EP1865080A1 - Verfahren zum Einbringen von Druckeigenspannungen in eine Welle, insbesondere in Wellenkerben - Google Patents

Verfahren zum Einbringen von Druckeigenspannungen in eine Welle, insbesondere in Wellenkerben Download PDF

Info

Publication number
EP1865080A1
EP1865080A1 EP06011627A EP06011627A EP1865080A1 EP 1865080 A1 EP1865080 A1 EP 1865080A1 EP 06011627 A EP06011627 A EP 06011627A EP 06011627 A EP06011627 A EP 06011627A EP 1865080 A1 EP1865080 A1 EP 1865080A1
Authority
EP
European Patent Office
Prior art keywords
shaft
quenching
diameter transitions
diameter
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06011627A
Other languages
English (en)
French (fr)
Inventor
Michael Brändle
Thorsten-Ulf Kern
Christoph Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06011627A priority Critical patent/EP1865080A1/de
Priority to CN2007800208277A priority patent/CN101460639B/zh
Priority to EP07712293A priority patent/EP2027299A1/de
Priority to PCT/EP2007/051744 priority patent/WO2007141055A1/de
Priority to JP2009513613A priority patent/JP5377297B2/ja
Priority to US12/227,926 priority patent/US20090145527A1/en
Publication of EP1865080A1 publication Critical patent/EP1865080A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts

