EP1818884A1 - Raucherkennungsvorrichtung - Google Patents

Raucherkennungsvorrichtung Download PDF

Info

Publication number
EP1818884A1
EP1818884A1 EP07000313A EP07000313A EP1818884A1 EP 1818884 A1 EP1818884 A1 EP 1818884A1 EP 07000313 A EP07000313 A EP 07000313A EP 07000313 A EP07000313 A EP 07000313A EP 1818884 A1 EP1818884 A1 EP 1818884A1
Authority
EP
European Patent Office
Prior art keywords
unit
signal
detection device
smoke detection
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07000313A
Other languages
English (en)
French (fr)
Other versions
EP1818884B1 (de
Inventor
Gerhard Dzubiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1818884A1 publication Critical patent/EP1818884A1/de
Application granted granted Critical
Publication of EP1818884B1 publication Critical patent/EP1818884B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/117Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means by using a detection device for specific gases, e.g. combustion products, produced by the fire
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a smoke detection device according to the preamble of claim 1.
  • a smoke detection device comprising a first signal unit for emitting and a second signal unit for receiving electromagnetic radiation, which are provided to make a measurement in a region outside the smoke detection device.
  • the signal units are equipped with transmitting and receiving diodes and are arranged in a housing which includes a translucent cover, which is mounted in front of the signal units.
  • the invention is in particular the object of providing a smoke detection device with increased measurement accuracy. It is achieved according to the invention by the features of claim 1. Further embodiments will be apparent from the dependent and dependent claims.
  • the invention relates to a smoke detection device with at least one first signal unit for emitting and at least one second signal unit for receiving electromagnetic radiation, which are provided to make a measurement in at least one area outside the smoke detection device.
  • the smoke detection device comprises at least one signal guiding unit which is arranged in the beam path of one of the signal units.
  • a "signal-carrying unit” should be understood to mean, in particular, a unit whose main extension or its greatest extent coincides with a signal-carrying direction and / or has special reflection properties for light guidance, in particular total reflection properties, by means of which a beam, in particular a light beam, also over longer distances can be performed at almost constant intensity of the beam.
  • the signal guiding unit may comprise one or more optical guide means, in particular light guides and / or glass fibers.
  • a particularly advantageous beam guidance and / or a desired deflection of the electromagnetic radiation can be achieved, wherein a radiation cone, in particular a light cone of the signal unit can be kept as small as possible by the signal guidance unit and thus a higher measurement accuracy can be achieved.
  • a “signal unit” should be understood to mean, in particular, a diode for emitting and / or receiving electromagnetic radiation, in particular light, wherein the signal units for transmitting and / or receiving electromagnetic radiation can also be made in one piece.
  • a "beam path" is to be understood here as meaning the radial course of the electromagnetic radiation.
  • the smoke detection device comprises at least one unit which is provided to align the signal guiding units coordinated with each other, whereby the measuring ranges of the signal units can be set in particular spatially and / or frequency to any points in space.
  • interfering signals in particular unwanted electromagnetic radiation
  • at least one optical unit is provided as an optical filter.
  • interference signals are to be understood as signals or radiation which are outside the frequency range emitted by the signal unit for emitting electromagnetic radiation.
  • the optical filter is provided for the detection of carbon monoxide, whereby a smoke detection by the smoke detection device based on a resulting from combustion and / or smoke gas can be achieved.
  • At least one signal unit is provided for transmitting and / or receiving infrared radiation, whereby aerosols - solid and / or liquid particles in the air, such as dust or mist - can be detected particularly advantageously and thus particularly advantageous Smoke can be detected in the room to be monitored.
  • aerosols - solid and / or liquid particles in the air such as dust or mist -
  • smoke detection device can be extended to the effect that further combustion gases can be detected by transmitting and / or receiving the appropriate frequency range.
  • At least one signal routing unit can have at least two differing beam areas, such as, in particular, two differing emission areas and / or two differing areas, via which the radiation can be received, whereby a large spatial coverage of the space to be monitored with a signal unit for transmission and / or receiving electromagnetic radiation can be achieved.
  • the smoke detection can take place via an adding up of the signals from the differing beam areas and / or by a separate detection of the signals of the differing beam areas.
  • the signal guiding unit can in this case be formed by one or more optical guide means.
  • the smoke detection device comprises a computing unit, whereby the smoke detection device can be mounted particularly flexibly within a room and also rapid data processing can take place within the smoke detection device itself.
  • a "computing unit” is to be understood to mean an evaluation unit, a control unit, a control unit and / or a control unit, wherein a computing unit may be formed both by a processor alone and in particular by a processor and further electronic components, such as memory means. Furthermore, the arithmetic unit has the software required for the operation of the smoke detection device.
  • the smoke detection device comprises at least one unit which is provided to compare the data of the signal units with each other over a longer period of time, whereby soiling, in particular slowly, over a prolonged period accumulating dirt on the signal guiding units can be detected. These contaminants can be taken into account in the data evaluation of the signal units, so that the smoke detection device is less susceptible to interference.
  • a "unit” should be understood to mean, in particular, a computing unit having a processor and at least one memory means which is provided for storing the data of the signal units over a relatively long period of time.
  • a "longer period of time” is understood to mean a period of at least one week and preferably of at least one month.
  • the smoke detection device comprises a unit which is provided for outputting an alarm signal, whereby an increased security and an efficient warning for persons who are in the room to be monitored, achieved can be.
  • the output alarm signal can be an optical and / or an acoustic signal.
  • the smoke detection device is provided with a unit which is provided for data transfer via a data network, whereby a signal from the unit via the data network can be output in case of smoke detection by the smoke detection device, in particular an emergency call signal to an external monitoring center.
  • the data network can be formed for example by a data bus or particularly advantageously by a radio network.
  • the smoke detection device having at least one first signal unit for emitting and a second signal unit for receiving electromagnetic radiation at least one further signal unit, which is provided for transmitting or receiving electromagnetic radiation.
  • a redundant smoke detection can be achieved, which ensures a further functional reliability of the smoke detection device in case of failure of a signal unit.
  • mutual control of the signal units within the smoke detection device can be achieved by the further signal unit and possible manipulations and / or disturbances of the smoker detection device can be detected and / or excluded.
  • the smoke detection device has at least one image detection sensor, whereby a smoke detection can be achieved over a large spatial area and manipulations can at least be reduced.
  • the image-spreading sensor can detect smoke propagating in space from other objects by an increasing clouding of the captured images, and advantageously an optical control option for an operator can be achieved via the image-capturing sensor.
  • the smoke detection device comprises a unit which is provided to detect movements based on the data of the image detection sensor, whereby a simpler detection of smoke can be achieved.
  • current data are compared with stored data of the image acquisition sensor in order to detect movements and / or changes in the space.
  • the movements and / or the changes in the room are detected by means of special software which is provided for a corresponding evaluation of the data of the image acquisition sensor.
  • special software which is provided for a corresponding evaluation of the data of the image acquisition sensor.
  • a smoke development can be analyzed - recognizable by spread of smoke in the room or increasing cloudiness by smoke particles - and thus by other, pretending smoke particles, such as cigarette smoke of persons or dust, are distinguished.
  • the image detection sensor is mounted pivotably about at least one axis, whereby the smoke detection can be extended to a larger area of the space to be monitored.
  • the image-capturing sensor is particularly advantageously mounted so as to be pivotable about at least two axes, whereby a particularly large angular coverage of the space to be monitored can be achieved with only one image-capturing sensor.
  • FIG. 1 shows a schematic smoke detection device in a side view.
  • This comprises four signal units 10a, 12a, 14a, 16a, each with a previously arranged signal guide unit 18a, 20a, 22a, 24a, an image acquisition sensor 50a and a computing unit 34a.
  • the arithmetic unit 34a has a memory unit 56a and a processor (not shown here).
  • the smoke detection device comprises two units 44a, 46a, which are provided for signal output, and connected to a power supply unit not shown in detail unit 58a, which is intended to provide the smoke detection device with energy.
