EP1837946B1 - Coupleur directionnel - Google Patents

Coupleur directionnel Download PDF

Info

Publication number
EP1837946B1
EP1837946B1 EP06006202A EP06006202A EP1837946B1 EP 1837946 B1 EP1837946 B1 EP 1837946B1 EP 06006202 A EP06006202 A EP 06006202A EP 06006202 A EP06006202 A EP 06006202A EP 1837946 B1 EP1837946 B1 EP 1837946B1
Authority
EP
European Patent Office
Prior art keywords
coupling
directional coupler
line
ground
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06006202A
Other languages
German (de)
English (en)
Other versions
EP1837946A1 (fr
Inventor
Daniel Krausse
Christoph Gerhardt
Peter Riessle
Thomas Kirchmeier
Erich Dr. Pivit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Huettinger GmbH and Co KG
Original Assignee
Huettinger Elektronik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huettinger Elektronik GmbH and Co KG filed Critical Huettinger Elektronik GmbH and Co KG
Priority to EP06006202A priority Critical patent/EP1837946B1/fr
Priority to US11/689,043 priority patent/US7755451B2/en
Publication of EP1837946A1 publication Critical patent/EP1837946A1/fr
Application granted granted Critical
Publication of EP1837946B1 publication Critical patent/EP1837946B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/185Edge coupled lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines

