EP1845323A1 - Process and device for producing a high pressure product by cryogenic separation of air - Google Patents

Process and device for producing a high pressure product by cryogenic separation of air Download PDF

Info

Publication number
EP1845323A1
EP1845323A1 EP06007760A EP06007760A EP1845323A1 EP 1845323 A1 EP1845323 A1 EP 1845323A1 EP 06007760 A EP06007760 A EP 06007760A EP 06007760 A EP06007760 A EP 06007760A EP 1845323 A1 EP1845323 A1 EP 1845323A1
Authority
EP
European Patent Office
Prior art keywords
pressure
piv
distillation column
product stream
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06007760A
Other languages
German (de)
French (fr)
Inventor
Horst Corduan
Ulrich Ewert
Gerhard Pompl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP06007760A priority Critical patent/EP1845323A1/en
Priority to EP07005943A priority patent/EP1845324A1/en
Priority to TW096112693A priority patent/TW200834025A/en
Priority to KR1020070035912A priority patent/KR20070101794A/en
Priority to CNA2007100961102A priority patent/CN101063592A/en
Priority to US11/735,171 priority patent/US20080047298A1/en
Publication of EP1845323A1 publication Critical patent/EP1845323A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Definitions

  • the invention relates to a method for producing a printed product by cryogenic air separation by means of internal compression according to the preamble of patent claim 1.
  • a “distillation column system” comprises at least one separation column as well as the condensers and evaporators associated with the separation columns of the system.
  • the distillation column system for nitrogen-oxygen separation of the invention may be formed as a single column system for nitrogen-oxygen separation, as a two-column system (for example as a classic Linde double column system), or as a three or more column system. It may have, in addition to the columns for nitrogen-oxygen separation, other devices for obtaining other air components, in particular noble gases, for example an argon recovery.
  • At least one of the products is withdrawn liquid from one of the columns of the distillation column system or from a condenser connected to one of these columns, brought to an elevated pressure in the liquid state, vaporized in indirect heat exchange, for example with feed air or nitrogen, or at supercritical pressure) pseudo-evaporated and finally recovered as gaseous pressure product and fed to a take-off system.
  • the pressure increase in the liquid can be carried out by any known means. Regularly pumps are used. But it is also possible to exploit a hydrostatic potential and / or the pressure build-up evaporation on a tank.
  • Such internal compression methods are known, for example DE 830805 .
  • DE 1124529 .
  • EP 1139046 A1 EP 1146301 A1 .
  • DE 10213212 A1 DE 10213211 A1 .
  • DE 10238282 A1 DE 10302389 A1 .
  • EP 1585926 A1 or DE 102005029274 A1 ,
  • a "pick-up system” may be formed, for example, by a single consumer or by a plurality of adjacent consumers.
  • Other examples of acceptance systems are dedicated gas pressure reservoirs or pipelines, which are also regularly operated as a pressure buffer.
  • Such a “take-off system” is operated in a certain pressure range determined by a minimum allowable pressure and a maximum allowable pressure. Between these two values there is typically a difference of at least 2 bar. The larger the allowable variation in pressure, the more capacity is available in the pressure buffer of the pickup system.
  • the necessary capacity of the print buffer depends essentially on the course of the acceptance fluctuations, which are usually subject to a certain system.
  • the pressure product obtained in the distillation column system must have a higher pressure than the pressure in the take-off system. So far, this requirement is fulfilled in that the evaporation of the internal compression product is carried out at a pressure which ensures an introduction of the printed product into the acceptance system even at the maximum pressure of the removal system.
  • the pressure during evaporation and also the operating pressures in the distillation column system are kept constant. At current lower pressure in the take-off system, the gaseous printed product is throttled, whereby energy is lost.
  • the invention has for its object to provide a method of the type mentioned, which works energetically particularly favorable.
  • This object is achieved in that the increased pressure (ie, the pressure of the inner compression product) is varied and the variation of the increased pressure (PIV) in dependence on the pressure (PA) of the take-off system is performed.
  • the increased pressure ie, the pressure of the inner compression product
  • PV variation of the increased pressure
  • the evaporation can take place at a reduced pressure when the pressure in the intake system is below its maximum value. This means that less energy must be used to vaporize the product stream.
  • a gaseous heat carrier stream is regularly compressed to a high pressure (PW) and used under this high pressure for (pseudo) vaporization of the liquid product stream by indirect heat exchange.
  • PW high pressure
  • MW quantity of the heat carrier flow
  • PA pressure
  • the latter variation may depend on the pressure of the internal compaction product (PIV); the said dependence on the pressure (PA) of the acceptance system is then an indirect one.
  • the heat carrier stream can be formed, for example, by a partial stream of the feed air or by a stream of nitrogen from the distillation column system. Frequently, a partial flow of the feed air is recompressed, used as a heat transfer stream and then introduced into the distillation column system for nitrogen-oxygen separation.
  • amount is meant here the molar amount per unit time, which is measured, for example, in Nm 3 / h.
  • energy can also be saved by reducing the refrigeration at reduced pressure (PA) in the intake system by varying the amount of refrigerant generated in the refrigeration system of the process as a function of the pressure (PA) of the intake system.
  • PA pressure
  • the refrigeration system may include one or more expansion machines for work-related expansion of one or more process streams, one or more external energy powered refrigeration systems, and or cold supply through one or more cryogenic liquid streams.
  • the invention controls the amount of one or more process streams passed through an expansion turbine. At reduced pressure in the collection system, this is reduced. The corresponding reduced demand for pressure energy leads to a further energy saving.
  • one or more operating parameters of the distillation column system are varied as a function of the pressure (PA) of the acceptance system.
  • Such a load change system may include a feedforward controller, for example an ALC (Automatic Load Change), or a multivariable controller, for example a Model Predictive Control (MPC).
  • ALC Automatic Load Change
  • MPC Model Predictive Control
  • the controlled adaptation of these operating parameters ensures the consistency between the selected internal compression pressure and the operating point of the distillation and furthermore prevents an unacceptable load on the heat exchangers.
  • a major advantage of using a load change system is the ability to limit the gradient of the internal compression pressure, that is, the internal compression pressure does not follow the withdrawal pressure arbitrarily fast, but in a controlled manner. In the case of a rapid change in the take-off pressure in a transition phase, this can also lead to increased throttling in the method according to the invention or lead to a blow-off of the product stream. In contrast to conventional processes, however, such processes take place only for a short time.
  • the load change system is constantly active in this embodiment of the invention and adjusts the setpoint for the internal compression pressure to the current take-off pressure.
  • the pressure setpoint of the load change system is the sum of the actual decompression pressure and a preselected difference to avoid unnecessary blowdown as the decompression pressure increases.
  • this type of load control can be combined with a load change system for the product quantities.
  • EP 1542102 A1 is described.
  • the pressure profile in the acceptance system is determined based on available information about the future needs of the connected end users. This can be used in the context of the present invention for determining the pressure setpoint for the load change system in order to avoid blowing off product as much as possible.
  • the invention also relates to a device for producing a printed product by cryogenic air separation according to claim 5.
  • the control or regulating device of claim 5 may be designed as a closed loop control or open loop control.
  • Air 1 is brought to a first pressure P1 in a main air compressor.
  • the compressed air 3 is cleaned in a cleaning device 4.
  • the purified air 5 is in a first partial flow 6 and a second partial flow 7 branches.
  • the first partial air stream 6 is cooled in a main heat exchanger 9 to about dew point and flows via the lines 10 and 11 in the distillation column system for nitrogen-oxygen separation, which in the example has a high-pressure column and a low-pressure column, which via a common capacitor Evaporator, the so-called main capacitor, in heat exchange relationship.
  • the air 11 is introduced into the high-pressure column in a virtually completely gaseous state.
  • the air is decomposed into at least one oxygen-enriched product stream 13 and at least one nitrogen-enriched fraction (not shown).
  • the product stream 13 has, for example, an oxygen content of 98 to 99.5 mol%. It is taken off liquid, for example from the bottom of the low-pressure column or the evaporation space of the main condenser.
  • the liquid product stream 13 is brought to an elevated pressure PIV, which is higher than the operating pressure of the distillation column, from which it was withdrawn, and for example 15 to 30 bar.
  • the oxygen 15 is conducted under the increased pressure in the liquid or supercritical state to the cold end of the main heat exchanger 9 and evaporated in the main heat exchanger or pseudo-evaporated and warmed to about ambient temperature.
  • the product stream emerges from the plant as a gaseous pressure product 16, 18 and is introduced into a take-off system 19, which in the exemplary embodiment is designed as a pipeline system.
  • a take-off system 19 which in the exemplary embodiment is designed as a pipeline system.
  • the gaseous pressure oxygen is finally delivered to a fundamentally arbitrary number n of consumers V1 to Vn.
  • the pipeline system also serves as a product buffer.
  • the pressure of the take-off system in the embodiment between a maximum allowable pressure of 30 bar and a minimum allowable pressure of 15 bar may vary.
  • the heat required for (pseudo) evaporation supplies a heat transfer stream 21, which is also called internal compression air and is a part of the second partial air stream 7, which in a secondary compressor 20 after-compressed to a high pressure PW is higher than the first pressure P1 and is for example 30 to 40 bar.
  • This pressure in the partial flow 21/22 is set via the valve 8 or the guide vanes of the compressor 20.
  • the internal compression air 22 flows through the main heat exchanger 9 to the cold end and is thereby condensed in indirect heat exchange with the (pseudo) evaporating oxygen 15 or - pseudo-condensed at supercritical pressure.
  • the internal compression air is released via a valve 30 and enters the nitrogen-oxygen separation distillation column system at 23 in partially liquefied state.
  • Another part 25 of the second partial air stream 7/21 is led out as a turbine stream at an intermediate temperature from the main heat exchanger. Its amount relative to the internal compression air is adjusted via the turbine blades.
  • the ratio of the flow rates of the first partial flow 6 and second partial flow 7/21 is set via a pressure relief valve 30 in partial flow 22.
  • the turbine air 25 is expanded in an expansion turbine 26 to approximately the operating pressure of the high-pressure column.
  • the expanded turbine air 27 is introduced together with the first partial flow 10 via line 11 into the high pressure column of the distillation column system for nitrogen-oxygen separation 12.
  • the turbine 26 is in the embodiment an essential element of the refrigeration system of the system.
  • the outlet pressure of the pump 14 is adapted to the instantaneous take-off pressure.
  • the pump 14 is set to an outlet pressure which is about 0.5 to 2 bar above the instantaneous take-off pressure. A certain difference is useful as a margin, even at an increase in the withdrawal pressure, the gaseous pressure product 16 does not blow off immediately via the line 28 and valve 29 have to. The corresponding fine adjustment is made by the valve 18, in which, however, only a slight pressure reduction is made.
  • both the mass flows and the various pressures in the air separation plant are controlled by a central process control system (not shown) which is run by an automatic load change system.
  • the valves 8 and 30 are controlled, which determine the amount and pressure of the internal compression air 22, the valve 24 for determining the amount of turbine air 25, the pump 14 for determining the current amount of oxygen product, and the valve 18 for fine adjustment of the Product pressure to the take-off pressure.
  • the process control system can also close the valve 18 temporarily and blow off the gaseous pressure product via the line 28 and the valve 29 into the atmosphere.
  • FIG. 2 shows an exemplary time profile of the take-off pressure PA and the internal compression pressure PIV over a time period of five hours plotted along the x-axis.
  • the lower part of the diagram of Figure 2 represents the time course of the amount that is discharged from the collection system to the consumer (solid line).
  • the upper part of the diagram shows in a solid line the course of the take-off pressure PA in the pressure reservoir or in the product pipeline of the take-off system (the "pressure of the take-off system").
  • the decrease pressure PA solid line at the top
  • the course of the take-off pressure PA is followed by the inner compression pressure PIV (the “increased pressure") shown in dashed lines in principle with some distance and delay.
  • the internal compression pressure PIV can not be changed arbitrarily fast, so that even in the inventive method for short-term blowing off of product can come (see dashed line below in Figure 2). However, the blow-off quantity can be kept low by the invention.
  • the invention is to be applied to any other internal compression process, in particular to those with different refrigeration with one or more turbines blowing air into the high pressure column and / or into the low pressure column or relaxing a nitrogen enriched fraction from one of the columns of the distillation column system 12.
  • the control according to the invention can be further refined by evaluating information about the future consumption quantities of the consumers V1 to Vn and from this a prediction for future values of the take-off pressure is obtained, for example according to the EP 1542102 A1 described method.
  • the load change system can then promptly move the state of the air separation plant in a direction that corresponds to the required interior compression pressure PIV in the future. In this way, an even better adaptation of the course of the internal compression pressure to the take-off pressure can be achieved, which contributes significantly to avoid the temporary blowing off of product.