  • the unit 58a may also include a battery and / or further power storage means, which enable a power supply of the smoke detection device.
  • the smoke detection device has an internal data line 60a, which is formed by a data bus, and a unit 48a, which exchanges data with external, central units, which are not shown here, via a radio link.
  • the unit 48a can also exchange the data with external units via a data bus, which is not detailed here.
  • the power supply of the smoke detection device to integrate into the external data bus.
  • the smoke detection device has a housing 62a which is closed at the bottom by a cover 64a.
  • the signal units 10a, 12a for emitting electromagnetic radiation each comprise a transmitting diode 66a, 68a;
  • the signal units 14a, 16a for receiving electromagnetic radiation each comprise a receiving diode 70a, 72a (FIGS. 1 and 2).
  • the smoke detection within the smoke detection device is performed by measuring an intensity of combustion gases, such as carbon dioxide, and / or smoke particles in the air. Smoke detection occurs when the measured intensity is above a natural intensity of the combustion gases and / or the smoke particles in the air.
  • the signal guiding units 18a, 20a, 22a, 24a which are each arranged in a beam path 26a, 28a, 30a, 32a of the signal units 10a, 12a, 14a, 16a, are formed by optical fibers which emit the electromagnetic radiation due to Forward total reflections within the light guides. In this case, a scatter zone of the guided by the light guide radiation of the signal units 10a, 12a is reduced or the incident on the signal units 14a, 16a radiation is focused on this.
  • an optical filter 36a, 38a is integrated in the signal guiding units 22a, 24a which are arranged in the beam path 30a, 32a of the signal units 14a, 16a for receiving electromagnetic radiation.
  • the optical filters 36a, 38a are tuned to the frequency range of the transmitting diodes 66a, 68a and filter extraneous radiation, such as visible light, out of the receiving spectrum of the receiving diodes 70a, 72a, so that only radiation in the infrared range can reach the receiving diodes 70a, 72a.
  • the optical filters 36a, 38a are designed so that the combustion gas carbon monoxide can be detected in the space to be monitored. The detection of carbon monoxide takes place during operation, depending on the orientation of the signal-carrying units 18a, 20a, 22a, 24a, at arbitrary measuring areas 40a, 42a in the room.
  • the signal routing units 18a, 20a, 22a, 24a and the optical filters 36a, 38a are further provided for measurements of carbon monoxide in measurement areas 40a, 42a, which may also be located at greater distances from the smoke detection device, such as near-ground measurement areas 40a, 42a.
  • the measuring areas 40a, 42a have a distance of about two meters from the smoke detection device.
  • the signal guiding units 18a, 20a, 22a, 24a (FIGS. 1 and 2) formed by optical waveguides are particularly flexible and flexible, so that a measuring area 40a, 42a can be rotated virtually by rotation of the signal guiding units 18a, 20a, 22a, 24a Points of the space to be monitored can be aligned, as shown in Figure 2 by way of example with reference to the signal units 12a, 16a and the signal guiding units 20a, 24a.
  • the alignment of the signal-carrying units 18a, 20a, 22a, 24a is controlled via an actuator unit 88a, 90a, 92a, 94a (FIGS. 1 and 2), which rotates the optical fibers into the desired position.
  • the actuator units 88a, 90a, 92a, 94a are controlled by the arithmetic unit 34a and are disposed inside the cover plate 64a.
  • the number of measuring regions 40a, 42a (FIGS. 1 and 2) in the space is determined by the number of signal-carrying units 18a, 20a, 22a, 24a or the signal units 10a, 12a, 14a, 16a, so that in a smoke-recognition device with a plurality of signal-carrying units 18a, 20a, 22a, 24a, a particularly advantageous and redundant control of almost the entire space to be monitored takes place.
  • the alignment of the signal-carrying units 18a, 20a of the transmitting diodes 66a, 68a and the signal-carrying units 22a, 24a of the receiving diodes 70a, 72a by the actuator units 88a, 90a, 92a, 94a comprises a spatial and / or frequency orientation.
  • the signals of the signal units 10a, 12a, 14a, 16a are passed via the internal data line 60a to the arithmetic unit 34a, which evaluates them.
  • the arithmetic unit 34a has the necessary programs and the corresponding software stored in the memory unit 56a.
  • control of the individual signal units 10a, 12a, 14a, 16a takes place in the arithmetic unit 34a on the basis of the signals received from the signal units 10a, 12a, 14a, 16a, so that disturbances and / or manipulations are detected and in the data evaluation or the Smoke detection by the computing unit 34a are taken into account.
  • the data of the signal units 14a, 16a for receiving infrared radiation are stored by the arithmetic unit 34a in the storage unit 56a for a long period of time. These data are compared by the arithmetic unit 34a with current data of the signal units 14a, 16a in order to detect possible contamination and / or malfunctions of the individual signal routing units 22a, 24a. These contaminations and / or disturbances are taken into account by the computing unit 34a in the data evaluation, so that a virtually maintenance-free operation of the smoke detection device is made possible.
  • a CCD camera image sensing sensor 50a On one of the signal units 10a, 12a, 14a, 16a facing away from surface 74a of the cover plate 64a of a CCD camera image sensing sensor 50a is mounted ( Figure 1), which is pivotally mounted about two axes 52a, 54a.
  • the image sensing sensor 50a may also be located in the cover 64a or within the area of the smoke detection device included in the housing 62a, instead of on the surface 74a of the cover 64a facing away from the signal units 10a, 12a, 14a, 16a to be appropriate.
  • the image detection sensor 50a is driven via the internal data line 60a by the computing unit 34a, which has the operating programs and the corresponding software required for this purpose and stored in the memory unit 56a.
  • the data of the image acquisition sensor 50a are evaluated by the computing unit 34a by means of the corresponding software and stored in the storage unit 56a.
  • the arithmetic unit 34a compares the current data of the image acquisition sensor 50a with the last stored data in order to detect changes and / or movements in the space to be monitored.
  • Smoke from other objects and / or dust particles in the air can be distinguished on the basis of movements that propagate through the space or due to clouding of the captured images caused by smoke.
  • this can, under the control of the arithmetic unit 34a, be aligned to arbitrary points in space and thus also to ground-level objects.
  • the image acquisition sensor 50a in combination with the arithmetic unit 34a and the unit 48a, which exchanges data via a radio network, can also be controlled by external units, such as a central monitoring unit and / or by a remote control.
  • external units such as a central monitoring unit and / or by a remote control.
  • the space to be monitored by the image sensing sensor 50a may be searched from the outside for persons in the room, and / or the image sensing sensor 50a may provide more accurate information about a smoke and / or fire in the room.
  • further control of the smoke detection is provided by the image sensing sensor 50a by the computing unit 34a comparing the data of the image sensing sensor 50a with the data of the signal units 10a, 12a, 14a, 16a for receiving infrared radiation.
  • the arithmetic unit 34a uses the data of the image acquisition sensor 50a and the signal units 10a, 12a, 14a, 16a to detect smoke, an alarm signal is forwarded via the internal data line 60a to the units 44a, 46a for signal output (FIG. 1).
  • the signal output units 44a, 46a comprise optical and acoustic output means not shown here for the local output of optical and acoustic alarm signals.
  • the smoke detection device has the unit 48a, which is provided for outputting alarm signals via a data network formed by a radio link.
  • an emergency or smoke detection alarm signals are routed from the computer 34a via the internal data line 60a to the unit 48a, which transmits them via radio signals to a central office not shown here.
  • FIG. 3 shows a partial section of an alternative, schematically illustrated smoke detection device. Essentially corresponding components and features are numbered in principle with the same reference numerals, wherein the letters a ( Figures 1 and 2) and b ( Figure 3) are added to distinguish the embodiments of the reference numerals. With regard to features and functions that remain the same, reference may be made to the description of the exemplary embodiment in FIG. The following description in Figure 3 is essentially limited to the differences from the embodiment in Figures 1 and 2.
  • the smoke detection device here comprises two signal units 12b, 16b each having a signal guiding unit 20b, 24b.
  • the signal routing units 20b, 24b of the signal units 12b, 16b are each formed by two optical fibers 76b, 78b, 80b, 82b and cover two different measuring ranges 84b, 86b of the signal units 12b, 16b.
  • the signals of the individual optical fibers 76b, 78b, 80b, 82b are added for one of the signal-carrying units 20b, 24b by a computing unit not shown in detail in FIG.
  • An extension of the signal guiding units 20b, 24b with further light guides is conceivable in a further embodiment of the smoke detection device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Erfindung geht aus von einer Raucherkennungsvorrichtung mit zumindest einer ersten Signaleinheit (10a, 12a; 12b) zum Aussenden und zumindest einer zweiten Signaleinheit (14a, 16a; 16b) zum Empfangen von elektromagnetischer Strahlung, die dazu vorgesehen sind, in zumindest einem Bereich außerhalb der Raucherkennungsvorrichtung eine Messung vorzunehmen. Es wird vorgeschlagen, dass zumindest eine Signalführungseinheit (18a, 20a, 22a, 24a; 20b, 24b) im Strahlengang (26a, 28a, 30a, 32a; 26b, 32b) einer der Signaleinheiten (10a, 12a, 14a, 16a; 12b, 16b) angeordnet ist.