Definitions

  • the invention relates to a directional coupler, in particular for an RF plasma process excitation arrangement according to the preamble of claim 1.
  • RF plasma process excitation arrangements include an RF generator that provides RF power to a plasma process.
  • the RF power is typically supplied to the plasma process in a narrow band frequency range, particularly around the industrial frequencies of 13.56 MHz and 27.12 MHz.
  • Measuring devices may be provided to measure the power supplied to the plasma process. For accurate control and / or control of the power, it is necessary to accurately detect the delivered power.
  • a directional coupler can determine the forward power P i and the reflected power P r .
  • Directional couplers couple out a portion of the power that passes through a through-conductor of the directional coupler.
  • the EP 1 014 472 A1 discloses a broadband directional coupler having at least two cascaded coupling sections of different coupling loss.
  • the central coupling section has a line on one side of a substrate and a line on the opposite side of the substrate.
  • a metallization surface is further provided on one side of the substrate.
  • the US 2002/0113667 A1 describes a directional coupler in which a coupling line and a transmission line are arranged in the same plane. Furthermore, a ground plane is also arranged in this plane.
  • Known directional couplers are designed for much higher frequencies (1 GHz and higher), where line theory plays an essential role.
  • a coupling line runs parallel to the feedthrough line.
  • a small part of the power is decoupled from the transmission line, in which the power of the generator flows to the load, to the coupling line by electrical and magnetic coupling.
  • a power proportional to the reflected power can be tapped at the other end, and a power proportional to the forward power at the other end. It has also been proposed, one each To use a coupling line for the forward power and a coupling line for the reflected power.
  • a measured signal can be generated from the tapped services, which can be fed to a controller.
  • the object of the present invention is to provide a directional coupler in which the electrical coupling between the transmission line and the coupling lines is low and the forward power and reflected power can be coupled out with different coupling factors.
  • a directional coupler with the features of claim 1.
  • the use of two coupling lines has the advantage that the forward power and the reflected power can be measured decoupled from each other.
  • the power or a descriptive size can be tapped. If reflections occur in the wiring, for example the filtering of the tapped power, these are absorbed in the terminating resistor of the respective coupling line and do not contribute to a measuring error on the other coupling line.
  • the coupling lines extend at least in sections parallel to the passage line.
  • a first ground reference potential in particular a first ground plane
  • the first and second coupling line in a predetermined Distance from the ground potential are arranged.
  • the characteristic impedance of the coupling lines can be set very accurately. Due to the fixed reference potential, a fixed characteristic impedance can be specified with high accuracy and reliability and with high repeat accuracy.
  • a common wave impedance is set in the industry. For example, a 50 ohm or 75 ohm characteristic impedance is very common. In order to realize the characteristic impedance, in addition the length and / or width of the coupling lines can be suitably specified.
  • two ground reference potentials can be provided and the coupling lines can be arranged between the ground reference potentials, wherein the distance to at least one, preferably two ground reference potentials is predetermined or can be predetermined.
  • the predetermined characteristic impedance can be set precisely, and with the second ground reference potential, the electrical coupling between the feedthrough line and the coupling lines can be set precisely.
  • the coupling lines can be arranged between two ground planes.
  • the coupling lines can be embedded between insulating materials, such as printed circuit boards, which carry the ground planes.
  • the through-line is arranged in the same plane as a ground plane, but isolated from it.
  • the electrical and magnetic coupling must be balanced.
  • the magnetic Coupling results from the magnetic field line course in the range of the route in which the coupling lines are guided in the immediate vicinity of the feedthrough line. Short lines mean little magnetic coupling.
  • a low electrical coupling is necessary.
  • the electrical coupling results from the electrical field line course between the transmission line and the respective coupling line, as well as from the surface of the respective coupling line.
  • the field line profile can be deflected by a ground plane on the same plane as the transmission line and thus deflected away from the coupling lines. Thus, the electrical coupling of the transmission line to the coupling lines can be reduced.
  • the field lines of the electric field can be deflected in order to reduce the electrical coupling between the through-line and the coupling lines.
