EP1833608A1 - Mikroreaktor - Google Patents

Mikroreaktor

Info

Publication number
EP1833608A1
EP1833608A1 EP05850267A EP05850267A EP1833608A1 EP 1833608 A1 EP1833608 A1 EP 1833608A1 EP 05850267 A EP05850267 A EP 05850267A EP 05850267 A EP05850267 A EP 05850267A EP 1833608 A1 EP1833608 A1 EP 1833608A1
Authority
EP
European Patent Office
Prior art keywords
fluid
magnetic
microfluidic
beads
magnetic particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05850267A
Other languages
English (en)
French (fr)
Inventor
Matthias Franzreb
Tilmann Rogge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1833608A1 publication Critical patent/EP1833608A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00459Beads
    • B01J2219/00466Beads in a slurry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00459Beads
    • B01J2219/00468Beads by manipulation of individual beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00731Saccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples

Definitions

  • the invention relates to a device for transporting at least one magnetic particle fraction through a microfluidic system according to the preamble of the first claim.
  • Microfluidic systems are central handling systems for fluids, such as liquids or gases, with or without solids in micro- and nanotechnology, and are found particularly in the field of life sciences or biomedicine, where nano-objects in the form of large biomolecules, e.g. Peptides or proteins, must be handled [I]. Since direct handling of such small objects is seldom possible, so-called beads are often used in the field of life sciences. Beads are polymer bodies, usually spheres, on the functionalized surface of which e.g. DNA or proteins bound and so become manageable for synthesis or analysis. In this growing market, commercial devices are already being offered today, with which analyzes are carried out with the aid of individual beads [2].
  • Magnetic beads are commonly used in biochemistry today and are distributed by several commercial vendors (eg http://www.magneticmicrosphere.com/supply.htm). Such beads are usually superparamagnetic and monodisperse with diameters from 1 micron to 10 microns available and are used for analysis and synthesis purposes.
  • the handling of magnetic microbeads can be done on a larger scale with the help of so-called high-gradient magnetic separators [7].
  • a separation or fixation of magnetic microbeads usually takes place by simple permanent magnets based on rare earths.
  • this approach is quite inflexible and requires to release the fixation always moving components that allow a spatial separation between the reaction vessel with Magnetbeads and permanent magnet.
  • the object of the invention is therefore to provide a microfluidic system in which particle fractions (beads) are guided serially and directionally through channels and reaction chambers without a net movement of the fluid taking place.
  • Mass transfer in fluidic systems usually takes place via the movement of the fluid, with which the substances contained therein are moved to different locations.
  • the mass transfer within the device according to the invention is not carried out as usual by the flowing fluid, but by the Transport of the beads on the principle of a "fluidic ratchet".
  • the beads By generating a blocking force during the movement of the fluid, the beads can be fixed.
  • Ratchet is the name for a device z. B. tool in which a locking device allows only one direction of movement (freewheel), in the opposite direction it locks and moves an object z. B. screw or belt.
  • the directions of movement can be reversible.
  • the device according to the invention involves the provision of a microfluidic system in which particle fractions (beads) can be guided serially and directionally through channels and reaction chambers without a larger-scale fluid movement taking place.
  • a small-scale fluid movement which causes a movement of the particles, combined with a switchable force (blocking force), which at least fixed but at least significantly reduces the speed of movement of the particles.
  • the fluid movement may be generated mechanically or electrically (e.g., electro-osmosis).
  • the blocking force can be generated by magnetic fields acting on magnetic beads, by electrochemical induced electro fields induced by electrostatic fields due to dielectric constant differences of fluid and particles (dielectrophoresis, electrostatics) by optical fields generating forces due to refractive effects according to laser tweezers Surface forces that attach to the bead surfaces.
  • An actuator generates a periodic, small-scale forward and backward movement (freewheeling) of the fluid in the channel system.
  • an inhomogeneous magnetic field blocking device
  • the beads can be fixed during the return movement. Due to the fixation during the return movement of the fluid and the solution of the fixation during the forward movement, a directed movement of the beads through the channel system results without a net movement of the fluid. The directions of movement can be reversed.
  • Superparamagnetic particles are introduced into a fluidic channel system. As long as no other forces act on these particles, These particles are carried along with every movement of the fluid in the channel system. If a movement direction of the particles is blocked during a periodic fluid movement, the particles are transported in one direction. The surrounding fluid is moved by this periodic movement only by the volume amount of the particles in the reverse direction. The periodic movement of the fluid otherwise leads to no significant mixing, since in the smallest channel systems, a turbulent mixture is extremely difficult to achieve. The volume of the reaction chambers is extremely low, whereby the required amount of reactants is very low. Channel dimensions of a few micrometers and volumes of the reaction chambers in the nanoliter range are achieved.
  • the magnetic blocking force on the superparamagnetic particles should preferably be in the range of 10-100 pN.
  • the magnetic force on the particles results from the volume and the susceptibility of the particles as well as from the product of field strength times the gradient of the magnetic field. While the achievable field strengths are limited to a few teslas, very soft field micrographs can generate very high field gradients over short distances.
  • the magnetic holding force is achieved by soft magnetic microstructures immediately adjacent to the fluid region, which distort an externally generated magnetic field.
  • the smallest, lateral dimensions of these structures should correspond approximately to the diameter of the beads used, while the vertical dimensions should be three to ten times.
  • the production takes place after resist structuring with mask technique by electroplating. Subsequently, the structures are cast with plastic.
  • the plastic fulfills two functions. On the one hand, this creates a flat surface, which does not affect the bead movement. adversely. On the other hand, the plastic serves as a bonding partner for the
  • Housing part with the fluidic channel structures Housing part with the fluidic channel structures.
  • the particle motion depends on the flow velocity of the fluid, and can be well realized with spheres [12] as well as biological entities such as cells [13]. If no turbulences are formed during the periodic fluid movement, it is expected that the mass transfer within the fluid will not be significantly greater than the diffusion rate. As the extensive literature in the field of micromixers shows [14], [8] the intended induction of turbulence in microfluidic systems is difficult to achieve.
  • the device according to the invention fulfills various requirements for this purpose.
  • the fluid movement must be large enough to move particles through the fluid. These are in the channel system flow rates of about 1 - 10 mm / s necessary. The speed of the
  • Particles in the fluid channels from the ratio of channel size to particle size, the fluid velocity, the adhesion of the particles to the channel walls and the shape of the particles from.