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Raucherkennungsvorrichtung nach dem Oberbegriff des Anspruchs 1.
  • Aus der DE 200 23 533 U1 ist eine Raucherkennungsvorrichtung bekannt mit einer ersten Signaleinheit zum Aussenden und einer zweiten Signaleinheit zum Empfangen von elektromagnetischer Strahlung, die dazu vorgesehen sind, in einem Bereich außerhalb der Raucherkennungsvorrichtung eine Messung vorzunehmen. Die Signaleinheiten sind dabei mit Sende- und Empfangsdioden ausgestattet und sind in einem Gehäuse angeordnet, das eine lichtdurchlässige Abdeckscheibe umfasst, die vor den Signaleinheiten angebracht ist.
  • Der Erfindung liegt insbesondere die Aufgabe zugrunde, eine Raucherkennungsvorrichtung mit einer erhöhten Messgenauigkeit bereitzustellen. Sie wird gemäß der Erfindung durch die Merkmale des Anspruchs 1 gelöst. Weitere Ausgestaltungen ergeben sich aus den Neben- und Unteransprüchen.
  • Vorteile der Erfindung
  • Die Erfindung geht aus von einer Raucherkennungsvorrichtung mit zumindest einer ersten Signaleinheit zum Aussenden und zumindest einer zweiten Signaleinheit zum Empfangen von elektromagnetischer Strahlung, die dazu vorgesehen sind, in zumindest einem Bereich außerhalb der Raucherkennungsvorrichtung eine Messung vorzunehmen.
  • Es wird vorgeschlagen, dass die Raucherkennungsvorrichtung zumindest eine Signalführungseinheit umfasst, die im Strahlengang einer der Signaleinheiten angeordnet ist. Dabei soll unter einer "Signalführungseinheit" insbesondere eine Einheit verstanden werden, deren Haupterstreckung bzw. deren größte Erstreckung mit einer Signalführungsrichtung übereinstimmt und/oder besondere Reflexionseigenschaften zur Lichtführung aufweist, wie insbesondere Totalreflexionseigenschaften, mittels derer ein Strahl, insbesondere ein Lichtstrahl, auch über längere Distanzen bei nahezu gleich bleibender Intensität des Strahls geführt werden kann. Die Signalführungseinheit kann dabei ein oder mehrere optische Führungsmittel, insbesondere Lichtleiter und/oder Glasfasern, umfassen. Hiermit kann eine besonders vorteilhafte Strahlführung und/oder auch eine erwünschte Ablenkung der elektromagnetischen Strahlung erreicht werden, wobei ein Strahlungskegel, insbesondere ein Lichtkegel der Signaleinheit durch die Signalführungseinheit möglichst klein gehalten werden kann und damit eine höhere Messgenauigkeit erreichbar ist. Dabei soll unter einer "Signaleinheit" insbesondere eine Diode zum Aussenden und/oder Empfangen von elektromagnetischer Strahlung, insbesondere von Licht, verstanden werden, wobei die Signaleinheiten zum Aussenden und/oder Empfangen von elektromagnetischer Strahlung zudem einstückig ausgeführt sein können. Des Weiteren soll unter einem "Strahlengang" hierbei der strahlenförmige Verlauf der elektromagnetischen Strahlung verstanden werden.
  • Vorteilhafterweise umfasst die Raucherkennungsvorrichtung zumindest eine Einheit, die dazu vorgesehen ist, die Signalführungseinheiten aufeinander abgestimmt auszurichten, wodurch die Messbereiche der Signaleinheiten insbesondere räumlich und/oder auch frequenziell auf beliebige Punkte im Raum eingestellt werden können.
  • Ferner kann vorteilhaft ein Herausfiltern von Störsignalen, insbesondere von unerwünschter elektromagnetischer Strahlung, erreicht werden, wenn zumindest eine optische Einheit als optisches Filter vorgesehen ist. Unter "Störsignalen" sollen hierbei Signale bzw. Strahlung verstanden werden, die außerhalb des von der Signaleinheit zum Aussenden von elektromagnetischer Strahlung ausgesandten Frequenzbereichs liegen. Besonders vorteilhaft ist das optische Filter zur Erkennung von Kohlenstoffmonooxid vorgesehen, wodurch eine Raucherkennung durch die Raucherkennungsvorrichtung anhand eines durch Verbrennung und/oder Rauchentwicklung entstehenden Gases erreicht werden kann.
  • Zudem wird vorgeschlagen, dass zumindest eine Signaleinheit zum Senden und/oder Empfangen von Infrarotstrahlung vorgesehen ist, wodurch Aerosole - feste und/oder flüssige Partikel in der Luft, wie beispielsweise Staub oder Nebel - besonders vorteilhaft detektiert werden können und somit besonders vorteilhaft Rauch im zu überwachenden Raum erkannt werden kann. Grundsätzlich können jedoch auch andere, dem Fachmann als sinnvoll erscheinende elektromagnetische Strahlungen genutzt werden, um verschiedene Substanzen in der Luft zu detektieren. Zudem kann auch besonders vorteilhaft mittels der Infrarotstrahlung eine Konzentration von Kohlenstoffdioxid - CO2, einem Verbrennungsgas, durch Streuung von Infrarotstrahlung an Kohlenstoffdioxidmolekülen bestimmt werden. Ferner kann die Raucherkennungsvorrichtung dahingehend erweitert werden, dass durch Senden und/oder Empfangen des geeigneten Frequenzbereichs weitere Verbrennungsgase erkannt werden können.
  • Des Weiteren wird vorgeschlagen, dass mindestens eine Signalführungseinheit zumindest zwei differierende Strahlbereiche, wie insbesondere zwei differierende Abstrahlbereiche und/oder zwei differierende Bereiche, über die Strahlungen empfangen werden können, aufweist, wodurch eine große räumliche Abdeckung des zu überwachenden Raums mit einer Signaleinheit zum Senden und/oder Empfangen von elektromagnetischer Strahlung erreicht werden kann. Die Raucherkennung kann dabei über eine Aufaddierung der Signale aus den differierenden Strahlbereichen erfolgen und/oder durch ein separates Erfassen der Signale der differierenden Strahlbereiche. Die Signalführungseinheit kann hierbei von einem oder mehreren optischen Führungsmitteln gebildet sein.
  • Ferner ist von Vorteil, wenn die Raucherkennungsvorrichtung eine Recheneinheit umfasst, wodurch die Raucherkennungsvorrichtung besonders flexibel innerhalb eines Raums angebracht werden kann und zudem eine schnelle Datenverarbeitung innerhalb der Raucherkennungsvorrichtung selbst stattfinden kann.
  • Dabei soll unter einer "Recheneinheit" eine Auswerteeinheit, eine Kontrolleinheit, eine Steuereinheit und/oder eine Regeleinheit verstanden werden, wobei eine Recheneinheit sowohl von einem Prozessor allein als auch insbesondere von einem Prozessor und weiteren Elektronikbauteilen, wie Speichermitteln, gebildet sein kann. Ferner verfügt die Recheneinheit dabei über die für den Betrieb der Raucherkennungsvorrichtung erforderliche Software.