  • the power can be coupled out at the other end.
  • matched termination is meant that the termination resistance is the same as the characteristic impedance of the directional coupler. Reflections resulting from the measurement thus end up in the terminating resistor at the other end of the coupling line, do not lead to any further reflections and do not contribute to a measuring error on the other coupling line.
  • the terminator can be made adjustable, then tolerances can be compensated in the directional coupler.
  • the parallel sections of the lines have a length ⁇ / 4, in particular ⁇ ⁇ / 8, preferably ⁇ ⁇ / 10 exhibit.
  • the dimensions of the directional coupler can be kept small.
  • the forward power and the reflected power or these descriptive variables can be coupled out with different coupling factors.
  • the reflected power is usually smaller than the forward power. If it can be coupled out with a larger coupling factor, the signal-to-noise ratio at the input of the evaluation device detecting the power increases because the dynamics of the evaluation device detecting the power are advantageously utilized. The reflected power can be measured more accurately.
  • the coupling lines are arranged offset from one another. As a result, a coupling between the coupling lines and thus an impairment of the measurement results can be avoided.
  • the distance between the lines can be adjusted precisely and reproducibly if the lines are spaced apart by an electrically insulating material, in particular printed circuit board material.
  • the directional coupler is particularly suitable for operation in RF plasma process excitation arrangements, if it is designed for operation at frequencies ⁇ 200 MHz, in particular ⁇ 40 MHz.
  • the invention also includes an RF plasma process excitation arrangement with a directional coupler as described above.
  • a large part of the return flow in particular more than 90% of the return flow, flows from a plasma load to an HF generator via a ground plane of the directional coupler. On the ground surface should a large part, if possible, the entire return flow. This ensures that builds up the electric field, which is necessary for the electrical coupling of the passage line to the coupling lines.
  • the HF resistance for the return current between the output terminal of the RF plasma process excitation arrangement and a ground potential of the directional coupler is smaller than the HF resistance of a housing between the output terminal and ground potential of the housing.
  • the output is designed as a coaxial plug, on the outer conductor of the return current flows.
  • the outer conductor is mechanically and electrically usually connected to the ground of the housing.
  • the mass of the HF generator is usually connected at several points or over a large area with the mass of the housing. In general, therefore, even if a ground reference potential is provided on the directional coupler, here not the full flow, but a large part of the current will flow through the housing directly to the ground of the RF generator.
  • the current will be corresponding to the resistances of the divide different current paths to ground. According to the invention, it is now ensured that as far as possible the entire current flows over the ground reference surface of the directional coupler.
  • a very low DC resistance as a conventional package in any case, can be increased when inductors are introduced into the current path.
  • the current path via the ground reference potential of the directional coupler to the ground of the RF generator can be constructed particularly low inductance.
  • the fastening screws of the output terminal have a direct, short and large-area connection to the ground surface of the directional coupler.
  • the connection of the ground reference surface of the directional coupler to the mass of the generator can be constructed as short, and low inductance.
  • the RF plasma process excitation arrangement 1 comprises an HF generator 2 which is connected to a plasma load 4 via a directional coupler 3.
  • the directional coupler 3 is used to decouple signals or quantities that are related to the forward power output by the RF generator 2 and the power reflected by the plasma load 4.
  • a first measuring device 5 for measuring the forward power
  • a second measuring device 6 for measuring the reflected power
  • the measuring devices 5, 6 are in turn connected to an evaluation device 7, which can control the HF generator 2 and thus the forward power output due to the measured powers.
  • FIG. 2 a cross section through the directional coupler 3 is shown.
  • a through-line 11 is arranged electrically insulated. Via the through-line 11, the forward power is transmitted from the RF generator to the load.
  • the ground plane 10 and the through-line 11 are in a plane according to this embodiment. They are arranged on an electrical insulator 12 designed as a printed circuit board.
  • an electrical insulator 12 designed as a printed circuit board.
  • a first coupling line 13 is arranged for coupling out the reflected power.
  • the first coupling line 13 is on a circuit board trained electrical insulator 14 applied.
  • the first coupling line 13 is arranged at a predetermined vertical distance and slightly offset from the passage line 11.