  • the fluid channels must be designed so that a periodic fluid movement within the fluidic structures can spread well. It is important that the system is sufficiently incompressible and does not store the fluid movement elastically. Since the flow rate and thus also the movement of the beads depends on the channel cross-section, the flow rate can also be varied within the system. Thus broadening of the channel cross-section in the region of the reaction chambers can extend the residence time. The filling of the reaction chambers and the continuous supply of reactants are ensured by a slow flow through the reaction chambers perpendicular to the direction of movement of the beads. This also allows the complete replacement of the ingredients of individual reaction chambers.
  • the fluidic channels should have a cross-section that approximately corresponds to the bead size. For example, with a bead size of 4 ⁇ m, the channel width and height should not exceed 10 ⁇ m. Structures with these dimensions can be produced both by photolithography and X-ray lithography. Which method is most suitable depends on the required structural quality and the suitable plastics.
  • microstructures are carried out in many ways: with optical lithography (SU8, polyimide), by hot stamping (mold insert production by LIGA method or machining technique) or by X-ray deep lithography.
  • optical lithography SU8, polyimide
  • hot stamping molding insert production by LIGA method or machining technique
  • X-ray deep lithography X-ray deep lithography
  • microfluidic actuators is necessary at least at one point.
  • a periodic fluid movements must be generated, and / or requires the work with minimal amounts of material, for example, a metering devices with fast switching times.
  • Piezo actuators are suitable for both tasks, for example.
  • actuators lies in the short switching times (typically one millisecond) and the large force generated thereby.
  • the coupling of the mechanical movement into the system can take place either directly or via a translation system.
  • actuators can be represented via pressure spring systems or by shafts to electrically operated motors.
  • the functional principle of the device according to the invention requires a periodic fluid movement, which can only be used efficiently if the system is incompressible and the fluid has only a freely movable interface at the exit (eg gas bubble). This requires Rigid fluid supply or high flow resistance in the fluid supply area. Furthermore, a simple Bead-removal is possible at any time. For this purpose, the beads are collected in at least one chamber and flushed out as needed.
  • the AMS to the desired peptide length.
  • the beads are guided through the individual reaction areas of the device.
  • the device according to the invention allows for purposes in which only small amounts of material are needed, a fast and material-saving synthesis of complex molecules, for example peptides, proteins, oligonucleotides, DNA, oligosaccharides or RNA, whose synthesis is carried out by successive individual reactions. Small quantities of substances, but with a wide range of variations, are needed, for example, in the context of drug discovery and development in pharmaceutics and biomedicine.
  • the quantities of substances and times required for sequencing proteins or DNA sections can be further reduced.
  • the proteins or DNA sections are bound to beads and analyzed stepwise during the passage of various reaction chambers.
  • the device according to the invention can by additional components be extended for detection, such as magnetoelectric [16], by (integrated) optical systems [2] or electrochemical [17].
  • a combination of synthesis, reaction and analysis can also be carried out with the device according to the invention. For example, molecules can be synthesized in a first area, exposed to various substances in a subsequent area, and then directly analyzed.
  • sensors can be introduced into the reaction chambers or the fluid channels to more precisely control the reactions.
  • FIG. 1 System elements and principle for magnetic ratchet Fig. 2 Exemplary microstructure for generating an inhomogeneous magnetic field
  • FIG. 4 Exemplary Production of a Fluid Structure
  • FIG. 5 Exemplary Production of a Bond Connection
  • FIG. 6 Exemplary Construction of a Device According to the Invention
  • Fig. 1 shows a schematic sectional view of the essential elements and the principle of a fluidic ratchet.
  • an actuator 1 for generating a fluid flow 8 in the fluid channels 6.
  • the fluid flow 8 moves the beads 4. Equipped with a mixing chamber volume 3 and a microstructured soft iron magnetic core 2 for generating a magnetic blocking force.
  • the device is completed with a housing 5.
  • the fluid moves 8 and with him the beads 7. If the blocking force is turned on, the beads are fixed in the direction of magnetic structure. 9
  • FIG. 2 shows a schematic sectional view with the field lines 10 of an inhomogeneous magnetic field which has been switched on, produced by an NEN soft iron magnetic core 2 in microstructure is embedded in plastic 11.
  • the magnetic beads 4 are fixed from the fluid-filled channel 6 direction 9 magnetic core 12.
  • FIG. 3 shows, by way of example, the schematic illustration of the production of the soft-magnetic microstructure in which an electroplating start layer 16 is deposited on substrate 13 (for example silicon or glass), then resist 15 is applied by spin coating and patterned, followed by electroplating with, for example Permalloy (NiFe in the ratio (80/20) and the spin coating of the sealing layer 14.
  • substrate 13 for example silicon or glass
  • resist 15 is applied by spin coating and patterned, followed by electroplating with, for example Permalloy (NiFe in the ratio (80/20) and the spin coating of the sealing layer 14.
  • FIG. 4 shows, by way of example, the schematic production of a microfluidic channel structure " .8 Openings 19, which serve to supply fluid, are introduced into the substrate 13. These holes can be introduced mechanically (for example drilling, lasing), wet-chemically or by reactive ion etching.
  • the trench structures are formed by structuring (stripping) the resist spun onto the substrate (for example SU8, PMMA, polyimide).
  • FIG. 5 shows the bonding of the structures produced in FIG. 3 and FIG. 4 by pressure 20 and heat 20, thereby creating the microfluidic channel structures 21.
  • FIG. 6 shows an exemplary embodiment of a device according to the invention consists of a microstructured magnet, a microfluidic channel structure, an actuator and fluidic connections.
  • the supervision of this system shows the fluidic structures.
  • the time required for bead transport 8 periodic fluid movement 7 is generated by an actuator 1, which is located at the beginning of the fluid system.
  • an actuator 1 located at the beginning of the fluid system.
  • the beads are introduced into the system and after the fluidic ratchet principle [Fig. 1] moves through the microfluidic channel.
  • a compensation chamber 24 at the end of the fluid structure with a free liquid level allows the periodic movement.
  • the residence time of the beads 4 can be regulated by the geometric shape, where column structures lead the beads 4 there.
  • the beads are collected and rinsed out if necessary.
  • the reaction substances are fed perpendicularly to the direction of movement via the microfluidic fluid guide.
  • introduction 26 and branch 22 the filling of the chambers is facilitated and also allows a continuous regulation of the substance concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Die erfindungsgemäße Vorrichtung beinhaltet, die Bereitstellung eines mikrofluidischen Systems, in dem Partikelfraktionen (Beads) seriel und gerichtet durch Kanäle und Reaktionskammern geführt werden können, ohne dass eine netto Fluidbewegung erfolgt. Dazu wird eine kleinskalige Fluidbewegung, die eine Bewegung der Partikel bewirkt, mit einer schaltbaren Krafteinwirkung (Sperrkraft) kombiniert, welche die Partikel fixiert. Die Vorrichtung findet Anwendung in der Bioanalytik oder chemischen Synthese.