  • Vorteilhafterweise umfasst die Raucherkennungsvorrichtung zumindest eine Einheit, die dazu vorgesehen ist, die Daten der Signaleinheiten über einen längeren Zeitraum miteinander zu vergleichen, wodurch Verschmutzungen, insbesondere sich langsam, über einen längeren Zeitraum anlagernde Verschmutzungen an den Signalführungseinheiten erkannt werden können. Diese Verschmutzungen können bei der Datenauswertung der Signaleinheiten berücksichtigt werden, so dass die Raucherkennungsvorrichtung weniger anfällig für Störungen ist. Hierbei soll unter einer "Einheit" insbesondere eine Recheneinheit mit einem Prozessor und zumindest einem Speichermittel verstanden werden, das dazu vorgesehen ist, die Daten der Signaleinheiten über einen längeren Zeitraum zu speichern. In diesem Zusammenhang soll unter einem "längeren Zeitraum" ein Zeitraum von wenigstens einer Woche und vorzugsweise von wenigstens einem Monat verstanden werden.
  • In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die Raucherkennungsvorrichtung eine Einheit umfasst, die zur Ausgabe eines Alarmsignals vorgesehen ist, wodurch eine erhöhte Sicherheit und eine effiziente Warnung für Personen, die sich im zu überwachenden Raum befinden, erreicht werden kann. Das ausgegebene Alarmsignal kann dabei ein optisches und/oder ein akustisches Signal sein.
  • Vorteilhafterweise ist die Raucherkennungsvorrichtung mit einer Einheit versehen, die zum Datentransfer über ein Datennetz vorgesehen ist, wodurch bei Raucherkennung durch die Raucherkennungsvorrichtung ein Signal von der Einheit über das Datennetz ausgegeben werden kann, insbesondere ein Notrufsignal an eine externe Überwachungszentrale. Das Datennetz kann dabei beispielsweise durch einen Datenbus oder besonders vorteilhaft durch ein Funknetz gebildet sein.
  • Des Weiteren wird vorgeschlagen, dass die Raucherkennungsvorrichtung mit zumindest einer ersten Signaleinheit zum Aussenden und einer zweiten Signaleinheit zum Empfangen von elektromagnetischer Strahlung zumindest eine weitere Signaleinheit aufweist, die zum Senden oder Empfangen von elektromagnetischer Strahlung vorgesehen ist. Mittels der weiteren Signaleinheit zum Senden oder Empfangen von elektromagnetischer Strahlung kann eine redundante Raucherkennung erreicht werden, die bei Ausfall einer Signaleinheit eine weitere Funktionssicherheit der Raucherkennungsvorrichtung gewährleistet. Des Weiteren kann durch die weitere Signaleinheit eine gegenseitige Kontrolle der Signaleinheiten innerhalb der Raucherkennungsvorrichtung erzielt werden und dabei können eventuelle Manipulationen und/oder Störungen der Rauchererkennungsvorrichtung erkannt und/oder ausgeschlossen werden.
  • In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die Raucherkennungsvorrichtung zumindest einen Bilderfassungssensor aufweist, wodurch eine Raucherkennung über einen großen räumlichen Bereich erreicht werden kann und Manipulationen zumindest reduziert werden können. Zudem kann durch den Bilderfassungssensor sich im Raum ausbreitender Rauch von anderen Gegenständen durch eine zunehmende Trübung der erfassten Bilder erkannt werden und es kann vorteilhaft eine optische Kontrollmöglichkeit für einen Bediener über den Bilderfassungssensor erreicht werden. Ferner kann eine Kontrolle und/oder eine Überwachung der durch die Signaleinheiten stattfindenden Raucherkennung erreicht werden und dadurch können Manipulationen der Signaleinheiten besser erkannt werden. Dabei soll unter einem "Bilderfassungssensor" insbesondere eine CCD-Kamera - CCD = Charged-coupled Device = ladungsgekoppeltes Bauteil - oder eine Digitalkamera verstanden werden.
  • Ferner ist von Vorteil, wenn die Raucherkennungsvorrichtung eine Einheit umfasst, die dazu vorgesehen ist, anhand der Daten des Bilderfassungssensors Bewegungen zu erkennen, womit eine einfachere Erkennung von Rauch erreicht werden kann. Hierbei werden aktuelle Daten mit gespeicherten Daten des Bilderfassungssensors verglichen, um daraus Bewegungen und/oder Veränderungen im Raum zu erkennen. Die Bewegungen und/oder die Veränderungen im Raum werden mittels einer speziellen Software, die für eine entsprechende Auswertung der Daten des Bilderfassungssensors vorgesehen ist, erkannt. Anhand dieser Bewegungen kann eine Rauchentwicklung analysiert werden - erkennbar durch Ausbreitung von Rauch im Raum bzw. zunehmende Trübung durch Rauchpartikel - und dadurch von weiteren, Rauch vortäuschenden Partikeln, wie beispielsweise Zigarettenrauch von Personen oder Staub, unterschieden werden.
  • Des Weiteren wird vorgeschlagen, dass der Bilderfassungssensor zumindest um eine Achse schwenkbar gelagert ist, wodurch die Raucherkennung auf einen größeren Bereich des zu überwachenden Raums ausgedehnt werden kann. Besonders vorteilhaft ist der Bilderfassungssensor jedoch um zumindest zwei Achsen schwenkbar gelagert, wodurch eine besonders große Winkelabdeckung des zu überwachenden Raums mit nur einem Bilderfassungssensor erreicht werden kann.
  • Zeichnung
  • Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
  • Es zeigen:
  • Fig. 1
    einen schematisch dargestellten Querschnitt durch eine erfindungsgemäße Vorrichtung,
    Fig. 2
    einen Ausschnitt eines schematisch dargestellten Querschnitts durch die Vorrichtung aus Figur 1 mit zwei Signaleinheiten und
    Fig. 3
    einen Ausschnitt eines schematisch dargestellten Querschnitts durch eine alternative erfindungsgemäße Vorrichtung mit jeweils zwei Lichtleitern im Strahlengang einer Signaleinheit.
    Ausführungsbeispiele
  • Figur 1 zeigt eine schematische Raucherkennungsvorrichtung in einer Seitenansicht. Diese umfasst vier Signaleinheiten 10a, 12a, 14a, 16a mit jeweils einer davor angeordneten Signalführungseinheit 18a, 20a, 22a, 24a, einen Bilderfassungssensor 50a und eine Recheneinheit 34a. Die Recheneinheit 34a weist eine Speichereinheit 56a und einen hier nicht näher dargestellten Prozessor auf. Zudem umfasst die Raucherkennungsvorrichtung zwei Einheiten 44a, 46a, die zur Signalausgabe vorgesehen sind, und eine an ein nicht näher dargestelltes Stromnetz angeschlossene Einheit 58a, die dazu vorgesehen ist, die Raucherkennungsvorrichtung mit Energie zu versorgen. Anstatt einer Einheit 58a, die an ein Stromnetz angeschlossen ist, kann die Einheit 58a auch eine Batterie und/oder weitere Stromspeichermittel umfassen, die eine Energieversorgung der Raucherkennungsvorrichtung ermöglichen. Zum Datentransfer verfügt die Raucherkennungsvorrichtung über eine von einem Datenbus ausgebildete, interne Datenleitung 60a und eine Einheit 48a, die Daten mit externen, zentralen Einheiten, die hier nicht näher dargestellt sind, über eine Funkverbindung austauscht. Alternativ und/oder zusätzlich hierzu kann die Einheit 48a die Daten auch über einen hier nicht näher dargestellten Datenbus mit externen Einheiten austauschen. Zudem ist es denkbar, die Energieversorgung der Raucherkennungsvorrichtung in den externen Datenbus zu integrieren. Die Raucherkennungsvorrichtung weist ein Gehäuse 62a auf, das nach unten von einer Abdeckscheibe 64a abgeschlossen ist.
