EP1832671A2 - Method for a protective coating against wear and corrosion - Google Patents

Method for a protective coating against wear and corrosion Download PDF

Info

Publication number
EP1832671A2
EP1832671A2 EP07003253A EP07003253A EP1832671A2 EP 1832671 A2 EP1832671 A2 EP 1832671A2 EP 07003253 A EP07003253 A EP 07003253A EP 07003253 A EP07003253 A EP 07003253A EP 1832671 A2 EP1832671 A2 EP 1832671A2
Authority
EP
European Patent Office
Prior art keywords
aluminum material
aluminum
magnesium
wear
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07003253A
Other languages
German (de)
French (fr)
Other versions
EP1832671A3 (en
Inventor
Frank Dr. Gärtner
Peter Heinrich
Heinrich Prof. Dr. Kreye
Tobias Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1832671A2 publication Critical patent/EP1832671A2/en
Publication of EP1832671A3 publication Critical patent/EP1832671A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting

Definitions

  • the invention relates to a process for wear and corrosion protection coating of surfaces of components made of magnesium or magnesium alloys and aluminum alloys and components of such alloys with wear and corrosion resistant coating.
  • Magnesium and magnesium alloys are characterized by a particularly high strength in relation to their specific weight and are therefore particularly attractive as a lightweight material for use in vehicle technology and aviation.
  • the use of these materials is limited by a relatively low wear and corrosion resistance.
  • the wear and corrosion protection of components made of magnesium and magnesium alloys and aluminum alloys can be improved by a coating, for example by thermal spraying.
  • a coating for example by thermal spraying.
  • thermal spraying there is the problem that the structure of magnesium and magnesium alloy or aluminum alloy, for example, by thermal processes such as phase changes changed and thereby the strength and other advantageous properties of magnesium or the base material are generally affected.
  • Another problem is the adhesion of the layers to the magnesium or their deterioration by oxidation of the surface and / or the added spray material, which gives the coating, in the thermal spraying process.
  • the spray particles are accelerated in a carrier gas to high speeds, but not melted.
  • a "cold" or a comparatively colder gas is used, since it is heated at most to temperatures below the melting point of the material of the spray particles.
  • cold gas spraying does not result in oxidation and / or phase transformation of the carrier material or noticeable melting of the carrier material and formation of a mixture.
  • the spray particles are supplied as powders with a particle size of 1 .mu.m to 200 .mu.m.
  • the kinetic energy receives the spray particles by acceleration in the carrier gas at speeds above the speed of sound.
  • relatively hard and thus particularly wear-resistant materials can not be processed well by cold gas spraying.
  • aluminum and aluminum alloys can not only be protected against corrosion by hard anodizing but can also be improved in their wear resistance.
  • the oxygen forms an oxide layer which is approximately 0.01 ⁇ m thick.
  • Anodizing called anodizing, allows the formation of oxide layers that are 100 to 1000 times thicker and can serve as a protective layer.
  • the properties of the resulting protective layer such as its hardness can be controlled.
  • Anodic oxidation is only possible with pure aluminum and some aluminum alloys, such as Al-Mg with magnesium contents up to 5%.
  • the large group of silicon-containing cast aluminum materials is considered to be non-anodically oxidizable or anodizable.
  • silicon or silicon-containing intermetallic phases such as AISi,. Mg 2 Si, etc.
  • AIFeSi phases even the small amounts of iron, which are present as an impurity in the material, are sufficient, for example, already 0.08%.
  • the silicon-containing aluminum materials used for casting according to DIN standard 1725 with the alloy designations Alsi12, AlSi12 (Cu), AlSi10Mg, AlSi10Mg (Cu), AlSi9Cu3, AlSi6Cu4, AlSi11, AlSi9Mg, and AlSi7Mg are not suitable for anodic oxidation.
  • AlSi9MgCo AlSi12CuMgNi and AlZn10Si8Mg.
  • materials with no or only small amounts of silicon such as AlCu4Ti and AlCu4TiMg, are only poorly suited.
  • the anodic oxidation of aluminum casting alloys is made more difficult since they usually still have pores. Even with many Aluminiumknetmaschinestoffen anodic oxidation is not well possible. Pure magnesium and magnesium alloys are not anodic oxidizable.
  • the present invention has for its object to provide a method with which it is possible surfaces of components made of magnesium and magnesium alloys and aluminum alloys with a wear and corrosion protection coating. It is also an object of the invention to provide components made of such alloys, which have a wear and corrosion protection coating.
  • the stated object is achieved by a method in which, in a first step, an anodically oxidizable aluminum material is applied to the surface as a coating and in a second step, the coating of aluminum material is anodized.
  • the layer of anodic oxidizable aluminum material may consist of an alloy optimized for this purpose.
  • the aluminum material is applied by means of a cold gas spraying process.
  • the coating with the anodic oxidizable aluminum material can be carried out by thermal spraying. If the cold gas spraying process is used, both the oxidation of the carrier material and thorough mixing of the magnesium or magnesium alloy carrier material and the aluminum material coating by melting or solid-state diffusion are largely avoided.
  • the surface of the component is optimally suited for anodic oxidation after coating.
  • the layer of aluminum material is between 30 .mu.m and 3 mm thick, preferably between 100 .mu.m and 300 .mu.m thick.
  • the aluminum material is pure aluminum. Pure aluminum is made of 99.5 percent aluminum. Possible is an increase up to 99.99 percent. Pure aluminum can be optimally oxidized anodically.
  • the anodic oxidizable aluminum material may be a wear-resistant and / or corrosion-resistant aluminum material.
  • the corrosion protection and wear protection is also effected by the layer of the aluminum material, and in the event that the oxide layer has not been properly formed or destroyed in places protection is nevertheless achieved.
  • the layer of aluminum material may be smoothed or provided with a surface structure prior to anodizing by grinding, polishing or a surface treatment method.
  • the object of the invention is also achieved by components made of magnesium or magnesium alloys and aluminum alloys, the surface of which has been coated wear-resistant and corrosion-resistant at least in some areas with the method according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