Description

Mikroreaktor
Die Erfindung betrifft eine Vorrichtung zum Transport von mindestens einer magnetischen Partikelfraktion durch ein mikrofluidisches System gemäß dem Oberbegriff des ersten Patentanspruchs.
Mikrofluidische Systeme sind zentrale Handlingsysteme für Fluide, wie Flüssigkeiten oder Gase, mit oder ohne Feststoffanteil in der Mikro- und Nanotechnologie und finden sich insbesondere im Bereich der Life Sciences oder Biomedizin, wo Nanoobjekte in Form großer Biomoleküle, wie z.B. Peptide oder Proteine, gehandhabt werden müssen [I]. Da eine direkte Handhabung solch kleiner Objekte selten möglich ist, wird im Bereich der Life Sciences häufig mit so genannten Beads gearbeitet. Beads sind Polymerkörper, meist Kugeln, an deren funktionalisierte Oberfläche z.B. DNA oder Proteine gebunden und so für eine Synthese oder Analyse handhabbar werden. In diesem wachsenden Markt werden schon heute kommerziell Geräte angeboten, mit denen Analysen mit Hilfe einzelner Beads vorgenommen werden [2] . Zudem existieren verschiedene auf Beads basierende Analyseverfahren bzw. -geraten, die einen hohen Grad an Parallelisierung aufweisen und mit Flüssigkeitsvolumen bis hinab zu 10 Mikrolitern arbeiten. Häufig werden zur gezielten Handhabung solcher Beads elektrische Felder [3] oder so genannte Laserpinzetten [4] [5] verwendet. Seltener werden in der Mikrotechnik magnetische Kräfte eingesetzt, da diese mikrotechnisch nur schwer zu erzeugen sind, wobei sich gerade magnetische Kräfte auf Grund der geringen Wechselwirkung mit biologischen Materialien und Prozessen besonders eignen [6] .
Magnetische Beads werden heutzutage in der Biochemie standardmäßig verwendet und werden von etlichen kommerziellen Anbietern vertrieben (z.B. http://www.magneticmicrosphere.com/supply.htm) . Solche Beads sind in der Regel superparamagnetisch und auch monodispers mit Durchmessern von 1 μm bis 10 μm erhältlich und werden zu Analyse und Synthesezwecken verwendet. Die Handhabung magnetischer Mikrobeads kann im größeren Maßstab mit Hilfe so genannter Hochgradienten- Magnetseparatoren erfolgen [7] . Im Falle kleinerer Volumina erfolgt eine Abtrennung bzw. Fixierung magnetischer Mikrobeads in der Regel durch einfache Permanentmagnete auf Seltenerdbasis. Diese Vorgehensweise ist jedoch recht unflexibel und benötigt zum Lösen der Fixierung immer bewegliche Komponenten, die eine räumliche Trennung zwischen Reaktionsgefäß mit Magnetbeads und Permanentmagnet erlauben. Wesentlich flexibler ist dagegen eine Vorgehensweise, bei der die Magnetbeads in den Einflussbereich weichmagnetischer Strukturen gebracht werden. Zur Fixierung der Magnetbeads werden die Strukturen über ein äußeres Magnetfeld aufmagnetisiert. Zum Lösen muss lediglich das äußere Magnetfeld abgeschaltet werden, d.h. es ist keinerlei bewegliche Komponente notwendig. Ein entsprechender Aufbau wurde zur Abtrennung von Magnetbeads aus so genannten Mikrotiterplatten entwickelt und patentiert [DE 10 057 396] .
Kritischer Punkt bei der Arbeit mit biochemischen Stoffen in der Bio- und Pharmaforschung sind die hohen Kosten der zum Teil durch aufwendige Syntheseverfahren hergestellten Substanzen. Die eigentlichen Untersuchungen erfordern nur geringe Materialmengen wie neue Analyseverfahren zeigen (z.B. Genechip©, der Fa. Affymetrix, www.affymetrix.com), jedoch ist eine sparsame Handhabung dieser Stoffe schwierig. Mikrofluidische Systeme bieten sich auf Grund ihres geringen Totvolumens für die Arbeit mit solchen Stoffen an. Dieser Vorteil vermindert sich jedoch, wenn zur Einbringung eines neuen Stoffes in das mikrofluidische System, das System komplett gespült werden muss .
Aufgabe der Erfindung ist daher, die Bereitstellung eines mikroflui- dischen Systems, in dem Partikelfraktionen (Beads) seriell und gerichtet durch Kanäle und Reaktionskammern geführt werden ohne dass eine Nettobewegung des Fluids erfolgt.
Die Aufgabe wird durch eine Vorrichtung mit den Merkmalen des ersten Patentanspruchs gelöst. Die Unteransprüche geben vorteilhafte Ausgestaltungen wieder.
Stofftransport in fluidischen Systemen erfolgt gewöhnlich über die Bewegung des Fluids, mit dem darin enthaltene Stoffe zu verschiedenen Orten bewegt werden.
Der Stofftransport innerhalb der erfindungsgemäßen Vorrichtung erfolgt nicht wie üblich durch das strömende Fluid, sondern durch den Transport der Beads nach dem Prinzip einer „fluidischen Ratsche".
Durch Erzeugung einer Sperrkraft während der Bewegung des Fluids, können die Beads fixiert werden.
Ratsche ist die Bezeichnung für eine Vorrichtung z. B. Werkzeug bei dem eine Sperrvorrichtung nur eine Bewegungsrichtung (Freilauf) zu- lässt, in Gegenrichtung sperrt sie und bewegt einen Gegenstand z. B. Schraube oder Gurt. Die Bewegungsrichtungen können umkehrbar sein. Die erfindungsgemäße Vorrichtung beinhaltet, die Bereitstellung eines mikrofluidischen Systems, in dem Partikelfraktionen (Beads) seriell und gerichtet durch Kanäle und Reaktionskammern geführt werden können, ohne dass eine größerskalige Fluidbewegung erfolgt. Dazu wird eine kleinskalige Fluidbewegung, die eine Bewegung der Partikel bewirkt, mit einer schaltbaren Krafteinwirkung (Sperrkraft) kombiniert, welche die Partikel fixiert zumindest aber die Bewegungsgeschwindigkeit der Partikel deutlich vermindert. Die Fluidbewegung kann dabei mechanisch oder auch elektrisch (z.B. Elektroosmose) erzeugt werden. Die Sperrkraft kann erzeugt werden durch magnetischer Felder, die auf magnetische Beads wirken, durch elektrische Felder, die aufgrund der Dielektrizitätszahlunterschiede von Fluid und Partikeln (Dielektrophorese, Elektrostatik) wirken, durch optische Felder, die entsprechend der Laserpinzette aus Brechungseffekten Kräfte generieren, durch elektrochemisch induzierte Oberflächenkräfte, die an die Beadoberflachen ankoppeln.
Ein Aktor erzeugt eine periodische, kleinskalige Vor- und Rückbewegung (Freilauf) des Fluids in dem Kanalsystem. Durch Erzeugung eines inhomogenen Magnetfeldes (Sperrvorrichtung) während der Rückbewegung des Fluids, können die Beads während der Rückbewegung fixiert werden. Aufgrund der Fixierung während der Rückbewegung des Fluids und der Lösung der Fixierung während der Vorwärtsbewegung resultiert eine gerichtete Bewegung der Beads durch das Kanalsystem, ohne dass eine Nettobewegung des Fluids erfolgt. Die Bewegungsrichtungen können umgekehrt werden.