  • the second coupling line 15 for coupling the forward power is arranged at a greater distance from the passage line 11.
  • the second coupling line 15 is arranged on an insulator 16 designed as a printed circuit board. Due to the greater distance of the second coupling line 15 to the through-line 11, power is coupled out by the second coupling line 15 with a lower coupling factor.
  • the distance between the second coupling line 15 and the passage line 11 is also predetermined.
  • the coupling line 15 is arranged offset to the passage line 11 and does not overlap the first coupling line 13. This ensures a decoupling of the two coupling lines 13, 15.
  • a second ground plane 17 is provided.
  • the ground planes 10, 17 may be connected to a plurality of vias (not shown) to ensure the homogeneity of the current in the ground planes 10, 17.
  • the coupling lines 13, 15 have a defined distance from the ground plane 17. In this way, the characteristic impedance of the coupling lines 13, 15 is precisely determined.
  • the characteristic impedance is further determined by the length and width of the coupling lines 13, 15. The length, width of the coupling lines and the distance to the ground surface 17 are thus matched to each other in order to achieve a defined, predetermined characteristic impedance for each coupling line 13, 15.
  • the coupling factors are also influenced by the length and width of the coupling lines 13, 15. Another influence on the Coupling factor has the position of the coupling lines 13, 15 with respect to the passage line 11 and the width and length of the passage line eleventh
  • the electric field in the vicinity of the passage line 11 is influenced.
  • the electrical coupling between the through-conductor 11 and the coupling lines 13, 15 can be influenced and adjusted.
  • FIG. 3a a plan view of the ground plane 10 and the through-line 11 is shown. Here it is clear that the passage line 11 is completely embedded in the ground plane 10 and thus also shielded from this. Shown are also an input terminal 21 for connection to the RF generator and an output terminal 20 for connection to the plasma load.
  • FIG. 3b shows a plan view of the insulator 14, on which the first coupling line 13 is arranged. Outside the coupling region 22, in which the first coupling line 13 extends parallel to the through-line 11, the coupling line 13 is angled, so that the terminals 23, 24 are located away from the through-line 11. At the terminal 23, only a resistor 25 is connected, whose resistance value corresponds to the characteristic impedance of the first coupling line 13.
  • the connection 24 can be connected to a measuring device to which a variable describing the reflected power P r is output.
  • the Figure 3c shows a plan view of the insulator 16, on which the second coupling line 15 is arranged. Outside the coupling region 22, in which the second coupling line 15 extends parallel to the through-line 11, is angled the coupling line 15, so that the terminals 26, 27 of the through-line 11 and the terminals 23, 24 of the first coupling line 13 are removed. At the terminal 26, only a resistor 28 is connected, whose resistance value corresponds to the characteristic impedance of the second coupling line 15.
  • the connection 27 can be connected to a measuring device to which a variable describing the forward power P i is output.
  • the RF generator 2 and the directional coupler 3 are arranged in a housing 30, wherein the housing 30 is connected to a ground potential.
  • An output terminal 31 of the HF generator 2 is connected via a line 32 to the transmission line 11 of the directional coupler 3.
  • the passage line 11 of the directional coupler 3 is in turn connected to the inner conductor 33 of a designed as a plug, in particular coax connector, output terminal 34.
  • the outer conductor 35 of the output terminal 34 is connected over a large area via fastening means 36 to the housing 30. In particular, the current conducted back on the outer conductor 35 from the plasma load passes via the outer conductor 35 to the housing 30.
  • the ground surface 17 is further connected via a short line 38 to the RF generator 2, in particular to its ground potential.
  • the connecting lines 37, 38 are preferably made of copper or silver. These metals have a high electrical conductivity.
  • the length of the connecting lines 37, 38 ⁇ 10 mm and the width ⁇ 5 mm, in particular ⁇ 10mm. Due to the flat, short design of the connecting lines 37, 38, a low-inductance connection between the outer conductor 35 and the ground of the HF generator 2 via the ground surface 17 is realized.
  • measures can be taken on the housing 30 in order to increase the resistance for the recirculated HF current and to ensure in this way that the return current flows substantially across the ground surface 17.
  • Such measures can be, for example: connecting elements between housing and ground of the HF generator provided with ferrite rings, or fasteners made of materials with a high ⁇ r use because a high ⁇ r increases the skin effect, thus leading to a deteriorated RF power line.
  • the electric and magnetic fields can form, which are necessary for a good coupling of the coupling lines 13, 15 with the passage line 11.

