende Kältemittel aufweist.According to the invention, at least one third heat exchanger is also provided, which has a desuperheater and / or condenser function for the refrigerant flowing through it in the refrigerant circuit.

Gemäß einer besonders vorteilhaften Ausführung der Erfindung sind ein vierter und insbesondere ein fünfter Wärmetauscher im Kältemittelkreislauf vom Kältemittel durchströmt vorgesehen, welche zum Beispiel in ihrer Funktion entsprechend und/oder baugleich mit dem dritten Wärmetauscher sein können. Auch der vierte und insbesondere der fünfte Wärmetauscher weisen jeweils eine Enthitzer- und/oder Kondensatorfunktion auf. Besonders vorteilhaft sind der dritte, der vierte und insbesondere der fünfte Wärmetauscher im Kältemittelkreislauf unmittelbar hintereinandergeschaltet, das heißt der Ausgang des dritten Wärmetauschers ist ausschließlich über eine Rohrleitung oder einen Strömungskanal mit dem Eingang des vierten Wärmetauschers verbunden, und der Ausgang des vierten Wärmetauschers ist insbesondere ausschließlich über eine Rohrleitung oder über einen Strömungskanal mit dem Eingang des fünften Wärmetauschers verbunden. Die Rohrleitungen beziehungsweise die Strömungskanäle können im wesentlichen frei von Druckverlusten und insbesondere frei von Ventilen und dergleichen ausgeführt werden.According to a particularly advantageous embodiment of the invention, a fourth and in particular a fifth heat exchanger are provided in the refrigerant circuit flows through the refrigerant, which may be, for example, in their function and / or identical to the third heat exchanger. Also, the fourth and in particular the fifth heat exchanger each have a desuperheater and / or condenser function. Particularly advantageously, the third, the fourth and in particular the fifth heat exchanger in the refrigerant circuit are connected in immediate succession, that is, the output of the third heat exchanger is connected exclusively via a pipe or a flow channel to the input of the fourth heat exchanger, and the output of the fourth heat exchanger is particularly exclusive connected via a pipe or via a flow channel with the input of the fifth heat exchanger. The pipelines or the Flow channels can be carried out substantially free of pressure losses and in particular free of valves and the like.

Die aus dem Kältemittel in den einzelnen Wärmetauschern (dritter bis fünfter Wärmetauscher) abgeführte Wärmemenge kann durch eine vorbestimmte Zufuhr eines Wärmeträgers, beispielsweise einer Flüssigkeit, insbesondere Wasser, auf einer Sekundärseite jener Wärmetauscher bestimmt werden. Die Wärmekapazität beziehungsweise der Massenstrom der sekundärseitigen Flüssigkeit bestimmt den aus dem Kältemittel aufgenommenen Wärmestrom. Über eine Massenstromregelung, beispielsweise mittels einer Pumpe, kann demnach bestimmt werden, ob und wie viel Wärme je Zeiteinheit in dem entsprechenden Wärmetauscher aus dem Kältemittel abgeführt wird.The amount of heat removed from the refrigerant in the individual heat exchangers (third through fifth heat exchangers) can be determined by a predetermined supply of a heat carrier, for example a liquid, in particular water, on a secondary side of those heat exchangers. The heat capacity or the mass flow of the secondary-side liquid determines the heat flow absorbed by the refrigerant. By means of a mass flow control, for example by means of a pump, it can thus be determined whether and how much heat per unit of time is removed from the refrigerant in the corresponding heat exchanger.

Beispielsweise kann der dritte Wärmetauscher über einen Flüssigkeitskreislauf mit einer Brauchwasserboiler-Ladepumpe mit einem Brauchwasserboiler zur Erhitzung von Brauchwasser verbunden sein.For example, the third heat exchanger can be connected via a fluid circuit with a service water boiler loading pump with a domestic water boiler for heating domestic water.

Der vierte Wärmetauscher kann beispielsweise in einem Heizkreislauf, insbesondere Hochtemperaturheizkreislauf, mit einer Heizkreispumpe angeordnet sein.The fourth heat exchanger may, for example, be arranged in a heating circuit, in particular a high-temperature heating circuit, with a heating-circuit pump.

Der fünfte Wärmetauscher kann beispielsweise in einem Heizkreislauf, insbesondere Niedertemperaturheizkreislauf, mit einer Heizkreispumpe angeordnet sein.The fifth heat exchanger may, for example, be arranged in a heating circuit, in particular a low-temperature heating circuit, with a heating-circuit pump.