Superparamagnetische Partikel werden in ein fluidisches Kanalsystem eingebracht. Solange keine anderen Kräfte auf diese Partikel wirken, werden diese Partikel mit jeder Bewegung des Fluids im Kanalsystem mitgeführt. Wird bei einer periodischen Fluidbewegung eine Bewegungsrichtung der Partikel gesperrt kommt es zu einem Transport der Partikel in eine Richtung. Das umgebende Fluid wird durch diese periodische Bewegung nur um den Volumenbetrag der Partikel in umgekehrter Richtung bewegt. Die periodische Bewegung des Fluids führt ansonsten zu keiner wesentlichen Vermischung, da in kleinsten Kanalsystemen eine turbulente Mischung nur extrem schwer zu erreichen ist. Das Volumen der Reaktionskammern ist äußerst gering, wodurch die benötigte Menge an Reaktanden sehr gering ist. Es werden Kanalabmessungen von einigen Mikrometern und Volumina der Reaktionskammern im Nanoliterbe- reich erreicht.
Magnetische Kräfte
Um eine Beadbewegung nach dem Prinzip einer fluidischen Ratsche zu erzeugen müssen ausreichend große magnetische Kräfte erzeugt werden und geeignete magnetische Beads zu Verfügung stehen. Die magnetische Sperrkraft auf die superparamagnetischen Partikel sollte vorzugsweise im Bereich von 10-100 pN liegen. Wobei sich die magnetische Kraft auf die Partikel zum einem aus dem Volumen sowie der Suszeptibilität der Partikel und zum anderen aus dem Produkt aus Feldstärke mal Gradient des Magnetfeldes ergibt. Während die erreichbaren Feldstärken sich auf den Bereich von wenigen Tesla beschränken, können durch weichmagnetische Mikrostrukturen auf kurze Distanzen sehr hohe Feldgradienten erzeugt werden.
Die magnetische Haltekraft wird durch unmittelbar an den Fluidbereich grenzende, weichmagnetische Mikrostrukturen erreicht, die ein extern erzeugtes Magnetfeld verzerren. Die kleinsten, lateralen Abmessungen dieser Strukturen sollten dabei etwa dem Durchmesser der verwendeten Beads entsprechen, während die vertikalen Abmessungen das drei bis zehnfache betragen sollte. Die Herstellung erfolgt nach der Re- siststrukturierung mit Maskentechnik durch Aufgalvanisieren. Anschließend werden die Strukturen mit Kunststoff eingegossen. Der Kunststoff erfüllt dabei zwei Funktionen. Zum einen werden entsteht dadurch eine ebene Oberfläche, welche die Beadbewegung nicht beein- trächtigt. Zum anderen dient der Kunststoff als Bondpartner für das
Gehäuseteil mit den fluidischen Kanalstrukturen.
Beispielhafte Herstellung einer weichmagnetischen Mikrostruktur
1. Auf Substrat (Silizium oder Glas) Galvanikstartschicht abscheiden
2. Resist aufschleudern und strukturieren
3. NiFe-Galvanik
4. Siegelschicht aufschleudern
Wesentlich für den Einsatz von magnetischen Kräften in Mikrometerabmessungen ist die Erzeugung von stark inhomogenen Magnetfeldern, es ist gezeigt das schon ohne weichmagnetische Mikrostrukturen die >10pN für 4μm Partikel erreicht werden können [9] . Durch den Einsatz von weichmagnetischen Mikrostrukturen können die Partikel noch deutlich kleiner oder das Hintergrundmagnetfeld schwächer sein. Geeignet sind dazu u. a. weichmagnetische Strukturen aus Permalloy (80%Ni und 20%Fe) . So können etwa Permalloy-Säulen mit einem Durchmesser von 5 μm und einer Höhe von 90 μm durch Röntgenlithographie und Galvanik mit einer Sättigungsmagnetisierung von 0, 93 T hergestellt werden [10] .
Fluidisches System
Der fluidische Transport von Partikeln durch Kanäle und entlang von Oberflächen wird schon seit vielen Jahrzehnten untersucht und ist eingehend beschrieben [11] .
Die Partikelbewegung hängt dabei neben den geometrischen Größen und den wirkenden Oberflächenkräften von der Strömungsgeschwindigkeit des Fluids ab, und lässt sich mit Kugeln [12] aber auch biologischen Einheiten wie Zellen gut realisieren [13] . Bilden sich bei der periodischen Fluidbewegung keine Turbulenzen, wird erwartet, dass der Stofftransport innerhalb des Fluids nicht deutlich größer als die Diffusionsgeschwindigkeit ist. Wie die umfangreiche Literatur im Bereich der Mikromischer zeigt [14] [8] , ist auch das beabsichtigte Herbeiführen von Turbulenzen in mikrofluidischen Systemen schwer zu erreichen. Die erfindungsgemäße Vorrichtung erfüllt hierzu verschiedene Anforderungen. Die Fluidbewegung muss groß genug sein, um Partikel durch das Fluid zu bewegen. Dazu sind im Kanalsystem Strömungsgeschwindigkeiten von etwa 1 - 10 mm/s notwendig. Dabei hängt die Geschwindigkeit der
Partikel in den Fluidkanälen von dem Verhältnis Kanalgröße zu Partikelgröße, der Fluidgeschwindigkeit, der Haftung der Partikel an den Kanalwänden und der Form der Partikel ab.
Die Fluidkanäle müssen so gestaltet sein, dass eine periodische FIu- idbewegung innerhalb der fluidischen Strukturen sich gut ausbreiten kann. Wichtig ist dabei, dass das System hinreichend inkompressible ist und die Fluidbewegung nicht elastisch speichert. Da die Strömungsgeschwindigkeit und damit auch die Bewegung der Beads von dem Kanalquerschnitt abhängt, kann die Fließgeschwindigkeit auch innerhalb des Systems variiert werden. So kann eine Verbreiterung des Kanalquerschnittes im Bereich der Reaktionskammern die Aufenthaltsdauer verlängern. Das Befüllen der Reaktionskammern und das kontinuierlich Nachliefern von Reaktionsstoffen werden durch ein langsames Durchströmen der Reaktionskammern senkrecht zur Bewegungsrichtung der Beads gewährleistet. Dies ermöglicht auch das komplette auswechseln der Inhaltsstoffe einzelner Reaktionskammern.
Die fluidischen Kanäle sollten einen Querschnitt haben, der in etwa der Beadgröße entspricht. So sollte zum Beispiel, die Kanalbreite und Höhe bei einer Beadgröße von 4 μm nicht größer als 10 μm sein. Strukturen mit diesen Abmessungen lassen sich sowohl photo- als auch rönt- genlithographisch herstellen. Welches Verfahren am besten geeignet ist hängt von der erforderlichen Strukturqualität und den geeigneten Kunststoffen ab.
Die Herstellung von Mikrostrukturen erfolgt auf vielfältige Weise: mit optischer Lithographie (SU8, Polyimid) , durch Heißprägen (Formeinsatzherstellung durch LIGA-Verfahren oder Zerspanungstechnik) oder durch Röntgentiefen-Lithographie. Dadurch ist man in der Lage auch höchste Anforderung an Strukturabmessungen, bis in den Submikrometer- bereich, Seitenwandrauhigkeiten mit optischer Qualität und Aspektverhältnisse von 20 und mehr zu realisieren.
Bonden
Eine durch das Fluid erzeugte Beadbewegung innerhalb des fluidischen