Abstract

The method involves compressing, purifying and cooling process air (11), and supplying the air to a distillating column-system (12) for nitrogen-oxygen separation. A fluid product stream is brought to an increased pressure in a fluid condition and is pseudo-evaporated under the increased pressure. The evaporated product stream is guided to a discharging system (19) as a pressure product. The pressure in varied and the variation of the pressure is performed based on the pressure of the discharging system. An independent claim is also included for a device for producing a pressure product.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung eines Druckprodukts durch Tieftemperatur-Luftzerlegung mittels Innenverdichtung gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing a printed product by cryogenic air separation by means of internal compression according to the preamble of patent claim 1.

Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt. Ein "Destilliersäulen-System" umfasst mindestens eine Trennsäule sowie die den Trennsäulen des Systems zugeordneten Kondensatoren und Verdampfer. Das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung der Erfindung kann als Einsäulensystem zur Stickstoff-Sauerstoff-Trennung ausgebildet sein, als Zweisäulensystem (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehrsäulensystem. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung.For example, methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known. A "distillation column system" comprises at least one separation column as well as the condensers and evaporators associated with the separation columns of the system. The distillation column system for nitrogen-oxygen separation of the invention may be formed as a single column system for nitrogen-oxygen separation, as a two-column system (for example as a classic Linde double column system), or as a three or more column system. It may have, in addition to the columns for nitrogen-oxygen separation, other devices for obtaining other air components, in particular noble gases, for example an argon recovery.

Bei einem Innenverdichtungsprozess wird mindestens eines der Produkte flüssig aus einer der Säulen des Destilliersäulen-Systems oder aus einem mit einer dieser Säulen verbundenen Kondensator entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht, in indirektem Wärmeaustausch, beispielsweise mit Einsatzluft oder Stickstoff, verdampft beziehungsweise (bei überkritischem Druck) pseudo-verdampft und schließlich als gasförmiges Druckprodukt gewonnen und einem Abnahmesystem zugeführt. Die Druckerhöhung in der Flüssigkeit kann durch jede bekannte Maßnahme durchgeführt werden. Regelmäßig werden dabei Pumpen eingesetzt. Möglich ist aber auch die Ausnutzung eines hydrostatischen Potentials und/oder die Druckaufbauverdampfung an einem Tank.In an internal compression process, at least one of the products is withdrawn liquid from one of the columns of the distillation column system or from a condenser connected to one of these columns, brought to an elevated pressure in the liquid state, vaporized in indirect heat exchange, for example with feed air or nitrogen, or at supercritical pressure) pseudo-evaporated and finally recovered as gaseous pressure product and fed to a take-off system. The pressure increase in the liquid can be carried out by any known means. Regularly pumps are used. But it is also possible to exploit a hydrostatic potential and / or the pressure build-up evaporation on a tank.

