EP1879682A1 - Filter device, especially soot particle filter, for an exhaust system of an internal combustion engine - Google Patents

Filter device, especially soot particle filter, for an exhaust system of an internal combustion engine

Info

Publication number
EP1879682A1
EP1879682A1 EP06708525A EP06708525A EP1879682A1 EP 1879682 A1 EP1879682 A1 EP 1879682A1 EP 06708525 A EP06708525 A EP 06708525A EP 06708525 A EP06708525 A EP 06708525A EP 1879682 A1 EP1879682 A1 EP 1879682A1
Authority
EP
European Patent Office
Prior art keywords
filter
filter device
wave
wall
elevations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06708525A
Other languages
German (de)
French (fr)
Inventor
Bernd Reinsch
Teruo Komori
Lars Thuener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1879682A1 publication Critical patent/EP1879682A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/20Shape of filtering material
    • B01D2275/206Special forms, e.g. adapted to a certain housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/14Sintered material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • F01N2330/323Corrugations of saw-tooth or triangular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • F01N2330/324Corrugations of rectangular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section

Definitions

  • Filter device in particular soot particle filter, for an exhaust system of an internal combustion engine
  • the invention relates to a filter device, in particular a soot particle filter for an exhaust system of an internal combustion engine, according to the preamble of claim 1.
  • a filter device of the type mentioned is known from DE 101 28 936 Al. At the shown there
  • Filter device is a particulate filter for an exhaust system of a diesel internal combustion engine.
  • the filter bodies in the known filter device are made of sintered metal, which forms a porous filtration material, and arranged so that wedge-shaped filter bags are formed.
  • the tapered wedge edges of the filter pockets show against the flow direction of the exhaust gas, the rear narrow side of a filter pocket viewed in the flow direction is open.
  • the filter pockets are arranged side by side such that an overall rotationally symmetrical annular filter structure is formed.
  • the exhaust gas passes through the generally planar filter walls of the filter pockets, with particles at the upstream surface of the respective ones Filter wall are deposited.
  • the soot particles deposited over time on the upstream surface of the filter wall lead to a reduction in the soot particles
  • the filter walls are on the upstream surface at least partially uneven by wave-like elevations are provided there.
  • Object of the present invention is to develop a filter device of the type mentioned so that it has the highest possible efficiency.
  • the filter device according to the invention is compared to conventional filter devices the upstream surface larger.
  • a larger amount of particles can be deposited there, without resulting in an impermissible increase in the pressure drop in the flow through the filter wall.
  • Filter device are regenerated less frequently compared to conventional filter devices, which reduces the total required for regeneration fuel use.
  • the filter structure is at least partially provided with a catalytic coating, the surface available for this catalytic coating on the upstream side is increased, which improves the overall catalytic effect.
  • the proposed wavy patterning of the upstream surface of a filter wall is common to all Types of filter structures (honeycomb filter) with mutually closed flow channels or filter bags possible.
  • the corresponding filter pockets or flow channels may be either square, alternating square and octagonal in cross section (so-called "Octosquare filter”) or have another almost arbitrary symmetry.
  • a material for the production of a filter wall is for example a ceramic, a glass-ceramic or a metallic material or composite material in question, preferably SiC and cordierite.
  • thermomechanical and filtration properties can be set in a very specific manner.
  • the geometry can be achieved for example by two-sided wave-like elevations, by a total wave-like structure of the filter wall, on both sides of the filter wall opposite or staggered elevations.
  • Figure 1 is a schematic representation of a
  • Figure 2 is an enlarged schematic
  • FIG. 1 Sectional view of a portion of a filter structure of the filter device of Figure 1;
  • Figure 3 is a section along the line III-III of Figure 2 showing an inflow pocket;
  • Figure 4 is a view similar to Figure 3 of an alternative embodiment of a
  • Figure 5 is a view seen in the flow direction on a filter structure having a plurality of inflow pockets according to Figure 4;
