EP1835984A1 - Support monolithe poreux d'un element de filtration - Google Patents

Support monolithe poreux d'un element de filtration

Info

Publication number
EP1835984A1
EP1835984A1 EP05812416A EP05812416A EP1835984A1 EP 1835984 A1 EP1835984 A1 EP 1835984A1 EP 05812416 A EP05812416 A EP 05812416A EP 05812416 A EP05812416 A EP 05812416A EP 1835984 A1 EP1835984 A1 EP 1835984A1
Authority
EP
European Patent Office
Prior art keywords
channels
support
radial
support according
lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05812416A
Other languages
German (de)
English (en)
Inventor
Valérie Thoraval
Pascal Bouteyre
Patrick Notargiacomo
Alain Wallart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applexion SAS
Original Assignee
Orelis SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orelis SA filed Critical Orelis SA
Publication of EP1835984A1 publication Critical patent/EP1835984A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids

Definitions

  • the present invention relates to a porous monolith support of a filter element having a tabular shape and a substantially constant cross-section along the direction of its axis and comprising a plurality of channels whose surfaces are intended to be coated by filtration membranes, these channels having cross sections distributed in the cross section of the support, all the channels being separated from the periphery of the support only by a single side wall of the support.
  • a filter element comprises a porous monolithic support traversed by longitudinal channels whose lateral surface is coated with a filter membrane having a very small thickness and defining filtering mesh of determined size.
  • a filter membrane having a very small thickness and defining filtering mesh of determined size.
  • such a filter element allows the implementation in a liquid medium of a filtration process, microfiltration, ultrafiltration, nanofiltration or reverse osmosis.
  • the fluid to be filtered circulates in the channels in the form of tangential currents in contact with the filtration membranes.
  • the membranes ensure a separation of the circulating liquid medium at their contact by retaining certain particles or molecules and allowing other fractions of the liquid medium to pass through when they are subjected to a pressure established on either side of the membranes, called pressure transmembrane.
  • the membranes being of very small thickness, they are of great fragility.
  • the porous monolithic support provides the mechanical strength of the filter element so that membranes of very small thickness can be used.
  • the channels are distributed in the section of the monolithic support in a particular arrangement.
  • This arrangement as well as the size and the shape of the channels, are chosen according to various constraints, and in particular the viscosity of the fluid to be filtered, with the aim of maximizing the developed filtering surface, that is to say the membrane filter surface provided to the fluid for a reduced volume of the filter element, that is to say a reduced volume of the monolithic support.
  • the hydraulic channel diameter defined by four times the cross-sectional area of a channel divided by its perimeter, must be large enough to allow a satisfactory flow of the fluid to be filtered in the channel, particularly in cases where the fluid to be filtered is viscous or loaded with suspended matter.
  • a monolithic support having channels whose sections are formed by disk sectors distributed in a circle in a regular manner about its axis.
  • the number of channels is commonly between three and six.
  • the channels can be distributed over several concentric circumferences centered along the axis of the filter support.
  • the permeate i.e., the fluid having passed through the membrane
  • the permeate circulates inside the porous walls of the monolith support to move towards the outer surface of the support.
  • the circulation conditions of the permeate are therefore very different depending on the position in the section of the filter element of the channel from which the permeate originates.
  • the porous monolithic supports all channels of which are separated from the periphery of the support only by a single lateral wall of the support, are preferred.
  • the channels consist of generally triangular sectors angularly offset (with rounded sharp angles) and distributed on the same circumference do not always lead to satisfactory performance when the diameter monolithic support is important, for example of the order of 25 mm. Indeed, if the number of channels is reduced, the developed filter surface may be small and if the number of channels is high, they are relatively flattened, so that the hydraulic diameter of the channels is reduced and may be insufficient for the circulation of certain viscous fluids.
  • the purpose of the invention is to propose a porous monolith support whose geometry and the arrangement of the channels make it possible to optimize the developed membrane surface while preserving a sufficient hydraulic diameter, in particular for filtering viscous fluids or very charged suspensions, and provide high filtration performance even with monolithic carriers having a large outer diameter.
  • the subject of the invention is a porous monolithic support of the aforementioned type, characterized in that all the channels of the support are distributed in:
  • a second set of oblong lateral channels interposed between the radial channels and arranged with their length extending substantially parallel to the periphery of the support.
  • the porous monolith support comprises one or more of the following characteristics:
  • the number of radial channels and lateral channels is between 8 and 12; the length of the radial channels is greater than a quarter of the minimum transverse dimension of the support;
  • the cross sectional area of the radial and lateral channels is between 18 and 30 mm 2 ; the width of the radial channels is between 0.3 and 0.6 times their length;
  • the minimum transverse dimension of the support is between 24 mm and 30 mm, and the hydraulic diameter of each channel is between 4 and 6 mm;
  • the radial channels have an elliptical section;
  • the radial channels have a section in the form of a curvilinear triangle having a large convex side and two smaller concave sides;
  • the lateral channels are arranged so that the large convex sides of their section extend substantially parallel to the periphery of the support;
  • the radial channels have a polygonal shape with at least four sides, and the lateral channels have a generally triangular shape;