Definitions

  • the invention relates to a method for producing shafts, which are designed as stepped shafts with successive stages of different diameters, wherein diameter transitions or notch regions are arranged between respectively adjacent stages.
  • Such waves are known and are e.g. in turbomachines, for example, steam turbines, which have a low pressure part (ND) used, so that they can also be referred to as ND waves.
  • the shaft carries rotor blades which, together with associated guide vanes, form a blade grid through which a flow medium, for example steam, flows.
  • the shaft in the low-pressure part of the turbomachine, the shaft consists of a base material with cold-tough properties, for example 2-3.5 NiCrMoV steels are used to produce the ND shaft.
  • the flow medium acts in part as a corrosive medium on the components of the turbomachine, for example on discs in disc rotors or on shallow areas of the shaft, in particular the waves of low-pressure turbine parts. Due to the influence of these corrosive media, the fatigue strength of the base material can be significantly reduced. A reduction in the fatigue strength of the base material, for example, the waves in low-pressure turbine parts, but disadvantageously also causes a reduction in the life of the shaft.
  • the invention has for its object to improve a method for producing waves of the type mentioned by simple means to the extent that the resistance to component failure due to corrosion and vibration stress is significantly improved.
  • the object is achieved in that the diameter transitions or notch regions are quenched controlled in the context of a heat treatment or after a heating of the shaft.
  • the wave is protected, for example, by wet steam, especially in their wave notches before a fatigue reduction.
  • a protective layer according to the invention a method for the targeted increase of compressive residual stresses in diameter transitions or notch areas performed.
  • the diameter transitions or notch regions of the shaft after a last tempering treatment for example a Heat treatment tempered controlled at tempering temperature and / or below the tempering temperature.
  • a Heat treatment tempered controlled at tempering temperature and / or below the tempering temperature for example a Heat treatment tempered controlled at tempering temperature and / or below the tempering temperature.
  • the diameter transitions or notch regions for quenching are sprayed specifically with a cooling liquid or a quenching medium.
  • the shaft is transferred as a whole in a dip.
  • any suitable medium can be selected, preferably water, but also air-water mixtures, suitable polymers or oil or emulsions can be used as a cooling liquid or quenching medium.
  • the compensation contour is removed in the production of the final final contour after quenching.
  • the intended allowance still provides sufficiently high compressive residual stresses in the shaft surface, especially in the transition radii (diameter transitions or notch regions), with a defined depth effect.
  • the diameter transitions or notch regions have a radius with an amount R of 25 to 50 mm in their compensation contour.
  • the radii (diameter transitions or notch areas) of the compensation contour of the shaft are therefore designed specifically with a defined dimension as a function of the compressive residual stresses and depth distribution required in the finished contour.
  • Fig. 1 shows a section of a shaft 1, which differs as a stepped shaft with successive stages 2 Diameter D 1 to D4 based on a central axis X is executed, with four stages 2 are exemplified.
  • the illustrated, exemplary shaft 1 is part of a low-pressure part of a turbomachine, for example a low-pressure turbine part of a steam turbine.
  • the shaft 1 is made of, for example, a material having cold-tough properties, for example, 2-3.5 NiCrMoV steels are used to make the ND shaft.
  • the waves can also be made of other materials or material combinations.
  • diameter transitions 3 or kerf areas are arranged between each two adjacent stages 2 .
  • the diameter transitions 3 are curved relative to the central axis X slightly in the direction of the central axis X or convex with a radius R.
  • these and the notch regions are controlled quenched in a heat treatment or after heating the shaft.
  • the diameter transitions 3 or notch regions are preferably quenched in a controlled manner after a final tempering treatment at tempering temperature.
  • a subsequent, separate heating and quenching after tempering as a separate process step is of course also possible.
  • a cooling liquid or a quenching medium is sprayed onto the diameter transitions 3 for controlled quenching after the last tempering treatment at tempering temperature, which is represented by the fan-shaped spraying jets 4.
  • a cooling liquid or quenching medium for quenching any suitable medium can be selected, preferably Water, but also air-water mixtures, suitable polymers or oil or emulsions can be used.
  • the wave 1 can also be immersed as a whole.
  • the shaft 1 is designed with a heat treatment contour 6.
  • a finished contour dashed line 7, exaggerated for clarity
  • the allowance 8 of the shaft 1 in the heat treatment contour 6 for the tempering heat treatment is thus increased by a maximum of 10 to 40 mm, preferably in the respective shaft radius r or the respective diameter transition 3 with respect to the final end contour 7. This ensures that after quenching (spraying or dipping) a possible distortion of the shaft 1 can still be compensated.
  • the oversizes can be adapted, or mechanical processing can also take place if a separate heat treatment for the generation of (pressure) residual stresses takes place after the tempering treatment from tempering.
  • this maximum allowance 8 still maintains sufficient residual compressive stresses in the shaft surface and in particular in the transition radii or diameter transitions 3 with a defined depth effect.
  • the radii R have an amount of R approximately equal to 25 to 50 mm.
  • the respective transitions from the diameter transitions 3 to the respective stages 2 are shown in a sharply outlined manner in the exemplary embodiment and, of course, are processed accordingly at least to produce the final end contour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen von Wellen (1), die als gestufte Wellen mit aufeinander folgenden Stufen (2) unterschiedlichen Durchmessers (D) ausgeführt sind. Zwischen jeweils zwei benachbarten Stufen (2) sind Durchmesserübergänge (3) bzw. Kerbbereiche angeordnet. Die Durchmesserübergänge (3) bzw. Kerbbereiche werden im Rahmen einer Wärmebehandlung der Welle (1) kontrolliert abgeschreckt.