  • Die Signaleinheiten 10a, 12a zum Aussenden von elektromagnetischer Strahlung umfassen jeweils eine Sendediode 66a, 68a; die Signaleinheiten 14a, 16a zum Empfangen von elektromagnetischer Strahlung umfassen jeweils eine Empfangsdiode 70a, 72a (Figuren 1 und 2). Die Raucherkennung innerhalb der Raucherkennungsvorrichtung erfolgt durch Messung einer Intensität von Verbrennungsgasen, wie beispielsweise Kohlenstoffdioxid, und/oder von Rauchpartikeln in der Luft. Eine Rauchdetektion findet statt, wenn die gemessene Intensität über einer natürlichen Intensität der Verbrennungsgase und/oder der Rauchpartikel in der Luft liegt. Zur Erkennung von Verbrennungsgasen und/oder von Rauchpartikeln in der Luft sind die Sendedioden 66a, 68a und die Empfangsdioden 70a, 72a der Signaleinheiten 10a, 12a, 14a, 16a im Frequenzbereich von Infrarotstrahlung sensitiv, da Infrarotstrahlung an den Rauchpartikeln und/oder an Molekülen der Verbrennungsgase gestreut wird. Je höher die Konzentration der Verbrennungsgase und/oder der Rauchpartikel im zu überwachenden Raum ist, desto mehr gestreute Strahlung trifft auf die Empfangsdioden 70a, 72a und umso höher ist das Empfangssignal, das diese an die Recheneinheit 34a über die interne Datenleitung 60a weiterleiten.
  • Die Signalführungseinheiten 18a, 20a, 22a, 24a, die jeweils in einem Strahlengang 26a, 28a, 30a, 32a der Signaleinheiten 10a, 12a, 14a, 16a angeordnet sind, werden von Lichtleitern gebildet, die die elektromagnetische Strahlung aufgrund von Totalreflexionen innerhalb der Lichtleiter weiterleiten. Dabei wird eine Streuzone der durch die Lichtleiter geführten Strahlung der Signaleinheiten 10a, 12a verkleinert bzw. die auf die Signaleinheiten 14a, 16a auftreffende Strahlung wird auf diese fokussiert. Zusätzlich ist in die Signalführungseinheiten 22a, 24a, die im Strahlengang 30a, 32a der Signaleinheiten 14a, 16a zum Empfangen von elektromagnetischer Strahlung angeordnet sind, ein optisches Filter 36a, 38a integriert. Die optischen Filter 36a, 38a sind dabei auf den Frequenzbereich der Sendedioden 66a, 68a abgestimmt und filtern Fremdstrahlung, beispielsweise sichtbares Licht, aus dem Empfangsspektrum der Empfangsdioden 70a, 72a heraus, so dass nur Strahlung im Infrarotbereich zu den Empfangsdioden 70a, 72a gelangen kann. Zudem sind die optischen Filter 36a, 38a so ausgelegt, dass damit das Verbrennungsgas Kohlenstoffmonooxid im zu überwachenden Raum erkannt werden kann. Die Erkennung von Kohlenstoffmonooxid erfolgt im Betrieb, je nach Ausrichtung der Signalführungseinheiten 18a, 20a, 22a, 24a, an beliebigen Messbereichen 40a, 42a im Raum. Die Signalführungseinheiten 18a, 20a, 22a, 24a und die optischen Filter 36a, 38a sind ferner zu Messungen von Kohlenstoffmonooxid in Messbereichen 40a, 42a vorgesehen, die sich auch in größeren Abständen zur Raucherkennungsvorrichtung befinden können, wie beispielsweise Messbereichen 40a, 42a in Bodennähe. Dabei weisen die Messbereiche 40a, 42a einen Abstand von ca. zwei Metern von der Raucherkennungsvorrichtung auf.
  • Die von Lichtleitern ausgebildeten Signalführungseinheiten 18a, 20a, 22a, 24a (Figuren 1 und 2) sind besonders flexibel und biegsam, so dass ein Messbereich 40a, 42a mittels Drehung der Signalführungseinheiten 18a, 20a, 22a, 24a auf nahezu beliebige Punkte des zu überwachenden Raums ausgerichtet werden kann, wie dies in Figur 2 beispielhaft anhand der Signaleinheiten 12a, 16a bzw. der Signalführungseinheiten 20a, 24a dargestellt ist. Dabei wird die Ausrichtung der Signalführungseinheiten 18a, 20a, 22a, 24a über jeweils eine Aktuatoreinheit 88a, 90a, 92a, 94a geregelt (Figuren 1 und 2), die die Lichtleiter in die gewünschte Position dreht. Die Aktuatoreinheiten 88a, 90a, 92a, 94a werden von der Recheneinheit 34a gesteuert und sind innerhalb der Abdeckscheibe 64a angeordnet. Die Anzahl der Messbereiche 40a, 42a (Figuren 1 und 2) im Raum wird dabei von der Anzahl der Signalführungseinheiten 18a, 20a, 22a, 24a bzw. der Signaleinheiten 10a, 12a, 14a, 16a bestimmt, so dass in einer Raucherkennungsvorrichtung mit mehreren Signalführungseinheiten 18a, 20a, 22a, 24a eine besonders vorteilhafte und redundante Kontrolle nahezu des gesamten zu überwachenden Raums stattfindet. Die Ausrichtung der Signalführungseinheiten 18a, 20a der Sendedioden 66a, 68a und der Signalführungseinheiten 22a, 24a der Empfangsdioden 70a, 72a durch die Aktuatoreinheiten 88a, 90a, 92a, 94a umfasst dabei eine räumliche und/oder frequenzielle Ausrichtung.
  • Zur Raucherkennung werden die Signale der Signaleinheiten 10a, 12a, 14a, 16a über die interne Datenleitung 60a an die Recheneinheit 34a geleitet, die diese auswertet. Die Recheneinheit 34a verfügt dabei über die dafür erforderlichen Programme und die entsprechende Software, die in der Speichereinheit 56a gespeichert sind. Die Ausgestaltung der Raucherkennungsvorrichtung mit jeweils zwei Signaleinheiten 10a, 12a zum Aussenden und zwei Signaleinheiten 14a, 16a zum Empfangen von Infrarotstrahlung ermöglicht eine redundante Raucherkennung, die selbst bei Ausfall einer der Signaleinheiten 10a, 12a zum Aussenden und/oder einer der Signaleinheiten 14a, 16a zum Empfangen von Infrarotstrahlung noch funktionsfähig ist. Ferner findet in der Recheneinheit 34a anhand der von den Signaleinheiten 10a, 12a, 14a, 16a erhaltenen Signale eine Kontrolle der einzelnen Signaleinheiten 10a, 12a, 14a, 16a statt, so dass Störungen und/oder Manipulationen erkannt werden und bei der Datenauswertung bzw. der Rauchdetektion durch die Recheneinheit 34a berücksichtigt werden.
  • Die Daten der Signaleinheiten 14a, 16a zum Empfangen von Infrarotstrahlung werden von der Recheneinheit 34a in der Speichereinheit 56a über einen längeren Zeitraum gespeichert. Diese Daten werden von der Recheneinheit 34a mit aktuellen Daten der Signaleinheiten 14a, 16a verglichen, um daraus eventuelle Verschmutzungen und/oder Störungen der einzelnen Signalführungseinheiten 22a, 24a zu erkennen. Diese Verschmutzungen und/oder Störungen werden von der Recheneinheit 34a bei der Datenauswertung mit berücksichtigt, so dass ein nahezu wartungsfreier Betrieb der Raucherkennungsvorrichtung ermöglicht wird.