A two-stage process protects lightweight automotive and/or aerospace magnesium components from corrosion and mechanical wear. In a first stage the magnesium is coated with pure aluminum or suitable alloy by cold gas sputtering. In the second stage the aluminum coating is oxidized by an anode process.

Description

Die Erfindung betrifft ein Verfahren zur Verschleiß- und Korrosionsschutzbeschichtung von Oberflächen von Bauteilen aus Magnesium oder Magnesiumlegierungen sowie Aluminiumlegierungen und Bauteile aus solchen Legierungen mit verschleiß- und korrosionsfester Beschichtung.The invention relates to a process for wear and corrosion protection coating of surfaces of components made of magnesium or magnesium alloys and aluminum alloys and components of such alloys with wear and corrosion resistant coating.

Magnesium und Magnesiumlegierungen zeichnen sich durch eine besonders hohe Festigkeit im Verhältnis zu ihrem spezifischen Gewicht aus und sind daher als Leichtbauwerkstoff besonders attraktiv für eine Verwendung in der Fahrzeugtechnik und der Luftfahrt. Eingeschränkt wird der Einsatz dieser Werkstoffe jedoch durch eine relativ geringe Verschleiß- und Korrosionsbeständigkeit. Auch für Aluminiumlegierungen wird oft eine erhöhte Verschleiß- und Korrosionsbeständigkeit gewünscht.Magnesium and magnesium alloys are characterized by a particularly high strength in relation to their specific weight and are therefore particularly attractive as a lightweight material for use in vehicle technology and aviation. However, the use of these materials is limited by a relatively low wear and corrosion resistance. For aluminum alloys, too, increased wear and corrosion resistance is often desired.