Allein durch die bezüglich der einzelnen Wärmetauscher sekundärseitige Wärmeabfuhr wird somit das Temperaturniveau am jeweiligen Ausgang der einzelnen Wärmetauscher bestimmt. Zum Beispiel können der dritte und insbesondere der vierte Wärmetauscher, je nach abgenommener Wärmemenge, als Enthitzer und der fünfte Wärmetauscher als Kondensator arbeiten. Bei hingegen einer größeren im dritten Wärmetauscher abgenommenen Wärmemenge arbeitet nur der dritte Wärmetauscher als Enthitzer und insbesondere zugleich als Kondensator, wohingegen der vierte und der fünfte Wärmetauscher ohne Wärmeübertragung oder als zusätzliche Kondensatoren arbeiten. Die Enthitzungsfunktion in den Wärmetauschern drei bis fünf kann somit als gleitend bezeichnet werden.The temperature level at the respective outlet of the individual heat exchangers is thus determined solely by the secondary heat dissipation with respect to the individual heat exchangers. For example, the third and in particular the fourth heat exchanger, depending on the amount of heat removed, as a desuperheater and the fifth heat exchanger to work as a capacitor. In contrast, when a larger quantity of heat removed in the third heat exchanger, only the third heat exchanger works as a desuperheater and in particular at the same time as a condenser, whereas the fourth and the fifth heat exchanger work without heat transfer or as additional capacitors. The de-icing function in the heat exchangers three to five may thus be referred to as sliding.

Wenn beispielsweise der dritte Wärmetauscher bereits als Kondensator arbeitet und somit in diesem eine erhebliche Wärmemenge auf den Flüssigkeitskreislauf mit dem Brauchwasserboiler übertragen wird, können große Mengen Brauchwasser erhitzt werden. In einem anderen Schaltzustand wird die von dem Kältemittel transportierte Wärmeenergie auf mehrere Wärmetauscher, beispielsweise den dritten, vierten und fünften Wärmetauscher, verteilt. Die nutzbare Wärmeenergie in dem Kältemittel, die sich aus der Verdichtungsarbeit und der im Kondensator in Strömungsrichtung vor dem Expansionsventil aufgenommenen Wärmeenergie zusammensetzt, wobei insbesondere ein zusätzlicher Wärmeeintrag in das Kältemittel über einen oder mehrere als Verdampfer arbeitende Wärmetauscher (zum Kühlen) erfolgt, beträgt beispielsweise 10 bis 30 kW, insbesondere 20 kW.For example, if the third heat exchanger already works as a condenser and thus in this a significant amount of heat is transferred to the liquid circuit with the domestic water boiler, large amounts of hot water can be heated. In another switching state, the heat energy transported by the refrigerant is distributed to a plurality of heat exchangers, for example the third, fourth and fifth heat exchangers. The usable heat energy in the refrigerant, which is composed of the compression work and the heat energy received in the condenser in the flow direction before the expansion valve, wherein in particular an additional heat input into the refrigerant via one or more operating as an evaporator heat exchanger (for cooling), for example, is 10 up to 30 kW, especially 20 kW.

Selbstverständlich ist es auch möglich, in keinem der Wärmetauscher mit Enthitzer- und/oder Kondensatorfunktion (dritter bis fünfter Wärmetauscher) Wärme aus dem Kältemittel abzuführen, wenn kein entsprechender Wärmebedarf vorhanden ist. In einem solchen Fall arbeitet der Kondensator vor dem Expansionsventil als Enthitzer und Verflüssiger (Kondensator) für das Kältemittel.Of course, it is also possible, in any of the heat exchangers with desuperheater and / or condenser function (third to fifth heat exchanger) dissipate heat from the refrigerant, if no corresponding heat demand is present. In such a case, the condenser operates in front of the expansion valve as the desuperheater and condenser (condenser) for the refrigerant.

Durch die erfindungsgemäße Lösung ist es somit möglich, eine Vielzahl von in Reihe zueinander geschaltete Wärmetauscher aufgrund einer variablen Wärmeabfuhr aus dem Kältemittel in den einzelnen Wärmetauschern, insbesondere durch einen variablen sekundärseitigen Massenstrom (bezogen auf den Wärmetauscher) optimal in ihrer Leistung von 0 bis 100 Prozent regelbar zu nutzen, und die Enthitzung und Verflüssigung des gasförmigen Kältemittels gezielt in einem oder mehreren der Wärmetauscher einzustellen.The inventive solution, it is thus possible, a plurality of series-connected heat exchanger due to a variable heat dissipation from the refrigerant in the individual heat exchangers, in particular by a variable secondary side mass flow (based on the heat exchanger) optimally in their performance from 0 to 100 percent to use adjustable, and set the desuperheating and liquefaction of the gaseous refrigerant targeted in one or more of the heat exchanger.

Die Erfindung soll nachfolgend anhand eines Ausführungsbeispiels exemplarisch erläutert werden.The invention will be explained below by way of example with reference to an embodiment.

Es zeigen:

Figur 1
eine erfindungsgemäße Ausführung einer Wärmepumpenanlage zur Klimatisierung eines Gebäudes in einem Betriebszustand mit Luft- und/oder Wasserkühlung;
Figur 2
die Wärmepumpenanlage aus der Figur 1 mit geänderter Durchströmungsrichtung und Heizung der zuvor gekühlten Luft beziehungsweise des zuvor gekühlten Wassers.
Show it:
FIG. 1
an inventive embodiment of a heat pump system for air conditioning of a building in an operating condition with air and / or water cooling;
FIG. 2
the heat pump system of Figure 1 with a modified flow direction and heating the previously cooled air or the previously cooled water.