  • Figure 6 is a section through an alternative embodiment of a filter wall
  • Figure 7 is a view similar to Figure 6 of a further modified embodiment.
  • Figure 8 is a view similar to Figure 6 of a further modified embodiment.
  • an internal combustion engine carries the reference numeral 10.
  • the exhaust gases are discharged via an exhaust pipe 12, in which a filter device 14 is arranged. With this, soot particles are filtered out of the exhaust gas flowing in the exhaust pipe 12. This is especially necessary for diesel engines to comply with legal requirements.
  • the filter device 14 comprises a cylindrical housing 16, in which a rotationally symmetrical overall cylindrical filter structure 18 is arranged in the present exemplary embodiment.
  • this filter structure 18 comprises a plurality of mutually closed filter channels through which inflow-side filter pockets 20 ("inflow pockets”) and outflow-side filter pockets 21 (“outflow pockets”) are formed.
  • Their cross-sectional geometry can either be square, which corresponds to a standard honeycomb filter, or alternatively square and octagonal, which is referred to as "Octosquare filter", or they can have a different symmetry.
  • lateral filter walls 22 which have an upstream surface 24 and a downstream surface 26.
  • the mutual closure of the filter pockets 20 is in the region of the upstream end face 28 of the filter structure 18 by appropriate
  • End walls 32, in the region of the downstream end face 30 by corresponding end walls 34 causes.
  • an inflow pocket 20 having a square cross-sectional geometry is shown enlarged: It can be seen that the upstream surface 24 of a filter wall 22 has wave-like elevations 36, whereas the downstream face 26 of a filter wall 22 is substantially planar. The wave-like elevations 36 run in the
  • the cross-sectional geometry of the individual wave-like elevations 36 is triangular in the embodiment shown in FIG. It is also conceivable, however, a sinusoidal or a four- or rectangular contour of the wave-like elevations.
  • the wave-like projections 36 are arranged at regular intervals from each other, resulting in a period length P, which is preferably in the range of about 0.1 mm to about 0.5 mm.
  • the height ("amplitude" A) of the wave-like elevations is in the range of about 0.1 mm to 0.5 mm. The amplitude results as a difference of the maximum wall thickness S 2 to the minimum wall thickness Si.
  • FIG. 4 shows an alternative embodiment of an inflow pocket 20.
  • the filter walls 22, which have a constant wall thickness s, of an inflow pocket 20 are formed in a wave-like manner overall. In this way, wave-like protrusions 36 are found not only on the upstream surface 24 of a
  • Filter wall 22 but also on the downstream surface 26 of a filter wall 22 corresponding wave-like projections 40 are present.
  • the latter extend in the direction of the main flow direction present downstream of a filter wall 22, which is illustrated by a dot-dash line 42 in FIG.
  • the filter structure 18 shown in FIG. 5 can be formed.
  • FIGS. 6 to 8 Further possible embodiments of filter walls 22 are shown in FIGS. 6 to 8. Unlike the filter walls 22 shown in FIGS. 4 and 5, the filter wall 22 shown in FIG. 6 is not formed as a whole wave-shaped, but only upstream thereof Surface 24 and its downstream surface 26.
  • the wave-like projections 36 on the upstream surface 24 have the same period as the wave-like projections 40 on the downstream surface 26.
  • the wave-like projections 36 and 40 are fairly close to each other, so that there the maximum wall thickness S 2 is formed.
  • the phase positions of the wave-like elevations 36 and 40 are approximately identical.
  • the phase position of the wave-like elevations 40 is shifted by a quarter of a period relative to the wave-like elevations 36.
  • the wave-like projections 40 are shifted from the wave-like projections 36 even by half a period.
  • the undulations of the downstream surface have a different period than the undulations on the upstream surface. In this way, the minimum wall thickness Si and the maximum wall thickness S 2 can be varied, so that the filter and skill properties of a filter wall can be precisely adjusted.
  • the filter structures 18 shown above with the filter walls 22 can be very easily by extruding a ceramic, glass-ceramic, or metallic material or
  • MaterialVerbunds are produced. Particularly suitable materials based on SiC and cordierite. For this purpose, in the extrusion of the raw material tools are used, through which the filter walls 22 are shaped accordingly. In a subsequent sintering This form does not change or only marginally.
  • a catalytic coating (not shown) may be applied to the filter structure 18, particularly the upstream surface 24, which, for example, reduces the temperature required for regeneration of the filter structure 18.