Systems erfordert eine gute Ausbreitung der Fluidbewegung innerhalb des Flυidbereiches. Lufteinschlüsse oder Deformationen der Mikrostrukturen würden stören und müssen vermieden werden. Weiterhin führen Schwankungen der Kanalgeometrie zu Änderungen der Strömungsgeschwindigkeit. Daher ist die Herstellung einer druckfesten Bondverbindung mit geringer Varianz der Bondbereichdicke wichtig. Für KunststoffStrukturen eignen sich dazu Siegelverfahren bei denen dünne Siegelschichten durch Photodegradation (s. o.) oder Aufschleudern erzeugt und anschließend durch Druck und Wärme in einer entsprechenden Bondvorrichtung verbunden werden.
Mit Hilfe von Bondverfahren ist es möglich auch deutlich kleinere fluidische Strukturen als bisher mit typischen Kanalquerschnitten von 50 μm x 50 μm herzustellen.
Aktor
Für den Aufbau der erfindungsgemäßen Vorrichtung ist mindestens an einer Stelle mikrofluidische Aktorik notwendig. Zum einen muss eine periodische Fluidbewegungen erzeugt werden, und / oder erfordert die Arbeit mit geringsten Stoffmengen, zum Beispiel eine Dosiervorrichtungen mit schnellen SchaltZeiten. Für beide Aufgaben eignen sich zum Beispiel Piezoaktoren. So steht ein piezogetriebenes Mikroventil mit Schaltzeiten von weniger als 2 ms, dessen Aufbauprinzip [DE 199 49 912] sich ebenfalls für die Erzeugung eines periodischen Hubes eignet, zur Verfügung.
Besondere Vorteile dieser Aktoren liegt in den kurzen Schaltzeiten (typischer Wert eine Millisekunde) und der großen dabei erzeugten Kraft. Die Einkopplung der mechanischen Bewegung in das System kann entweder direkt oder über Übersetzungssystem erfolgen. Alternativ können Aktoren über Druck-Feder-Systeme oder durch Wellen an elektrisch betriebene Motoren dargestellt werden.
Anschlusskonzept Fluidzuführung/Produktentnähme
Das Funktionsprinzip der erfindungsgemäßen Vorrichtung erfordert eine periodische Fluidbewegung, die nur effizient genutzt werden kann, wenn das System inkompressible ist und das Fluid nur am Ausgang eine frei bewegliche Grenzfläche besitzt (z.B. Gasblase) . Dies erfordert — starre Fluidzuführung oder hohe Strömungswiderstände im Fluidzufüh- rungsbereich. Weiterhin ist jederzeit eine einfache Bead-Entnahme möglich. Dazu werden die Beads in mindestens einer Kammer gesammelt und bei Bedarf ausgeschwemmt.
Die Synthese von Proteinen, Peptiden u. a. gewinnt in den letzten Jahren zunehmend an Bedeutung. Dabei ist nicht nur die kostengünstige Erzeugung großer Stoffmengen technisch interessant, sondern auch Methoden einer flexiblen Erzeugung kleiner Stoffmengen, die mit geringsten Mengen meist äußerst teurer Vorprodukte auskommen. Die benötigten Stoffmengen betragen dabei nur wenige Nanogramm, so dass bereits für einen einfachen Prototyp des Biosynthesereaktors mit der Produktion ausreichender Substanzmengen zu rechnen ist. Hierdurch ist eine Qualifizierung und Quantifizierung der Synthesereaktion bei Variation der Prozessparameter möglich. Bei einer auf magnetischen Beads adaptierten Merrifield-Festphasensynthese (AMS) werden gezielt Peptide erzeugt. An mit spezifisch spaltbaren Abstandshaltern (Spacer) versehenen Beads welche an Ihrem Ende die Ausgangsmoleküle für die AMS tragen wird mittels der erfindungsgemäßen Vorrichtung die AMS bis zur gewünschten Peptidlänge durchgeführt. Hierzu werden die Beads durch die einzelnen Reaktionsbereiche der Vorrichtung geführt. Die erfindungsgemäße Vorrichtung erlaubt für Zwecke bei denen nur kleine Stoffmengen benötigt werden, eine schnelle und Material sparende Synthese von komplexen Molekülen, zum Beispiel Peptide, Proteine, Oligonukleotide, DNA, Oligosaccharide oder RNA, deren Synthese durch sukzessive Einzelreaktionen erfolgt. Kleine Stoffmengen, jedoch in großer Variationsbreite, werden zum Beispiel im Rahmen der Wirk- stofffindung und Entwicklung in der Pharmazeutik und Biomedizin benötigt.
Unter Einsatz der erfindungsgemäßen Vorrichtung, lässt sich die zur Sequenzierung von Proteinen oder DNA-Abschnitten benötigten Substanzenmengen und Zeiten weiter verringern. Hierzu werden die Proteine oder DNA-Abschnitte an Beads gebunden und im Verlauf der Passage verschiedener Reaktionskammern schrittweise analysiert werden. Die erfindungsgemäße Vorrichtung kann dabei durch zusätzliche Komponenten zur Detektion erweitert werden-, wie z.B. magnetoelektrisch [16], durch (integrierte) optische Systeme [2] oder elektrochemisch [17] . Auch eine Kombination von Synthese, Reaktion und Analyse können mit der erfindungsgemäßen Vorrichtung durchgeführt werden. So können in einem ersten Bereich Moleküle synthetisiert werden, in einem darauf folgenden Bereich verschiedenen Substanzen ausgesetzt und anschließend diese direkt analysiert werden. Des Weiteren können Sensoren in die Reaktionskammern oder die Fluidkanäle eingebracht werden um die Reaktionen präziser zu steuern.
Die Erfindung sowie dessen Details werden im Folgenden beispielhaft an Ausführungsformen anhand von Figuren näher erläutert. Es zeigen
Fig. 1 Systemelemente und Prinzip für magnetische Ratsche Fig. 2 Beispielhafte Mikrostruktur zur Erzeugung eines inhomogenen Magnetfelds
Fig. 3 Beispielhafte Herstellung weichmagnetischer Mikrostrukturen
Fig. 4 Beispielhafte Herstellung einer Fluidstruktur Fig. 5 Beispielhafte Herstellung einer Bondverbindung Fig. 6 Beispielhafter Aufbau einer erfindungsgemäßen Vorrichtung
Fig. 1 zeigt eine schematische Schnittdarstellung der wesentlichen Elemente und das Prinzip einer fluidischen Ratsche. Mit einem Aktor 1 zur Erzeugung einer Fluidströmung 8 in den Fluidkanälen 6. Die FIu- idströmung 8 bewegt die Beads 4. Ausgestattet mit einem Mischkammervolumen 3 und einem mikrostrukturiertem Weicheisenmagnetkern 2 zur Erzeugung einer magnetischen Sperrkraft. Abgeschlossen wird Vorrichtung mit einem Gehäuse 5. Je nach Bewegungsrichtung des Aktors 1 bewegt sich das Fluid 8 und mit Ihm die Beads 7. Wird die Sperrkraft eingeschaltet werden die Beads in Richtung Magnetstruktur fixiert 9.
Fig. 2 zeigt eine schematische Schnittdarstellung mit den Feldlinien 10 eines eingeschalteten inhomogenen Magnetfeldes, erzeugt durch ei- nen Weicheisenmagnetkern 2 in Mikrosrtruktur der in Kunststoff 11 eingebettet ist. Die magnetischen Beads 4 werden aus dem Fluid gefüllten Kanal 6 Richtung 9 Magnetkern 12 fixiert.