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen von Wellen, die als gestufte Wellen mit aufeinander folgenden Stufen unterschiedlichen Durchmessers ausgeführt sind, wobei zwischen jeweils benachbarten Stufen Durchmesserübergänge bzw. Kerbbereiche angeordnet sind.
  • Derartige Wellen sind bekannt und werden z.B. in Strömungsmaschinen, beispielsweise Dampfturbinen, die einen Niederdruckteil (ND) aufweisen, eingesetzt, so dass diese auch als ND-Wellen bezeichnet werden können. Die Welle trägt Laufschaufeln, die zusammen mit zugeordneten Leitschaufeln ein Schaufelgitter bilden, durch die ein Strömungsmedium beispielsweise Dampf strömt.
  • Insbesondere im Niederdruckteil der Strömungsmaschine besteht die Welle aus einem Grundwerkstoff mit kaltzähen Eigenschaften, beispielsweise werden 2-3,5-NiCrMoV-Stähle zur Herstellung der ND-Welle verwendet.
  • Das Strömungsmedium wirkt zum Teil als korrosives Medium auf die Bauteile der Strömungsmaschine beispielsweise auf Scheiben in Scheibenläufern oder auf oberflächennahe Bereiche der Welle, insbesondere der Wellen von Niederdruckteilturbinen. Durch den Einfluss dieser korrosiven Medien kann die Dauerfestigkeit des Grundwerkstoffs erheblich verringert werden. Eine Verringerung der Dauerfestigkeit des Grundwerkstoffs, beispielsweise der Wellen in Niederdruckteilturbinen, bewirkt aber nachteiligerweise gleichfalls eine Verringerung der Lebensdauer der Welle.
  • Um dieses Problem zu lösen ist es bekannt, Schwingfestigkeitsuntersuchungen unter dem Einfluss korrosiver Medien durchzuführen, wobei entsprechende Auslegungsdaten zur Anwendung in der Berechnung (abgesenkt gegenüber Luftumgebung) erstellt werden. Bekannt ist aber auch, Betriebsspannungen zu reduzieren, indem beispielsweise Druckeigenspannungen in Niederdruckklauen und Nutbereichen durch Rollieren oder Kugeldruckstrahlen im fertig bearbeiteten Zustand bzw. bei der finalen Endkontur der Welle eingebracht werden. Möglich ist aber auch, Druckspannungen im kerbfreien Bereich der Welle durch eine geeignete Wärmebehandlung einzubringen. Bei der Herstellung der Wellen müssen höchste Toleranzen eingehalten werden, wobei die Lebensdauer der Bauteile, insbesondere der Wellen, durch von vorhandenen Durchmesserübergängen bzw. Kerbbereichen ausgehenden Rissen reduziert werden kann. Die Rissempfindlichkeit, insbesondere an Durchmesserübergängen bzw. Kerbbereichen wirkt sich höchst nachteilig auf die Lebensdauer der Wellen aus (Bauteilversagen).
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Herstellen von Wellen der eingangs genannten Art mit einfachen Mitteln dahingehend zu verbessern, dass die Beständigkeit gegenüber Bauteilversagen in Folge Korrosion und Schwingungsbeanspruchung erheblich verbessert ist.
  • Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Durchmesserübergänge bzw. Kerbbereiche im Rahmen einer Wärmebehandlung bzw. nach einer Erwärmung der Welle kontrolliert abgeschreckt werden.
  • Damit wird die Welle, insbesondere in ihren Wellenkerben vor einer Dauerfestigkeitsreduzierung beispielsweise durch Nassdampf geschützt. Hierbei wird vorteilhaft neben dem Aufbringen von z.B. einer Schutzschicht erfindungsgemäß ein Verfahren zur gezielten Erhöhung der Druckeigenspannungen in Durchmesserübergängen bzw. Kerbbereichen durchgeführt.
  • Zweckmäßig im Sinne der Erfindung ist vorgesehen, dass die Durchmesserübergänge bzw. Kerbbereiche der Welle nach einer letzten Anlassbehandlung beispielsweise einer Vergütungswärmebehandlung bei Anlasstemperatur und/oder unterhalb der Anlasstemperatur kontrolliert abgeschreckt werden. Hierzu ist günstigerweise vorgesehen, dass die Durchmesserübergänge bzw. Kerbbereiche zum Abschrecken gezielt mit einer Kühlflüssigkeit bzw. einem Abschreckmedium besprüht werden. Zum kontrollierten Abschrecken kann aber auch vorgesehen werden, dass die Welle als Ganzes in ein Tauchbad überführt wird.