Der Verschleiß- und Korrosionsschutz von Bauteilen aus Magnesium und Magnesiumlegierungen sowie Aluminiumlegierungen kann durch eine Beschichtung verbessert werden, z.B. durch Verfahren des thermischen Spritzens. Bei der Beschichtung durch thermische Spritzverfahren besteht jedoch das Problem, dass das Gefüge des Magnesiums und der Magnesiumlegierung bzw. Aluminiumlegierung z.B. durch thermische Vorgänge wie Phasenumwandlungen verändert und dadurch die Festigkeit und andere vorteilhafte Eigenschaften des Magnesiums oder allgemein des Grundwerkstoffs beeinträchtigt werden. Ein weiteres Problem ist die Haftung der Schichten auf dem Magnesium bzw. deren Beeinträchtigung durch Oxidation der Oberfläche und/oder des zugefügten Spritzwerkstoffs, der die Beschichtung ergibt, beim thermischen Spritzprozess. Diese Probleme treten beim Kaltgasspritzen nicht auf, ein Verfahren, bei dem Spritzwerkstoff und Oberfläche nur einer geringen Erwärmung ausgesetzt sind und eine Oxidation praktisch nicht stattfindet. Bei diesem werden die Spritzpartikel in einem Trägergas auf hohe Geschwindigkeiten beschleunigt, jedoch nicht geschmolzen. Im Vergleich zu den herkömmlichen Spritzverfahren wird ein "kaltes" bzw. ein vergleichsweise kälteres Gas verwendet, da es höchstens auf Temperaturen unterhalb des Schmelzpunktes des Materials der Spritzpartikel erwärmt wird. Durch plastische Verformung aufgrund der kinetischen Energie beim Aufprall der Spritzpartikel und daraus resultierender lokaler Wärmefreigabe kommt es zur Kohäsion und Haftung der Partikel auf dem Werkstück und zur Bildung einer Beschichtung. Insbesondere kommt es beim Kaltgasspritzen nicht zur Oxidation und/oder Phasenumwandlung des Trägerwerkstoffs oder eines merklichen Aufschmelzens des Trägerwerkstoffes und Bildung einer Mischung. Die Spritzpartikel werden als Pulver mit einer Partikelgröße von 1 µm bis 200 µm zugeführt. Die kinetische Energie erhalten die Spritzpartikel durch Beschleunigung im Trägergas auf Geschwindigkeiten oberhalb der Schallgeschwindigkeit. Jedoch lassen sich relativ harte und dadurch besonders verschleißbeständige Materialien nicht gut durch Kaltgasspritzen verarbeiten.The wear and corrosion protection of components made of magnesium and magnesium alloys and aluminum alloys can be improved by a coating, for example by thermal spraying. When coating by thermal spraying, however, there is the problem that the structure of magnesium and magnesium alloy or aluminum alloy, for example, by thermal processes such as phase changes changed and thereby the strength and other advantageous properties of magnesium or the base material are generally affected. Another problem is the adhesion of the layers to the magnesium or their deterioration by oxidation of the surface and / or the added spray material, which gives the coating, in the thermal spraying process. These problems do not occur in cold gas spraying, a process in which the spray material and surface are exposed to only a slight warming and oxidation does not take place practically. In this, the spray particles are accelerated in a carrier gas to high speeds, but not melted. In comparison to the conventional spraying method, a "cold" or a comparatively colder gas is used, since it is heated at most to temperatures below the melting point of the material of the spray particles. By plastic deformation due to the kinetic energy in the impact of the spray particles and the resulting local heat release, it comes to the cohesion and adhesion of the Particles on the workpiece and to form a coating. In particular, cold gas spraying does not result in oxidation and / or phase transformation of the carrier material or noticeable melting of the carrier material and formation of a mixture. The spray particles are supplied as powders with a particle size of 1 .mu.m to 200 .mu.m. The kinetic energy receives the spray particles by acceleration in the carrier gas at speeds above the speed of sound. However, relatively hard and thus particularly wear-resistant materials can not be processed well by cold gas spraying.