  • the support comprises, for each pair of adjacent channels consisting of a radial channel and a lateral channel, a connecting passage ensuring communication between the associated radial and lateral channels; and - each connecting passage has a width less than half of the smallest length of the channels.
  • the invention also relates to a filtration element comprising a porous monolith support delimiting a plurality of channels and filtration membranes coating the walls of the channels, characterized in that the porous monolith support is as defined above.
  • the invention also relates to a fluid filtration module comprising a set of filtration elements according to that defined above.
  • FIG. 1 is a fragmentary exploded perspective view of a module filtering apparatus comprising porous supports according to the invention
  • FIG. 2 is a section of a porous monolith support according to the invention.
  • FIGS. 5, 6 and 7 are views identical to those of FIGS. 2, 3 and 4 showing alternative embodiments of the respective monolithic supports of these figures; and - Figure 8 is a view identical to that of Figure 7 of yet another alternative embodiment.
  • the filtration module 10 illustrated in FIG. 1 comprises a tubular body 12 in which are arranged parallel to each other filtration elements 13 formed of porous monolithic supports 14 according to the invention, the inner channels of which are covered with a porous membrane. 15. At each end, the porous monolithic supports are held by spacers 16 which are associated joints 18.
  • the body 12 is extended at its ends by convergent sections 20, one of which forms an inlet for the fluid to be filtered and the other forms an outlet for collecting the retentate, that is to say the fluid that has not passed through the porous membranes.
  • One or more lateral taps 22 are provided on the body 12 for collecting the permeate having passed through the porous membranes.
  • the fluid to be filtered is conveyed inside the filtration channels.
  • a pressure difference is established between the inner part of the channels carrying the membranes and the chamber formed outside the supports 14 and delimited by the body 12.
  • a fraction of the fluid to be filtered passes through the filtration membranes and circulates through porous support 14 towards their outer surface.
  • the monolithic support according to the invention is preferably made of porous ceramic material. It is formed in one piece, for example by a conventional method of extruding a ceramic material through a die of suitable shape forming the network of channel separation walls.
  • FIG. 2 is shown a section of a porous monolith support 50 according to the invention.
  • This has a cylindrical tabular shape of X-X axis of circular section.
  • the diameter of the support is preferably between 20 mm and 30 mm and is, for example, equal to 25 mm.
  • the section of the support 50 is constant along its length. This length can be in particular between 1000 and 1300 mm; it is for example equal to 1178 mm.
  • the support 50 is traversed, along its entire length in the direction of the axis XX, by channels whose hydraulic diameter is generally between 4 and 6 mm, for example between 4.5 and 5.5 mm, their number being preferably between 8 and 12.
  • the channels are separated from each other by partitions generally designated by the reference 54.
  • the channels define with the outer cylindrical lateral surface of the support peripheral walls 56.
  • All channels are separated from the periphery of the support only by a single side wall 56.
  • the fluid flowing in each channel can reach the outer surface of the support while circulating only radially through a side wall, without having to borrow an intermediate partition 54.
  • All channels of the support have a section of oblong shape, that is to say that this section is generally elongated and therefore has a length greater than its width. All the channels are distributed in a first set of radial channels 62 arranged with their length extending radially and a second set of lateral channels 64 interposed between the radial channels at the periphery of the support and arranged with their length extending generally parallel to the periphery of the support.
  • no channel is arranged along the X-X axis.
  • the radial channels 62 are angularly distributed regularly around the X-X axis.
  • Their number is preferably between four and six. In the example, it is five, so that the lengths of the channel sections are angularly offset by 72 °.
  • the lateral channels 64 are interposed between the radial channels 62.
  • each lateral channel 64 is centered on a bisector of the angle defined by the lengths of the sections of the radial channels 62.
  • the lengths of the lateral channels 64 extend along the sides a pentagon centered along the XX axis.
  • the channels all have the same section.
  • the cross sectional area of the channels is preferably between 18 mm 2 and 30 mm 2 . It is here of 23 mm 2 .
  • the channel section is ellipsoidal in shape.
  • the major axis of the ellipse has a length greater than half the radius of the support 50. Preferably, this length is substantially equal to two-thirds of the radius of the support.
  • the length of the minor axis of the ellipse that is to say the width of the channel, is between one-third and two-thirds of the length of the major axis. Preferably, this is equal to substantially half the length of the major axis.
  • the radial channels have a width of between 0.3 and 0.6 times their length.
  • the minimum thickness of the side walls 56 is equal to 1.5 mm while the minimum thickness of the partitions 56 between the adjacent channels is equal to 0.8 mm.
  • a support whose diameter here is equal to 25 mm and the length is here equal to
  • FIG. 3 shows an alternative embodiment of the support of FIG. 2.
  • the partitions and the side walls are designated by the same references 54 and 56.
  • the support noted 70 is of cylindrical shape with a diameter of 25 mm. It defines five radial channels 72 between which are interspersed along the outer lateral surface five longitudinal channels 74.
  • the channel section has a curvilinear triangle shape having a large convex side 76 and two smaller and concave small sides 78.
  • the sides 78 have identical lengths.
  • the sides defining the channels are connected to each other by filleting.
  • the large convex side 76 extends substantially parallel to the cylindrical outer surface of the support.