Landscapes

  • Plasma Technology (AREA)

Claims (13)

  1. Coupleur directionnel (3), en particulier pour un dispositif (1) d'excitation de processus au plasma HF (haute fréquence), comprenant :
    a. une ligne de transmission (11), avec une borne d'entrée (20) et une borne de sortie (21),
    b. une première ligne de couplage (13), qui est distante de la ligne de transmission (11), est destinée à détecter la puissance réfléchie (Pr) et est terminée au moins à une extrémité par une résistance de terminaison (25),
    c. une deuxième ligne de couplage (15), qui est distante de la ligne de transmission (11), est destinée à détecter la puissance directe (Pi) et est terminée au moins à une extrémité par une résistance de terminaison (28),
    d. sachant que chaque ligne de couplage (13, 15) présente une impédance caractéristique prédéterminée et réglée et que les résistances de terminaison (25, 28) présentent une valeur de résistance qui correspond à l'impédance caractéristique de la ligne de couplage associée (13, 15) avec une tolérance < ±10%, en particulier < ±5%, de préférence < ±1%,
    caractérisé en ce que
    e. la ligne de transmission (11) est disposée dans le même plan qu'une surface de masse (10), mais est isolée par rapport à celle-ci, et
    f. la ligne de transmission (11), la première ligne de couplage (13) et la deuxième ligne de couplage (15) sont toutes disposées dans des plans différents.
  2. Coupleur directionnel selon la revendication 1, caractérisé en ce qu'il est prévu un premier potentiel de référence à la masse, en particulier une première surface de masse (10, 17), et la première et la deuxième lignes de couplage (13, 15) sont disposées à une distance prédéterminée du potentiel de masse.
  3. Coupleur directionnel selon l'une des revendications précédentes, caractérisé en ce qu'il est prévu deux surfaces de masse (10, 17) et les lignes de couplage (13, 15) sont disposées entre les surfaces de masse (10, 17), sachant que la distance par rapport à au moins une, de préférence aux deux surfaces de masse (10, 17) est prédéterminée ou prédéterminable.
  4. Coupleur directionnel selon l'une des revendications précédentes, caractérisé en ce qu'aucune ligne de couplage (13, 15) n'est disposée entre la ligne de transmission (11) et un potentiel de masse, en particulier une surface de masse.
  5. Coupleur directionnel selon l'une des revendications précédentes, caractérisé en ce que les lignes de couplage (13, 15) présentent à une extrémité exclusivement une résistance de terminaison (25, 28).
  6. Coupleur directionnel selon l'une des revendications précédentes, caractérisé en ce que les parties des lignes (11, 13, 15) qui s'étendent en parallèle présente une longueur < λ/4, en particulier ≤ λ/8, de préférence ≤ λ/10.
  7. Coupleur directionnel selon l'une des revendications précédentes, caractérisé en ce que la puissance directe (Pi) et la puissance réfléchie (Pr), ou des grandeurs qui les décrivent, peuvent être découplées avec des facteurs de couplage différents, par le fait que la première et la deuxième lignes de couplage (13, 15) sont disposées à des distances différentes de la ligne de transmission (11).
  8. Coupleur directionnel selon l'une des revendications précédentes, caractérisé en ce que les lignes de couplage (13, 15) sont disposées en étant décalées l'une par rapport à l'autre transversalement à leur direction de développement.
  9. Coupleur directionnel selon l'une des revendications précédentes, caractérisé en ce que les lignes (11, 13, 15) sont espacées les unes des autres par un matériau électriquement isolant, en particulier un matériau de carte à circuit imprimé.
  10. Coupleur directionnel selon l'une des revendications précédentes, caractérisé en ce qu'il est conçu pour une exploitation à des fréquences < 200 MHz, en particulier < 40 MHz.
  11. Dispositif (1) d'excitation de processus au plasma HF avec un coupleur directionnel (3) selon l'une des revendications précédentes.
  12. Dispositif d'excitation de processus au plasma HF selon la revendication 11, caractérisé en ce que des résistances inductives sont disposées dans le trajet de courant entre la borne de sortie (34) du dispositif (1) d'excitation de processus au plasma et le potentiel de masse d'un boîtier (30).
  13. Dispositif d'excitation de processus au plasma HF selon la revendication 11 ou 12, caractérisé en ce que la borne de sortie (34) du dispositif (1) d'excitation de processus au plasma est reliée par l'intermédiaire d'une ligne de jonction (37) à la surface de masse (10, 17) du coupleur directionnel (3), et/ou la surface de masse (17) du coupleur directionnel (3) est reliée par l'intermédiaire d'une ligne (30) au potentiel de masse du générateur HF (2).
EP06006202A 2006-03-25 2006-03-25 Coupleur directionnel Not-in-force EP1837946B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06006202A EP1837946B1 (fr) 2006-03-25 2006-03-25 Coupleur directionnel
US11/689,043 US7755451B2 (en) 2006-03-25 2007-03-21 Directional coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06006202A EP1837946B1 (fr) 2006-03-25 2006-03-25 Coupleur directionnel