Aluminium und Aluminiumlegierungen können demgegenüber durch Harteloxieren nicht nur gegen Korrosion geschützt werden, sondern auch in ihrer Verschleißbeständigkeit verbessert werden. Bei Kontakt mit der Luft bildet sich durch den Sauerstoff eine Oxidschicht, die ca. 0,01 µm dick ist. Anodisches Oxidieren, als Eloxieren bezeichnet, ermöglicht die Bildung von Oxidschichten, die 100 bis 1000fach dicker sind und als Schutzschicht dienen können. Durch das Verfahren selbst und Beimischungen können die Eigenschaften der entstehenden Schutzschicht, wie etwa deren Härte gesteuert werden. Die anodische Oxidation ist nur bei reinem Aluminium und einigen Aluminiumlegierungen, wie Al-Mg mit Magnesiumgehalten bis zu 5 % gut möglich. Die große Gruppe der siliziumhaltigen Aluminiumgusswerkstoffe gilt dagegen als nicht anodisch oxidierbar oder eloxierbar. Man nimmt an, dass die Ausbildung einer Oxidschicht durch die Ausscheidung von Silizium oder siliziumhaltigen intermetallischen Phasen wie AISi,. Mg2Si u.a. behindert wird. Zur Bildung von AIFeSi-Phasen reichen schon die geringen Mengen an Eisen aus, die als Verunreinigung im Material vorhanden sind etwa z.B. bereits 0,08 %. So sind insbesondere die siliziumhaltigen, zum Gießen verwendeten Aluminiumwerkstoffe nach DIN-Norm 1725 mit den Legierungsbezeichnungen Alsi12, AlSi12(Cu), AlSi10Mg, AlSi10Mg(Cu), AlSi9Cu3, AlSi6Cu4, AlSi11, AlSi9Mg, und AlSi7Mg nicht für eine anodische Oxidation geeignet. Ebenfalls schlecht geeignet sind AlSi9MgCo, AlSi12CuMgNi und AlZn10Si8Mg. Aber auch Werkstoffe mit keinen oder nur geringen Siliziumanteilen wie AlCu4Ti und AlCu4TiMg eignen sich nur schlecht. Zusätzlich wird die anodische Oxidation von Aluminiumgusslegierungen erschwert, da diese in der Regel noch Poren aufweisen. Auch bei vielen Aluminiumknetwerkstoffen ist eine anodische Oxidation nicht gut möglich. Reines Magnesium und Magnesiumlegierungen sind nicht anodisch oxidierbar.In contrast, aluminum and aluminum alloys can not only be protected against corrosion by hard anodizing but can also be improved in their wear resistance. Upon contact with the air, the oxygen forms an oxide layer which is approximately 0.01 μm thick. Anodizing, called anodizing, allows the formation of oxide layers that are 100 to 1000 times thicker and can serve as a protective layer. By the method itself and admixtures, the properties of the resulting protective layer, such as its hardness can be controlled. Anodic oxidation is only possible with pure aluminum and some aluminum alloys, such as Al-Mg with magnesium contents up to 5%. By contrast, the large group of silicon-containing cast aluminum materials is considered to be non-anodically oxidizable or anodizable. It is believed that the formation of an oxide layer by the precipitation of silicon or silicon-containing intermetallic phases such as AISi,. Mg 2 Si, etc. is hindered. For the formation of AIFeSi phases, even the small amounts of iron, which are present as an impurity in the material, are sufficient, for example, already 0.08%. In particular, the silicon-containing aluminum materials used for casting according to DIN standard 1725 with the alloy designations Alsi12, AlSi12 (Cu), AlSi10Mg, AlSi10Mg (Cu), AlSi9Cu3, AlSi6Cu4, AlSi11, AlSi9Mg, and AlSi7Mg are not suitable for anodic oxidation. Also poorly suited are AlSi9MgCo, AlSi12CuMgNi and AlZn10Si8Mg. But also materials with no or only small amounts of silicon, such as AlCu4Ti and AlCu4TiMg, are only poorly suited. In addition, the anodic oxidation of aluminum casting alloys is made more difficult since they usually still have pores. Even with many Aluminiumknetwerkstoffen anodic oxidation is not well possible. Pure magnesium and magnesium alloys are not anodic oxidizable.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, mit dem es möglich ist, Oberflächen von Bauteilen aus Magnesium und Magnesiumlegierungen sowie Aluminiumlegierungen mit einer Verschleiß- und Korrosionsschutzbeschichtung zu versehen. Ebenfalls ist es Aufgabe der Erfindung, Bauteile aus solchen Legierungen zur Verfügung zu stellen, die eine Verschleiß- und Korrosionsschutzbeschichtung aufweisen.The present invention has for its object to provide a method with which it is possible surfaces of components made of magnesium and magnesium alloys and aluminum alloys with a wear and corrosion protection coating. It is also an object of the invention to provide components made of such alloys, which have a wear and corrosion protection coating.

Die gestellte Aufgabe wird durch ein Verfahren gelöst, bei dem in einem ersten Schritt ein anodisch oxidierbarer Aluminiumwerkstoff auf die Oberfläche als Beschichtung aufgebracht wird und in einem zweiten Schritt die Beschichtung aus Aluminiumwerkstoff anodisch oxidiert wird.The stated object is achieved by a method in which, in a first step, an anodically oxidizable aluminum material is applied to the surface as a coating and in a second step, the coating of aluminum material is anodized.