  • the radius of curvature of this large side 76 is equal to 22 mm and the center extends along the X-X axis of the support.
  • the long sides 76 extend in the extension of each other and thus have the same circular envelope.
  • each duct has a cross section with a perimeter of 20.5 mm and a surface area of 23.5 mm.
  • the length of the channel sections here is about 8.8 mm.
  • the radial channels extend with their length generally disposed from the center to the periphery. This length extends substantially radially, being slightly inclined, the latter delimiting with a diameter of the support an angle of twenty degrees. All the radial channels 72 are inclined relative to the associated diameter on the same side to the image of the blades of a helix. They are arranged in the same direction and are regularly angularly distributed so that the pattern defined by the channels is rotationally invariant about the axis of the support at an angle of 72 °.
  • the minimum thickness of the side walls 56 separating the long sides 76 of the lateral channels of the outer surface of the support is equal to 1.5 mm, whereas the minimum thickness of the partitions 34 separating the radial channels of the longitudinal channels is equal to 1.2 mm.
  • no channel is arranged along the X-X axis.
  • the partitions 54 delimited between the different channels have a general shape of Y.
  • the filtering surface of such a support with a diameter of 28.8 mm and a length of 1178 mm is equal to 0.240 m 2 for a hydraulic diameter of 4.65 mm.
  • the radial channels denoted 92 and the lateral channels denoted 94 have different shapes.
  • the radial channels 92 extend with their length arranged exactly radially. These channels, five in number, are angularly offset by 72 °. They have in section a polygonal shape with more than four sides, this number being in particular equal to five, so that these channels have an irregular pentagon shape.
  • the section of the radial channels is symmetrical with respect to the length of the channels. They present from the center of the support two small sides 96.
  • each radial channel 92 has a narrow bottom-forming side 98 extending generally parallel to the outer surface of the support. This bottom is connected to the ends of the short sides two long sides 100.
  • the length of the radial channels 92 is here substantially equal to 9.3 mm while their width, measured between the points connecting the short sides 96 to the long sides 100, is equal to 4.1 mm.
  • the longitudinal channels 94 have in section a curvilinear triangle shape having a curved base 102 extending generally parallel to the lateral surface of the support and two straight sides 104 of the same length extending parallel to the long sides 100 of the two radial channels between which the longitudinal channel is inserted.
  • the base 102 has a longer length than the straight sides 104.
  • the length of the side channels is 7.8 mm while their width is 5 mm.
  • the partitions 54 delimited between the adjacent radial channels 92 and the lateral channel 94 interposed have a general shape of Y, the thickness of the partitions being constant along each branch of the Y and for example substantially equal to 1.2 mm.
  • no channel is arranged along the X-X axis.
  • the thickness of the walls 56 separating the channels from the outer surface is equal to 1.8 mm. In all channels, the successive sides delimiting the channels connect to each other by connecting fillet or rounded sharp angles.
  • the porous support having a diameter of 25 mm for a length of 1178 mm, offers an expanded filtering surface of 0.245 m 2 , the hydraulic diameter of the radial channels 92 being equal to 4.83 mm whereas is 4.81 mm for the side channels 94.
  • porous supports illustrated in FIGS. 2, 3 and 4 comprise channels which are disjoint from one another.
  • the radial channels are totally separated from the side channels by continuous partitions.
  • a connecting passage connects two by two an adjacent radial channel and an adjacent lateral channel in order to ensure fluidic communication between these channels.
  • This connecting passage is relatively short and in particular preferably has a width less than half and preferably one third of the smaller length of the radial and lateral channels.
  • FIGS. 5 to 8 the different elements of the supports corresponding to those of FIGS. 2 to 4 are designated by the same reference numerals.
  • the radial channels 62 and the side channels 64 are connected to each other from their point by a connecting passage 120 located in the vicinity of the periphery of the support.
  • each pair of radial and lateral channels thus connected defines in section a general V shape.
  • the adjacent radial and side channels are connected to each other from their corner nearest the periphery of the support by a passage 130.
  • This connection is provided between two adjacent channels through an intermediate partition 54 defined by two small concave sides 78 arranged facing one another.
  • the channels 92 and 94 are connected to each other by a connecting passage 140 formed through the partition 54 delimited between a large side
  • the passage noted 140 is formed in the half of the partition extending on the side of the periphery of the support.
  • the passage marked 150 is delimited through the same partition in its half disposed away from the periphery of the porous monolithic support 50.
  • the monolithic supports have a polygonal outer section, in particular hexagonal or square.
  • the dimensional relationships mentioned in the description apply by replacing the diameter of the support by the minimum transverse dimension of its section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'invention concerne un support monolithe poreux (50) d'un élément de filtration ayant une forme tubulaire et une section transversale sensiblement constante suivant la direction de son axe (X-X) et comportant une pluralité de canaux (62, 64) dont les surfaces sont destinées à être revêtues par des membranes de filtration. Ces canaux ont des sections transversales réparties dans la section transversale du support, tous les canaux (62, 64) étant séparés de la périphérie du support seulement par une unique paroi latérale (56) du support. Tous les canaux du support se répartissent en : - un premier ensemble de canaux radiaux oblongs (62) disposés avec leur longueur s'étendant sensiblement radialement ; et - un second ensemble de canaux latéraux oblongs (64) intercalés entre les canaux radiaux (62) et disposés avec leur longueur s'étendant sensiblement parallèlement à la périphérie du support.