Fig. 3 zeigt beispielhaft die schematische Darstellung der Herstellung der weichmagnetischen Mikrostruktur, in dem auf Substrat auf Substrat 13 (zum Beispiel Silizium oder Glas) eine Galvanikstartschicht 16 abgeschieden wird, dann Resist 15 aufschleudert und strukturiert wird, danach erfolgt die Galvanik, mit zum Beispiel Permalloy (NiFe im Verhältnis (80/20) und das aufschleudern der Siegelschicht 14.
Fig. 4 zeigt beispielhaft die schematische Herstellung einer mikrofluidischen Kanalstruktur ".8. In das Substrat 13 werden Öffnungen 19 eingebracht, die der Fluidzuführung dienen. Diese Löcher können mechanisch (zum Beispiel Bohren, Lasern), nasschemisch oder auch durch reaktives Ionenätzen eingebracht werden. Die Grabenstrukturen entstehen durch die Strukturierung (Strippen) des auf dem Substrat aufgeschleuderten Resists (zum Beispiel SU8, PMMA, Polyimid) .
Fig. 5 zeigt das Bonden der Strukturen hergestellt in Fig 3 und Fig 4 durch Druck 20 und Wärme 20, dadurch entstehen die mikrofluidischen Kanalstrukturen 21.
Fig. 6 zeigt eine beispielhafte Ausführungsform einer erfindungsgemäßen Vorrichtung besteht aus einem mikrostrukturierten Magneten, einer mikrofluidischen Kanalstruktur, einem Aktor sowie aus fluidischen Anschlüssen.
Die Aufsicht auf dieses System zeigt die fluidischen Strukturen. Die zum Beadtransport 8 notwendige periodische Fluidbewegung 7 wird durch ein Aktor 1 erzeugt, der am Anfang des Fluidsystems befindet. Durch eine Öffnung 28 werden die Beads in das System eingebracht und nach dem fluidischen Ratschenprinzip [Fig. 1] durch den mikrofluidischen Kanal bewegt. Eine Ausgleichkammer 24 am Ende der Fluidstruktur mit einem freien Flüssigkeitsspiegel ermöglicht die periodische Bewegung. In den Mischkammervolumen 25 kann die Aufenthaltszeit der Beads 4 durch die geometrische Form reguliert werden, wobei dort Säulenstrukturen die Beads 4 führen. Im letzten Mischkammervolumen 23 des Systems werden die Beads angesammelt und bei Bedarf ausgespült. In die Mischkammervolumen 25 werden senkrecht 27 zur Bewegungsrichtung die Reaktionsstoffe über die mikrofluidische Fluidführung zugeführt. Durch Einleitung 26 und Abzweigung 22 wird das Befüllen der Kammern erleichtert und auch eine kontinuierliche Regulierung der Stoffkonzentration ermöglicht.
Literaturverzeichnis
[1] Chih-Ming Ho, Fluidics - the link between micro and nano sciences and technologies, MEMS 2001, Interlaken, Swit- zerland, January 21-25, 2001.
[2] Sherry A. Dunbar, Coe A. Vander Zee, Kerry G. Oliver, Kevin L. Karem and James W. Jacobson, Quantitative, mul- tiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP™ System, Journal of Microbiological Methods, Volume 53, Issue 2, May 2003, Pages 245-252.
[3] Michael Pycraft Hughes, Nanoelectromechanics in Engineering and Biology, 2003, Boca Raton, London, New York, Washington, D.C.-CRC Press LLC.
[4] G. Romano, L. Sacconi, M. Capitanio and F. S. Pavone, Force and torque measurements using magnetic micro beads for single molecule biophysics, Optics Communications, Volume 215, Issues 4-6, 15 January 2003, Pages 323-331.
[5] Sibani L. Biswal and Alice P. Gast, Mechanics of semiflexible chains formed by polyethylene glycol-linked paramagnetic particles, Physical Review E 68, 021402 (2003) .
[6] D. Niarchos, Magnetic MEMS: key issues and some applications, Sensors and Actuators A: Physical, Volume 106, Issues, 1-3, 15 September 2003, Pages 255-262.
[7] C. Hoffmann, M. Franzreb, W.H. Höll, „A novel high gra- dient magnetic Separator (HGMS) design for biotech applications", IEEE Trans, on Appl . Superconductivity, 12, No.1, 2002, Pages 963-966.
[8] H. Suzuki and CM. Ho, A Magnetic Force Driven Chaotic Micro-Mixer, Proc. 15th IEEE Int. Conf. MEMS102, Las Vegas, (2002), Pages 40-43.
[9] Jin-Woo Choi, Chong H. Ahn, Shekhar Bhansali and H. Thurman Henderson, A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for in- tegrated bio-detection Systems, Sensors and Actuators B:
Chemical, Volume 68, Issues 1-3, 25 August 2000, Pages 34-39.
[10] A. Thommes, W. Stark, W.Bacher, Die galvanische Abscheidung von Eisen-Nickel in LIGA-Mikrostrukturen, FZKA 5586, Wissenschaftliche Berichte, Forschungszentrum Karlsruhe GmbH, Karlsruhe, 1995.
[11] Ronald F. Probstein, Physicochemical hydrodynamics, John Wiley&Sons Inc., New York Chichester Brisbane Toronto Singapore, 19952.
[12] Q. Han and J. D. Hunt, Particle pushing: critical flow rate required to put particles into motion, Journal of Crystal Growth, Volume 152, Issue 3, 1 JuIy 1995, Pages 221-227.
[13] Cheng Dong and Xiao X. Lei, Biomechanics of cell roll- ing: shear flow, cell-surface adhesion, and cell deform- ability, Journal of Biomechanics, Volume 33, Issue 1, January 2000, Pages 35-43.
[14] St. Ehlers, K. Elgeti, T. Menzel and G. Wießmeier, Mix- ing in the offstream of a microchannel system*l, Chemical Engineering and Processing, Volume 39, Issue 4, JuIy 2000, Pages 291-298.
[15] T. Rogge, Z. Rummler, W.K. Schomburg, Entwicklung eines piezogetriebenen Mikroventils - von der Idee bis zur Vorserienfertigung, FZKA 6671, Wissenschaftliche Berichte, Forschungszentrum Karlsruhe GmbH, Karlsruhe, 2001.
[16] M. M. Miller, P. E. Sheehan, R. L. Edelstein, C. R. Ta- manaha, L. Zhong, S. Bounnak, L. J. Whitman and R. J. Colton, A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection, Journal of Magnetism and Magnetic Materials, Volume 225, Issues 1-2, 2001, Pages 138-144.
[17] Joseph Wang, Nanoparticle-based electrochemical DNA detection, Analytica Chimica Acta, In Press, Corrected Proof, Available online 15 JuIy 2003.
Bezugszeichenliste
1 Aktor
2 Weicheisenmagnetkern in Mikrostruktur
3 Reaktionskammer
4 Magnetischer Bead
5 Gehäuse
6 Mikrofluidischer Kanal gefüllt mit einem Fluid
7 Bewegungsrichtung der magnetischen Beads, abhängig von der Fluidströmung und der magnetischen Sperrkraft
8 Erzeugte, gerichtete Fluidströmung
9 Fixierungsrichtung der magnetischen Beads
10 Feldlinien
11 Kunstcff oder andere geeigneten Polymere
12 Fixierung in Richtung des Weicheisenmagnetkerns
13 Substrat
14 Siegelschicht
15 Resist
16 Galvanikschicht
17 Mikrostrukturierter Weicheisenmagnet
18 Mikrofluidischer Kanal
19 Öffnungen
20 Druck und/oder Wärme
21 Mikrofluidischer Kanal
22 Abzweigung
23 Mischkammervolumen zum entnehmen der Beads
24 Öffnung als Ausgleichskammer
25 Mischkammervolumen
26 Einleitung
27 Transportrichtung der Reaktionsstoffe in der mikroflui- dischen Fluidführung
28 Öffnungen zum Einbringen der Beads ins mikrofluidische System