  • An einer den Signaleinheiten 10a, 12a, 14a, 16a abgewandten Oberfläche 74a der Abdeckscheibe 64a ist der von einer CCD-Kamera gebildete Bilderfassungssensor 50a angebracht (Figur 1), der um zwei Achsen 52a, 54a schwenkbar gelagert ist. Der Bilderfassungssensor 50a kann anstatt an der den Signaleinheiten 10a, 12a, 14a, 16a abgewandten Oberfläche 74a der Abdeckscheibe 64a auch in der Abdeckscheibe 64a oder innerhalb des von dem Gehäuse 62a umfassten Bereichs der Raucherkennungsvorrichtung angebracht sein. Im Betrieb der Raucherkennungsvorrichtung wird der Bilderfassungssensor 50a über die interne Datenleitung 60a von der Recheneinheit 34a angesteuert, welche über die dafür erforderlichen und in der Speichereinheit 56a gespeicherten Betriebsprogramme und die entsprechende Software verfügt. Die Daten des Bilderfassungssensors 50a werden von der Recheneinheit 34a mittels der entsprechenden Software ausgewertet und in der Speichereinheit 56a gespeichert. Zur Erkennung von Rauch werden durch die Recheneinheit 34a die aktuellen Daten des Bilderfassungssensors 50a mit den zuletzt gespeicherten Daten verglichen, um daraus Veränderungen und/oder Bewegungen im zu überwachenden Raum zu erkennen. Anhand von sich über den Raum ausbreitenden Bewegungen bzw. durch von Rauch verursachte Trübungen der erfassten Bilder kann Rauch von weiteren Gegenständen und/oder Staubpartikeln in der Luft unterschieden werden. Mittels der zwei schwenkbar gelagerten Achsen 52a, 54a des Bilderfassungssensors 50a kann dieser, gesteuert durch die Recheneinheit 34a, auf beliebige Punkte im Raum und somit auch auf bodennahe Objekte ausgerichtet werden.
  • Zur Unterscheidung von Rauch und weiteren rauchähnlichen Partikeln, wie beispielsweise Staub, und/oder für eine erhöhte Sicherheit der Rauchüberwachung werden, gesteuert von der Recheneinheit 34a, mehrere unterschiedliche Bereiche des zu überwachenden Raums regelmäßig durch den Bilderfassungssensor 50a abgetastet. Zudem ist der Bilderfassungssensor 50a in Kombination mit der Recheneinheit 34a und der Einheit 48a, die Daten über ein Funknetz austauscht, auch von externen Einheiten, wie beispielsweise einer zentralen Überwachungseinheit und/oder durch eine Fernbedienung, ansteuerbar. Dabei ist eine optische Kontrollmöglichkeit für den Bediener der Raucherkennungsvorrichtung gegeben, indem dieser, über die Funkverbindung durch die Einheit 48a, Zugriff auf die Daten bzw. Bilder des Bilderfassungssensors 50a hat. Zusätzlich kann im Notfall der von dem Bilderfassungssensor 50a zu überwachende Raum von außen auf im Raum befindliche Personen abgesucht werden, und/oder durch den Bilderfassungssensor 50a lassen sich genauere Informationen über eine im Raum befindliche Rauch- und/oder Brandstelle erhalten. Zudem ist durch den Bilderfassungssensor 50a eine weitere Kontrolle der Raucherkennung gegeben, indem die Recheneinheit 34a die Daten des Bilderfassungssensors 50a mit den Daten der Signaleinheiten 10a, 12a, 14a, 16a zum Empfangen von Infrarotstrahlung vergleicht.
  • Erfolgt durch die Recheneinheit 34a anhand der Daten des Bilderfassungssensors 50a und der Signaleinheiten 10a, 12a, 14a, 16a eine Raucherkennung, so wird ein Alarmsignal über die interne Datenleitung 60a an die Einheiten 44a, 46a zur Signalausgabe weitergeleitet (Figur 1). Die Einheiten 44a, 46a zur Signalausgabe umfassen hier nicht näher dargestellte optische und akustische Ausgabemittel zur lokalen Ausgabe von optischen und akustischen Alarmsignalen. Zusätzlich verfügt die Raucherkennungsvorrichtung über die Einheit 48a, die zur Ausgabe von Alarmsignalen über ein von einer Funkverbindung ausgebildetes Datennetz vorgesehen ist. Hierbei werden im Notfall bzw. bei Raucherkennung Alarmsignale von der Recheneinheit 34a über die interne Datenleitung 60a an die Einheit 48a geleitet, die diese über Funksignale an eine hier nicht näher dargestellte Zentrale übermittelt.
  • Figur 3 zeigt einen Teilschnitt einer alternativen, schematisch dargestellten Raucherkennungsvorrichtung. Sich im Wesentlichen entsprechende Bauteile und Merkmale sind grundsätzlich mit den gleichen Bezugszeichen beziffert, wobei zur Unterscheidung der Ausführungsbeispiele den Bezugszeichen die Buchstaben a (Figur 1 und 2) bzw. b (Figur 3) hinzugefügt sind. Bezüglich gleich bleibender Merkmale und Funktionen kann auf die Beschreibung zum Ausführungsbeispiel in Figur 1 verwiesen werden. Die in Figur 3 nachfolgende Beschreibung beschränkt sich im Wesentlichen auf die Unterschiede zum Ausführungsbeispiel in den Figuren 1 und 2.
  • Die Raucherkennungsvorrichtung umfasst hier zwei Signaleinheiten 12b, 16b mit jeweils einer Signalführungseinheit 20b, 24b. Die Signalführungseinheiten 20b, 24b der Signaleinheiten 12b, 16b werden von jeweils zwei Lichtleitern 76b, 78b, 80b, 82b gebildet und decken dabei zwei differierende Messbereiche 84b, 86b der Signaleinheiten 12b, 16b ab. Zur Erhöhung einer Messgenauigkeit über einen größeren räumlichen Bereich werden die Signale der einzelnen Lichtleiter 76b, 78b, 80b, 82b für jeweils eine der Signalführungseinheiten 20b, 24b von einer in Figur 3 nicht näher dargestellten Recheneinheit aufaddiert. Eine Erweiterung der Signalführungseinheiten 20b, 24b mit weiteren Lichtleitern ist in einer weiteren Ausgestaltung der Raucherkennungsvorrichtung denkbar.
  • Bezugszeichen
  • 10
    Signaleinheit
    12
    Signaleinheit
    14
    Signaleinheit
    16
    Signaleinheit
    18
    Signalführungseinheit
    20
    Signalführungseinheit
    22
    Signalführungseinheit
    24
    Signalführungseinheit
    26
    Strahlengang
    28
    Strahlengang
    30
    Strahlengang
    32
    Strahlengang
    34
    Recheneinheit
    36
    optisches Filter
    38
    optisches Filter
    40
    Messbereich
    42
    Messbereich
    44
    Einheit
    46
    Einheit
    48
    Einheit
    50
    Bilderfassungssensor
    52
    Achse
    54
    Achse
    56
    Speichereinheit
    58
    Einheit
    60
    Datenleitung
    62
    Gehäuse
    64
    Abdeckscheibe
    66
    Sendediode
    68
    Sendediode
    70
    Empfangsdiode
    72
    Empfangsdiode
    74
    Oberfläche
    76
    Lichtleiter
    78
    Lichtleiter
    80
    Lichtleiter
    82
    Lichtleiter
    84
    Messbereich
    86
    Messbereich
    88
    Aktuatoreinheit
    90
    Aktuatoreinheit
    92
    Aktuatoreinheit
    94
    Aktuatoreinheit