Dadurch können auch Werkstoffe aus reinem Magnesium und Magnesiumlegierungen sowie Aluminiumlegierungen mit einer Harteloxierung versehen werden, die für sich nicht auf diese Weise gegen Korrosion und Verschleiß geschützt werden können. Die Schicht des anodisch oxidierbaren Aluminiumwerkstoffs kann aus einer für diesen Zweck optimierten Legierung bestehen.As a result, even materials made of pure magnesium and magnesium alloys and aluminum alloys can be provided with a hard anodization, which can not be protected in this way against corrosion and wear. The layer of anodic oxidizable aluminum material may consist of an alloy optimized for this purpose.

In vorteilhafter Ausführung des Verfahrens wird der Aluminiumwerkstoff mittels eines Kaltgasspritzverfahrens aufgebracht.In an advantageous embodiment of the method, the aluminum material is applied by means of a cold gas spraying process.

Die Beschichtung mit dem anodisch oxidierbaren Aluminiumwerkstoff kann durch thermisches Spritzen erfolgen. Wird dabei das Kaltgasspritzverfahren verwendet, so werden sowohl die Oxidation des Trägermaterials als auch eine Durchmischung des Trägermaterials aus Magnesium oder Magnesiumlegierungen und der Beschichtung aus Aluminiumwerkstoff durch Aufschmelzen oder Festkörperdiffusion weitgehend vermieden. Die Oberfläche des Bauteils ist nach der Beschichtung optimal für die anodische Oxidation geeignet.The coating with the anodic oxidizable aluminum material can be carried out by thermal spraying. If the cold gas spraying process is used, both the oxidation of the carrier material and thorough mixing of the magnesium or magnesium alloy carrier material and the aluminum material coating by melting or solid-state diffusion are largely avoided. The surface of the component is optimally suited for anodic oxidation after coating.

In günstiger Ausführung ist die Schicht aus Aluminiumwerkstoff zwischen 30 µm und 3 mm dick ist, vorzugsweise zwischen 100 µm und 300 µm dick.In a favorable embodiment, the layer of aluminum material is between 30 .mu.m and 3 mm thick, preferably between 100 .mu.m and 300 .mu.m thick.

Diese Schichtdicken sind ausreichend, um die Harteloxierung durchzuführen und sind zugleich ausreichend fest mit dem Trägerwerkstoff verbunden.These layer thicknesses are sufficient to carry out the hard anodization and are at the same time sufficiently firmly bonded to the carrier material.

Vorteilhaft ist der Aluminiumwerkstoff reines Aluminium. Reines Aluminium besteht industriell aus 99,5 Prozent Aluminium. Möglich ist eine Steigerung bis auf 99,99 Prozent. Reines Aluminium lässt sich optimal anodisch oxidieren.Advantageously, the aluminum material is pure aluminum. Pure aluminum is made of 99.5 percent aluminum. Possible is an increase up to 99.99 percent. Pure aluminum can be optimally oxidized anodically.

Vorteilhaft kann der anodisch oxidierbare Aluminiumwerkstoff ein verschleißfester und/oder korrosionsfester Aluminiumwerkstoff sein.Advantageously, the anodic oxidizable aluminum material may be a wear-resistant and / or corrosion-resistant aluminum material.

Somit wird der Korrosionsschutz und Verschleißschutz zusätzlich zu der Oxidschicht auch durch die Schicht des Aluminiumwerkstoffs bewirkt und im Fall, dass die Oxidschicht nicht stellenweise nicht richtig gebildet wurde oder zerstört wurde dennoch ein Schutz erreicht.Thus, in addition to the oxide layer, the corrosion protection and wear protection is also effected by the layer of the aluminum material, and in the event that the oxide layer has not been properly formed or destroyed in places protection is nevertheless achieved.

Die Schicht aus Aluminiumwerkstoff kann vor dem anodischen Oxidieren durch Schleifen, Polieren oder ein Oberflächenbearbeitungsverfahren geglättet oder mit einer Oberflächenstruktur versehen werden.The layer of aluminum material may be smoothed or provided with a surface structure prior to anodizing by grinding, polishing or a surface treatment method.

Die Aufgabe der Erfindung wird auch durch Bauteile aus Magnesium oder Magnesiumlegierungen sowie Aluminiumlegierungen gelöst, deren Oberfläche zumindest in Teilbereichen mit dem erfindungsgemäßen Verfahren verschleiß- und korrosionsfest beschichtet wurde.The object of the invention is also achieved by components made of magnesium or magnesium alloys and aluminum alloys, the surface of which has been coated wear-resistant and corrosion-resistant at least in some areas with the method according to the invention.