Description

SUPPORT MONOLITHE POREUX D'UN ELEMENT DE FILTRATION
La présente invention concerne un support monolithe poreux d'un élément de filtration ayant une forme tabulaire et une section transversale sensiblement constante suivant la direction de son axe et comportant une pluralité de canaux dont les surfaces sont destinées à être revêtues par des membranes de filtration, ces canaux ayant des sections transversales réparties dans la section transversale du support, tous les canaux étant séparés de la périphérie du support seulement par une unique paroi latérale du support.
Un élément de filtration comporte un support monolithe poreux traversé par des canaux longitudinaux dont la surface latérale est revêtue d'une membrane filtrante présentant une très faible épaisseur et définissant des mailles filtrantes de taille déterminée. En fonction de la membrane utilisée, un tel élément de filtration permet la mise en œuvre dans un milieu liquide d'un procédé de filtration, de microfiltration, d'ultrafiltration, de nanofiltration ou d'osmose inverse.
Lors de la filtration, le fluide à filtrer circule dans les canaux sous la forme de courants tangentiels au contact des membranes de filtration. Les membranes assurent une séparation du milieu liquide en circulation à leur contact en retenant certaines particules ou molécules et en laissant traverser d'autres fractions du milieu liquide lorsqu'elles sont soumises à une pression établie de part et d'autre des membranes, appelée pression transmembranaire.
Les membranes étant d'épaisseur très réduite, celles-ci sont d'une grande fragilité. Le support monolithe poreux assure la résistance mécanique de l'élément de filtration de sorte qu'on peut utiliser des membranes de très faible épaisseur.
Les canaux sont répartis dans la section du support monolithe suivant un agencement particulier.
Cet agencement, ainsi que la taille et la forme des canaux, sont choisis en fonction de différentes contraintes, et notamment de la viscosité du fluide à filtrer, avec pour objectif de rendre maximale la surface filtrante développée, c'est-à-dire la surface de membrane filtrante offerte au fluide pour un volume réduit de l'élément filtrant, c'est-à-dire un volume réduit du support monolithe.
Toutefois, le diamètre hydraulique des canaux, défini par quatre fois la surface de la section transversale d'un canal divisée par son périmètre, doit être suffisamment grand pour permettre un écoulement satisfaisant du fluide à filtrer dans le canal, en particulier dans les cas où le fluide à filtrer est visqueux ou chargé en matières en suspension. Ainsi, il est connu, par exemple du document FR-A-2.724.850, un support monolithique comportant des canaux dont les sections sont formées par des secteurs de disque répartis en cercle de manière régulière autour de son axe. Le nombre de canaux est compris couramment entre trois et six. Afin d'augmenter la surface filtrante développée, il est connu d'augmenter le nombre de canaux. En particulier, les canaux peuvent être répartis sur plusieurs circonférences concentriques centrées suivant l'axe du support filtrant. Toutefois, dans un élément de filtration multicanal, le perméat, c'est-à-dire le fluide ayant traversé la membrane circule à l'intérieur des parois poreuses du support monolithe pour se diriger vers la surface extérieure du support. Les conditions de circulation du perméat sont donc très différentes suivant la position dans la section de l'élément de filtration du canal duquel provient le perméat. Ainsi, les supports monolithes poreux dont tous les canaux sont séparés de la périphérie du support seulement par une unique paroi latérale du support sont privilégiés.
Les agencements tels que décrits dans le document FR-2.724.850, dans lesquels les canaux sont constitués de secteurs généralement triangulaires décalés angulairement (avec des angles vifs arrondis) et répartis sur une même circonférence ne conduisent pas toujours à des performances satisfaisantes lorsque le diamètre du support monolithe est important, par exemple de l'ordre de 25 mm. En effet, si le nombre de canaux est réduit, la surface filtrante développée peut être faible et si le nombre de canaux est élevé, ceux-ci sont relativement aplatis, de sorte que le diamètre hydraulique des canaux est réduit et peut se révéler insuffisant pour la circulation de certains fluides visqueux.
Ainsi, l'invention a pour but de proposer un support monolithe poreux dont la géométrie et la disposition des canaux permettent d'optimiser la surface membranaire développée tout en préservant un diamètre hydraulique suffisant, notamment pour filtrer des fluides visqueux ou des suspensions très chargées, et permettent d'obtenir des performances de filtration élevées, même avec des supports monolithes ayant un grand diamètre extérieur.
A cet effet, l'invention a pour objet un support monolithe poreux, du type précité, caractérisé en ce que tous les canaux du support se répartissent en :
- un premier ensemble de canaux radiaux oblongs disposés avec leur longueur s'étendant sensiblement radialement ; et
- un second ensemble de canaux latéraux oblongs intercalés entre les canaux radiaux et disposés avec leur longueur s'étendant sensiblement parallèlement à la périphérie du support.
Suivant des modes particuliers de réalisation, le support monolithe poreux comporte l'une ou plusieurs des caractéristiques suivantes :
- le nombre de canaux radiaux et de canaux latéraux est compris entre 8 et 12 ; - la longueur des canaux radiaux est supérieure au quart de la dimension transversale minimale du support ;
- la surface de la section transversale des canaux radiaux et latéraux est comprise entre 18 et 30 mm2 ; - la largeur des canaux radiaux est comprise entre 0,3 et 0,6 fois leur longueur ;
- la dimension transversale minimale du support est comprise entre 24 mm et 30 mm, et le diamètre hydraulique de chaque canal est compris entre 4 et 6 mm ;
- tous les canaux radiaux et latéraux ont une même forme ;
- les canaux radiaux présentent une section en forme d'ellipse ; - les canaux radiaux présentent une section en forme de triangle curviligne possédant un grand côté convexe et deux côtés concaves plus petits;
- les canaux latéraux sont disposés de sorte que les grands côtés convexes de leur section s'étendent sensiblement parallèlement à la périphérie du support ;
- les canaux radiaux présentent une forme polygonale à au moins quatre côtés, et les canaux latéraux présentent une forme généralement triangulaire ;
- les canaux sont disjoints ;
- le support comporte, pour chaque paire de canaux adjacents constituée d'un canal radial et d'un canal latéral un passage de liaison assurant la communication entre les canaux radial et latéral associés ; et - chaque passage de liaison a une largeur inférieure à la moitié de la plus petite longueur des canaux.
L'invention a également pour objet un élément de filtration comprenant un support monolithe poreux délimitant une pluralité de canaux et des membranes de filtration revêtant les parois des canaux, caractérisé en ce que le support monolithe poreux est tel que défini ci-dessus.