In der Figur 1 erkennt man den Kältemittelkreislauf 1, in welchem in Strömungsrichtung unmittelbar hintereinander ein Verdichter 10 (Kältemittelverdichter) und drei Wärmetauscher, nämlich der dritte Wärmetauscher 24, der vierte Wärmetauscher 19 und der fünfte Wärmetauscher 16, angeordnet sind. In Strömungsrichtung hinter dem fünften Wärmetauscher 16 ist ein Richtungsumkehrventil 11 angeordnet, welches bestimmt, ob das aus dem fünften Wärmetauscher 16 austretende Kältemittel zunächst durch den zweiten Wärmetauscher 7, der dann als Kondensator arbeitet (in der Figur 1 gezeigt), oder den ersten Wärmetauscher 4, der dann als Kondensator arbeitet (in der Figur 2 gezeigt), geleitet wird.FIG. 1 shows the refrigerant circuit 1, in which a compressor 10 (refrigerant compressor) and three heat exchangers, namely the third heat exchanger 24, the fourth heat exchanger 19 and the fifth heat exchanger 16, are arranged directly behind one another in the flow direction. In the flow direction behind the fifth heat exchanger 16, a direction reversing valve 11 is arranged, which determines whether the emerging from the fifth heat exchanger 16 refrigerant first through the second heat exchanger 7, which then works as a capacitor (shown in Figure 1), or the first heat exchanger. 4 , which then operates as a condenser (shown in FIG. 2).

Nach dem Durchströmen des als Kondensator arbeitenden Wärmetauschers - des zweiten Wärmetauschers 7 bei der Schaltstellung in der Figur 1 beziehungsweise des ersten Wärmetauschers 4 bei der Schaltstellung in der Figur 2 - strömt das Kältemittel unmittelbar in das Expansionsventil 8.After flowing through the working as a condenser heat exchanger - the second heat exchanger 7 in the switching position in Figure 1 and the first heat exchanger 4 at the switching position in Figure 2 - the refrigerant flows directly into the expansion valve eighth

Aus dem Expansionsventil 8 strömt das Kältemittel dann expandiert durch den als Verdampfer arbeitenden Wärmetauscher - den ersten Wärmetauscher 4 in der Figur 1 beziehungsweise den zweiten Wärmetauscher 7 in der Figur 2 - und anschließend wieder zum Verdichter 10, welcher das gasförmige Kältemittel in die Druckgasleitung 9 pumpt.From the expansion valve 8, the refrigerant then flows through the working as an evaporator heat exchanger - the first heat exchanger 4 in Figure 1 and the second heat exchanger 7 in Figure 2 - and then back to the compressor 10, which pumps the gaseous refrigerant into the compressed gas line 9.

Das Richtungsumkehrventil 11 weist gemäß der gezeigten Ausführung drei Anschlüsse auf, nämlich einen fest zugeordneten Anschluss, über welchen das Richtungsumkehrventil 11 mit dem letzten der drei Wärmetauscher 24, 19, 16 verbunden ist, und zwei hinsichtlich ihrer Durchströmungsrichtung umkehrbare Leitungen 5, 6, von denen jeweils eine als Saugleitung für den Verdichter 10 und die andere als Druckleitung mit noch nicht expandiertem Kältemittel dient.The direction reversing valve 11 has, according to the embodiment shown, three connections, namely a fixed connection, via which the direction reversing valve 11 is connected to the last of the three heat exchangers 24, 19, 16, and two with respect to their flow direction reversible lines 5, 6, of which one each serves as a suction line for the compressor 10 and the other as a pressure line with not yet expanded refrigerant.

Dem ersten Wärmetauscher 4, welcher als Kältemittel-Luft-Wärmetauscher ausgeführt ist, um die ihn umgebende Luft im Inneren des Gebäudes zu kühlen (Figur 1) oder zu beheizen (Figur 2), ist ein Kältemedium-Flüssigkeits-Wärmetauscher 2 parallel geschaltet, mit welchem die Flüssigkeit, insbesondere Wasser, gekühlt (Figur 1) oder geheizt (Figur 2) werden kann. Beispielsweise kann es sich bei dieser Flüssigkeit um eine durch eine klimatisierte Decke geleitete Flüssigkeit handeln.The first heat exchanger 4, which is designed as a refrigerant-air heat exchanger to cool the surrounding air inside the building (Figure 1) or to heat (Figure 2), a cold medium-liquid heat exchanger 2 is connected in parallel with which the liquid, in particular water, cooled (Figure 1) or heated (Figure 2) can be. For example, this liquid may be a liquid conducted through an air-conditioned ceiling.