Abstract

The invention relates to a filter device (14), especially a soot particle filter for an exhaust system of an internal combustion engine, comprising a filter structure (18). Said filter structure, in turn, comprises at least one filter wall (22), filtered particles being deposited on the upstream surface (24) thereof. According to the invention, at least the upstream surface (24) of the filter wall (22) comprises wave-like projections (36), at least in sections, extending at least approximately in the upstream main flow direction.

Description

Filtereinrichtung, insbesondere Rußpartikelfilter, für ein Abgassystem einer BrennkraftmaschineFilter device, in particular soot particle filter, for an exhaust system of an internal combustion engine
Stand der TechnikState of the art
Die Erfindung betrifft eine Filtereinrichtung, insbesondere einen Rußpartikelfilter für ein Abgassystem einer Brennkraftmaschine, nach dem Oberbegriff des Anspruchs 1.The invention relates to a filter device, in particular a soot particle filter for an exhaust system of an internal combustion engine, according to the preamble of claim 1.
Eine Filtereinrichtung der eingangs genannten Art ist aus der DE 101 28 936 Al bekannt. Bei der dort gezeigtenA filter device of the type mentioned is known from DE 101 28 936 Al. At the shown there
Filtereinrichtung handelt es sich um einen Partikelfilter für ein Abgassystem einer Diesel-Brennkraftmaschine. Die Filterkörper bei der bekannten Filtereinrichtung sind aus Sintermetall hergestellt, welches ein poröses Filtrationsmaterial bildet, und so angeordnet, dass keilförmige Filtertaschen gebildet werden. Die spitz zulaufenden Keilkanten der Filtertaschen zeigen entgegen der Strömungsrichtung des Abgases, die in Strömungsrichtung gesehene hintere Schmalseite einer Filtertasche ist offen. Die Filtertaschen sind nebeneinander derart angeordnet, dass eine insgesamt rotationssymmetrische ringartige Filterstruktur gebildet wird.Filter device is a particulate filter for an exhaust system of a diesel internal combustion engine. The filter bodies in the known filter device are made of sintered metal, which forms a porous filtration material, and arranged so that wedge-shaped filter bags are formed. The tapered wedge edges of the filter pockets show against the flow direction of the exhaust gas, the rear narrow side of a filter pocket viewed in the flow direction is open. The filter pockets are arranged side by side such that an overall rotationally symmetrical annular filter structure is formed.
Im Betrieb tritt das Abgas durch die insgesamt ebenen Filterwände der Filtertaschen hindurch, wobei Partikel an der stromaufwärts gelegenen Oberfläche der jeweiligen Filterwand abgeschieden werden.In operation, the exhaust gas passes through the generally planar filter walls of the filter pockets, with particles at the upstream surface of the respective ones Filter wall are deposited.
Bei der bekannten Filtereinrichtung führen die mit der Zeit an der stromaufwärts gelegenen Oberfläche der Filterwand abgeschiedenen Rußpartikel zu einer Verringerung derIn the known filter device, the soot particles deposited over time on the upstream surface of the filter wall lead to a reduction in the soot particles
Durchlässigkeit der Filterwand und in der Folge zu einer Erhöhung des Druckabfalls, der beim Durchtritt des Gasstroms durch die Filterwand auftritt. Entsprechend erhöht sich der sogenannte "Abgasgegendruck" . Überschreitet dieser einen bestimmten Wert, wird der Filter regeneriert, indem die abgeschiedenen Rußpartikel verbrannt werden. Hierzu wird die Temperatur des Abgases, welches durch die Filtereinrichtung geleitet wird, erhöht, was wiederum durch die Einspritzung von zusätzlichem Kraftstoff bewirkt wird.Permeability of the filter wall and, consequently, an increase in the pressure drop that occurs when passing the gas flow through the filter wall. Accordingly, the so-called "exhaust backpressure" increases. If this exceeds a certain value, the filter is regenerated by burning the separated soot particles. For this purpose, the temperature of the exhaust gas, which is passed through the filter device, increased, which in turn is caused by the injection of additional fuel.
In der noch nicht veröffentlichten DE 10 2004 042730 wird eine Filtereinrichtung beschrieben, deren Filterwände auf der stromaufwärts gelegenen Oberfläche wenigstens bereichsweise uneben sind, indem dort wellenartige Erhebungen vorgesehen sind.In the not yet published DE 10 2004 042730 a filter device is described, the filter walls are on the upstream surface at least partially uneven by wave-like elevations are provided there.
Aufgabe der vorliegenden Erfindung ist es, eine Filtereinrichtung der eingangs genannten Art so weiterzubilden, dass sie einen möglichst hohen Wirkungsgrad aufweist.Object of the present invention is to develop a filter device of the type mentioned so that it has the highest possible efficiency.
Diese Aufgabe wird durch eine Filtereinrichtung mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.This object is achieved by a filter device having the features of claim 1. Advantageous developments of the invention are specified in subclaims.
Vorteile der ErfindungAdvantages of the invention
Bei der erfindungsgemäßen Filtereinrichtung ist im Vergleich zu herkömmlichen Filtereinrichtungen die stromaufwärts gelegene Oberfläche größer. In der Folge kann dort eine größere Partikelmenge angelagert werden, ohne dass es zu einem unzulässigen Anstieg des Druckabfalls bei der Durchströmung der Filterwand kommt. Als Konsequenz hieraus wiederum muss die erfindungsgemäßeIn the filter device according to the invention is compared to conventional filter devices the upstream surface larger. As a result, a larger amount of particles can be deposited there, without resulting in an impermissible increase in the pressure drop in the flow through the filter wall. As a consequence, in turn, the inventive