L'invention concerne aussi un module de filtration pour fluide comportant un ensemble d'éléments de filtration conformes à celui défini précédemment.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins, sur lesquels : - la figure 1 est une vue partielle en perspective éclatée d'un module de filtration comportant des supports poreux selon l'invention ;
- la figure 2 est une section d'un support monolithe poreux selon l'invention ;
- les figures 3 et 4 sont des vues identiques à celle de la figure 2 d'autres variantes de réalisation d'un support monolithe poreux selon l'invention ; - les figures 5, 6 et 7 sont des vues identiques à celles des figures 2, 3 et 4 montrant des variantes de réalisation des supports monolithes respectifs de ces figures ; et - la figure 8 est une vue identique à celle de la figure 7 d'encore une autre variante de réalisation.
Le module de fïltration 10 illustré sur la figure 1 comporte un corps tabulaire 12 dans lequel sont disposés parallèlement les uns aux autres des éléments de fïltration 13 formés de supports monolithes poreux 14 selon l'invention dont les canaux intérieurs sont recouverts d'une membrane poreuse 15. A chaque extrémité, les supports monolithes poreux sont maintenus par des entretoises 16 auxquelles sont associés des joints 18. Le corps 12 est prolongé à ses extrémités par des tronçons convergents 20 dont l'un forme une entrée pour le fluide à filtrer et dont l'autre forme une sortie de recueil du rétentat, c'est-à-dire du fluide n'ayant pas traversé les membranes poreuses. Un ou plusieurs piquages latéraux 22 sont ménagés sur le corps 12 pour le recueil du perméat ayant traversé les membranes poreuses.
Comme connu en soi, lors d'une opération de filtration dans un tel module de filtration, le fluide à filtrer est acheminé à l'intérieur des canaux de filtration. Une différence de pression est établie entre la partie interne des canaux portant les membranes et la chambre formée à l'extérieur des supports 14 et délimitée par le corps 12. Ainsi, une fraction du fluide à filtrer traverse les membranes de filtration et circule au travers du support poreux 14 en direction de leur surface externe.
Le support monolithe selon l'invention est de préférence réalisé en matériau céramique poreux. Il est formé d'une seule pièce, par exemple par un procédé classique d'extrusion d'une matière céramique à travers une filière de forme adaptée réalisant le formage du réseau de parois de séparation des canaux.
Après cuisson de la matière céramique, la surface intérieure des canaux est recouverte d'une couche mince d'une substance permettant d'obtenir par frittage une couche ou membrane de filtration sur la surface de chacun des canaux. Sur la figure 2 est représentée une section d'un support monolithe poreux 50 selon l'invention. Celui-ci présente une forme tabulaire cylindrique d'axe X-X de section circulaire. Le diamètre du support est, de préférence, compris entre 20 mm et 30 mm et est, par exemple, égal à 25 mm. La section du support 50 est constante suivant sa longueur. Cette longueur peut être en particulier comprise entre 1000 et 1300 mm ; elle est par exemple égale à 1178 mm. Le support 50 est traversé, suivant toute sa longueur dans la direction de l'axe X-X, par des canaux dont le diamètre hydraulique est généralement compris entre 4 et 6 mm, par exemple entre 4,5 et 5,5 mm, leur nombre étant, de préférence, compris entre 8 et 12.
Les canaux sont séparés les uns des autres par des cloisons désignées de manière générale par la référence 54. Les canaux délimitent avec la surface latérale cylindrique extérieure du support des parois périphériques 56.
Tous les canaux sont séparés de la périphérie du support seulement par une unique paroi latérale 56. Ainsi, le fluide circulant dans chaque canal peut atteindre la surface externe du support en circulant seulement radialement au travers d'une paroi latérale, sans devoir emprunter une cloison intermédiaire 54.
Tous les canaux du support présentent une section de forme oblongue, c'est-à-dire que cette section est généralement allongée et présente donc une longueur supérieure à sa largeur. Tous les canaux se répartissent en un premier ensemble de canaux radiaux 62 disposés avec leur longueur s'étendant radialement et un second ensemble de canaux latéraux 64 intercalés entre les canaux radiaux à la périphérie du support et disposés avec leur longueur s'étendant généralement parallèlement à la périphérie du support.
De manière avantageuse, aucun canal n'est ménagé suivant l'axe X-X. Les canaux radiaux 62 sont angulairement régulièrement répartis autour de l'axe X-X.
Leur nombre est compris, de préférence, entre quatre et six. Dans l'exemple considéré, il est de cinq, de sorte que les longueurs des sections des canaux sont décalées angulairement de 72°.
Les canaux latéraux 64 sont intercalés entre les canaux radiaux 62. Ainsi, chaque canal latéral 64 est centré sur une bissectrice de l'angle défini par les longueurs des sections des canaux radiaux 62. Les longueurs des canaux latéraux 64 s'étendent suivant les côtés d'un pentagone centré suivant l'axe X-X.
Dans le mode de réalisation considéré, les canaux ont tous une même section. La surface de la section transversale des canaux est comprise préférentiellement entre 18 mm2 et 30 mm2. Elle est ici de 23 mm2.
La section des canaux est de forme ellipsoïdale. Le grand axe de l'ellipse a une longueur supérieure à la moitié du rayon du support 50. De préférence, cette longueur est sensiblement égale aux deux tiers du rayon du support. La longueur du petit axe de l'ellipse, c'est-à-dire la largeur du canal, est comprise entre le tiers et les deux tiers de la longueur du grand axe. De préférence, celle-ci est égale à sensiblement la moitié de la longueur du grand axe.
De manière générale, les canaux radiaux ont une largeur comprise entre 0,3 et 0,6 fois leur longueur.
De préférence, l'épaisseur minimale des parois latérales 56 est égale à 1,5 mm alors que l'épaisseur minimale des cloisons 56 entre les canaux adjacents est égale à 0,8 mm. Avec un tel support, dont le diamètre est ici égal à 25 mm et la longueur est ici égale à
1178 mm, les caractéristiques suivantes sont obtenues :
- surface totale des canaux : 0,230 m2 ; et
- diamètre hydraulique : 4,9 mm.
L'agencement particulier des canaux permet d'obtenir une surface filtrante développée importante avec un diamètre hydraulique de l'ordre de 5, ce qui permet la filtration de fluides relativement visqueux ou chargés en matières en suspension. Sur la figure 3 est représentée une variante de réalisation du support de la figure 2. Dans toute la suite de la description, les cloisons et les parois latérales sont désignées par les mêmes références 54 et 56.
Comme précédemment, le support noté 70 est de forme cylindrique de diamètre 25 mm. II définit cinq canaux radiaux 72 entre lesquels sont intercalés le long de la surface latérale extérieure cinq canaux longitudinaux 74.
Tous les canaux ont une même forme. Ainsi, la section des canaux a une forme de triangle curviligne possédant un grand côté 76 convexe et deux petits côtés 78 plus petits et concaves. Les côtés 78 ont des longueurs identiques. Les côtés délimitant les canaux sont reliés les uns aux autres par des congés de raccordement.