Derartige Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 2535132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 , DE 10238282 A1 , DE 10302389 A1 , DE 10334559 A1 , DE 10334560 A1 , DE 10332863 A1 , EP 1544559 A1 , EP 1585926 A1 , oder DE 102005029274 A1 .Such internal compression methods are known, for example DE 830805 . DE 901542 (= US 2712738 / US 2784572 ) DE 952908 . DE 1103363 (= US 3,083,544 ) DE 1112997 (= US 3214925 ) DE 1124529 . DE 1117616 (= US 3280574 ) DE 1226616 (= US 3216206 ) DE 1229561 (= US 3222878 ) DE 1199293 . DE 1187248 (= US 3371496 ) DE 1235347 . DE 1258882 (= US 3426543 ) DE 1263037 (= US 3401531 ) DE 1501722 (= US 3,416,323 ) DE 1501723 (= US 3,500,651 ) DE 2535132 (= US 4279631 ) DE 2646690 . EP 93448 B1 (= US 4555256 ) EP 384483 B1 (= US 5036672 ) EP 505812 B1 (= US 5263328 ) EP 716280 B1 (= US 5644934 ) EP 842385 B1 (= US 5953937 ) EP 758733 B1 (= US 5845517 ) EP 895045 B1 (= US 6038885 ) DE 19803437 A1 . EP 949471 B1 (= US 6,189,960 B1 ) EP 955509 A1 (= US 6196022 B1 ) EP 1031804 A1 (= US 6314755 ) DE 19909744 A1 . EP 1067345 A1 (= US 6336345 ) EP 1074805 A1 (= US 6332337 ) DE 19954593 A1 . EP 1134525 A1 (= US 6477860 ) DE 10013073A1 . EP 1139046 A1 . EP 1146301 A1 . EP 1150082 A1 . EP 1213552 A1 . DE 10115258 A1 . EP 1284404 A1 (= US 2003051504 A1 ) EP 1308680 A1 (= US 6612129 B2 ) DE 10213212 A1 . DE 10213211 A1 . EP 1357342 A1 . DE 10238282 A1 . DE 10302389 A1 . DE 10334559 A1 . DE 10334560 A1 . DE 10332863 A1 . EP 1544559 A1 . EP 1585926 A1 , or DE 102005029274 A1 ,

Ein "Abnahmesystem" kann beispielsweise durch einen einzelnen Verbraucher oder durch eine Mehrzahl benachbarter Verbraucher gebildet werden. Andere Beispiele für Abnahmesystem sind dezidierte Gasdruckspeicher oder Pipelinesysteme, die regelmäßig ebenfalls als Druckpuffer betrieben werden. Ein derartiges "Abnahmesystem" wird in einem bestimmten Druckbereich betrieben, der durch einen minimalen zulässigen Druck und einen maximalen zulässigen Druck bestimmt ist. Zwischen diesen beiden Werten liegt typischerweise eine Differenz von mindestens 2 bar. Je größer die zulässige Schwankungsbreite des Drucks ist, umso mehr Kapazität ist im Druckpuffer des Abnahmesystems verfügbar. Die notwendige Kapazität des Druckpuffers hängt im wesentlichen ab vom Verlauf der Abnahmeschwankungen, die in der Regel einer bestimmten Systematik unterliegen.A "pick-up system" may be formed, for example, by a single consumer or by a plurality of adjacent consumers. Other examples of acceptance systems are dedicated gas pressure reservoirs or pipelines, which are also regularly operated as a pressure buffer. Such a "take-off system" is operated in a certain pressure range determined by a minimum allowable pressure and a maximum allowable pressure. Between these two values there is typically a difference of at least 2 bar. The larger the allowable variation in pressure, the more capacity is available in the pressure buffer of the pickup system. The necessary capacity of the print buffer depends essentially on the course of the acceptance fluctuations, which are usually subject to a certain system.

Um in das Abnahmesystem einströmen zu können, muss das in der Destilliersäulen-System gewonnene Druckprodukt einen höheren Druck aufweisen als der Druck im Abnahmesystems. Bisher wird diese Forderung dadurch erfüllt, dass die Verdampfung des Innenverdichtungsprodukts bei einem Druck durchgeführt wird, der auch bei dem maximalen Druck des Abnahmesystems eine Einführung des Druckprodukts in das Abnahmesystems sicherstellt. Der Druck beim Verdampfen und auch die Betriebsdrücke im Destilliersäulen-System werden konstant gehalten. Bei aktuell niedrigerem Druck im Abnahmesystem wird das gasförmige Druckprodukt abgedrosselt, wodurch Energie verloren geht.In order to be able to flow into the take-off system, the pressure product obtained in the distillation column system must have a higher pressure than the pressure in the take-off system. So far, this requirement is fulfilled in that the evaporation of the internal compression product is carried out at a pressure which ensures an introduction of the printed product into the acceptance system even at the maximum pressure of the removal system. The pressure during evaporation and also the operating pressures in the distillation column system are kept constant. At current lower pressure in the take-off system, the gaseous printed product is throttled, whereby energy is lost.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, das energetisch besonders günstig arbeitet.The invention has for its object to provide a method of the type mentioned, which works energetically particularly favorable.

Diese Aufgabe wird dadurch gelöst, dass der erhöhte Druck (also der Druck des Innenverdichtungsprodukts) variiert wird und die Variation des erhöhten Drucks (PIV) in Abhängigkeit vom Druck (PA) des Abnahmesystems durchgeführt wird.This object is achieved in that the increased pressure (ie, the pressure of the inner compression product) is varied and the variation of the increased pressure (PIV) in dependence on the pressure (PA) of the take-off system is performed.

Durch die Anpassung des Drucks des Innenverdichtungsprodukts kann die Verdampfung bei erniedrigtem Druck stattfinden, wenn der Druck im Abnahmesystem unterhalb seines Maximalwerts liegt. Dies bedeutet, dass weniger Energie zum Verdampfen des Produktstroms eingesetzt werden muss.By adjusting the pressure of the internal compression product, the evaporation can take place at a reduced pressure when the pressure in the intake system is below its maximum value. This means that less energy must be used to vaporize the product stream.

Bei einem Innenverdichtungsverfahren wird regelmäßig ein gasförmiger Wärmeträgerstrom auf einen hohen Druck (PW) verdichtet und unter diesem hohen Druck zur (Pseudo-)Verdampfung des flüssigen Produktstroms durch indirekten Wärmeaustausch eingesetzt. Im Rahmen der Erfindung ist es günstig, wenn hierbei der hohe Druck (PW) und/oder Menge (MW) des Wärmeträgerstroms variiert wird und die Variation des hohen Drucks (PW) beziehungsweise der Menge (MW) in Abhängigkeit vom Druck (PA) des Abnahmesystems durchgeführt wird. Hierdurch wird bei der Verdichtung des Wärmeträgerstroms Energie eingespart, wenn der Druck des Abnahmesystems unterhalb seines Maximalwerts liegt. In der Praxis kann sich die zuletzt genannte Variation nach dem Druck des Innenverdichtungsprodukts (PIV) richten; die genannte Abhängigkeit vom Druck (PA) des Abnahmesystems ist dann eine indirekte.In an internal compression process, a gaseous heat carrier stream is regularly compressed to a high pressure (PW) and used under this high pressure for (pseudo) vaporization of the liquid product stream by indirect heat exchange. In the context of the invention, it is favorable if in this case the high pressure (PW) and / or quantity (MW) of the heat carrier flow is varied and the variation of the high pressure (PW) or the quantity (MW) as a function of the pressure (PA) of the Acceptance system is performed. As a result, energy is saved during the compression of the heat carrier flow when the pressure of the intake system is below its maximum value. In practice, the latter variation may depend on the pressure of the internal compaction product (PIV); the said dependence on the pressure (PA) of the acceptance system is then an indirect one.