Gemäß dem in der Figur 1 gezeigten Schaltzustand teilt sich der Kältemittelflüssigkeitsstrom mit expandiertem Kältemittel aus der Leitung 3 in zwei parallele Ströme auf, von denen je einer durch den ersten Wärmetauscher 4 und den Wärmetauscher 2 geleitet wird, bevor diese beiden Ströme in der Leitung 5 wieder vereint werden. Selbstverständlich ist es auch möglich, nur einen der beiden Wärmetauscher 2, 4 oder weitere Kältemittel-Luft-Wärmetauscher und/oder Kältemittel-Flüssigkeits-Wärmetauscher oder auch andere Wärmetauscher vorzusehen.According to the switching state shown in Figure 1, the refrigerant liquid flow with expanded refrigerant from the line 3 divides into two parallel streams, one of which is passed through the first heat exchanger 4 and the heat exchanger 2, before these two streams in the line 5 again be united. Of course, it is also possible to provide only one of the two heat exchangers 2, 4 or other refrigerant-air heat exchangers and / or refrigerant-liquid heat exchangers or other heat exchangers.

Bei der gezeigten Ausführung sind der zweite Wärmetauscher 7, das Expansionsventil 8 sowie der Verdichter 10 und das Richtungsumkehrventil 11 in einer Außeneinheit 25 angeordnet, welche außerhalb des zu klimatisierenden Gebäudes beziehungsweise außen an dem Gebäude angeordnet ist. Der dritte bis fünfte Wärmetauscher 24, 19, 16 sowie der erste Wärmetauscher 4 und gegebenenfalls der Kühlmedium-Flüssigkeits-Wärmetauscher 2 sind innerhalb des Gebäudes angeordnet. Der dritte Wärmetauscher 24 ist über einen Wasserkreislauf wärmeübertragend an einem Brauchwasserboiler 22 angeschlossen. Das Wasser in dem wärmeübertragenden Kreislauf wird mittels der Brauchwasserboiler-Ladepumpe 23 umgewälzt. Durch die Leistungsabgabe der Brauchwasserboiler-Ladepumpe 23 wird die im Wasserkreislauf zwischen dem dritten Wärmetauscher 24 und dem Brauchwasserboiler 22 umgewälzte Wassermenge und hierüber auch die vom dritten Wärmetauscher 24 auf den Brauchwasserboiler 22 übertragene Wärmemenge bestimmt.In the embodiment shown, the second heat exchanger 7, the expansion valve 8 and the compressor 10 and the direction reversing valve 11 are arranged in an outdoor unit 25, which is arranged outside of the building to be air conditioned or on the outside of the building. The third to fifth heat exchangers 24, 19, 16 and the first heat exchanger 4 and optionally, the cooling medium-liquid heat exchanger 2 are disposed within the building. The third heat exchanger 24 is connected via a water circuit heat transfer to a domestic water boiler 22. The water in the heat transferring circuit is circulated by the dhw boiler charge pump 23. Due to the power output of the service water boiler charge pump 23, the amount of water circulated in the water cycle between the third heat exchanger 24 and the domestic water boiler 22 and, hereunder, the amount of heat transferred from the third heat exchanger 24 to the domestic water boiler 22 is determined.

Alternativ kann, wie dies durch den Brauchwasserboiler 22' angedeutet ist, der vierte Wärmetauscher 24 auch unmittelbar im Brauchwasserboiler 22' zur Erwärmung von Brauchwasser integriert sein. In diesem Fall strömt das Kältemittel des Kältemittelkreislaufes 1 unmittelbar durch den Brauchwasserboiler 22', um in einem Kältemittel-Wasser-Wärmetauscher das Brauchwasser im Brauchwasserboiler 22' aufzuheizen und dabei das Kältemittel zu enthitzen und gegebenenfalls zu kondensieren.Alternatively, as indicated by the domestic water boiler 22 ', the fourth heat exchanger 24 may also be integrated directly in the domestic water boiler 22' for heating domestic water. In this case, the refrigerant of the refrigerant circuit 1 flows directly through the domestic water boiler 22 'to heat the domestic water in the domestic water boiler 22' in a refrigerant-water heat exchanger and thereby to deprive the refrigerant and optionally to condense.

Der vierte Wärmetauscher 19 ist an einem Hochtemperaturheizkreislauf 20 angeschlossen. In diesem Kreislauf wird die umgewälzte Wassermenge durch die Heizkreispumpe 21 bestimmt.The fourth heat exchanger 19 is connected to a high-temperature heating circuit 20. In this circuit, the circulated amount of water is determined by the heating circuit pump 21.

Der fünfte Wärmetauscher 16 ist in einem Niedertemperaturheizkreislauf 18 angeordnet. Hier wird die umgewälzte Wassermenge über die Heizkreispumpe 17 bestimmt.The fifth heat exchanger 16 is arranged in a low-temperature heating circuit 18. Here, the circulated amount of water via the heating circuit 17 is determined.