Filtereinrichtung im Vergleich zu herkömmlichen Filtereinrichtungen seltener regeneriert werden, was den insgesamt für die Regenerierung erforderlichen Kraftstoffeinsatz senkt.Filter device are regenerated less frequently compared to conventional filter devices, which reduces the total required for regeneration fuel use.
Dabei ist ein wesentlicher Unterschied zu den bisherigen Filtereinrichtungen, dass diese Verringerung des Kraftstoffverbrauchs möglich ist, ohne dass die Gesamtabmessungen der Filtereinrichtung vergrößert werden. Die Vergrößerung der für die Ablagerung der Partikel zur Verfügung stehenden Fläche wird alleine oder zumindest im Wesentlichen durch die unebene Ausführung der Oberfläche herbeigeführt .It is an essential difference from the previous filter devices that this reduction in fuel consumption is possible without the overall dimensions of the filter device can be increased. The enlargement of the area available for the deposition of the particles is brought about on their own or at least essentially by the uneven execution of the surface.
Wenn die Filterstruktur wenigstens bereichsweise mit einer katalytischen Beschichtung versehen ist, wird die für diese katalytische Beschichtung auf der stromaufwärtigen Seite zur Verfügung stehende Oberfläche vergrößert, was die katalytische Wirkung insgesamt verbessert.If the filter structure is at least partially provided with a catalytic coating, the surface available for this catalytic coating on the upstream side is increased, which improves the overall catalytic effect.
Indem die wellenartigen Erhebungen wenigstens in etwa parallel zur Richtung der stromaufwärts von der Filterwand vorhandenen Haupt-AbgasStrömung verlaufen, wird die Erzeugung von Strömungswirbeln vermindert oder sogar gänzlich verhindert. Hierdurch wird derBy the wave-like projections extending at least approximately parallel to the direction of the main exhaust gas flow existing upstream of the filter wall, the generation of flow vortices is reduced or even completely prevented. This will be the
Durchgangswiderstand durch die Filtereinrichtung vermindert .Volume resistance reduced by the filter device.
Die vorgeschlagene wellenförmige Strukturierung der stromaufwärtigen Oberfläche einer Filterwand ist bei allen Arten von Filterstrukturen (Wabenfilter) mit wechselseitig verschlossenen Strömungskanälen beziehungsweise Filtertaschen möglich. Die entsprechenden Filtertaschen beziehungsweise Strömungskanäle können im Querschnitt entweder quadratisch, abwechselnd quadratisch und achteckig (sogenannte "Octosquare-Filter") sein oder eine andere beinahe beliebige Symmetrie aufweisen. Als Material für die Herstellung einer Filterwand kommt beispielsweise ein keramischer, ein glas-keramischer oder ein metallischer Werkstoff oder Werkstoffverbund in Frage, vorzugsweise SiC und Cordierit.The proposed wavy patterning of the upstream surface of a filter wall is common to all Types of filter structures (honeycomb filter) with mutually closed flow channels or filter bags possible. The corresponding filter pockets or flow channels may be either square, alternating square and octagonal in cross section (so-called "Octosquare filter") or have another almost arbitrary symmetry. As a material for the production of a filter wall is for example a ceramic, a glass-ceramic or a metallic material or composite material in question, preferably SiC and cordierite.
Je nach Ausgestaltung der Filterwand können ganz gezielt bestimmte thermomechanische und Filtrationseigenschaften eingestellt werden. Die Geometrie kann beispielsweise durch beidseitige wellenartige Erhebungen, durch eine insgesamt wellenartige Struktur der Filterwand, durch beidseits der Filterwand gegenüberliegende oder versetzt zueinander angeordnete Erhebungen erreicht werden.Depending on the design of the filter wall, specific thermomechanical and filtration properties can be set in a very specific manner. The geometry can be achieved for example by two-sided wave-like elevations, by a total wave-like structure of the filter wall, on both sides of the filter wall opposite or staggered elevations.
Zeichnungendrawings
Nachfolgend werden besonders bevorzugte Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:Hereinafter, particularly preferred embodiments of the present invention will be explained in more detail with reference to the accompanying drawings. In the drawing show:
Figur 1 eine schematische Darstellung einerFigure 1 is a schematic representation of a
Brennkraftmaschine mit einer Filtereinrichtung;Internal combustion engine with a filter device;
Figur 2 eine vergrößerte schematisierteFigure 2 is an enlarged schematic
Schnittdarstellung eines Bereichs einer Filterstruktur der Filtereinrichtung von Figur 1; Figur 3 einen Schnitt längs der Linie III-III von Figur 2 zur Darstellung einer Einströmtasche;Sectional view of a portion of a filter structure of the filter device of Figure 1; Figure 3 is a section along the line III-III of Figure 2 showing an inflow pocket;
Figur 4 eine Darstellung ähnlich Figur 3 einer alternativen Ausführungsform einerFigure 4 is a view similar to Figure 3 of an alternative embodiment of a
Einströmtasche;Einströmtasche;
Figur 5 eine Ansicht in Strömungsrichtung gesehen auf eine Filterstruktur, die mehrere Einströmtaschen entsprechend Figur 4 aufweist;Figure 5 is a view seen in the flow direction on a filter structure having a plurality of inflow pockets according to Figure 4;
Figur 6 einen Schnitt durch eine alternative Ausführungsform einer Filterwand;Figure 6 is a section through an alternative embodiment of a filter wall;
Figur 7 eine Darstellung ähnlich Figur 6 einer nochmals abgewandelten Ausführungsform; undFigure 7 is a view similar to Figure 6 of a further modified embodiment; and