Der Wärmeträgerstrom kann zum Beispiel durch einen Teilstrom der Einsatzluft oder durch einen Stickstoffstrom aus dem Destilliersäulen-System gebildet werden. Häufig wird ein Teilstrom der Einsatzluft nachverdichtet, als Wärmeträgerstrom eingesetzt und anschließend in das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung eingeleitet. Unter "Menge" wird hier die molare Menge pro Zeiteinheit verstanden, die zum Beispiel in Nm3/h gemessen wird.The heat carrier stream can be formed, for example, by a partial stream of the feed air or by a stream of nitrogen from the distillation column system. Frequently, a partial flow of the feed air is recompressed, used as a heat transfer stream and then introduced into the distillation column system for nitrogen-oxygen separation. By "amount" is meant here the molar amount per unit time, which is measured, for example, in Nm 3 / h.

Zusätzlich oder alternativ kann im Rahmen der Erfindung auch dadurch Energie eingespart werden, dass die Kälteerzeugung bei reduziertem Druck (PA) im Abnahmesystem vermindert wird, indem die in dem Kälteerzeugungssystem des Verfahrens erzeugte Kältemenge in Abhängigkeit vom Druck (PA) des Abnahmesystems variiert wird.Additionally or alternatively, within the scope of the invention energy can also be saved by reducing the refrigeration at reduced pressure (PA) in the intake system by varying the amount of refrigerant generated in the refrigeration system of the process as a function of the pressure (PA) of the intake system.

Das Kälteerzeugungssystem kann eine oder mehrere Entspannungsmaschinen zur arbeitsleistenden Entspannung eines oder mehrerer Prozess-Ströme, eine oder mehrere mit externer Energie angetriebene Kälteanlagen und oder die Kältezufuhr durch einen oder mehrere tiefkalte Flüssigkeitsströme umfassen. Typischerweise wird bei der Erfindung die Menge eines oder mehrerer über eine Expansionsturbine geleiteter Prozess-Ströme geregelt. Bei verringertem Druck im Abnahmesystem wird diese vermindert. Der entsprechend verminderte Bedarf an Druckenergie führt zu einer weiteren Energieeinsparung.The refrigeration system may include one or more expansion machines for work-related expansion of one or more process streams, one or more external energy powered refrigeration systems, and or cold supply through one or more cryogenic liquid streams. Typically, the invention controls the amount of one or more process streams passed through an expansion turbine. At reduced pressure in the collection system, this is reduced. The corresponding reduced demand for pressure energy leads to a further energy saving.

In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens werden ein oder mehrere Betriebsparameter des Destilliersäulen-Systems in Abhängigkeit vom Druck (PA) des Abnahmesystems variiert.In a further embodiment of the method according to the invention, one or more operating parameters of the distillation column system are varied as a function of the pressure (PA) of the acceptance system.

Es ist bekannt, die Betriebsparameter einer Luftzerlegungsanlage über ein Lastwechselsystem an variable Produktmengen anzupassen. Ein derartiges Lastwechselsystem kann eine Feedforward-Steuerung, zum Beispiel ein ALC (Automatic Load Change), oder eine multivariabler Regeleinrichtung, zum Beispiel ein MPC (Model Predictive Control) umfassen. Im Rahmen der Erfindung ist es vorteilhaft, ein derartiges System zur Verbesserung des Betriebsverhaltens der Anlage bei der Variation des Innenverdichtungsdrucks einzusetzen und damit die Betriebsparameter des Destilliersäulen-Systems zu optimieren. Durch die kontrollierte Anpassung dieser Betriebsparameter wird die Konsistenz zwischen dem gewählten Innenverdichtungsdruck und dem Betriebspunkt der Destillation sichergestellt und weiterhin eine unzulässige Belastung der Wärmetauscher vermieden. Ein wesentlicher Vorteil der Verwendung eines Lastwechselsystems ist die Möglichkeit, den Gradienten des Innenverdichtungsdrucks zu begrenzen, das heißt der Innenverdichtungsdruck folgt dem Abnahmedruck nicht beliebig schnell, sondern in kontrollierter Weise. Dies kann bei schneller Änderung des Abnahmedrucks in einer Übergangsphase auch bei dem erfindungsgemäßen Verfahren zu einer verstärkten Abdrosselung beziehungsweise zu einem Abblasen des Produktstroms führen. Im Gegensatz zu konventionellen Prozessen erfolgen solche Vorgänge jedoch nur kurzzeitig.It is known to adapt the operating parameters of an air separation plant via a load change system to variable product quantities. Such a load change system may include a feedforward controller, for example an ALC (Automatic Load Change), or a multivariable controller, for example a Model Predictive Control (MPC). In the context of the invention, it is advantageous to use such a system for improving the operating behavior of the system in the variation of the internal compression pressure and thus to optimize the operating parameters of the distillation column system. The controlled adaptation of these operating parameters ensures the consistency between the selected internal compression pressure and the operating point of the distillation and furthermore prevents an unacceptable load on the heat exchangers. A major advantage of using a load change system is the ability to limit the gradient of the internal compression pressure, that is, the internal compression pressure does not follow the withdrawal pressure arbitrarily fast, but in a controlled manner. In the case of a rapid change in the take-off pressure in a transition phase, this can also lead to increased throttling in the method according to the invention or lead to a blow-off of the product stream. In contrast to conventional processes, however, such processes take place only for a short time.

Das Lastwechselsystem ist in dieser Ausgestaltung der Erfindung ständig aktiv und passt den Sollwert für den Innenverdichtungsdruck an den aktuellen Abnahmedruck an. Der Drucksollwert des Lastwechselsystems wird die Summe aus aktuellem Abnahmedruck und einer vorgewählten Differenz gebildet, um bei einem Anstieg des Abnahmedrucks ein unnötiges Abblasen zu vermeiden. Selbstverständlich kann diese Art von Lastregelung mit einem Lastwechselsystem für die Produktmengen kombiniert werden.The load change system is constantly active in this embodiment of the invention and adjusts the setpoint for the internal compression pressure to the current take-off pressure. The pressure setpoint of the load change system is the sum of the actual decompression pressure and a preselected difference to avoid unnecessary blowdown as the decompression pressure increases. Of course, this type of load control can be combined with a load change system for the product quantities.

Vorteilhaft ist außerdem eine Kombination mit einer prädiktiven Druckregelung des Abnahmesystems (zum Beispiel einer Pipeline), wie sie in EP 1542102 A1 beschrieben ist. Hierbei wird der Druckverlauf im Abnahmesystem anhand verfügbarer Informationen über den zukünftigen Bedarf der angeschlossenen Endverbraucher ermittelt. Dieser kann im Rahmen der vorliegende Erfindung zur Bestimmung des Drucksollwerts für das Lastwechselsystems verwendet werden, um ein Abblasen von Produkt so weit wie möglich zu vermeiden.Also advantageous is a combination with a predictive pressure control of the removal system (for example, a pipeline), as in EP 1542102 A1 is described. Here, the pressure profile in the acceptance system is determined based on available information about the future needs of the connected end users. This can be used in the context of the present invention for determining the pressure setpoint for the load change system in order to avoid blowing off product as much as possible.

Die Erfindung betrifft außerdem eine Vorrichtung zur Erzeugung eines Druckprodukts durch Tieftemperatur-Luftzerlegung gemäß dem Patentanspruch 5. Die Steuerungs- oder Regelungseinrichtung des Anspruchs 5 kann als Closed Loop Control oder Open Loop Control ausgeführt sein.The invention also relates to a device for producing a printed product by cryogenic air separation according to claim 5. The control or regulating device of claim 5 may be designed as a closed loop control or open loop control.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in den Zeichnungen erläuterten Ausführungsbeispiels näher erläutert. Hierbei zeigen:

Figur 1
ein grob vereinfachtes Schema des Verfahrens und der Vorrichtung gemäß dem Ausführungsbeispiel und
Figur 2
ein Diagramm für den zeitlichen Verlauf des Abnahme- und des Innenverdichtungsdrucks.
The invention and further details of the invention are explained in more detail below with reference to an exemplary embodiment illustrated in the drawings. Hereby show:
FIG. 1
a rough simplified scheme of the method and the apparatus according to the embodiment and
FIG. 2
a diagram for the time course of the decrease and the internal compression pressure.