  • Es kann auch nach der Anlassbehandlung der Vergütung eine separate Wärmebehandlung durchgeführt werden, mit dem alleinigen Ziel der Einbringung von Druckeigenspannungen. Um die erzielten mechanischen Eigenschaften nicht zu beeinflussen, wird dabei zweckmäßiger Weise eine Temperatur gewählt, die einen ausreichenden Abstand zur letzten Wärmebehandlungstemperatur hat, aber noch ausreichend hoch ist, um den gewünschten Effekt zu erzielen.
  • Als Kühlflüssigkeit bzw. Abschreckmedium zum Abschrecken kann jedes geeignete Medium gewählt werden, vorzugsweise Wasser, wobei aber auch Luft-Wasser-Gemische, geeignete Polymere oder Ö1 bzw. Emulsionen als Kühlflüssigkeit bzw. Abschreckmedium verwendet werden können.
  • Um zu gewährleisten, dass nach dem Abschrecken (Sprühen oder Tauchen) ein möglicher Verzug des Bauteils bzw. der Welle ausgeglichen werden kann, ist es günstig im Sinne der Erfindung, wenn die Durchmesserübergänge bzw. die Kerbbereiche in einer Vergütungskontur mit einem, bezogen auf eine finale Endkontur, versehenen Aufmaß hergestellt sind, wobei die Vergütungskontur bei der Herstellung der finalen Endkontur nach dem Abschrecken entfernt wird. Nach der Fertigbearbeitung bzw. der Herstellung der finalen Endkontur bleiben durch das vorgesehene Aufmaß noch ausreichend hohe Druckeigenspannungen in der Wellenoberfläche speziell in den Übergangsradien (Durchmesserübergänge bzw. Kerbbereiche) mit einer definierten Tiefenwirkung erhalten.
  • Zweckmäßig im Sinne der Erfindung ist, wenn das Aufmaß bezogen auf die endgültige Kontur der Welle beim finalen Einsatz einen Betrag von maximal 10 bis 40 mm aufweist.
  • Vorteilhaft ist vorgesehen, dass die Durchmesserübergänge bzw. Kerbbereiche bei ihrer Vergütungskontur einen Radius mit einem Betrag R von 25 bis 50 mm aufweisen. Die Radien (Durchmesserübergänge bzw. Kerbbereiche) der Vergütungskontur der Welle werden demnach speziell mit einem definierten Maß als Funktion der in der Fertigkontur benötigten Druckeigenspannungen und Tiefenverteilung ausgeführt.
  • Insgesamt wird mit dem erfindungsgemäßen Verfahren eine Verringerung der örtlichen Spannungsbelastung bei Stillstand und im Betrieb der Welle erreicht. Zudem wird eine Rissempfindlichkeit an Radien bzw. Durchmesserübergängen reduziert, was zu einer verbesserten bzw. verlängerten Lebensdauer der Welle bzw. des erfindungsgemäß behandelten Bauteils führt. Durch die gezielte Einstellung von Druckeigenspannungen von -100 bis -400 MPa an der Wellenoberfläche, insbesondere in den Durchmesserübergängen bzw. Übergangsradien in Folge des gezielten Abschreckens der Welle, können auch größere oberflächennahe Fehlstellen im behandelten Bauteil bzw. der Welle zulässig sein, so dass die Welle insgesamt preiswerter herzustellen ist, da enge Toleranzen für mögliche Fehlstellen aus dem Herstellungsprozess nicht mehr unbedingt einzuhalten sind.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen und der folgenden Figurenbeschreibung offenbart. Es zeigt die einzige
  • Fig. 1
    eine Prinzipdarstellung einer Welle für einen Niederdruckteil einer Strömungsmaschine bzw. einer Dampfturbine.
  • Fig. 1 zeigt einen Ausschnitt einer Welle 1, die als gestufte Welle mit aufeinander folgenden Stufen 2 unterschiedlichen Durchmessers D 1 bis D4 bezogen auf eine Mittelachse X ausgeführt ist, wobei beispielhaft vier Stufen 2 dargestellt sind. Die dargestellte, beispielhafte Welle 1 ist Bestandteil eines Niederdruckteils einer Strömungsmaschine beispielsweise einer Niederdruckteilturbine einer Dampfturbine. Die Welle 1 ist beispielsweise aus einem Werkstoff mit kaltzähen Eigenschaften hergestellt z.B. werden 2-3,5-NiCrMoV-Stähle zur Herstellung der ND-Welle verwendet. Natürlich können die Wellen aber auch aus anderen Werkstoffen oder Werkstoffkombinationen hergestellt sein.