Publications (2)

Publication Number Publication Date
EP1837946A1 EP1837946A1 (fr) 2007-09-26
EP1837946B1 true EP1837946B1 (fr) 2012-07-11

Family

ID=36809163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06006202A Not-in-force EP1837946B1 (fr) 2006-03-25 2006-03-25 Coupleur directionnel

Country Status (2)

Country Link
US (1) US7755451B2 (fr)
EP (1) EP1837946B1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777687B (zh) * 2010-03-23 2013-01-09 南通大学 一种具有任意功率分配比的反相微波功分器
US9748627B2 (en) 2014-06-12 2017-08-29 Skyworks Solutions, Inc. Devices and methods related to directional couplers
US9496902B2 (en) 2014-07-24 2016-11-15 Skyworks Solutions, Inc. Apparatus and methods for reconfigurable directional couplers in an RF transceiver with selectable phase shifters
US9386680B2 (en) 2014-09-25 2016-07-05 Applied Materials, Inc. Detecting plasma arcs by monitoring RF reflected power in a plasma processing chamber
DE102015212184A1 (de) 2015-06-30 2017-01-05 TRUMPF Hüttinger GmbH + Co. KG Richtkoppler
CN108292793B (zh) 2015-09-10 2021-03-09 天工方案公司 用于多频功率检测的电磁耦合器
TWI716539B (zh) 2016-02-05 2021-01-21 美商天工方案公司 具有多波段濾波的電磁耦合器
WO2017151321A1 (fr) 2016-02-29 2017-09-08 Skyworks Solutions, Inc. Ensembles filtre et coupleur directif intégrés
CN109155361B (zh) 2016-03-30 2022-11-08 天工方案公司 用于耦合器线性度改进和重新配置的可调节活性硅
US10084224B2 (en) 2016-04-29 2018-09-25 Skyworks Solutions, Inc. Compensated electromagnetic coupler
WO2017189825A1 (fr) 2016-04-29 2017-11-02 Skyworks Solutions, Inc. Coupleur électromagnétique accordable et modules ainsi que dispositifs l'utilisant
WO2017196652A2 (fr) 2016-05-09 2017-11-16 Skyworks Solutions, Inc. Coupleur électromagnétique auto-réglable à détection automatique de fréquence
US10164681B2 (en) 2016-06-06 2018-12-25 Skyworks Solutions, Inc. Isolating noise sources and coupling fields in RF chips
WO2017223141A1 (fr) 2016-06-22 2017-12-28 Skyworks Solutions, Inc. Agencements de coupleur électromagnétique pour la détection de puissance multi-fréquence et dispositifs associés
CN106422691A (zh) * 2016-08-25 2017-02-22 北京航天环境工程有限公司 用于有机废气等离子体处理装置中的高频电源电路
JP2018088640A (ja) * 2016-11-29 2018-06-07 株式会社東芝 方向性結合器の製造方法
US10742189B2 (en) 2017-06-06 2020-08-11 Skyworks Solutions, Inc. Switched multi-coupler apparatus and modules and devices using same
US10680308B2 (en) 2017-12-07 2020-06-09 At&T Intellectual Property I, L.P. Methods and apparatus for bidirectional exchange of electromagnetic waves
DE102018204583A1 (de) 2018-03-26 2019-09-26 TRUMPF Hüttinger GmbH + Co. KG Hochfrequenzleistungsmessvorrichtung
DE202018101683U1 (de) 2018-03-26 2018-05-14 TRUMPF Hüttinger GmbH + Co. KG Richtkoppler
DE102023101847A1 (de) 2023-01-25 2024-07-25 TRUMPF Hüttinger GmbH + Co. KG Verbindungsanordnung, Plasmaprozessstromversorgungsystem, Plasmaprozesssystem sowie ein Verfahren zum Betreiben eines Plasmaprozesses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014472A1 (fr) * 1998-12-17 2000-06-28 Rohde & Schwarz GmbH & Co. KG Coupleur directionnel
US20020113667A1 (en) * 2000-06-06 2002-08-22 Yukihiro Tahara Directional coupler
WO2006105847A1 (fr) * 2005-04-07 2006-10-12 Kathrein-Werke Kg Coupleur haute frequence ou diviseur de puissance, notamment coupleur haute frequence 3 db ou diviseur de puissance a bande etroite

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601716A (en) * 1969-12-24 1971-08-24 Ibm Stripline directional coupling device
US4809356A (en) * 1988-02-08 1989-02-28 Motorola, Inc. Three-way power splitter using directional couplers
US5006821A (en) * 1989-09-14 1991-04-09 Astec International, Ltd. RF coupler having non-overlapping off-set coupling lines
JPH0514019A (ja) * 1991-07-01 1993-01-22 Taisee:Kk 方向性結合器
JP2779479B2 (ja) * 1993-11-29 1998-07-23 株式会社ニッシン プラズマ発生用マイクロ波回路の自動チューニング方法及び装置
US5424694A (en) 1994-06-30 1995-06-13 Alliedsignal Inc. Miniature directional coupler
JPH08203692A (ja) 1995-01-25 1996-08-09 Hitachi Ltd 誘導結合プラズマ発生装置
US5767753A (en) * 1995-04-28 1998-06-16 Motorola, Inc. Multi-layered bi-directional coupler utilizing a segmented coupling structure
US5625328A (en) * 1995-09-15 1997-04-29 E-Systems, Inc. Stripline directional coupler tolerant of substrate variations
US6847003B2 (en) * 2000-10-13 2005-01-25 Tokyo Electron Limited Plasma processing apparatus
ATE358340T1 (de) * 2000-11-22 2007-04-15 Ericsson Telefon Ab L M Rf-antennenschalter
DE102004021535A1 (de) 2003-12-30 2005-07-28 Robert Bosch Gmbh Richtkoppler in Streifenleitertechnik mit breitem Koppelspalt
US7218186B2 (en) 2004-01-02 2007-05-15 Scientific Components Corporation Directional coupler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014472A1 (fr) * 1998-12-17 2000-06-28 Rohde & Schwarz GmbH & Co. KG Coupleur directionnel
US20020113667A1 (en) * 2000-06-06 2002-08-22 Yukihiro Tahara Directional coupler
WO2006105847A1 (fr) * 2005-04-07 2006-10-12 Kathrein-Werke Kg Coupleur haute frequence ou diviseur de puissance, notamment coupleur haute frequence 3 db ou diviseur de puissance a bande etroite