Luft 1 wird in einem Hauptluftverdichter auf einen ersten Druck P1 gebracht. Die Druckluft 3 wird in einer Reinigungseinrichtung 4 gereinigt. Die gereinigte Luft 5 wird in einen ersten Teilstrom 6 und einen zweiten Teilstrom 7 verzweigt. Der erste Luftteilstrom 6 wird in einem Hauptwärmetauscher 9 auf etwa Taupunkt abgekühlt und strömt über die Leitungen 10 und 11 in das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung, das in dem Beispiel eine Hochdrucksäule und eine Niederdrucksäule aufweist, die über einen gemeinsamen Kondensator-Verdampfer, den so genannten Hauptkondensator, in Wärmeaustauschbeziehung stehen. Die Luft 11 wird in praktisch vollständig gasförmigem Zustand in die Hochdrucksäule eingeleitet.Air 1 is brought to a first pressure P1 in a main air compressor. The compressed air 3 is cleaned in a cleaning device 4. The purified air 5 is in a first partial flow 6 and a second partial flow 7 branches. The first partial air stream 6 is cooled in a main heat exchanger 9 to about dew point and flows via the lines 10 and 11 in the distillation column system for nitrogen-oxygen separation, which in the example has a high-pressure column and a low-pressure column, which via a common capacitor Evaporator, the so-called main capacitor, in heat exchange relationship. The air 11 is introduced into the high-pressure column in a virtually completely gaseous state.

In dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung 12 wird die Luft in mindestens einen sauerstoffangereicherten Produktstrom 13 und mindestens eine stickstoffangereicherte Fraktion (nicht dargestellt) zerlegt. Der Produktstrom 13 weist beispielsweise einen Sauerstoffgehalt von 98 bis 99.5 mol-% auf. Er wird flüssig entnommen, zum Beispiel aus dem Sumpf der Niederdrucksäule oder dem Verdampfungsraum des Hauptkondensators. In einer Pumpe 14 wird der flüssige Produktstrom 13 auf einen erhöhten Druck PIV gebracht, der höher als der Betriebsdruck der Destilliersäule ist, aus der er abgezogen wurde, und beispielsweise 15 bis 30 bar beträgt. Der Sauerstoff 15 wird unter dem erhöhten Druck in flüssigem oder überkritischem Zustand zum kalten Ende des Hauptwärmetauschers 9 geführt und im Hauptwärmetauscher verdampft beziehungsweise pseudo-verdampft und auf etwa Umgebungstemperatur angewärmt. Über ein Austrittsventil 18 tritt der Produktstrom als gasförmiges Druckprodukt 16, 18 aus der Anlage aus und wird in ein Abnahmesystem 19 eingeleitet, das in dem Ausführungsbeispiel als Pipelinesystem ausgebildet ist. Über das Pipelinesystem 19 wird der gasförmige Drucksauerstoff schließlich an eine grundsätzlich beliebige Anzahl n von Verbrauchern V1 bis Vn geliefert.In the nitrogen-oxygen separation distillation column system 12, the air is decomposed into at least one oxygen-enriched product stream 13 and at least one nitrogen-enriched fraction (not shown). The product stream 13 has, for example, an oxygen content of 98 to 99.5 mol%. It is taken off liquid, for example from the bottom of the low-pressure column or the evaporation space of the main condenser. In a pump 14, the liquid product stream 13 is brought to an elevated pressure PIV, which is higher than the operating pressure of the distillation column, from which it was withdrawn, and for example 15 to 30 bar. The oxygen 15 is conducted under the increased pressure in the liquid or supercritical state to the cold end of the main heat exchanger 9 and evaporated in the main heat exchanger or pseudo-evaporated and warmed to about ambient temperature. Via an outlet valve 18, the product stream emerges from the plant as a gaseous pressure product 16, 18 and is introduced into a take-off system 19, which in the exemplary embodiment is designed as a pipeline system. Via the pipeline system 19, the gaseous pressure oxygen is finally delivered to a fundamentally arbitrary number n of consumers V1 to Vn.

Das Pipelinesystem dient auch als Produktpuffer. Je nach momentaner Abnahmemenge kann der Druck des Abnahmesystems (an der Stelle der Mündung der Leitung 17) in dem Ausführungsbeispiel zwischen einem maximalen zulässigen Druck von 30 bar und einem minimalen zulässigen Druck von 15 bar schwanken.The pipeline system also serves as a product buffer. Depending on the current purchase quantity, the pressure of the take-off system (at the point of the mouth of the line 17) in the embodiment between a maximum allowable pressure of 30 bar and a minimum allowable pressure of 15 bar may vary.

Die zur (Pseudo-)Verdampfung benötigte Wärme liefert ein Wärmeträgerstrom 21, der auch Innenverdichtungsluft genannt wird und einen Teil des zweiten Luftteilstroms 7 darstellt, der in einem Nachverdichter 20 auf einen hohen Druck PW nachverdichtet wird, der höher als der erste Druck P1 ist und beispielsweise 30 bis 40 bar beträgt. Dieser Druck im Teilstrom 21/22 wird über das Ventil 8 bzw. die Leitschaufeln des Verdichters 20 eingestellt. Unter diesem hohen Druck durchströmt die Innenverdichtungsluft 22 den Hauptwärmetauscher 9 bis zum kalten Ende und wird dabei in indirektem Wärmeaustausch mit dem (pseudo-)verdampfenden Sauerstoff 15 kondensiert oder - bei überkritischem Druck - pseudo-kondensiert. Die Innenverdichtungsluft wird über ein Ventil 30 entspannt und tritt bei 23 in teilweise verflüssigtem Zustand in das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung ein.The heat required for (pseudo) evaporation supplies a heat transfer stream 21, which is also called internal compression air and is a part of the second partial air stream 7, which in a secondary compressor 20 after-compressed to a high pressure PW is higher than the first pressure P1 and is for example 30 to 40 bar. This pressure in the partial flow 21/22 is set via the valve 8 or the guide vanes of the compressor 20. Under this high pressure, the internal compression air 22 flows through the main heat exchanger 9 to the cold end and is thereby condensed in indirect heat exchange with the (pseudo) evaporating oxygen 15 or - pseudo-condensed at supercritical pressure. The internal compression air is released via a valve 30 and enters the nitrogen-oxygen separation distillation column system at 23 in partially liquefied state.

Ein anderer Teil 25 des zweiten Luftteilstroms 7/21 wird als Turbinenstrom bei einer Zwischentemperatur aus dem Hauptwärmetauscher herausgeführt. Seine Menge relativ zur Innenverdichtungsluft wird über die Leitschaufeln der Turbine eingestellt. Das Verhältnis der Mengenströme von erstem Teilstrom 6 und zweitem Teilstrom 7/21 wird über ein Entspannungsventil 30 in Teilstrom 22 eingestellt.Another part 25 of the second partial air stream 7/21 is led out as a turbine stream at an intermediate temperature from the main heat exchanger. Its amount relative to the internal compression air is adjusted via the turbine blades. The ratio of the flow rates of the first partial flow 6 and second partial flow 7/21 is set via a pressure relief valve 30 in partial flow 22.