Da der in der Außeneinheit 25 vorgesehene zweite Wärmetauscher 7 als Kältemittel-Luft-Wärmetauscher ausgeführt ist, welcher von Außenluft umströmt beziehungsweise durchströmt wird, wird die Energiebilanz zum Beheizen des Gebäudes mit abnehmender Außenlufttemperatur schlechter. Bei der gezeigten Ausführungsform ist - was jedoch nicht zwingend notwendig ist - daher ein zu dem zweiten Wärmetauscher 7 parallel geschalteter Wärmetauscher 12 vorgesehen, der als Kältemittel-Wasser-Wärmetauscher für eine wasserdurchströmte Erdreichsonde ausgeführt ist. Dieser Wärmetauscher 12 ist über eine Sauggasleitung 13 mit der Kältemittelleitung vor dem Kältemitteleintritt des Verdichters 10 verbunden, und ferner über eine Flüssigkeitsleitung 14 mit einem Expansionsventil 15 mit der Leitung zwischen dem letzten der drei Wärmetauscher 24, 19, 16 und dem Richtungsumkehrventil 11 verbunden.Since the second heat exchanger 7 provided in the outdoor unit 25 is designed as a refrigerant-air heat exchanger, which is flowed around or flowed through by outside air, the energy balance for heating the building becomes worse with decreasing outside air temperature. In the embodiment shown is - but this is not absolutely necessary - therefore a parallel to the second heat exchanger 7 heat exchanger 12th provided, which is designed as a refrigerant-water heat exchanger for a water-carrying ground probe. This heat exchanger 12 is connected via a suction line 13 to the refrigerant line before the refrigerant inlet of the compressor 10, and further connected via a fluid line 14 with an expansion valve 15 to the line between the last of the three heat exchangers 24, 19, 16 and the direction reversing valve 11.

Alternativ kann, wenn geeignete Maßnahmen zur Umweltsicherung getroffen werden, die Erdreichsonde auch als kältemitteldurchströmte Erdreichsonde ausgeführt werden. In diesem Fall könnte der Kältemittel-Wasser-Wärmetauscher entfallen und die Erdreichsonde selbst würde als ein dem zweiten Wärmetauscher 7 parallel geschalteter Wärmetauscher arbeiten.Alternatively, if appropriate environmental protection measures are taken, the ground probe may also be implemented as a refrigerant-flowed ground probe. In this case, the refrigerant-water heat exchanger could be omitted and the soil probe itself would work as a heat exchanger connected in parallel to the second heat exchanger 7.

Um besonders große Volumenströme im Kältemittelkreislauf 1 umwälzen zu können, kann beispielsweise ein zusätzlicher Bypass um den ersten Wärmetauscher 4 herum von der Leitung 5 zur Leitung 3 vorgesehen sein (nicht gezeigt). Dieser Bypass kann vollständig innerhalb der Außeneinheit 25 ausgeführt sein.In order to be able to circulate particularly large volume flows in the refrigerant circuit 1, for example, an additional bypass around the first heat exchanger 4 may be provided from the line 5 to the line 3 (not shown). This bypass can be made entirely within the outdoor unit 25.

Claims (9)