Figur 8 eine Darstellung ähnlich Figur 6 einer nochmals abgewandelten Ausführungsform.Figure 8 is a view similar to Figure 6 of a further modified embodiment.
Beschreibung der AusführungsbeispieleDescription of the embodiments
In Figur 1 trägt eine Brennkraftmaschine das Bezugszeichen 10. Die Abgase werden über ein Abgasrohr 12 abgeleitet, in dem eine Filtereinrichtung 14 angeordnet ist. Mit dieser werden Rußpartikel aus dem im Abgasrohr 12 strömenden Abgas herausgefiltert. Dies ist insbesondere bei Diesel- Brennkraftmaschinen erforderlich, um gesetzliche Bestimmungen einhalten zu können.In Figure 1, an internal combustion engine carries the reference numeral 10. The exhaust gases are discharged via an exhaust pipe 12, in which a filter device 14 is arranged. With this, soot particles are filtered out of the exhaust gas flowing in the exhaust pipe 12. This is especially necessary for diesel engines to comply with legal requirements.
Die Filtereinrichtung 14 umfasst ein zylindrisches Gehäuse 16, in dem eine im vorliegenden Ausführungsbeispiel rotationssymmetrische, insgesamt ebenfalls zylindrische Filterstruktur 18 angeordnet ist. Wie aus Figur 2 hervorgeht, umfasst diese Filterstruktur 18 eine Vielzahl von wechselseitig verschlossenen Filterkanälen, durch die einströmseitige Filtertaschen 20 ("Einströmtaschen") und ausströmseitige Filtertaschen 21 ("Ausströmtaschen") gebildet werden. Deren Querschnittsgeometrie kann entweder quadratisch sein, was einem Standard-Wabenfilter entspricht, oder abwechselnd quadratisch und achteckig, was als "Octosquare-Filter" bezeichnet wird, oder sie können eine andere Symmetrie aufweisen.The filter device 14 comprises a cylindrical housing 16, in which a rotationally symmetrical overall cylindrical filter structure 18 is arranged in the present exemplary embodiment. As shown in Figure 2, this filter structure 18 comprises a plurality of mutually closed filter channels through which inflow-side filter pockets 20 ("inflow pockets") and outflow-side filter pockets 21 ("outflow pockets") are formed. Their cross-sectional geometry can either be square, which corresponds to a standard honeycomb filter, or alternatively square and octagonal, which is referred to as "Octosquare filter", or they can have a different symmetry.
Zwischen den Einströmtaschen 20 und den Ausströmtaschen 21 liegen seitliche Filterwände 22, welche eine stromaufwärts gelegene Oberfläche 24 und eine stromabwärts gelegene Oberfläche 26 aufweisen. Der wechselseitige Verschluss der Filtertaschen 20 wird im Bereich der stromaufwärtigen Stirnseite 28 der Filterstruktur 18 durch entsprechendeBetween the inflow pockets 20 and the outflow pockets 21 are lateral filter walls 22 which have an upstream surface 24 and a downstream surface 26. The mutual closure of the filter pockets 20 is in the region of the upstream end face 28 of the filter structure 18 by appropriate
Stirnwände 32, im Bereich der stromabwärtigen Stirnseite 30 durch entsprechende Stirnwände 34 bewirkt.End walls 32, in the region of the downstream end face 30 by corresponding end walls 34 causes.
In Figur 3 ist eine Einströmtasche 20, die eine quadratische Querschnittsgeometrie aufweist, vergrößert dargestellt: Man erkennt, dass die stromaufwärts gelegene Oberfläche 24 einer Filterwand 22 wellenartige Erhebungen 36 aufweist, wohingegen die stromabwärts gelegene Oberfläche 26 einer Filterwand 22 im Wesentlichen eben ist. Die wellenartigen Erhebungen 36 verlaufen dabei imIn FIG. 3, an inflow pocket 20 having a square cross-sectional geometry is shown enlarged: It can be seen that the upstream surface 24 of a filter wall 22 has wave-like elevations 36, whereas the downstream face 26 of a filter wall 22 is substantially planar. The wave-like elevations 36 run in the
Wesentlichen und insgesamt parallel zur stromaufwärts von der Filterwand 22 gelegenen Haupt-Strömungsrichtung, die in Figur 3 senkrecht zur Blattebene verläuft und in Figur 2 durch eine strichpunktierte Linie 38 dargestellt ist. Die Querschnittsgeometrie der einzelnen wellenartigen Erhebungen 36 ist bei dem in Figur 3 dargestellten Ausführungsbeispiel dreieckig. Denkbar ist aber auch eine sinusförmige oder eine vier- oder rechteckige Kontur der wellenartigen Erhebungen. Die wellenartigen Erhebungen 36 sind in regelmäßigen Abständen voneinander angeordnet, wodurch sich eine Periodelänge P ergibt, die vorzugsweise im Bereich von cirka 0,1 mm bis cirka 0,5 mm liegt. Die Höhe ("Amplitude" A) der wellenartigen Erhebungen liegt im Bereich von cirka 0,1 mm bis 0,5 mm. Die Amplitude ergibt sich als Differenz der maximalen Wandstärke S2 zur minimalen Wandstärke Si.Substantially and generally parallel to the upstream of the filter wall 22 located main flow direction, which is perpendicular to the sheet plane in Figure 3 and shown in Figure 2 by a dashed line 38. The cross-sectional geometry of the individual wave-like elevations 36 is triangular in the embodiment shown in FIG. It is also conceivable, however, a sinusoidal or a four- or rectangular contour of the wave-like elevations. The wave-like projections 36 are arranged at regular intervals from each other, resulting in a period length P, which is preferably in the range of about 0.1 mm to about 0.5 mm. The height ("amplitude" A) of the wave-like elevations is in the range of about 0.1 mm to 0.5 mm. The amplitude results as a difference of the maximum wall thickness S 2 to the minimum wall thickness Si.
Nachfolgend werden weitere Ausführungsformen von Filterwänden 22 erläutert. Dabei gilt, dass solche Elemente und Bereiche, welche äquivalente Funktionen zu bereits gezeigten und beschriebenen Elementen und Bereichen aufweisen, die gleichen Bezugszeichen tragen.Hereinafter, further embodiments of filter walls 22 will be explained. It is true that such elements and areas, which have equivalent functions to already shown and described elements and areas bear the same reference numerals.