Claims (11)

Verfahren zur verschleiß- und korrosionsfesten Beschichtung von Oberflächen von Bauteilen aus Magnesium oder Magnesiumlegierungen oder Aluminiumlegierungen bei dem in einem ersten Schritt, ein Aluminiumwerkstoff auf die Oberfläche als Beschichtung aufgebracht wird, dadurch gekennzeichnet, dass der Aluminiumwerkstoff anodisch oxidierbar ist und in einem zweiten Schritt die Beschichtung aus Aluminiumwerkstoff anodisch oxidiert wird.A method for wear and corrosion-resistant coating of surfaces of components made of magnesium or magnesium alloys or aluminum alloys in which in a first step, an aluminum material is applied to the surface as a coating, characterized in that the aluminum material is anodic oxidizable and in a second step, the coating made of aluminum material is anodized. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Aluminiumwerkstoff mittels eines Kaltgasspritzverfahrens aufgebracht wird.A method according to claim 1, characterized in that the aluminum material is applied by means of a cold gas spraying process. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Schicht aus Aluminiumwerkstoff zwischen 30 µm und 3 mm dick ist, vorzugsweise zwischen 100 µm und 300 µm dick ist.Method according to one of claims 1 or 2, characterized in that the layer of aluminum material is between 30 microns and 3 mm thick, preferably between 100 microns and 300 microns thick. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Aluminiumwerkstoff reines Aluminium ist.Method according to one of claims 1 to 3, characterized in that the aluminum material is pure aluminum. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass der anodisch oxidierbare Aluminiumwerkstoff ein verschleißfester und/oder korrosionsfester Aluminiumwerkstoff ist.A method according to claim 1 to 4, characterized in that the anodic oxidizable aluminum material is a wear-resistant and / or corrosion-resistant aluminum material. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Schicht aus Aluminiumwerkstoff vor dem anodischen Oxidieren durch Schleifen, Polieren oder ein Oberflächenbearbeitungsverfahren geglättet oder mit einer Oberflächenstruktur versehen wird.A method according to claim 1 to 5, characterized in that the layer of aluminum material is smoothed or provided with a surface structure before the anodic oxidation by grinding, polishing or a surface treatment method. Bauteil aus Magnesium oder einer Magnesiumlegierung oder einer Aluminiumlegierung mit zumindest teilweiser verschleißfester Beschichtung und einer Beschichtung aus Aluminiumwerkstoff, dadurch gekennzeichnet, dass der Aluminiumwerkstoff anodisch oxidierbar ist und die verschleißfeste Beschichtung auf den Aluminiumwerkstoff anodisch oxidiert ist.Component made of magnesium or a magnesium alloy or an aluminum alloy with at least partially wear-resistant coating and a coating of aluminum material, characterized in that the aluminum material is anodic oxidizable and the wear-resistant coating is anodized on the aluminum material. Bauteil nach Anspruch 7, dadurch gekennzeichnet, dass die Schicht aus Aluminiumwerkstoff zwischen 30 µm und 3 mm dick ist, vorzugsweise zwischen 100 µm und 300 µm dick ist.Component according to claim 7, characterized in that the layer of aluminum material is between 30 microns and 3 mm thick, preferably between 100 microns and 300 microns thick. Bauteil nach Anspruch 7 oder 8,dadurch gekennzeichnet, dass der Aluminiumwerkstoff reines Aluminium ist.Component according to claim 7 or 8, characterized in that the aluminum material is pure aluminum. Bauteil nach einem der Ansprüche 7 bis 9,dadurch gekennzeichnet, dass der Aluminiumwerkstoff mittels eines Kaltgasspritzverfahrens aufgebracht ist.Component according to one of claims 7 to 9, characterized in that the aluminum material is applied by means of a cold gas spraying process. Bauteil nach einem der Ansprüche 7 bis 10,dadurch gekennzeichnet, dass der anodisch oxidierbare Aluminiumwerkstoff ein verschleißfester und/oder korrosionsfester Aluminiumwerkstoff ist.Component according to one of claims 7 to 10, characterized in that the anodic oxidizable aluminum material is a wear-resistant and / or corrosion-resistant aluminum material.
EP07003253A 2006-03-07 2007-02-15 Method for a protective coating against wear and corrosion Withdrawn EP1832671A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10610521 2006-03-07