Die Turbinenluft 25 wird in einer Expansionsturbine 26 auf etwa den Betriebsdruck der Hochdrucksäule entspannt. Die entspannte Turbinenluft 27 wird gemeinsam mit dem ersten Teilstrom 10 über Leitung 11 in die Hochdrucksäule des Destilliersäulen-Systems zur Stickstoff-Sauerstoff-Trennung 12 eingeleitet. Die Turbine 26 stellt in dem Ausführungsbeispiel ein wesentliches Element des Kälteerzeugungssystems der Anlage dar.The turbine air 25 is expanded in an expansion turbine 26 to approximately the operating pressure of the high-pressure column. The expanded turbine air 27 is introduced together with the first partial flow 10 via line 11 into the high pressure column of the distillation column system for nitrogen-oxygen separation 12. The turbine 26 is in the embodiment an essential element of the refrigeration system of the system.

In konventioneller Weise würde die gesamte Luftzerlegungsanlage stationär betrieben und die Pumpe 14 ständig einen Druck von etwas mehr als dem maximalen Abnahmedruck von z. B. 30 bar erzeugen. Die Anpassung an den aktuellen Abnahmedruck würde ausschließlich durch eine entsprechende Drosselung in Ventil 18 erreicht. Selbst bei variierender Produktmenge würde in Pumpe 14 lediglich die Menge an flüssigem Produktstrom 13/15 eingestellt, der Druck bliebe jedoch konstant.In a conventional manner, the entire air separation plant would be operated stationary and the pump 14 is constantly a pressure of slightly more than the maximum withdrawal pressure of z. B. generate 30 bar. The adaptation to the current decompression pressure would only be achieved by a corresponding throttling in valve 18. Even with varying product amount, only the amount of liquid product stream 13/15 would be adjusted in pump 14, but the pressure would remain constant.

Bei der Erfindung wird dagegen der Austrittsdruck der Pumpe 14 an den momentanen Abnahmedruck angepasst. Die Pumpe 14 wird auf einen Austrittsdruck eingestellt, der etwa 0.5 bis 2 bar über dem momentanen Abnahmedruck liegt. Eine gewisse Differenz ist als Spielraum sinnvoll, um auch bei einem Ansteigen des Abnahmedrucks das gasförmige Druckprodukt 16 nicht sofort über die Leitung 28 und Ventil 29 abblasen zu müssen. Die entsprechende Feinanpassung wird durch das Ventil 18, in dem aber nur noch eine geringfügige Druckverminderung vorgenommen wird.In contrast, in the invention, the outlet pressure of the pump 14 is adapted to the instantaneous take-off pressure. The pump 14 is set to an outlet pressure which is about 0.5 to 2 bar above the instantaneous take-off pressure. A certain difference is useful as a margin, even at an increase in the withdrawal pressure, the gaseous pressure product 16 does not blow off immediately via the line 28 and valve 29 have to. The corresponding fine adjustment is made by the valve 18, in which, however, only a slight pressure reduction is made.

Vorzugsweise werden sowohl die Mengenströme als auch die verschiedenen Drücke in der Luftzerlegungsanlage, einschließlich der Parameter des Trennprozesses im Innern des Destilliersäulen-Systems 12 zur Stickstoff-Sauerstoff-Trennung mittels eines zentralen Prozessleitsystems (nicht dargestellt) geregelt, das von einem automatischen Lastwechselsystem geführt wird. Dabei werden unter anderem die Ventile 8 und 30 angesteuert, welche die Menge und Druck der Innenverdichtungsluft 22 bestimmen, das Ventil 24 zur Festlegung der Menge der Turbinenluft 25, die Pumpe 14 zur Festlegung der aktuellen Menge des Sauerstoffprodukts, und das Ventil 18 zur Feinanpassung des Produktdrucks an den Abnahmedruck. Für den Ausnahmefall, dass es nicht gelingt, die Anlage einem steigenden Abnahmedruck schnell genug folgen zu lassen, kann das Prozessleitsystem auch das Ventil 18 zeitweise schließen und das gasförmige Druckprodukt über die Leitung 28 und das Ventil 29 in die Atmosphäre abblasen.Preferably, both the mass flows and the various pressures in the air separation plant, including the parameters of the separation process inside the nitrogen-oxygen separation distillation column system 12 are controlled by a central process control system (not shown) which is run by an automatic load change system. Among other things, the valves 8 and 30 are controlled, which determine the amount and pressure of the internal compression air 22, the valve 24 for determining the amount of turbine air 25, the pump 14 for determining the current amount of oxygen product, and the valve 18 for fine adjustment of the Product pressure to the take-off pressure. For the exceptional case that it is not possible to let the system follow a rising absorption pressure quickly enough, the process control system can also close the valve 18 temporarily and blow off the gaseous pressure product via the line 28 and the valve 29 into the atmosphere.

Figur 2 zeigt einen beispielhaften zeitlichen Verlauf des Abnahmedrucks PA und des Innenverdichtungsdrucks PIV über einem entlang der x-Achse aufgetragenen Zeitraum von fünf Stunden.FIG. 2 shows an exemplary time profile of the take-off pressure PA and the internal compression pressure PIV over a time period of five hours plotted along the x-axis.

Der untere Teil des Diagramms von Figur 2 stellt den zeitlichen Verlauf der Menge dar, die vom Abnahmesystem an die Verbraucher abgegeben wird (durchgezogene Linie).The lower part of the diagram of Figure 2 represents the time course of the amount that is discharged from the collection system to the consumer (solid line).

Im oberen Teil des Diagramms ist mit einer durchgezogenen Linie der Verlauf des Abnahmedrucks PA im Druckspeicher bzw. in der Produktpipeline des Abnahmesystems (der "Druck des Abnahmesystems") dargestellt. Wenn die Abnahmemenge steigt (durchgezogene Linie unten), sinkt der Abnahmedruck PA (durchgezogene Linie oben) und umgekehrt. Dem Verlauf des Abnahmedrucks PA folgt der oben gestrichelt dargestellte Innenverdichtungsdruck PIV (der "erhöhte Druck") grundsätzlich mit etwas Abstand und Verzögerung.The upper part of the diagram shows in a solid line the course of the take-off pressure PA in the pressure reservoir or in the product pipeline of the take-off system (the "pressure of the take-off system"). When the amount of purchase increases (solid line below), the decrease pressure PA (solid line at the top) decreases, and vice versa. The course of the take-off pressure PA is followed by the inner compression pressure PIV (the "increased pressure") shown in dashed lines in principle with some distance and delay.

Der Innenverdichtungsdruck PIV kann nicht beliebig schnell verändert werden, sodass es auch bei dem erfindungsgemäßen Verfahren zu kurzzeitigem Abblasen von Produkt kommen kann (siehe gestrichelte Linie unten in Figur 2). Die Abblasemenge kann durch die Erfindung jedoch gering gehalten werden.The internal compression pressure PIV can not be changed arbitrarily fast, so that even in the inventive method for short-term blowing off of product can come (see dashed line below in Figure 2). However, the blow-off quantity can be kept low by the invention.

Selbstverständlich ist die Erfindung auf jedes andere Innenverdichtungsverfahren anzuwenden, insbesondere auf solche mit einer abweichenden Kälteerzeugung mit einer oder mehreren Turbinen, die Luft in die Hochdrucksäule und/oder in die Niederdrucksäule einblasen oder eine stickstoffangereicherte Fraktion aus einer der Trennsäulen des Destilliersäulen-Systems 12 entspannen.Of course, the invention is to be applied to any other internal compression process, in particular to those with different refrigeration with one or more turbines blowing air into the high pressure column and / or into the low pressure column or relaxing a nitrogen enriched fraction from one of the columns of the distillation column system 12.