Claims (14)

  1. Raucherkennungsvorrichtung mit zumindest einer ersten Signaleinheit (10a, 12a; 12b) zum Aussenden und zumindest einer zweiten Signaleinheit (14a, 16a; 16b) zum Empfangen von elektromagnetischer Strahlung, die dazu vorgesehen sind, in zumindest einem Bereich außerhalb der Raucherkennungsvorrichtung eine Messung vorzunehmen,
    dadurch gekennzeichnet,
    dass zumindest eine Signalführungseinheit (18a, 20a, 22a, 24a; 20b, 24b) im Strahlengang (26a, 28a, 30a, 32a; 26b, 32b) einer der Signaleinheiten (10a, 12a, 14a, 16a; 12b, 16b) angeordnet ist.
  2. Raucherkennungsvorrichtung nach Anspruch 1,
    gekennzeichnet durch
    zumindest eine Einheit (88a, 90a, 92a, 94a; 90b, 92b), die dazu vorgesehen ist, die Signalführungseinheiten (10a, 12a, 14a, 16a; 12b, 16b) aufeinander abgestimmt auszurichten.
  3. Raucherkennungsvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zumindest eine Signalführungseinheit (22a, 24a) als optisches Filter (36a, 38a) vorgesehen ist.
  4. Raucherkennungsvorrichtung zumindest nach Anspruch 3,
    dadurch gekennzeichnet,
    dass das optische Filter (36a, 38a) zur Erkennung von Kohlenstoffmonooxid vorgesehen ist.
  5. Raucherkennungsvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zumindest eine Signaleinheit (10a, 12a, 14a, 16a; 12b, 16b) zum Senden und/oder Empfangen von Infrarotstrahlung vorgesehen ist.
  6. Raucherkennungsvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass mindestens eine Signalführungseinheit (20b, 24b) zumindest zwei differierende Strahlbereiche aufweist.
  7. Raucherkennungsvorrichtung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    zumindest eine Recheneinheit (34a).
  8. Raucherkennungsvorrichtung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    zumindest eine Einheit (34a), die dazu vorgesehen ist, die Daten der Signaleinheiten (10a, 12a, 14a, 16a; 12b, 16b) über einen längeren Zeitraum miteinander zu vergleichen.
  9. Raucherkennungsvorrichtung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    eine Einheit (44a, 46a), die zur Ausgabe eines Alarmsignals vorgesehen ist.
  10. Raucherkennungsvorrichtung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    eine Einheit (48a), die zur Ausgabe von Signalen über ein Datennetz vorgesehen ist.
  11. Raucherkennungsvorrichtung mit zumindest einer ersten Signaleinheit (10a) zum Aussenden und zumindest einer zweiten Signaleinheit (14a) zum Empfangen von elektromagnetischer Strahlung,
    gekennzeichnet durch
    zumindest eine weitere Signaleinheit (12a, 16a), die zum Senden oder Empfangen von elektromagnetischer Strahlung vorgesehen ist.
  12. Raucherkennungsvorrichtung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    zumindest einen Bilderfassungssensor (50a).
  13. Raucherkennungsvorrichtung zumindest nach Anspruch 12,
    gekennzeichnet durch
    eine Einheit (34a), die dazu vorgesehen ist, anhand der Daten des Bilderfassungssensors (50a) Bewegungen zu erkennen.
  14. Raucherkennungsvorrichtung zumindest nach Anspruch 12,
    dadurch gekennzeichnet,
    dass der Bilderfassungssensor (50a) zumindest um eine Achse (52a, 54a) schwenkbar gelagert ist.
EP07000313A 2006-02-13 2007-01-09 Raucherkennungsvorrichtung Active EP1818884B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006006420A DE102006006420A1 (de) 2006-02-13 2006-02-13 Raucherkennungsvorrichtung