Publications (2)

Publication Number Publication Date
EP1832671A2 true EP1832671A2 (en) 2007-09-12
EP1832671A3 EP1832671A3 (en) 2010-07-28

Family

ID=38051551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07003253A Withdrawn EP1832671A3 (en) 2006-03-07 2007-02-15 Method for a protective coating against wear and corrosion

Country Status (1)

Country Link
EP (1) EP1832671A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204473A3 (en) * 2008-12-23 2010-07-14 United Technologies Corporation Hard anodize of cold spray aluminum layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359046A1 (en) * 2003-12-17 2005-07-28 Newspray Gmbh Developing a decorative and/or polished surface on a workpiece for the automotive industry, involves coating the surface at least partially with aluminum which is anodized
EP1829988A1 (en) * 2006-03-02 2007-09-05 Praxair Surface Technologies GmbH Method of repairing and refurbishing an aluminum component under dynamic loading for airfoil equipments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359046A1 (en) * 2003-12-17 2005-07-28 Newspray Gmbh Developing a decorative and/or polished surface on a workpiece for the automotive industry, involves coating the surface at least partially with aluminum which is anodized
EP1829988A1 (en) * 2006-03-02 2007-09-05 Praxair Surface Technologies GmbH Method of repairing and refurbishing an aluminum component under dynamic loading for airfoil equipments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204473A3 (en) * 2008-12-23 2010-07-14 United Technologies Corporation Hard anodize of cold spray aluminum layer

Also Published As

Publication number Publication date
EP1832671A3 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
EP1624081B1 (en) Aluminium alloy for tribologically stressed surfaces
DE102009018577B3 (en) A process for hot dip coating a 2-35 wt.% Mn-containing flat steel product and flat steel product
EP2816139B1 (en) Plated steel plate for hot pressing and hot pressing method of plated steel plate
EP2043808B1 (en) Method for producing a component from a titanium flat product for high-temperature applications by applying an aluminium layer onto at least one side of the titanium flat product by roll-bonding and cold-rolling
EP3117025B1 (en) An iron alloy brake disc coating and process for its manufacture
EP1888798B1 (en) Aluminium plain bearing alloy
DE102020116858A1 (en) Nickel-based alloy for powders and a process for producing a powder
DE102020203412A1 (en) Method for producing a protective coating on a brake side of a brake disk base body and method for producing a brake disk
DE102010053274A1 (en) Method for producing an AlScCa alloy and AlScCa alloy
JP4637978B2 (en) Corrosion-resistant paint and corrosion-resistant steel material coated with the same
EP3333281B1 (en) High-temperature protective layer for titanium aluminide alloys
DE102007059771A1 (en) Cylinder bush or cylinder liner made of gray iron- or aluminum alloy for casting in a light metal alloy on the basis of aluminum or aluminum/magnesium, comprises a conditioning coating for casting
EP2692524B1 (en) Composite material with a protective layer against corrosion and method for its manufacture
EP3877555A1 (en) Method for producing a sheet-metal component from a steel-plate product which is provided with an anti-corrosion coating
WO2012165644A1 (en) Molten zn-al-based alloy-plated steel sheet having excellent corrosion resistance and workability, and method for producing same
DE10124250C2 (en) Method of forming a high strength and wear resistant composite layer
KR20190076796A (en) Aluminum alloy coated steel sheet having improved resistance for liquid metal embrittlement and coating adhesion
EP1832671A2 (en) Method for a protective coating against wear and corrosion
DE102007016411B4 (en) Molybdenum semi-finished product provided with a protective layer and method for its production
DE102006010521A1 (en) Sputtering and anode process to coat lightweight automotive and/or aerospace magnesium components with pure aluminum or aluminum alloy
EP3322829B1 (en) Sliding bearing, sliding bearing material, process for the production of a sliding material and use of sliding bearing material as a sliding bearing
RU2410456C2 (en) Titanium alloy and engine exhaust pipe
EP1341941B1 (en) Metal strip for epitaxial coatings and method for the production thereof
JP5504854B2 (en) Hot pressed member and method for manufacturing the same
KR101083750B1 (en) Aluminum-based alloy plating bath and steel product plated by the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 24/04 20060101ALI20100621BHEP

Ipc: C25D 11/16 20060101ALI20100621BHEP

Ipc: C25D 11/04 20060101AFI20070530BHEP

AKY No designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110129