Die erfindungsgemäße Regelung kann weiter verfeinert werden, indem Informationen über den zukünftigen Verbrauchsmengen der Verbraucher V1 bis Vn ausgewertet und daraus eine Vorhersage für zukünftige Werte des Abnahmedrucks gewonnen wird, beispielsweise gemäß der in EP 1542102 A1 beschriebenen Methode. Das Lastwechselsystem kann dann frühzeitig den Zustand der Luftzerlegungsanlage in eine Richtung bewegen, die dem in der Zukunft benötigten Innenverdichtungsdruck PIV entspricht. Auf diese Weise kann eine noch bessere Anpassung des Verlaufs des Innenverdichtungsdrucks an den Abnahmedruck erreicht werden was wesentlich dazu beiträgt, das zeitweise Abblasen von Produkt zu vermeiden.The control according to the invention can be further refined by evaluating information about the future consumption quantities of the consumers V1 to Vn and from this a prediction for future values of the take-off pressure is obtained, for example according to the EP 1542102 A1 described method. The load change system can then promptly move the state of the air separation plant in a direction that corresponds to the required interior compression pressure PIV in the future. In this way, an even better adaptation of the course of the internal compression pressure to the take-off pressure can be achieved, which contributes significantly to avoid the temporary blowing off of product.

Claims (5)

Verfahren zur Erzeugung eines Druckprodukts durch Tieftemperatur-Luftzerlegung, bei dem - Einsatzluft (1) verdichtet (2), gereinigt (4), abgekühlt (9) und einem Destilliersäulen-System (12) zur Stickstoff-Sauerstoff-Trennung zugeführt (11, 23) wird, - ein flüssiger Produktstrom (13) aus dem Destilliersäulen-System (12) zur Stickstoff-Sauerstoff-Trennung entnommen, in flüssigem Zustand auf einen erhöhten Druck (PIV) gebracht (14) und unter diesem erhöhten Druck (PIV) verdampft oder pseudo-verdampft (9) wird und - der (pseudo-)verdampfte Produktstrom (16) als Druckprodukt einem Abnahmesystem (19) zugeführt (17) wird, das einen variablen Druck (PA) aufweist, dadurch gekennzeichnet, dass - der erhöhte Druck (PIV) variiert wird und - die Variation des erhöhten Drucks (PIV) in Abhängigkeit vom Druck (PA) des Abnahmesystems (19) durchgeführt wird. Process for producing a printed product by cryogenic air separation, in which Feed air (1) compressed (2), purified (4), cooled (9) and fed to a distillation column system (12) for nitrogen-oxygen separation (11, 23), - A liquid product stream (13) taken from the distillation column system (12) for nitrogen-oxygen separation, brought in the liquid state to an elevated pressure (PIV) (14) and evaporated or pseudo-evaporated under this elevated pressure (PIV) (9) becomes and the (pseudo) vaporized product stream (16) is supplied as a printed product to a take-off system (19) having a variable pressure (PA), characterized in that - The increased pressure (PIV) is varied and - The variation of the increased pressure (PIV) in dependence on the pressure (PA) of the removal system (19) is performed. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein gasförmiger Wärmeträgerstrom (7, 21, 22) auf einen hohen Druck (PW) verdichtet (20) wird und der flüssige Produktstrom (13, 15) durch indirekten Wärmeaustausch (9) mit dem unter dem hohen Druck stehenden Wärmeträgerstrom (pseudo-)verdampft wird, wobei der hohe Druck (PW) und oder die Menge (MW) des Wärmeträgerstroms variiert wird und die Variation des hohen Drucks (PW) beziehungsweise der Menge (MW) des Wärmeträgerstroms in Abhängigkeit vom Druck (PA) des Abnahmesystems (19) durchgeführt wird.A method according to claim 1, characterized in that a gaseous heat transfer stream (7, 21, 22) to a high pressure (PW) compressed (20) and the liquid product stream (13, 15) by indirect heat exchange (9) with the under high pressure (PW) and / or the amount (MW) of the heat carrier flow is varied and the variation of the high pressure (PW) or the amount (MW) of the heat carrier flow depending on the pressure (PA) of the removal system (19) is performed. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in einem Kälteerzeugungssystem (26) Kälte für das Verfahren gewonnen wird und die in dem Kälteerzeugungssystem (26) erzeugte Kältemenge in Abhängigkeit vom Druck (PA) des Abnahmesystems (19) variiert wird.A method according to claim 1 or 2, characterized in that in a refrigeration system (26) cold for the method is obtained and the amount of cold generated in the refrigeration system (26) is varied in dependence on the pressure (PA) of the removal system (19). Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Betriebsparameter des Destilliersäulen-Systems in Abhängigkeit vom Druck (PA) des Abnahmesystems (19) variiert werden.Method according to one of claims 1 to 3, characterized in that operating parameters of the distillation column system in dependence on the pressure (PA) of the removal system (19) are varied. Vorrichtung zur Erzeugung eines Druckprodukts durch Tieftemperatur-Luftzerlegung mit - einem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung (12), - Mitteln (1, 3, 5, 6, 7, 10, 11, 21, 22, 23, 25, 27) zum Zuführen verdichteter, gereinigter und abgekühlter Einsatzluft in das Destilliersäulen-System (12) zur Stickstoff-Sauerstoff-Trennung, - Mitteln (13, 15) zum Entnehmen eines flüssigen Produktstroms aus dem Destilliersäulen-System (12) zur Stickstoff-Sauerstoff-Trennung, - Mitteln (14), um den Produktstrom in flüssigem Zustand auf einen erhöhten Druck (PIV) zu bringen, - Mitteln (9) zum Verdampfen oder Pseudo-Verdampfen des Produktstroms unter dem erhöhten Druck (PIV) und - Mitteln (16, 17) zum Zuführen des (pseudo-)verdampften Produktstroms als Druckprodukt zu einem Abnahmesystem (19), gekennzeichnet durch, dass - Mitteln zum Variieren des erhöhten Drucks (PIV) und - eine Steuerungs- oder Regelungseinrichtung, welche die Variation des erhöhten Drucks (PIV) in Abhängigkeit vom Druck (PA) des Abnahmesystems durchführt. Device for producing a printed product by cryogenic air separation with a distillation column system for nitrogen-oxygen separation (12), Means (1, 3, 5, 6, 7, 10, 11, 21, 22, 23, 25, 27) for feeding compressed, purified and cooled feed air into the nitrogen-oxygen separation distillation column system (12), - means (13, 15) for removing a liquid product stream from the distillation column system (12) for nitrogen-oxygen separation, - means (14) for bringing the product stream in the liquid state to an elevated pressure (PIV), - means (9) for vaporizing or pseudo-evaporating the product stream under the elevated pressure (PIV) and - means (16, 17) for feeding the (pseudo) vaporized product stream as a printed product to a take-off system (19), characterized by that Means for varying the elevated pressure (PIV) and - A control or regulating device which performs the variation of the increased pressure (PIV) in dependence on the pressure (PA) of the removal system.
EP06007760A 2006-04-13 2006-04-13 Process and device for producing a high pressure product by cryogenic separation of air Withdrawn EP1845323A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06007760A EP1845323A1 (en) 2006-04-13 2006-04-13 Process and device for producing a high pressure product by cryogenic separation of air
EP07005943A EP1845324A1 (en) 2006-04-13 2007-03-22 Process and device for producing a high pressure product by cryogenic air separation
TW096112693A TW200834025A (en) 2006-04-13 2007-04-11 Process and device for generating a pressurized product by low-temperature air fractionation
KR1020070035912A KR20070101794A (en) 2006-04-13 2007-04-12 Process and device for generating a pressurized product by low-temperature air fractionation
CNA2007100961102A CN101063592A (en) 2006-04-13 2007-04-13 Process and device for generating a pressurized product by low-temperature air fractionation
US11/735,171 US20080047298A1 (en) 2006-04-13 2007-04-13 Process and apparatus for generating a pressurized product by low-temperature air fractionation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06007760A EP1845323A1 (en) 2006-04-13 2006-04-13 Process and device for producing a high pressure product by cryogenic separation of air

Publications (1)