Claims

Patentansprüche
1. Vorrichtung zum Transport von mindestens einer magnetischen Partikelfraktion durch ein mikrofluidisches System umfassend, a) Mindestens einem mikrofluidischem Kanal mit einem Fluid, umfassend die magnetische Partikelfraktion, b) Mittel zur Erzeugung einer Fluidströmung axial zum mikroflui- dischem Kanal mit zwei Schaltstellungen entsprechend der beiden Fließrichtungen, c) hinzu schaltbares äußeres Magnetfeld im Kanal zur temporären Fixierung der magnetischen Partikelfraktionen, wobei in einem Betriebszustand ein zyklischer Wechsel der beiden Schaltstellungen erfolgt und wobei das Magnetfeld nur bei einer Schaltstellung hinzu geschaltet ist.
2. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass der mikrofluidische Kanal in seiner vollen Länge an weichmagnetisches Material angrenzt.
3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das der mikrofluidische System ganz oder teilweise durch optische Lithographie, Heißprägen, Spritzguss oder durch Röntgen-Lithographie in ein Substrat eingearbeitet ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das mikrofluidische System formschlüssigen mit einer Deckplatte verschlossen ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Deckplatte mindestens zwei durch den mikrofluidischen Kanal miteinander verbundenen Öffnungen aufweist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Mittel einen direkt auf das Fluid wirkenden Aktor umfasst.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Aktor einen Piezo-Biegeaktor oder Druck-Feder-System umfasst.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Vorrichtung mindestens einen weiteren mikrofluidische Fluidführung aufweist, welche den mikrofluidi- schen Kanal unter Bildung eines Mischkammervolumens kreuzt.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der mikrofluidische Kanal mindestens eine Einleitung oder Abzweigung für ein weiteres Fluid aufweist.
10. Verwendung der Vorrichtung gemäß einem der Ansprüche 1 bis 9 zur Durchführung einer Festphasensynthese an magnetischen Partikelfraktionen.
11. Verwendung der Vorrichtung gemäß einem der Ansprüche 1 bis 9 zur Bioanalytik mit auf mindestens einer magnetischen Partikelfraktion fixierten Biomolekülen.
12. Verwendung nach Anspruch 11, dadurch gekennzeichnet, dass die Biomoleküle Proteine, Peptide, DNA, RNA oder Zellen, prokaryo- tisch oder eukaryotisch umfassen.
13. Verwendung der Vorrichtung gemäß einem der Ansprüche 1 bis 9 zur chemischen Analytik oder Produktion mit auf mindestens einer magnetischen Partikelfraktion fixierten chemischen Reaktanten oder Katalysatoren.
EP05850267A 2004-12-24 2005-12-14 Mikroreaktor Withdrawn EP1833608A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410062534 DE102004062534B4 (de) 2004-12-24 2004-12-24 Mikroreaktor
PCT/EP2005/013425 WO2006069627A1 (de) 2004-12-24 2005-12-14 Mikroreaktor