  • Zwischen jeweils zwei benachbarten Stufen 2 sind Durchmesserübergänge 3 bzw. Kerbbereiche angeordnet. Die Durchmesserübergänge 3 sind bezogen auf die Mittelachse X leicht in Richtung zur Mittelachse X gewölbt bzw. konvex mit einem Radius R ausgeführt.
  • Um eine gezielte Einstellung von Druckeigenspannungen von -100 bis -400 MPa an der Wellenoberfläche, insbesondere an den Durchmesserübergängen 3 bzw. den Übergangsradien zu erreichen, werden diese bzw. die Kerbbereiche im Rahmen einer Wärmebehandlung bzw. nach Erwärmung der Welle kontrolliert abgeschreckt.
  • Bevorzugterweise werden die Durchmesserübergänge 3 bzw. Kerbbereiche nach einer letzten Anlassbehandlung bei Anlasstemperatur kontrolliert abgeschreckt. Eine nachfolgende, separate Erwärmung und Abschreckung nach dem Anlassen als separater Prozessschritt ist natürlich auch möglich.
  • Bei dem in Fig. 1 dargestellten Ausführungsbeispiel wird zur kontrollierten Abschreckung nach der letzten Anlassbehandlung bei Anlasstemperatur eine Kühlflüssigkeit bzw. ein Abschreckmedium auf die Durchmesserübergänge 3 aufgesprüht, was mittels der fächerförmigen Sprühstrahlen 4 dargestellt ist. Als Kühlflüssigkeit bzw. Abschreckmedium zum Abschrecken kann jedes geeignete Medium gewählt werden, vorzugsweise Wasser, wobei aber auch Luft-Wasser-Gemische, geeignete Polymere oder Ö1 bzw. Emulsionen eingesetzt werden können. Die Welle 1 kann aber auch als ganzes getaucht werden.
  • Bei dem in Fig. 1 prinzipiell dargestellten Ausführungsbeispiel ist die Welle 1 mit einer Wärmebehandlungskontur 6 ausgeführt. Bezogen auf eine Fertigkontur (gestrichelte Linie 7, zur Verdeutlichung übertrieben dargestellt), also einer fertig bearbeiteten Welle 1 mit ihrer zum Einbau in den Niederdruckteil der Dampfturbine fertig bearbeiteten Finalkontur weist die Wärmebehandlungskontur 6 ein Aufmaß 8 von maximal 10 bis 40 mm im jeweiligen Wellenradius r1 bis r4 (r=D/2) auf.
  • Das Aufmaß 8 der Welle 1 in der Wärmebehandlungskontur 6 wird für die Vergütungswärmebehandlung (Anlassbehandlung) also gezielt um maximal 10 bis 40 mm bevorzugt im jeweiligen Wellenradius r bzw. dem jeweiligen Durchmesserübergang 3 gegenüber der finalen Endkontur 7 vergrößert. Damit ist gewährleistet, dass nach dem Abschrecken (Sprühen oder Tauchen) ein möglicher Verzug der Welle 1 noch ausgeglichen werden kann.
  • Es kann bei z.B. zweifacher Anlassbehandlung auch eine mechanische Bearbeitung durchgeführt werden. Hierbei können dann die Aufmaße angepasst werden, bzw. kann auch eine mechanische Bearbeitung erfolgen, wenn eine separate Wärmebehandlung zur Erzeugung von (Druck)Eigenspannungen im Anschluss an die Anlassbehandlung aus dem Vergüten erfolgt.
  • Nach der Fertigbearbeitung (Herstellung der finalen Endkontur) bleiben durch dieses maximale Aufmaß 8 noch ausreichend höhe Druckeigenspannungen in der Wellenoberfläche und speziell in den Übergangsradien bzw. Durchmesserübergängen 3 mit einer definierten Tiefenwirkung erhalten. In der Wärmebehandlungskontur 6 weisen die Radien R einen Betrag von R etwa gleich 25 bis 50 mm auf.
  • Die jeweiligen Übergänge von den Durchmesserübergängen 3 zu den jeweiligen Stufen 2 sind in dem beispielhaften Ausführungsbeispiel überzogen scharf dargestellt und werden selbstverständlich zumindest zur Herstellung der finalen Endkontur entsprechend bearbeitet.