Pour les canaux latéraux, le grand côté convexe 76 s'étend sensiblement parallèlement à la surface extérieure cylindrique du support. Le rayon de courbure de ce grand côté 76 est égal à 22 mm et le centre s'étend suivant l'axe X-X du support. Les grands côtés 76 s'étendent dans le prolongement les uns des autres et présentent ainsi une même enveloppe circulaire.
Les petits côtés concaves 78 présentent un rayon de courbure de 12,3 mm. Les angles du triangle curviligne présentent des congés de raccordement dont le rayon est égal à 0,7 mm pour les congés formés aux extrémités du grand côté 76 et à 1,3 mm pour le congé reliant les deux petits côtés 78. Ainsi, chaque conduit présente une section transversale dont le périmètre est égal à 20,5 mm et dont la surface est égale à 23,5 mm .
La longueur des sections des canaux est ici d'environ 8,8 mm. Les canaux radiaux s'étendent avec leur longueur généralement disposée du centre vers la périphérie. Cette longueur s'étend essentiellement radialement, en étant légèrement inclinée, celle-ci délimitant avec un diamètre du support un angle d'une vingtaine de degrés. Tous les canaux radiaux 72 sont inclinés par rapport au diamètre associé d'un même côté à l'image des pales d'une hélice. Ils sont disposés dans un même sens et sont régulièrement angulairement répartis de sorte que le motif défini par les canaux est invariant par rotation autour de l'axe du support d'un angle de 72°. De préférence, dans ce mode de réalisation, l'épaisseur minimale des parois latérales 56 séparant les grands côtés 76 des canaux latéraux de la surface extérieure du support est égale à 1,5 mm, alors que l'épaisseur minimale des cloisons 34 séparant les canaux radiaux des canaux longitudinaux est égale à 1,2 mm.
De manière avantageuse, aucun canal n'est ménagé suivant l'axe X-X. Les cloisons 54 délimitées entre les différents canaux ont une forme générale de Y.
La surface filtrante d'un tel support de diamètre 28,8 mm et de longueur égale à 1178 mm est égale à 0,240 m2 pour un diamètre hydraulique de 4,65 mm. Dans le mode de réalisation de la figure 4, les canaux radiaux notés 92 et les canaux latéraux notés 94 ont des formes différentes. Les canaux radiaux 92 s'étendent avec leur longueur disposée exactement radialement. Ces canaux, au nombre de cinq, sont décalés angulairement de 72°. Ils présentent en section une forme polygonale à plus de quatre côtés, ce nombre étant notamment égal à cinq, de sorte que ces canaux ont une forme de pentagone irrégulier. La section des canaux radiaux est symétrique par rapport à la longueur des canaux. Ils présentent depuis le centre du support deux petits côtés 96. Pour deux canaux radiaux adjacents 92, ces petits côtés s'étendent parallèlement l'un à l'autre, de sorte que les cloisons 54 séparant les canaux au voisinage du centre définissent une étoile à cinq branches. Le long de la surface extérieure du support, chaque canal radial 92 présente un côté étroit formant fond 98 s'étendant généralement parallèlement à la surface extérieure du support. Ce fond est relié aux extrémités des petits côtés deux grands côtés 100.
La longueur des canaux radiaux 92 est ici sensiblement égale à 9,3 mm alors que leur largeur, mesurée entre les pointes reliant les petits côtés 96 aux grands côtés 100, est égale à 4,1 mm.
Les canaux longitudinaux 94 présentent en section une forme de triangle curviligne présentant une base courbe 102 s'étendant généralement parallèlement à la surface latérale du support et deux côtés rectilignes 104 de même longueur s'étendant parallèlement aux grands côtés 100 des deux canaux radiaux entre lesquels le canal longitudinal est intercalé. La base 102 a une longueur supérieure aux côtés rectilignes 104.
La longueur des canaux latéraux est de 7,8 mm alors que leur largeur est de 5 mm. Les cloisons 54 délimitées entre les canaux radiaux 92 adjacents et le canal latéral 94 interposé présentent une forme générale de Y, l'épaisseur des cloisons étant constante suivant chaque branche du Y et par exemple sensiblement égale à 1,2 mm. De manière avantageuse, aucun canal n'est ménagé suivant l'axe X-X.
L'épaisseur des parois 56 séparant les canaux de la surface extérieure est égale à 1,8 mm. Dans tous les canaux, les côtés successifs délimitant les canaux se relient les uns aux autres par des congés de raccordement ou des angles vifs arrondis.
Avec une telle géométrie, le support poreux, ayant un diamètre de 25 mm pour une longueur de 1178 mm, offre une surface filtrante développée de 0,245 m2, le diamètre hydraulique des canaux radiaux 92 étant égal à 4,83 mm alors qu'il est de 4,81 mm pour les canaux latéraux 94.
Les supports poreux illustrés aux figures 2, 3 et 4 comportent des canaux qui sont disjoints les uns des autres. Ainsi, les canaux radiaux sont totalement séparés des canaux latéraux par des cloisons continues.
Dans les variantes de réalisation illustrées aux figures 5 à 8, au contraire, un passage de liaison relie deux à deux un canal radial et un canal latéral adjacents afin d'assurer la communication fluidique entre ces canaux. Ce passage de liaison est relativement court et en particulier a, de préférence, une largeur inférieure à la moitié et de préférence au tiers de la plus petite longueur des canaux radiaux et latéraux.
Sur les figures 5 à 8, les différents éléments des supports correspondant à ceux des figures 2 à 4 sont désignés par les mêmes numéros de référence.
Dans le mode de réalisation de la figure 5, les canaux radiaux 62 et les canaux latéraux 64 sont reliés l'un à l'autre depuis leur pointe par un passage de liaison 120 situé au voisinage de la périphérie du support.
Ainsi, chaque paire de canaux radial et latéral ainsi reliés définit en section une forme générale de V.
Dans le mode de réalisation de la figure 6, les canaux radiaux et latéraux adjacents sont reliés l'un à l'autre depuis leur coin situé le plus près de la périphérie du support par un passage 130. Cette liaison est assurée entre deux canaux adjacents au travers d'une cloison intermédiaire 54 délimitée par deux petits côtés concaves 78 disposés en regard l'un de l'autre. Dans le mode de réalisation de la figure 7, les canaux 92 et 94 sont reliés l'un à l'autre par un passage de liaison 140 ménagé au travers de la cloison 54 délimitée entre un grand côté
100 d'un canal radial 92 et un côté rectiligne 104 disposé en regard d'un canal longitudinal 94.
Dans le mode de réalisation de la figure 7, le passage noté 140 est ménagé dans la moitié de la cloison s'étendant du côté de la périphérie du support. En revanche, dans le mode de réalisation de la figure 8, le passage noté 150 est délimité au travers de la même cloison dans sa moitié disposée à l'écart de la périphérie du support monolithique poreux 50.
On constate également, avec ces variantes de réalisation, un rapport particulièrement efficace pour le diamètre hydraulique ramené à la surface membranaire. En variante, les supports monolithes ont une section extérieure polygonale, notamment hexagonale ou carrée. Dans ce cas, les relations dimensionnelles évoquées dans la description s'appliquent en remplaçant le diamètre du support par la dimension transversale minimale de sa section.