Figur 4 zeigt eine alternative Ausführungsform einer Einströmtasche 20. Bei dieser sind die eine konstante Wandstärke s aufweisenden Filterwände 22 einer Einströmtasche 20 insgesamt wellenartig ausgebildet. Auf diese Weise finden sich wellenartige Erhebungen 36 nicht nur auf der stromaufwärts gelegenen Oberfläche 24 einerFIG. 4 shows an alternative embodiment of an inflow pocket 20. In the case of this, the filter walls 22, which have a constant wall thickness s, of an inflow pocket 20 are formed in a wave-like manner overall. In this way, wave-like protrusions 36 are found not only on the upstream surface 24 of a
Filterwand 22, sondern auch auf der stromabwärts gelegenen Oberfläche 26 einer Filterwand 22 sind entsprechende wellenartige Erhebungen 40 vorhanden. Letztere verlaufen in Richtung der stromabwärts von einer Filterwand 22 vorhandenen Haupt-Strömungsrichtung, die in Figur 2 durch eine strichpunktierte Linie 42 dargestellt ist. Mit einer Mehrzahl von Einströmtaschen 20, wie sie in Figur 4 gezeigt ist, kann die in Figur 5 dargestellte Filterstruktur 18 gebildet werden.Filter wall 22, but also on the downstream surface 26 of a filter wall 22 corresponding wave-like projections 40 are present. The latter extend in the direction of the main flow direction present downstream of a filter wall 22, which is illustrated by a dot-dash line 42 in FIG. With a plurality of inflow pockets 20, as shown in FIG. 4, the filter structure 18 shown in FIG. 5 can be formed.
Weitere mögliche Ausgestaltungen von Filterwänden 22 sind in den Figuren 6 bis 8 dargestellt. Anders als bei den in den Figuren 4 und 5 gezeigten Filterwänden 22 ist die in Figur 6 gezeigte Filterwand 22 nicht insgesamt wellenförmig ausgebildet, sondern nur deren stromaufwärts gelegene Oberfläche 24 und deren stromabwärts gelegene Oberfläche 26. Dabei haben die wellenartigen Erhebungen 36 auf der stromaufwärts gelegenen Oberfläche 24 die gleiche Periode wie die wellenartigen Erhebungen 40 auf der stromabwärts gelegenen Oberfläche 26. Die wellenartigen Erhebungen 36 und 40 liegen sich ziemlich genau gegenüber, so dass dort die maximale Wandstärke S2 gebildet wird. Entsprechendes gilt für die "Wellentäler" 42 und 44, wo die minimale Wandstärke Si gebildet wird. Man könnte also auch sagen, dass die Phasenlagen der wellenartigen Erhebungen 36 und 40 in etwa identisch sind.Further possible embodiments of filter walls 22 are shown in FIGS. 6 to 8. Unlike the filter walls 22 shown in FIGS. 4 and 5, the filter wall 22 shown in FIG. 6 is not formed as a whole wave-shaped, but only upstream thereof Surface 24 and its downstream surface 26. Here, the wave-like projections 36 on the upstream surface 24 have the same period as the wave-like projections 40 on the downstream surface 26. The wave-like projections 36 and 40 are fairly close to each other, so that there the maximum wall thickness S 2 is formed. The same applies to the "wave troughs" 42 and 44, where the minimum wall thickness Si is formed. One could also say that the phase positions of the wave-like elevations 36 and 40 are approximately identical.
Im Gegensatz hierzu ist bei der Filterwand 22 von Figur 7 die Phasenlage der wellenartigen Erhebungen 40 um eine Viertelperiode gegenüber den wellenartigen Erhebungen 36 verschoben. Bei der Filterwand 22 von Figur 8 sind die wellenartigen Erhebungen 40 gegenüber den wellenartigen Erhebungen 36 sogar um eine halbe Periode verschoben. Nicht dargestellt, jedoch ebenso möglich ist es, dass die wellenartigen Erhebungen der stromabwärts gelegenen Oberfläche eine andere Periode aufweist als die wellenartigen Erhebungen auf der stromaufwärts gelegenen Oberfläche. Auf diese Weise lässt sich die minimale Wandstärke Si und die maximale Wandstärke S2 variieren, so dass die Filter- und Fertigkeitseigenschaften einer Filterwand genau eingestellt werden können.In contrast, in the filter wall 22 of FIG. 7, the phase position of the wave-like elevations 40 is shifted by a quarter of a period relative to the wave-like elevations 36. In the filter wall 22 of Figure 8, the wave-like projections 40 are shifted from the wave-like projections 36 even by half a period. Not shown, however, it is also possible that the undulations of the downstream surface have a different period than the undulations on the upstream surface. In this way, the minimum wall thickness Si and the maximum wall thickness S 2 can be varied, so that the filter and skill properties of a filter wall can be precisely adjusted.
Die oben gezeigten Filterstrukturen 18 mit den Filterwänden 22 können sehr einfach durch Extrudieren eines keramischen, glas-keramischen, oder metallischen Werkstoffs oderThe filter structures 18 shown above with the filter walls 22 can be very easily by extruding a ceramic, glass-ceramic, or metallic material or
WerkstoffVerbunds hergestellt werden. Besonders geeignet sind Werkstoffe auf Basis von SiC und Cordierit. Hierzu werden bei der Extrusion des Rohmaterials Werkzeuge verwendet, durch die die Filterwände 22 entsprechend geformt werden. Bei einer anschließenden Sinterung verändert sich diese Form nicht oder nur unwesentlich. Vorzugsweise nach dem Sintern kann auf die Filterstruktur 18, insbesondere auf die stromaufwärts gelegene Oberfläche 24, eine katalytische Beschichtung (nicht dargestellt) aufgebracht werden, welche beispielsweise bei einer Regenerierung der Filterstruktur 18 die hierfür erforderliche Temperatur senkt. MaterialVerbunds are produced. Particularly suitable materials based on SiC and cordierite. For this purpose, in the extrusion of the raw material tools are used, through which the filter walls 22 are shaped accordingly. In a subsequent sintering This form does not change or only marginally. Preferably, after sintering, a catalytic coating (not shown) may be applied to the filter structure 18, particularly the upstream surface 24, which, for example, reduces the temperature required for regeneration of the filter structure 18.