Claims (7)

  1. Verfahren zum Herstellen von Wellen (1), die als gestufte Wellen mit aufeinander folgenden Stufen (2) unterschiedlichen Durchmessers (D) ausgeführt sind, wobei zwischen jeweils benachbarten Stufen (2) Durchmesserübergänge (3) bzw. Kerbbereiche angeordnet sind,
    dadurch gekennzeichnet , dass
    die Durchmesserübergänge (3) bzw. Kerbbereiche im Rahmen einer Wärmebehandlung der Welle (1) kontrolliert abgeschreckt werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Durchmesserübergänge (3) bzw. Kerbbereiche nach einer letzten Anlassbehandlung im Rahmen einer Vergütungswärmebehandlung kontrolliert abgeschreckt werden.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Durchmesserübergänge (3) bzw. Kerbbereiche zum Abschrecken gezielt mit einem Abschreckmedium besprüht werden.
  4. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Durchmesserübergänge (3) bzw. Kerbbereiche zum Abschrecken durch einen Tauchvorgang gekühlt werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Durchmesserübergänge (3) bzw. Kerbbereiche mit einem bezogen auf eine finale Endkontur (7) versehenen Aufmaß (8) hergestellt sind, wobei die Wärmebehandlungskontur (6) bei der Herstellung der finalen Endkontur (7) bzw. nach dem Abschrecken entfernt wird.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass
    das Aufmaß (8) bezogen auf die finale Endkontur (7) der Welle (1) beim finalen Einsatz einen Betrag von maximal 10 bis 40 mm aufweist.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Durchmesserübergänge (3) bzw. Kerbbereiche bei ihrer Vergütungskontur (6) einen Radius mit einem Betrag (R) von 25 bis 50 mm aufweisen.
EP06011627A 2006-06-06 2006-06-06 Verfahren zum Einbringen von Druckeigenspannungen in eine Welle, insbesondere in Wellenkerben Withdrawn EP1865080A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06011627A EP1865080A1 (de) 2006-06-06 2006-06-06 Verfahren zum Einbringen von Druckeigenspannungen in eine Welle, insbesondere in Wellenkerben
CN2007800208277A CN101460639B (zh) 2006-06-06 2007-02-23 用于将压力内应力加入到轴尤其轴沟槽中的方法
EP07712293A EP2027299A1 (de) 2006-06-06 2007-02-23 Verfahren zum einbringen von druckeigenspannungen in eine welle, insbesondere in wellenkerben
PCT/EP2007/051744 WO2007141055A1 (de) 2006-06-06 2007-02-23 Verfahren zum einbringen von druckeigenspannungen in eine welle, insbesondere in wellenkerben
JP2009513613A JP5377297B2 (ja) 2006-06-06 2007-02-23 シャフト段付部に圧縮残留応力を導入する方法
US12/227,926 US20090145527A1 (en) 2006-06-06 2007-02-23 Method of introducing residual compressive stresses into a shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06011627A EP1865080A1 (de) 2006-06-06 2006-06-06 Verfahren zum Einbringen von Druckeigenspannungen in eine Welle, insbesondere in Wellenkerben