Claims

REVENDICATIONS
1. Support monolithe poreux (50 ; 70 ; 90) d'un élément de fïltration ayant une forme tabulaire et une section transversale sensiblement constante suivant la direction de son axe (X-X) et comportant une pluralité de canaux (62, 64 ; 72, 74 ; 92, 94) dont les surfaces sont destinées à être revêtues par des membranes de fïltration, ces canaux ayant des sections transversales réparties dans la section transversale du support, tous les canaux (62, 64 ; 72, 74 ; 92, 94) étant séparés de la périphérie du support seulement par une unique paroi latérale (56) du support, caractérisé en ce que tous les canaux du support se répartissent en : - un premier ensemble de canaux radiaux oblongs (62 ; 72 ; 92) disposés avec leur longueur s'étendant sensiblement radialement ; et
- un second ensemble de canaux latéraux oblongs (64 ; 74 ; 94) intercalés entre les canaux radiaux (62 ; 72 ; 92) et disposés avec leur longueur s'étendant sensiblement parallèlement à la périphérie du support.
2. Support monolithe poreux selon la revendication 1, caractérisé en ce que le nombre de canaux radiaux (62 ; 72 ; 92) et de canaux latéraux (64 ; 74 ; 94) est compris entre 8 et 12.
3. Support selon la revendication 1 ou 2, caractérisé en ce que la longueur des canaux radiaux (62 ; 72 ; 92) est supérieure au quart de la dimension transversale minimale du support.
4. Support selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface de la section transversale des canaux radiaux et latéraux (62, 64 ; 72 ; 74 ; 92,
94) est comprise entre 18 et 30 mm2.
5. Support selon l'une quelconque des revendications précédentes, caractérisé en ce que la largeur des canaux radiaux (62 ; 72 ; 92) est comprise entre 0,3 et 0,6 fois leur longueur.
6. Support selon l'une quelconque des revendications précédentes, caractérisé en ce que la dimension transversale minimale du support est comprise entre 24 mm et 30 mm, et en ce que le diamètre hydraulique de chaque canal (62, 64 ; 72 ; 74 ; 92, 94) est compris entre 4 et 6 mm.
7. Support selon l'une quelconque des revendications précédentes, caractérisé en ce que tous les canaux radiaux et latéraux (62, 64 ; 72 ; 74) ont une même forme.
8. Support monolithe poreux selon l'une quelconque des revendications précédentes, caractérisé en ce que les canaux radiaux (62) présentent une section en forme d'ellipse.
9. Support monolithe selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les canaux radiaux (72) présentent une section en forme de triangle curviligne possédant un grand côté convexe (76) et deux côtés concaves (78) plus petits.
10. Support selon les revendications 7 et 9 prises ensemble, caractérisé en ce que les canaux latéraux (74) sont disposés de sorte que les grands côtés convexes (76) de leur section s'étendent sensiblement parallèlement à la périphérie du support.
11. Support selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les canaux radiaux (92) présentent une forme polygonale à au moins quatre côtés, et en ce que les canaux latéraux (94) présentent une forme généralement triangulaire.
12. Support selon l'une quelconque des revendications précédentes, caractérisé en ce que les canaux (62, 64 ; 72, 74 ; 92, 94) sont disjoints.
13. Support selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comporte, pour chaque paire de canaux adjacents constituée d'un canal radial (62 ; 72 ; 92) et d'un canal latéral (64 ; 74 ; 94), un passage de liaison (120 ; 130 ; 140 ; 150) assurant la communication entre les canaux radial et latéral associés.
14. Support selon la revendication 13, caractérisé en ce que chaque passage de liaison (120 ; 130 ; 140 ; 150) a une largeur inférieure à la moitié de la plus petite longueur des canaux.
15. Elément de filtration (13) comprenant un support monolithe poreux (14) délimitant une pluralité de canaux et des membranes de filtration (15) revêtant les parois des canaux, caractérisé en ce qu'il comporte un support monolithe poreux (50 ; 70 ; 90) selon l'une quelconque des revendications précédentes.
16. Module (10) de filtration pour fluide, caractérisé en ce qu'il comporte un ensemble d'éléments de filtration (13) selon la revendication 15.
EP05812416A 2004-10-27 2005-10-21 Support monolithe poreux d'un element de filtration Withdrawn EP1835984A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411471A FR2876922B1 (fr) 2004-10-27 2004-10-27 Support monolithe poreux d'un element de filtration
PCT/FR2005/002622 WO2006045933A1 (fr) 2004-10-27 2005-10-21 Support monolithe poreux d'un element de filtration