Claims

Ansprüche claims
1. Filtereinrichtung (14), insbesondere Rußpartikelfilter für ein Abgassystem einer Brennkraftmaschine (10) , mit einer Filterstruktur (18), welche mindestens eine Filterwand (22) umfasst, an deren stromaufwärts gelegener Oberfläche (24) herausgefilterte Partikel abgeschieden werden, dadurch gekennzeichnet, dass mindestens die stromaufwärts gelegene Oberfläche (24) der Filterwand (22) wenigstens bereichsweise wellenartige Erhebungen (36) aufweist, welche wenigstens in etwa parallel zu einer stromaufwärtigen Haupt-Strömungsrichtung (38) verlaufen.1. Filter device (14), in particular soot particle filter for an exhaust system of an internal combustion engine (10), having a filter structure (18) which comprises at least one filter wall (22), on whose upstream surface (24) filtered-out particles are deposited, characterized that at least the upstream surface (24) of the filter wall (22) at least partially wave-like elevations (36) which extend at least approximately parallel to an upstream main flow direction (38).
2. Filtereinrichtung (14) nach Anspruch 1, dadurch gekennzeichnet, dass auch die stromabwärts gelegene Oberfläche (26) der Filterwand (22) wenigstens bereichsweise Erhebungen (40) aufweist.2. Filter device (14) according to claim 1, characterized in that the downstream surface (26) of the filter wall (22) at least partially elevations (40).
3. Filtereinrichtung (14) nach Anspruch 2, dadurch gekennzeichnet, dass auch die Erhebungen (40) der stromabwärts gelegenen Oberfläche (26) ebenfalls wenigstens bereichsweise wellenartig sind und wenigstens in etwa parallel zu einer stromabwärtigen Haupt-Strömungsrichtung (42) verlaufen. 3. Filter device (14) according to claim 2, characterized in that the elevations (40) of the downstream surface (26) are also at least partially wave-like and extend at least approximately parallel to a downstream main flow direction (42).
4. Filtereinrichtung (14) nach Anspruch 3, dadurch gekennzeichnet, dass die Filterwand (22) insgesamt wellenartig ausgebildet ist.4. Filter device (14) according to claim 3, characterized in that the filter wall (22) is formed as a whole wave-like.
5. Filtereinrichtung (14) nach Anspruch 3, dadurch gekennzeichnet, dass die wellenartigen Erhebungen (40) der stromabwärts gelegenen Oberfläche (26) die gleiche Periode (P) aufweisen wie die wellenartigen Erhebungen (36) auf der stromaufwärts gelegenen Oberfläche (24) und gegenüber diesen phasenverschoben sind.The filter device (14) according to claim 3, characterized in that the undulations (40) of the downstream surface (26) have the same period (P) as the undulations (36) on the upstream surface (24) and out of phase with these.
6. Filtereinrichtung (14) nach Anspruch 3, dadurch gekennzeichnet, dass die wellenartigen Erhebungen (40) der stromabwärts gelegenen Oberfläche (26) die gleiche Periode (P) aufweisen wie die wellenartigen Erhebungen (36) auf der stromaufwärts gelegenen Oberfläche (24) und diesen wenigstens in etwa gegenüber liegend angeordnet sind.6. Filter device (14) according to claim 3, characterized in that the wave-like protrusions (40) of the downstream surface (26) have the same period (P) as the wave-like protrusions (36) on the upstream surface (24) and These are arranged at least approximately opposite.
7. Filtereinrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Filterwand (22) durch Extrudieren hergestellt ist.7. Filter device (14) according to any one of the preceding claims, characterized in that the filter wall (22) is made by extrusion.
8. Filtereinrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wellenartigen8. Filter device (14) according to one of the preceding claims, characterized in that the wave-like
Erhebungen (36, 42) eine sinusförmige, dreieckige, oder vier-, vorzugsweise rechteckige Kontur aufweisen.Elevations (36, 42) have a sinusoidal, triangular, or four, preferably rectangular contour.
9. Filtereinrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Amplitudenhöhe (A) der wellenartigen Erhebungen (36, 40) im Bereich von ca. 0,1 mm bis ca. 0,5 mm, vorzugsweise im Bereich von ca. 0,1 mm bis ca. 0,3 mm, die Periodenlänge (P) im Bereich von ca. 0,1 bis ca. 0,5 mm, und/oder das Verhältnis von Amplitudenhöhe (A) zu Periodenlänge (P) im Bereich von ca. 0,2 bis ca. 3,0 liegt. 9. Filter device (14) according to one of the preceding claims, characterized in that the amplitude height (A) of the wave-like elevations (36, 40) in the range of about 0.1 mm to about 0.5 mm, preferably in the range of about 0.1 mm to about 0.3 mm, the period length (P) in the range of about 0.1 to about 0.5 mm, and / or the ratio of amplitude height (A) to period length (P) is in the range of about 0.2 to about 3.0.
10. Filtereinrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens die stromaufwärts gelegene Oberfläche (24) einer Filterwand (22) eine katalytische Beschichtung umfasst. 10. Filter device (14) according to one of the preceding claims, characterized in that at least the upstream surface (24) of a filter wall (22) comprises a catalytic coating.
EP06708525A 2005-04-27 2006-02-27 Filter device, especially soot particle filter, for an exhaust system of an internal combustion engine Withdrawn EP1879682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510019464 DE102005019464A1 (en) 2005-04-27 2005-04-27 Soot filter for diesel engine exhaust system, has filter walls with catalytically-coated wavy surfaces made by extrusion to specified dimensions and geometric profile
PCT/EP2006/060289 WO2006114345A1 (en) 2005-04-27 2006-02-27 Filter device, especially soot particle filter, for an exhaust system of an internal combustion engine