Publications (1)

Publication Number Publication Date
EP1865080A1 true EP1865080A1 (de) 2007-12-12

Family

ID=36950407

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06011627A Withdrawn EP1865080A1 (de) 2006-06-06 2006-06-06 Verfahren zum Einbringen von Druckeigenspannungen in eine Welle, insbesondere in Wellenkerben
EP07712293A Withdrawn EP2027299A1 (de) 2006-06-06 2007-02-23 Verfahren zum einbringen von druckeigenspannungen in eine welle, insbesondere in wellenkerben

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07712293A Withdrawn EP2027299A1 (de) 2006-06-06 2007-02-23 Verfahren zum einbringen von druckeigenspannungen in eine welle, insbesondere in wellenkerben

Country Status (5)

Country Link
US (1) US20090145527A1 (de)
EP (2) EP1865080A1 (de)
JP (1) JP5377297B2 (de)
CN (1) CN101460639B (de)
WO (1) WO2007141055A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107955874B (zh) * 2017-11-22 2020-09-04 株洲市九洲传动机械设备有限公司 一种设有表面局部淬火过渡区的轴类零件及其机加工工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2209945A1 (de) * 1972-03-02 1973-09-13 Maschf Augsburg Nuernberg Ag Verfahren zur herstellung einer kurbelwelle und danach hergestellte kurbelwelle
DE2226530A1 (de) * 1972-05-31 1973-12-06 Aeg Elotherm Gmbh Verfahren zur induktionshaertung an gekroepften wellen
JPS55128537A (en) * 1979-03-28 1980-10-04 Japanese National Railways<Jnr> Heat treatment for enhancing fatigue strength and bending strength of shaft and knotched machine parts
JPS5964716A (ja) * 1982-10-02 1984-04-12 High Frequency Heattreat Co Ltd 焼入装置
EP0282822A1 (de) * 1987-03-16 1988-09-21 Siemens Aktiengesellschaft Verfahren zur Herstellung von Turbinenradscheiben mit örtlich hohen Druckeigenspannungen in der Nabenbohrung
JPH05148531A (ja) * 1991-11-25 1993-06-15 Toyota Motor Corp フランジ付ワーク用高周波焼入装置
JPH08120347A (ja) * 1994-10-24 1996-05-14 Matsui Seisakusho:Kk 駆動軸の製造方法
JP2002173711A (ja) * 2000-12-06 2002-06-21 Denki Kogyo Co Ltd クランクシャフトの高周波焼入冷却方法とその装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1207716B (de) * 1962-04-19 1965-12-23 Deutsche Edelstahlwerke Ag Kurbelwelle und Verfahren zu ihrer Haertung
JPS59116321A (ja) * 1982-12-22 1984-07-05 Nippon Steel Corp レ−ルあご下の耐破壊性改善の熱処理方法
US4497612A (en) * 1983-11-25 1985-02-05 General Electric Company Steam turbine wheel antirotation means
JPH02136052U (de) * 1989-04-17 1990-11-13
JPH09296258A (ja) * 1996-05-07 1997-11-18 Hitachi Ltd 耐熱鋼及び蒸気タービン用ロータシャフト
US5906691A (en) * 1996-07-02 1999-05-25 The Timken Company Induction hardened microalloy steel having enhanced fatigue strength properties
JP2000087135A (ja) * 1998-09-09 2000-03-28 High Frequency Heattreat Co Ltd 足付軸部材の誘導加熱焼入装置
UA56189C2 (uk) * 1999-04-20 2003-05-15 Микола Іванович Кобаско Спосіб гартування сталей