Publications (1)

Publication Number Publication Date
EP1835984A1 true EP1835984A1 (fr) 2007-09-26

Family

ID=34951470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05812416A Withdrawn EP1835984A1 (fr) 2004-10-27 2005-10-21 Support monolithe poreux d'un element de filtration

Country Status (5)

Country Link
US (1) US20080296217A1 (fr)
EP (1) EP1835984A1 (fr)
CN (1) CN101048220A (fr)
FR (1) FR2876922B1 (fr)
WO (1) WO2006045933A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912069B1 (fr) * 2007-02-05 2011-04-01 Saint Gobain Ct Recherches Structure de filtration d'un gaz a paroi ondulee
US9132388B2 (en) 2011-11-28 2015-09-15 Corning Incorporated Partition fluid separation
FR3021231B1 (fr) 2014-05-22 2018-02-16 Saint-Gobain Centre De Recherches Et D'etudes Europeen Filtres tangentiels
FR3024663B1 (fr) * 2014-08-11 2020-05-08 Technologies Avancees Et Membranes Industrielles Nouvelles geometries d'elements tubulaires monocanaux de separation par flux tangentiel integrant des promoteurs de turbulences et procede de fabrication
US10089416B1 (en) * 2015-03-12 2018-10-02 Stratasys, Inc. Self-supporting internal passageways for powder metal additive manufacturing
JP6553419B2 (ja) * 2015-06-12 2019-07-31 日本特殊陶業株式会社 分離膜支持体、分離膜構造体及び分離膜構造体モジュール
DE102015017034A1 (de) * 2015-12-31 2017-07-06 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Stützende Membranhalterung für eine semipermeable Membran, Verfahren zur Herstellung und Anwendung einer solchen stützenden Membranhalterung
US10413852B2 (en) * 2017-03-29 2019-09-17 Pall Corporation Filter, filter device, and method of use
US10234042B2 (en) 2017-06-01 2019-03-19 Pall Corporation Drain valve with rotatable angled outlet
CN108246116A (zh) * 2018-03-13 2018-07-06 上海麦驼科技发展有限公司 一种用于管式过滤膜的瓣状内支撑骨架及其应用
NL2022918B1 (en) * 2019-04-10 2020-10-20 Berghof Membrane Tech Gmbh Tubular membrane comprising longitudinal ridges, device provided therewith and method for producing such membrane

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720953B1 (fr) * 1994-06-08 1996-08-30 Tami Ind Elément inorganique multicanal pour la filtration d'un fluide.
FR2741821B1 (fr) * 1995-12-05 1998-02-20 Tami Ind Element tubulaire inorganique de filtration presentant une surface de filtration et une resistance mecanique accrues
FR2741822B1 (fr) * 1995-12-05 1998-02-20 Tami Ind Element tubulaire inorganique de filtration comportant des canaux de section non circulaire presentant des profils optimises
JPH09313849A (ja) * 1996-05-29 1997-12-09 Ibiden Co Ltd セラミックフィルタ
FR2776286B1 (fr) * 1998-03-20 2000-05-12 Ceramiques Tech Soc D Fibre ceramique poreuse multi-canal
FR2785831B1 (fr) * 1998-11-18 2001-11-23 Orelis Support monolithe poreux d'un element de filtration et element de filtration
FR2805331B1 (fr) * 2000-02-21 2002-05-31 Ceramiques Tech Soc D Element multicanal et procede de fabrication d'un tel element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006045933A1 *

Also Published As

Publication number Publication date
WO2006045933A1 (fr) 2006-05-04
US20080296217A1 (en) 2008-12-04
FR2876922B1 (fr) 2007-01-12
CN101048220A (zh) 2007-10-03
FR2876922A1 (fr) 2006-04-28

Similar Documents

Publication Publication Date Title
EP1835984A1 (fr) Support monolithe poreux d'un element de filtration
CA2192107C (fr) Element tubulaire inorganique de filtration comportant des canaux de section non circulaire presentant des profils optimises
EP0778073B1 (fr) Elément tubulaire inorganique de filtration présentant une surface de filtration et une résistance mécanique accrues
EP0686424B1 (fr) Elément inorganique multicanal pour la filtration d'un fluide
CA2792427C (fr) Geometrie de support pour une membrane de filtration
FR2820652A1 (fr) Modules de membranes en fibres creuses, et procede de realisation
EP2663389B1 (fr) Nouvelle geometrie d'elements de filtration
EP1286755A1 (fr) Element multicanal et procede de fabrication d'un tel element
EP1131151B1 (fr) Support monolithe poreux d'un element de filtration et element de filtration
FR2614216A1 (fr) Element cylindrique de filtrage et de separation.
EP3302768A1 (fr) Élément de séparation avec un réseau tridimensionnel de circulation pour le milieu fluide a traiter
FR2898513A1 (fr) Element de filtration.
WO2006059006A1 (fr) Support inorganique de filtration d'un milieu fluide avec des caracteristiques geometriques optimisees
EP1979077B1 (fr) Element de filtration
FR3136993A1 (fr) Élément de séparation et assemblage d’au moins deux tels éléments
FR3116446A1 (fr) Elément de séparation d’un milieu liquide à contrainte de cisaillement pariétale élevée
FR2865415A1 (fr) Module de filtration concu pour limiter les zones de stagnation pour un liquide
FR3036627A1 (fr) Element de separation avec un acheminement direct du filtrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081022

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090303