Publications (1)

Publication Number Publication Date
EP1833608A1 true EP1833608A1 (de) 2007-09-19

Family

ID=36051551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05850267A Withdrawn EP1833608A1 (de) 2004-12-24 2005-12-14 Mikroreaktor

Country Status (3)

Country Link
EP (1) EP1833608A1 (de)
DE (1) DE102004062534B4 (de)
WO (1) WO2006069627A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE542136T1 (de) 2010-03-15 2012-02-15 Boehringer Ingelheim Int Vorrichtung und verfahren zur manipulation oder untersuchung einer flüssigen probe
DE102011076051A1 (de) 2011-05-18 2012-11-22 Siemens Aktiengesellschaft Magnetophoretische Analytselektion und -anreicherung
DE102011077905A1 (de) * 2011-06-21 2012-12-27 Siemens Aktiengesellschaft Hintergrundfreie magnetische Durchflusszytometrie
DE102012211626A1 (de) * 2012-07-04 2014-01-09 Siemens Aktiengesellschaft Anordnung zur Quantifizierung von Zellen einer Zellsuspension

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19949912C2 (de) * 1999-10-16 2003-02-27 Karlsruhe Forschzent Vorrichtung für eine Kraftübersetzung, Verfahren zu deren Herstellung und deren Verwendung
AU2000274922A1 (en) * 2000-08-08 2002-02-18 Aviva Biosciences Corporation Methods for manipulating moieties in microfluidic systems
WO2002032567A1 (de) * 2000-10-17 2002-04-25 Febit Ag Verfahren und vorrichtung zur integrierten synthese und analytbestimmung an einem träger
DE10057396C1 (de) * 2000-11-18 2002-04-04 Karlsruhe Forschzent Verfahren zum Abtrennen eines dispergierten oder gelösten Stoffes und Magnetseparator
US20030073110A1 (en) * 2001-07-03 2003-04-17 Masaharu Aritomi Method for isolating nucleic acid and a cartridge for chemical reaction and for nucleic acid isolation
CA2469464A1 (en) * 2001-12-07 2003-06-19 Dyax Corporation Method and apparatus for washing magnetically responsive particles
DE10231925A1 (de) * 2002-07-10 2004-01-22 Horst Dr. Ahlers Reaktorsystem zur Durchführung chemischer und biochemischer Prozesse
DE10320869A1 (de) * 2003-05-09 2004-12-16 Evotec Technologies Gmbh Verfahren und Vorrichtungen zur Flüssigkeitsbehandlung suspendierter Partikel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006069627A1 *

Also Published As

Publication number Publication date
WO2006069627A1 (de) 2006-07-06
DE102004062534A1 (de) 2006-07-06
DE102004062534B4 (de) 2007-05-10

Similar Documents

Publication Publication Date Title
US20190060861A1 (en) High-speed on demand microfluidic droplet generation and manipulation
Hong et al. Micro-and nanofluidic systems for high-throughput biological screening
EP2188059B1 (de) Kügelchenmanipulation bei einem tröpfchenbetätiger
US8043846B2 (en) Device and method for contacting picoliter volumes of fluid
US20080187472A1 (en) Magnetic bead-based arrays
EP2369343B1 (de) Vorrichtung und Verfahren zur Manipulation oder Untersuchung einer flüssigen Probe
US8465987B2 (en) Apparatus, microfluidic chip and method for separating particles using isomagnetophoresis
US20230053160A1 (en) Selective and High-Resolution Printing of Single Cells
Zhang et al. Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples
Cheng et al. Sample preparation in microstructured devices
DE102009005925B4 (de) Vorrichtung und Verfahren zur Handhabung von Biomolekülen
WO2006069627A1 (de) Mikroreaktor
EP1489404A1 (de) Verfahren zum Herstellen einer 3-D-Mikroskop-Durchflusszelle
US20070144976A1 (en) Micro-reactor
EP1330307B1 (de) Verfahren und vorrichtung zur integrierten synthese und analytbestimmung an einem träger
DE102011050254A1 (de) Verfahren zur Separation polarisierbarer Biopartikel
WO2014060998A1 (de) Integriertes mikrofluidisches bauteil zur anreicherung und extraktion biologischer zellbestandteile
WO2007085300A1 (en) Magnetic bead retention apparatus and method
DE10231925A1 (de) Reaktorsystem zur Durchführung chemischer und biochemischer Prozesse
DE19723469A1 (de) Reaktor für mikrochemische bzw. mikrobiologische Synthesen
Ganguly et al. Magnetic-particle-based microfluidics
Gijs Magnetic Particle Handling in Lab-on-a-Chip Microsystems
EP3710163A1 (de) Vorrichtung und verfahren zur reversiblen immobilisierung von biomolekülen
Ruffert Mikrofluidische Separationsverfahren und-systeme
Bu et al. A Facile Approach for Fabricating Ordered Submicrometer-Wide Surface Patterns by Imprinting Polydimethylsiloxane Cracks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FRANZREB, MATTHIAS

Inventor name: ROGGE, TILMANN

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE

17Q First examination report despatched

Effective date: 20100108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101207