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2209945A1 (de) * 1972-03-02 1973-09-13 Maschf Augsburg Nuernberg Ag Verfahren zur herstellung einer kurbelwelle und danach hergestellte kurbelwelle
DE2226530A1 (de) * 1972-05-31 1973-12-06 Aeg Elotherm Gmbh Verfahren zur induktionshaertung an gekroepften wellen
JPS55128537A (en) * 1979-03-28 1980-10-04 Japanese National Railways<Jnr> Heat treatment for enhancing fatigue strength and bending strength of shaft and knotched machine parts
JPS5964716A (ja) * 1982-10-02 1984-04-12 High Frequency Heattreat Co Ltd 焼入装置
EP0282822A1 (de) * 1987-03-16 1988-09-21 Siemens Aktiengesellschaft Verfahren zur Herstellung von Turbinenradscheiben mit örtlich hohen Druckeigenspannungen in der Nabenbohrung
JPH05148531A (ja) * 1991-11-25 1993-06-15 Toyota Motor Corp フランジ付ワーク用高周波焼入装置
JPH08120347A (ja) * 1994-10-24 1996-05-14 Matsui Seisakusho:Kk 駆動軸の製造方法
JP2002173711A (ja) * 2000-12-06 2002-06-21 Denki Kogyo Co Ltd クランクシャフトの高周波焼入冷却方法とその装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 004, no. 190 (C - 037) 26 December 1980 (1980-12-26) *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 162 (C - 235) 26 July 1984 (1984-07-26) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 540 (C - 1115) 29 September 1993 (1993-09-29) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 09 30 September 1996 (1996-09-30) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 10 10 October 2002 (2002-10-10) *

Also Published As

Publication number Publication date
EP2027299A1 (de) 2009-02-25
CN101460639A (zh) 2009-06-17
JP2009540114A (ja) 2009-11-19
US20090145527A1 (en) 2009-06-11
WO2007141055A1 (de) 2007-12-13
CN101460639B (zh) 2012-10-10
JP5377297B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
DE102007055575B4 (de) Laufbahnelement einer Wälzlagerung
DE102007023087B4 (de) Verfahren zur Herstellung eines Nockens
DE102012204409B3 (de) Verfahren zur Herstellung eines Wälzlagers und Wälzlager
EP2072176A1 (de) Verfahren zur Herstellung einer Erosionsschutzschicht aus Stahl durch Laserauftragschweissen; Bauteil mit einer solchen Erosionsschutzschicht
EP2759729A1 (de) Verfahren zur Herstellung eines Wälzlagers und Wälzlager
DE102015201644B4 (de) Verfahren zum Festwalzen eines metallischen Objekts, insbesondere einer Laufbahn eines Wälzlagers
DE112012000408B4 (de) Stahlzahnrad und Herstellungsverfahren dafür
EP1831409A1 (de) Verfahren zum randschichtverfestigen mittels ölstrahlen und vorrichtung zum durchführen des verfahrens
DE102006013139B4 (de) Dampfturbinenrotor und Verfahren zur Herstellung eines Dampfturbinenrotors
EP1567749A1 (de) Turbinenwelle sowie herstellung einer turbinenwelle
DE102008018875A1 (de) Auslassventil an einem Hubkolbenmotor
DE10361739B4 (de) Verfahren zum Bearbeiten von Kurbelwellenradien
EP1865080A1 (de) Verfahren zum Einbringen von Druckeigenspannungen in eine Welle, insbesondere in Wellenkerben
DE102015219513A1 (de) Reparaturverfahren für Dichtsegmente
DE102015006079A1 (de) Bauteil, insbesondere für ein Fahrzeug, sowie Verfahren zum Herstellen eines solchen Bauteils
DE102013214781B3 (de) Verfahren zur Reparatur eines Aufnahmehakens für Leitschaufeln
DE102012001989B4 (de) Verfahren zur mechanischen Randzonenverfestigung von Bauteilen
WO2010046220A1 (de) Synchronring und verfahren zu seiner fertigung
EP1980631A1 (de) Verfahren zum Strahlen einer Turbinenschaufel für den Heissbereich einer Gasturbine
EP3088122B1 (de) Reparatur von einkristallinen strömungskanalsegmenten mittels einkristallinem umschmelzen
DE102014214640A1 (de) Verfahren zur Herstellung eines Bauteils aus wärmebehandeltem Gusseisen
DE626579C (de) An der Oberflaeche gehaerteter Wellenzapfen, insbesondere Kurbelwellenzapfen
WO2022230937A1 (ja) 再処理部品及び再処理部品の製造方法
DE102008060761A1 (de) Wälzlager
WO2016162296A1 (de) Bauteil mit festigkeitsgradienten, verfahren und turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080613

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566