Wärmepumpenanlage, insbesondere zur Klimatisierung eines Gebäudes, Fahrzeugs oder Flugzeugs, 1.1 mit einem Kältemittelkreislauf (1), umfassend einen Verdichter (10), ein Expansionsventil (8) und eine Vielzahl von Wärmetauschern (4, 7, 16, 19, 24), die nacheinander von einem Kältemittel in dem Kältemittelkreislauf (1) durchströmt werden;
dadurch gekennzeichnet, dass
1.2 wenigstens von den nacheinander durchströmten Wärmetauschern ein erster Wärmetauscher (4) eine Kondensatorfunktion, ein zweiter Wärmetauscher (7) eine Verdampferfunktion und ein dritter Wärmetauscher (24) eine Enthitzer- und/oder Kondensatorfunktion aufweist, 1.3 im Kältemittelkreislauf (1) ein Richtungsumkehrventil (11) für das Kältemedium vorgesehen ist, mittels welchem durch teilweise Änderung der Strömungsrichtung im Kältemittelkreislauf (1) wenigstens die ersten beiden Wärmetauscher (4, 7) hinsichtlich der Reihenfolge ihrer Durchströmung mit Kältemittel relativ zueinander und mit Bezug auf das Expansionsventil (8) derart umschaltbar sind, dass der erste Wärmetauscher (4) in einer ersten Schaltstellung des Richtungsumkehrventils (11) als Verdampfer und der zweite Wärmetauscher (7) als Kondensator arbeitet, und in einer zweiten Schaltstellung des Richtungsumkehrventils (11) der erste Wärmetauscher (4) als Kondensator und der zweite Wärmetauscher (7) als Verdampfer arbeitet.
Heat pump system, in particular for the air conditioning of a building, vehicle or aircraft, 1.1 with a refrigerant circuit (1) comprising a compressor (10), an expansion valve (8) and a plurality of heat exchangers (4, 7, 16, 19, 24), which are successively flowed through by a refrigerant in the refrigerant circuit (1) ;
characterized in that
1.2 a first heat exchanger (4) has a condenser function, a second heat exchanger (7) has an evaporator function, and a third heat exchanger (24) has a desuperheater and / or condenser function, at least of the heat exchangers flowed through in succession, 1.3 in the refrigerant circuit (1) a direction reversing valve (11) is provided for the cooling medium, by means of which by changing the direction of flow in the refrigerant circuit (1) at least the first two heat exchangers (4, 7) with respect to the order of their flow with refrigerant relative to each other and with Reference to the expansion valve (8) are switchable such that the first heat exchanger (4) in a first switching position of the direction reversing valve (11) acts as an evaporator and the second heat exchanger (7) as a condenser, and in a second switching position of the direction reversing valve (11) the first heat exchanger (4) as a condenser and the second heat exchanger (7) operates as an evaporator.
Wärmepumpenanlage gemäß Anspruch 1, dadurch gekennzeichnet, dass ein vierter Wärmetauscher (19), insbesondere ein fünfter Wärmetauscher (16) und gegebenenfalls weitere Wärmetauscher jeweils mit Enthitzerund/oder Kondensatorfunktion in Reihe im Kältemittelkreislauf (1) hinter den dritten Wärmetauscher (24) geschaltet sind, um von dem dritten Wärmetauscher (24) aus dem Kältemittel nicht abgeleitete Wärme auf einem gleich großen oder niedrigeren Temperaturniveau abzuleiten.Heat pump system according to claim 1, characterized in that a fourth heat exchanger (19), in particular a fifth heat exchanger (16) and optionally further heat exchangers are connected in each case with desuperheater and / or condenser function in series in the refrigerant circuit (1) behind the third heat exchanger (24), to derive heat not derived from the third heat exchanger (24) at an equal or lower temperature level. Wärmepumpenanlage gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Wärmepumpenanlage eine Gebäudewärmepumpenanlage, Fahrzeugwärmepumpenanlage oder Flugzeugwärmepumpenanlage ist, welche eine Primärseite aufweist, die mit der Umgebung in wärmeübertragender Verbindung steht, und eine Sekundärseite, die mit dem Inneren des Gebäudes, des Fahrzeugs oder des Flugzeugs in wärmeübertragender Verbindung steht, und der zweite Wärmetauscher (7) auf der Primärseite, der erste Wärmetauscher (4) auf der Sekundärseite und der dritte und insbesondere, vierte, fünfte und gegebenenfalls weitere Wärmetauscher (24, 19, 16) auf der Sekundärseite angeordnet sind.Heat pump system according to one of claims 1 or 2, characterized in that the heat pump system is a building heat pump system, vehicle heat pump system or aircraft heat pump system having a primary side, which communicates with the environment in heat transfer communication, and a secondary side, with the interior of the building, the vehicle or the aircraft is in heat-transmitting connection, and the second heat exchanger (7) on the primary side, the first heat exchanger (4) on the secondary side and the third and in particular, fourth, fifth and optionally further heat exchangers (24, 19, 16) on the Secondary side are arranged. Wärmepumpenanlage gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dem ersten Wärmetauscher (4) und/oder dem zweiten Wärmetauscher (7) ein weiterer Wärmetauscher (2, 12) parallel geschaltet ist.Heat pump system according to one of claims 1 to 3, characterized in that the first heat exchanger (4) and / or the second heat exchanger (7), a further heat exchanger (2, 12) is connected in parallel. Wärmepumpenanlage gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der erste und der zweite Wärmetauscher (4, 7) als Kältemittel-Luft-Wärmetauscher ausgeführt sind, und der dritte, insbesondere vierte und fünfte Wärmetauscher (24, 19, 16) als Kältemittel-Flüssigkeits-Wärmetauscher, insbesondere Kältemittel-Wasser-Wärmetauscher, ausgeführt sind.Heat pump system according to one of claims 1 to 4, characterized in that the first and the second heat exchanger (4, 7) are designed as a refrigerant-air heat exchanger, and the third, in particular fourth and fifth heat exchanger (24, 19, 16) as Refrigerant-liquid heat exchanger, in particular refrigerant-water heat exchanger, are executed. Wärmepumpenanlage gemäß Anspruch 4 und Anspruch 5, dadurch gekennzeichnet, dass der dem ersten Wärmetauscher (4) parallel geschaltete Wärmetauscher (2) als Kältemittel-Flüssigkeits-Wärmetauscher, insbesondere Kältemittel-Wasser-Wärmetauscher, ausgeführt ist, und der dem zweiten Wärmetauscher (7) parallel geschaltete Wärmetauscher (12) insbesondere als kältemitteldurchströmte Erdreichsonde oder als Kältemittle-Wasser-Wärmetauscher für eine wasserdurchströmte Erdreichsonde ausgeführt ist.Heat pump system according to claim 4 and claim 5, characterized in that the first heat exchanger (4) connected in parallel heat exchanger (2) is designed as a refrigerant-liquid heat exchanger, in particular refrigerant-water heat exchanger, and the second heat exchanger (7) connected in parallel heat exchanger (12) in particular as a refrigerant flowing through Soil probe or cold-water to water heat exchanger for a water-carrying ground probe is executed. Wärmepumpenanlage gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Kältemittelkreislauf (1) der einzige in der Wärmepumpenanlage vorgesehene Kältemittelkreislauf mit einem wenigstens teilweise gasförmigen Kältemittel ist.Heat pump system according to one of claims 1 to 6, characterized in that the refrigerant circuit (1) is the only provided in the heat pump system refrigerant circuit with an at least partially gaseous refrigerant. Wärmepumpenanlage gemäß einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der dritte Wärmetauscher (24) über einen Flüssigkeitskreislauf, in welchem eine Brauchwasserboiler-Ladepumpe (23) vorgesehen ist, mit einem Brauchwasserboiler (22) zur Erhitzung von Brauchwasser verbunden ist, oder dass der dritte Wärmetauscher (24) in einem Brauchwasserboiler (22) zur Erhitzung von Brauchwasser unmittelbar integriert ist.Heat pump system according to one of claims 5 to 7, characterized in that the third heat exchanger (24) via a liquid circuit, in which a domestic water boiler loading pump (23) is provided, with a hot water boiler (22) for heating domestic water is connected, or the third heat exchanger (24) is integrated directly in a domestic water boiler (22) for the heating of process water. Wärmepumpenanlage gemäß Anspruch 2 und einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der vierte Wärmetauscher (19) in einem Heizungskreislauf (20) mit Heizkreispumpe (21) angeordnet ist, und der fünfte Wärmetauscher (16) insbesondere in einem weiteren Heizungskreislauf (18) mit einer weiteren Heizkreispumpe (17) angeordnet ist.Heat pump system according to claim 2 and one of claims 5 to 8, characterized in that the fourth heat exchanger (19) in a heating circuit (20) with heating circuit pump (21) is arranged, and the fifth heat exchanger (16) in particular in a further heating circuit (18 ) is arranged with a further heating circuit pump (17).
EP06025558A 2006-07-26 2006-12-11 Heat pump system, in particular for air conditioning a building Withdrawn EP1882888A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202006011464 2006-07-26