Also Published As

Publication number Publication date
EP1837946A1 (fr) 2007-09-26
US7755451B2 (en) 2010-07-13
US20080036554A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
EP1837946B1 (fr) Coupleur directionnel
EP1774616B1 (fr) Dispositif de transmission de signaux haute frequence à large bande
DE60301628T2 (de) Richtkoppler mit einem Einstellmittel
EP0721697A1 (fr) Melangeur d&#39;ondes millimetriques realise par fenetrage
EP3126852B1 (fr) Système de mise en contact, en particulier pointe de mesure hf
EP1743396B1 (fr) Symetriseur large bande
DE112013004185B4 (de) Richtkoppler
WO2013149930A1 (fr) Coupleur directionnel à large bande
DE3117080A1 (de) Mikrowellen-gegentaktmischerschaltung in streifenleitungstechnik
DE10316047B4 (de) Richtkoppler in koplanarer Wellenleitertechnik
DE69623921T2 (de) Oberflächenmontierter richtungskoppler
EP0942291A2 (fr) Dispositif de mesure de la capacité de conducteurs électriques
WO2013143537A1 (fr) Coupleur directif à faible couplage électrique
EP1407508B1 (fr) Coupleur directionnel
EP2438645B1 (fr) Coupleur vers avant à conducteurs plats
DE2833772C2 (de) Richtkoppler
DE4404046C2 (de) Verfahren zum Kalibrieren eines zwei Meßtore aufweisenden Netzwerk-Analysators
DE202011051371U1 (de) Richtkoppler mit reduziertem Crosstalk
EP2137787B1 (fr) Séparateur de tension continue
DE102017109037A1 (de) Antennenanordnung mit anpassbarer Phasenbeziehung zum Einstellen der Abstrahlcharakteristik
DE69121728T2 (de) Mikrowellenverbinder
DE102019134174A1 (de) Richtkoppler
EP2438646B1 (fr) Coupleur de mesure à ruban conducteur
DE102021209675A1 (de) Abstimmbare Mikrowellen-Brückenschaltung mittels Phasenschieber und Abschwächer zur Trennung eines Sendesignals von einem Empfangssignal ohne Zirkulator und ESR-Spektrometer
DE19958560C2 (de) Potentialfreie Verbindung für eine Mikrowellenleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080229

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090723

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 566527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006011698

Country of ref document: DE

Effective date: 20120906

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121111

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121112

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121022

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

26N No opposition filed

Effective date: 20130412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011698

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006011698

Country of ref document: DE

Effective date: 20130412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRUMPF HUETTINGER GMBH + CO. KG, DE

Free format text: FORMER OWNER: HUETTINGER ELEKTRONIK GMBH + CO. KG, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011698

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE, DE

Effective date: 20130801

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011698

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE PARTNERSCH, DE

Effective date: 20130801

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006011698

Country of ref document: DE

Owner name: TRUMPF HUETTINGER GMBH + CO. KG, DE

Free format text: FORMER OWNER: HUETTINGER ELEKTRONIK GMBH + CO. KG, 79111 FREIBURG, DE

Effective date: 20130801

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006011698

Country of ref document: DE

Owner name: TRUMPF HUETTINGER GMBH + CO. KG, DE

Free format text: FORMER OWNER: HUETTINGER ELEKTRONIK GMBH + CO. KG, 79111 FREIBURG, DE

Effective date: 20120712

BERE Be: lapsed

Owner name: HUTTINGER ELEKTRONIK G.M.B.H. + CO. KG

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130325

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 566527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130325

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150320

Year of fee payment: 10

Ref country code: CH

Payment date: 20150325

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150324

Year of fee payment: 10

Ref country code: FR

Payment date: 20150319

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060325

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006011698

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160325

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160325

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331