Publication Number Publication Date
EP1845323A1 true EP1845323A1 (en) 2007-10-17

Family

ID=36954660

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06007760A Withdrawn EP1845323A1 (en) 2006-04-13 2006-04-13 Process and device for producing a high pressure product by cryogenic separation of air
EP07005943A Withdrawn EP1845324A1 (en) 2006-04-13 2007-03-22 Process and device for producing a high pressure product by cryogenic air separation

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07005943A Withdrawn EP1845324A1 (en) 2006-04-13 2007-03-22 Process and device for producing a high pressure product by cryogenic air separation

Country Status (5)

Country Link
US (1) US20080047298A1 (en)
EP (2) EP1845323A1 (en)
KR (1) KR20070101794A (en)
CN (1) CN101063592A (en)
TW (1) TW200834025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076430A2 (en) 2011-11-25 2013-05-30 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for separating air by cryogenic distillation

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
DE102010052545A1 (en) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
DE102011112909A1 (en) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Process and apparatus for recovering steel
EP2600090B1 (en) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
DE102013017590A1 (en) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Method for recovering methane-poor fluids in liquid air separation system to manufacture air product, involves vaporizing oxygen, krypton and xenon containing sump liquid in low pressure column by using multi-storey bath vaporizer
CN106461322A (en) * 2014-04-15 2017-02-22 林德股份公司 Process and apparatus for the low-temperature fractionation of air
TR201808162T4 (en) 2014-07-05 2018-07-23 Linde Ag Method and apparatus for recovering a pressurized gas product by decomposing air at low temperature.
PL2963370T3 (en) 2014-07-05 2018-11-30 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2963369B1 (en) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
US10281207B2 (en) * 2016-06-30 2019-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of air gases by the cryogenic separation of air with variable liquid production and power usage
US10260801B2 (en) * 2016-06-30 2019-04-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes George Claude Method for operating an air separation plant
US10267561B2 (en) * 2016-06-30 2019-04-23 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for the production of air gases by the cryogenic separation of air
US10281206B2 (en) * 2016-06-30 2019-05-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for the production of air gases by the cryogenic separation of air with variable liquid production and power usage
CN109642771B (en) * 2016-06-30 2021-07-23 乔治洛德方法研究和开发液化空气有限公司 Method and apparatus for operating an air separation plant
US10302356B2 (en) * 2016-06-30 2019-05-28 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of air gases by the cryogenic separation of air
US10260802B2 (en) * 2016-06-30 2019-04-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for operating an air separation plant
EP3479040A1 (en) * 2016-06-30 2019-05-08 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for the production of air gases by the cryogenic separation of air
EP3699534A1 (en) * 2019-02-19 2020-08-26 Linde GmbH Method and air separation system for variable provision of a gaseous pressurised air product
EP3699535A1 (en) * 2019-02-19 2020-08-26 Linde GmbH Method and air separation system for variable provision of a gaseous pressurised air product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471843A (en) * 1993-06-18 1995-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure at variable flow rate
DE10103957A1 (en) * 2001-01-30 2002-08-01 Linde Ag In process for fractional distillation of air, circulating fluid is drawn from one of three columns for compression and liquefaction
US6666049B1 (en) * 2003-03-20 2003-12-23 Praxair Technology, Inc. Method for operating a cryogenic plant
EP1542102A1 (en) * 2003-12-10 2005-06-15 Linde Aktiengesellschaft Method and device for suboptimal control by means of a search strategy and method and device for gas separation ,in particular for cryogenic air separation
EP1586838A1 (en) * 2004-04-06 2005-10-19 Linde Aktiengesellschaft Process and device for the production of variable amounts of a pressurized product by cryogenic separation of air
JP2006002958A (en) * 2004-06-15 2006-01-05 Jfe Steel Kk Oxygen gas supply and demand system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1479561A (en) * 1966-03-25 1967-05-05 Air Liquide Variable flow rate gas pre-production process
FR2680114B1 (en) * 1991-08-07 1994-08-05 Lair Liquide METHOD AND INSTALLATION FOR AIR DISTILLATION, AND APPLICATION TO THE GAS SUPPLY OF A STEEL.
US6697713B2 (en) * 2002-01-30 2004-02-24 Praxair Technology, Inc. Control for pipeline gas distribution system
US6694776B1 (en) * 2003-05-14 2004-02-24 Praxair Technology, Inc. Cryogenic air separation system for producing oxygen
US20070220918A1 (en) * 2006-03-24 2007-09-27 Scharf Paul F Pressure setting method for gas pipeline

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471843A (en) * 1993-06-18 1995-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure at variable flow rate
DE10103957A1 (en) * 2001-01-30 2002-08-01 Linde Ag In process for fractional distillation of air, circulating fluid is drawn from one of three columns for compression and liquefaction
US6666049B1 (en) * 2003-03-20 2003-12-23 Praxair Technology, Inc. Method for operating a cryogenic plant
EP1542102A1 (en) * 2003-12-10 2005-06-15 Linde Aktiengesellschaft Method and device for suboptimal control by means of a search strategy and method and device for gas separation ,in particular for cryogenic air separation
EP1586838A1 (en) * 2004-04-06 2005-10-19 Linde Aktiengesellschaft Process and device for the production of variable amounts of a pressurized product by cryogenic separation of air
JP2006002958A (en) * 2004-06-15 2006-01-05 Jfe Steel Kk Oxygen gas supply and demand system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076430A2 (en) 2011-11-25 2013-05-30 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for separating air by cryogenic distillation
FR2983287A1 (en) * 2011-11-25 2013-05-31 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
WO2013076430A3 (en) * 2011-11-25 2015-07-02 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for separating air by cryogenic distillation

Also Published As

Publication number Publication date
KR20070101794A (en) 2007-10-17
TW200834025A (en) 2008-08-16
US20080047298A1 (en) 2008-02-28
CN101063592A (en) 2007-10-31
EP1845324A1 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
EP1845323A1 (en) Process and device for producing a high pressure product by cryogenic separation of air
EP0399197B1 (en) Process and apparatus for the low temperature separation of air
EP0842385B2 (en) Method and device for the production of variable amounts of a pressurized gaseous product
DE69727648T2 (en) Process and plant for supplying an air gas in variable quantities
EP1892490A1 (en) Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
WO2007033838A1 (en) Air cryogenic separation method and device
DE102005029274A1 (en) Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP2963370B1 (en) Method and device for the cryogenic decomposition of air
DE10115258A1 (en) Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
EP0716280A2 (en) Methods and apparatus for the low temperature air separation
EP0669509A1 (en) Process and apparatus for obtaining pure argon
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
EP3019803B1 (en) Method and device for oxygen production by low-temperature separation of air at variable energy consumption
EP2322888B1 (en) Method and device for generating a helium-neon concentrate from air
WO2014146779A2 (en) Method and device for generating gaseous compressed nitrogen.
EP2979051B1 (en) Method and device for producing gaseous compressed oxygen having variable power consumption
DE4415747C2 (en) Method and device for the low-temperature separation of air
DE4441920C1 (en) Method and appliance for obtaining nitrogen by cryogenic separation of air
EP3699535A1 (en) Method and air separation system for variable provision of a gaseous pressurised air product
DE10249383A1 (en) Method and device for the variable generation of oxygen by low-temperature separation of air
EP3864357A1 (en) Method for obtaining one or more air products and air separation system
DE10205096A1 (en) Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises feeding the less pure oxygen into high pressure column, feeding fraction into a low pressure column and withdrawing highly pure oxygen
EP3699534A1 (en) Method and air separation system for variable provision of a gaseous pressurised air product
DE10130754A1 (en) Method and equipment for regulating air-separation plant's capacity incorporate high and low pressure columns, fluid-pipe, regulator, meter and intermediate point
EP1837614A1 (en) Process and device for the vaporisation of an oxygen enriched liquid and process and device for the cryogenic separation of air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080418

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566