Publications (1)

Publication Number Publication Date
EP1882888A1 true EP1882888A1 (en) 2008-01-30

Family

ID=38230284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06025558A Withdrawn EP1882888A1 (en) 2006-07-26 2006-12-11 Heat pump system, in particular for air conditioning a building

Country Status (1)

Country Link
EP (1) EP1882888A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018878B3 (en) * 2008-04-14 2009-10-15 Erwin Dietz Heat pump system for air conditioning of e.g. building, has heat exchangers arranged together in boiler for exchanging heat between cooling and heating mediums in exchangers, and direction reversal valve arranged between exchangers
DE102008038429A1 (en) 2008-08-19 2010-02-25 Erwin Dietz Heat pump system operating method for air conditioning e.g. building, involves determining coefficient of performance, performance number, efficiency or analysis of refrigerant based on mass flow of refrigerant
GB2484354A (en) * 2010-10-06 2012-04-11 Frito Lay Trading Co Gmbh Reheating oil in a fryer using heat exchangers
DE102010051465A1 (en) 2010-11-04 2012-05-10 Erwin Dietz Method for operating heat pump system for air conditioning of e.g. building, involves determining mass flow of refrigerant by e.g. determining actual pressure difference of refrigerant between vaporization pressure and condensation pressure
DE102010051868A1 (en) 2010-11-22 2012-05-24 Erwin Dietz Method for regulating heat pump system for air-conditioning e.g. airplane, involves regulating mass stream and/or volume stream of individual heat carrier streams permanently in dependent upon actual supply of utilized primary energy
WO2018189942A1 (en) * 2017-04-11 2018-10-18 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2022008800A1 (en) * 2020-07-08 2022-01-13 Senera Oy Heat pump-based heating system with boiler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269153A (en) 1991-05-22 1993-12-14 Artesian Building Systems, Inc. Apparatus for controlling space heating and/or space cooling and water heating
EP0851189A2 (en) * 1996-12-30 1998-07-01 Carrier Corporation Bidirectional flow control device
US5937665A (en) 1998-01-15 1999-08-17 Geofurnace Systems, Inc. Geothermal subcircuit for air conditioning unit
US20050252226A1 (en) 2004-05-12 2005-11-17 Seefeldt William J Heating/cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269153A (en) 1991-05-22 1993-12-14 Artesian Building Systems, Inc. Apparatus for controlling space heating and/or space cooling and water heating
EP0851189A2 (en) * 1996-12-30 1998-07-01 Carrier Corporation Bidirectional flow control device
US5937665A (en) 1998-01-15 1999-08-17 Geofurnace Systems, Inc. Geothermal subcircuit for air conditioning unit
US20050252226A1 (en) 2004-05-12 2005-11-17 Seefeldt William J Heating/cooling system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018878B3 (en) * 2008-04-14 2009-10-15 Erwin Dietz Heat pump system for air conditioning of e.g. building, has heat exchangers arranged together in boiler for exchanging heat between cooling and heating mediums in exchangers, and direction reversal valve arranged between exchangers
DE102008038429A1 (en) 2008-08-19 2010-02-25 Erwin Dietz Heat pump system operating method for air conditioning e.g. building, involves determining coefficient of performance, performance number, efficiency or analysis of refrigerant based on mass flow of refrigerant
GB2484354A (en) * 2010-10-06 2012-04-11 Frito Lay Trading Co Gmbh Reheating oil in a fryer using heat exchangers
GB2484354B (en) * 2010-10-06 2013-02-06 Frito Lay Trading Co Gmbh Apparatus for and method of heating an operating fluid
US9055840B2 (en) 2010-10-06 2015-06-16 Frito-Lay Trading Company Gmbh Apparatus for and method of heating an operating fluid
AU2011311526B2 (en) * 2010-10-06 2016-02-04 Frito-Lay Trading Company Gmbh Apparatus for and method of heating an operating fluid
DE102010051465A1 (en) 2010-11-04 2012-05-10 Erwin Dietz Method for operating heat pump system for air conditioning of e.g. building, involves determining mass flow of refrigerant by e.g. determining actual pressure difference of refrigerant between vaporization pressure and condensation pressure
DE102010051868A1 (en) 2010-11-22 2012-05-24 Erwin Dietz Method for regulating heat pump system for air-conditioning e.g. airplane, involves regulating mass stream and/or volume stream of individual heat carrier streams permanently in dependent upon actual supply of utilized primary energy
WO2018189942A1 (en) * 2017-04-11 2018-10-18 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JPWO2018189942A1 (en) * 2017-04-11 2019-11-07 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2022008800A1 (en) * 2020-07-08 2022-01-13 Senera Oy Heat pump-based heating system with boiler