Publications (1)

Publication Number Publication Date
EP1879682A1 true EP1879682A1 (en) 2008-01-23

Family

ID=36169089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06708525A Withdrawn EP1879682A1 (en) 2005-04-27 2006-02-27 Filter device, especially soot particle filter, for an exhaust system of an internal combustion engine

Country Status (3)

Country Link
EP (1) EP1879682A1 (en)
DE (1) DE102005019464A1 (en)
WO (1) WO2006114345A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912069B1 (en) * 2007-02-05 2011-04-01 Saint Gobain Ct Recherches FILTRATION STRUCTURE OF AN ONDULATED WALL GAS
DE102008003658A1 (en) 2008-01-09 2009-07-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Honeycomb body with structured sheet metal material
JP2010221185A (en) * 2009-03-25 2010-10-07 Ngk Insulators Ltd Honeycomb filter and method for manufacturing honeycomb filter
JP6802075B2 (en) * 2017-01-20 2020-12-16 日本碍子株式会社 Honeycomb structure
JP6406480B1 (en) * 2017-03-01 2018-10-17 株式会社村田製作所 Filtration filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937809A1 (en) * 1989-11-14 1991-05-16 Schwaebische Huettenwerke Gmbh FILTER FOR SEPARATING IMPURITIES
DK98993D0 (en) * 1993-09-01 1993-09-01 Per Stobbe DUST FILTER FOR HOT GASES
KR100500223B1 (en) * 1999-08-30 2005-07-11 니뽄 가이시 가부시키가이샤 Corrugated wall honeycomb structure and production method thereof
DE102004001718A1 (en) * 2004-01-13 2005-08-04 Robert Bosch Gmbh Infinity filter for particle filtration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006114345A1 *

Also Published As

Publication number Publication date
DE102005019464A1 (en) 2006-11-02
WO2006114345A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
EP2027373B1 (en) Filter device, especially for an exhaust system of an internal combustion engine
EP1294466B2 (en) Particle trap for separating particles from the flow of a liquid, method for separating particles from the flow of a liquid and use of said particle trap
DE102014004712A1 (en) Wall flow type exhaust gas purification filter
DE102015011432B4 (en) honeycombs
DE102016010594A1 (en) Locked honeycomb structure and closed honeycomb segment
DE102016010596A1 (en) Locked honeycomb structure and closed honeycomb segment
EP1753520B1 (en) Cleaning insert for exhaust emission control systems in particular for particle filters
EP1879682A1 (en) Filter device, especially soot particle filter, for an exhaust system of an internal combustion engine
DE112016001431T5 (en) exhaust gas purifying filter
DE102017002529A1 (en) honeycombs
DE112017006597B4 (en) Porous honeycomb filter
EP1787705A1 (en) Filtering device, especially for an exhaust gas system of a Diesel internal combustion engine
WO2013182327A1 (en) Particulate filter designed as a partial filter
WO2005113113A1 (en) Filter device, particularly for an exhaust gas system of an internal combustion engine
DE102018216841B4 (en) Particle filter
EP1751408B1 (en) Exhaust particulate filter
DE102018204665A1 (en) hONEYCOMB STRUCTURE
DE102006021737B4 (en) Filter element for a soot particle filter of an internal combustion engine
WO2008025600A1 (en) Filter unit, in particular for the exhaust gas system of an internal combustion engine
DE102006001387A1 (en) Filter device for diesel internal-combustion engine, has walls limiting inlet channels and provided with coating of fiber-containing material, where size of area limited in inlet channels of coating is equal to size of area limited by walls
DE102006020725A1 (en) Filter element for filtering exhaust gases from a diesel engine comprises a first group of channels having a hexagon cross-sectional shape and a second group of channels delimited by four channels of the first group
DE102006016890A1 (en) Element for filtering exhaust gases from diesel engine comprises one channel of first group and two channels of second group having cross-sectional areas forming parallelogram with four corners and two pairs of adjacent sides
EP2134443A1 (en) Ceramic shaped body for a diesel particulate filter
WO2004035175A2 (en) Filter assembly for removing particles from a liquid and/or gaseous medium
DE102006019048A1 (en) Filter unit for use in exhaust gas system of diesel internal combustion engine, has two groups of channels separated by filter walls, where cross-section of channels of one group is in form of star

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20080515

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090707