Publications (2)

Publication Number Publication Date
EP1818884A1 true EP1818884A1 (de) 2007-08-15
EP1818884B1 EP1818884B1 (de) 2010-03-31

Family

ID=37951699

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07000313A Active EP1818884B1 (de) 2006-02-13 2007-01-09 Raucherkennungsvorrichtung

Country Status (3)

Country Link
EP (1) EP1818884B1 (de)
AT (1) ATE463022T1 (de)
DE (2) DE102006006420A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100804A1 (en) * 2008-02-15 2009-08-20 Perkinelmer Optoelectronics Gmbh & Co. Kg Radiation guide, detector, manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795504A (en) * 1973-02-15 1973-08-16 Centre Rech Metallurgique Optically measuring carbon monoxide - in metallurgical converter gases
DE3031674A1 (de) * 1980-08-22 1982-04-22 Brown, Boveri & Cie Ag, 6800 Mannheim Anordnung zur brandraucherkennung
JPS638538A (ja) * 1986-06-27 1988-01-14 Matsushita Electric Ind Co Ltd 煙感知器
EP0791817A1 (de) * 1996-02-26 1997-08-27 Particle Measuring Systems, Inc. Verfahren und Vorrichtung zum in-situ Nachweis von Teilchen mittels optischer Ankopplung
EP0877345A2 (de) * 1997-05-08 1998-11-11 Nittan Company, Limited Rauchmelder und Steuersystem für die Anzeige
GB2347999A (en) * 1999-03-17 2000-09-20 Cambustion Ltd Fast response IR gas analyser
WO2003012381A1 (de) * 2001-07-21 2003-02-13 Fagus-Grecon Greten Gmbh & Co. Kg Verfahren und vorrichtung zur auswertung elektromagnetischer strahlung
EP1381005A1 (de) * 2002-07-08 2004-01-14 Siemens Building Technologies AG Ereignismelder mit einer Kamera

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH546989A (de) * 1972-12-06 1974-03-15 Cerberus Ag Verfahren und vorrichtung zur brandmeldung.
DE4023649A1 (de) * 1989-08-18 1991-02-21 Preussag Ag Feuerschutz Verfahren und vorrichtung zum erkennen von gefahrenzustaenden in einem raum
DE19850564B4 (de) * 1998-11-03 2005-12-29 Minimax Gmbh & Co. Kg Verfahren zur Branderkennung mit Gassensoren
DE20023533U1 (de) * 1999-10-26 2004-11-11 Schako Klima Luft Ferdinand Schad Kg Zweigniederlassung Kolbingen Vorrichtung zur Erkennung von Rauch
DE10110231A1 (de) * 2001-03-02 2002-09-26 Bosch Gmbh Robert Optische Blende
DE10246056A1 (de) * 2002-10-02 2004-04-22 Robert Bosch Gmbh Rauchmelder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795504A (en) * 1973-02-15 1973-08-16 Centre Rech Metallurgique Optically measuring carbon monoxide - in metallurgical converter gases
DE3031674A1 (de) * 1980-08-22 1982-04-22 Brown, Boveri & Cie Ag, 6800 Mannheim Anordnung zur brandraucherkennung
JPS638538A (ja) * 1986-06-27 1988-01-14 Matsushita Electric Ind Co Ltd 煙感知器
EP0791817A1 (de) * 1996-02-26 1997-08-27 Particle Measuring Systems, Inc. Verfahren und Vorrichtung zum in-situ Nachweis von Teilchen mittels optischer Ankopplung
EP0877345A2 (de) * 1997-05-08 1998-11-11 Nittan Company, Limited Rauchmelder und Steuersystem für die Anzeige
GB2347999A (en) * 1999-03-17 2000-09-20 Cambustion Ltd Fast response IR gas analyser
WO2003012381A1 (de) * 2001-07-21 2003-02-13 Fagus-Grecon Greten Gmbh & Co. Kg Verfahren und vorrichtung zur auswertung elektromagnetischer strahlung
EP1381005A1 (de) * 2002-07-08 2004-01-14 Siemens Building Technologies AG Ereignismelder mit einer Kamera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100804A1 (en) * 2008-02-15 2009-08-20 Perkinelmer Optoelectronics Gmbh & Co. Kg Radiation guide, detector, manufacturing method

Also Published As

Publication number Publication date
DE502007003264D1 (de) 2010-05-12
DE102006006420A1 (de) 2007-08-16
EP1818884B1 (de) 2010-03-31
ATE463022T1 (de) 2010-04-15

Similar Documents

Publication Publication Date Title
EP3274975B1 (de) Brandmelder mit einer streulichtanordnung im bereich einer raucheintrittsöffnung zur verschmutzungsüberwachung
DE10011411C2 (de) Bildgebender Brandmelder
EP1191496B1 (de) Streulichtrauchmelder
EP2407949B1 (de) Ringförmige Hilfslichtquelle
EP0226843B1 (de) Vorrichtung zur Messung der Haarigkeit eines Garnes
WO2004032083A1 (de) Rauchmelder
DE10124280A1 (de) Selbstansaugende Brandmeldeeinrichtung
EP1870866B1 (de) Rauchwarnmelder
EP1062647A1 (de) Brandmelder
DE19741853A1 (de) Rauchmelder
CN108072505A (zh) 基于高灵敏度光纤的检测
DE202006021270U1 (de) Detektor
EP1818884B1 (de) Raucherkennungsvorrichtung
DE102006006419A1 (de) Raucherkennungsvorrichtung
EP3113133A2 (de) Rauchmelder mit kombinierter abdeckungs- und partikeldetektion der raucheintrittsöffnung
EP1818885A1 (de) Raucherkennungsvorrichtung
DE3917571C2 (de)
DE102010014252A1 (de) Vorrichtung zur Zählerstanderfassung
EP3538873B1 (de) Detektionsverfahren für chemische stoffe, detektionsvorrichtung, durchgangsvorrichtung
EP0880118A2 (de) Optischer Rauchmelder
EP2908297B1 (de) Linearbrandmelder sowie Verfahren zum Betreiben des Linearbrandmelders
EP3887798B1 (de) Spektrometervorrichtung und ein entsprechendes verfahren zum betreiben einer spektrometervorrichtung
DE102018216909B4 (de) Optische Brandsensorvorrichtung und entsprechendes Branderfassungsverfahren
EP0724245B1 (de) Passiver Infrarot-Melder, der die von einem Objekt emittierte Wärmestrahlung spektral auswertet
DE202021105534U1 (de) Sensoranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080214

17Q First examination report despatched

Effective date: 20080317

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007003264

Country of ref document: DE

Date of ref document: 20100512

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100712

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

BERE Be: lapsed

Owner name: DZUBIEL, GERHARD

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110109

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSKANZLEI DAUB, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150123

Year of fee payment: 9

Ref country code: FR

Payment date: 20150115

Year of fee payment: 9

Ref country code: AT

Payment date: 20150121

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 463022

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160109

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160109

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007003264

Country of ref document: DE

Representative=s name: PATENT- UND RECHTSANWALTSKANZLEI DAUB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007003264

Country of ref document: DE

Owner name: GUNDA AUTOMATION GMBH, DE

Free format text: FORMER OWNER: DZUBIEL, GERHARD, 88045 FRIEDRICHSHAFEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240131

Year of fee payment: 18