Similar Documents

Publication Publication Date Title
EP1731846A1 (en) Ventilation and heating arrangement for buildings
EP1882888A1 (en) Heat pump system, in particular for air conditioning a building
EP3648997B1 (en) Refrigeration system for a vehicle, comprising a refrigerant circuit having a heat exchanger, and heat exchanger for such a refrigeration system
EP1616133B1 (en) Combined fluid-air evaporator and novel switching concept for a heat pump in a ventilating apparatus
EP2026019A2 (en) Tempering unit on a heat pump basis
DE202008002015U1 (en) Modular air conditioning system
EP3667182A1 (en) Heat pump assembly
DE102014117950B4 (en) Refrigerant circuit, in particular for a motor vehicle
EP3006682A1 (en) Device and method for operating a heating distribution station
DE60115949T2 (en) HEAT TRANSFER COUPLING WITH PHASE REPLACEMENT FOR AMMONIA / WATER ABSORPTION PLANTS
EP2692416A2 (en) Refrigerant type dryer
EP2406552B1 (en) Apparatus for heat recovery in a heat exchanger system having energy coupling in ventilation devices
DE102021200237A1 (en) air conditioner
DE102016115824A1 (en) System for arranging devices for controlling the temperature of a heat transfer fluid in a heat carrier circuit and method for operating the system
DE102018215026A1 (en) Refrigeration system for a vehicle with a refrigerant circuit having a double-flow heat exchanger and heat exchanger and method for operating the refrigeration system
DE102016103250A1 (en) Motor vehicle air-conditioning circuit
DE102010051465A1 (en) Method for operating heat pump system for air conditioning of e.g. building, involves determining mass flow of refrigerant by e.g. determining actual pressure difference of refrigerant between vaporization pressure and condensation pressure
EP2204619A2 (en) Device and method for the optimal operation of an air-conditioning system and air-conditioning system
DE102008038429A1 (en) Heat pump system operating method for air conditioning e.g. building, involves determining coefficient of performance, performance number, efficiency or analysis of refrigerant based on mass flow of refrigerant
EP1637813B1 (en) Heat recovery system with cooling machine
DE102008018878B3 (en) Heat pump system for air conditioning of e.g. building, has heat exchangers arranged together in boiler for exchanging heat between cooling and heating mediums in exchangers, and direction reversal valve arranged between exchangers
WO2021008888A1 (en) Cooling system and method for the temperature control of a computing center by means of a cooling system
DE102009056520A1 (en) Heat pump system for heating e.g. room of building, has fluid sub-cooler arranged before expansion valve and dissipating heat from coolant withdrawing from one of heat exchangers such that temperature of coolant is controlled
DE102021104052B3 (en) Hot water tank loading method at a district heating connection and hot water loading arrangement as well as hot water loading heat pump
DE102007016212A1 (en) Heating and/or cooling system i.e. variable refrigerant flow system, operating method, involves delivering heat and/or cold from geothermal energy system in refrigerant pipes over heat exchanger that acts as evaporator or condenser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090226

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090701