EP1815194A2 - Solar energy utilization unit and solar energy utilization system. - Google Patents

Solar energy utilization unit and solar energy utilization system.

Info

Publication number
EP1815194A2
EP1815194A2 EP05779729A EP05779729A EP1815194A2 EP 1815194 A2 EP1815194 A2 EP 1815194A2 EP 05779729 A EP05779729 A EP 05779729A EP 05779729 A EP05779729 A EP 05779729A EP 1815194 A2 EP1815194 A2 EP 1815194A2
Authority
EP
European Patent Office
Prior art keywords
solar
radiation
receiver
reflector
energy utilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05779729A
Other languages
German (de)
French (fr)
Inventor
Eli Shifman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerosun Technologies AG
Original Assignee
Aerosun Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/939,357 external-priority patent/US7435898B2/en
Application filed by Aerosun Technologies AG filed Critical Aerosun Technologies AG
Publication of EP1815194A2 publication Critical patent/EP1815194A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/48Arrangements for moving or orienting solar heat collector modules for rotary movement with three or more rotation axes or with multiple degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/10Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • This invention relates to the field of solar energy utilization systems and particularly, to such systems using solar radiation concentration optics of the cassegrainian type.
  • a standard cassegrainian concentration optics comprises two reflectors, a primary reflector and a secondary reflector, which are coaxially aligned.
  • the primary reflector captures and reflects incoming radiation to the generally smaller secondary reflector.
  • the secondary reflector in turn reflects the radiation toward the focus of the concentration optics associated with a solar receiver.
  • the primary and secondary reflectors may have different shapes, e.g., the primary reflector may be parabolic and the secondary reflector may be hyperbolic.
  • the solar receiver may be based on direct absorption of the heat of solar radiation by a working medium, e.g., water, or on a conversion of the solar radiation into another form of energy, e.g., as in photovoltaic cells, in which case the receiver is located with its entrance adjacent to or at the focus of the concentration optics.
  • the receiver may be composed of a means for transmitting the concentrated radiation to a location spaced from the focal point, e.g., for use of solar energy in illumination systems.
  • a solar energy utilization unit with a solar radiation concentrating optics of a cassegrainian type, the unit being of a design allowing it to be manipulated by hand and modularly assembled in a solar energy utilization system, e.g., for domestic applications.
  • the solar energy utilization unit comprises a solar radiation concentrating optics, designed to concentrate incident solar radiation and split it into at least two parts having wavelengths in different parts of the solar spectrum, and a solar radiation receiver including first and second solar radiation receiver components, the first component being adapted to convert to electricity incident radiation within a first, and the second component being adapted to convert to electricity incident radiation within a second, of said two parts of the solar spectrum.
  • the first and second receiver components each have a solar radiation receiving portion, preferably in the form of a photovoltaic structure, e.g., one or more photovoltaic cells, with sensitivity in the corresponding part of the solar spectrum.
  • the two parts of the solar spectrum may, for example, be its visible and IR parts.
  • Each receiver component may comprise a concentrator, e.g., a non-imaging concentrator known per se, designed for admitting radiation from the solar radiation concentrating optics and forwarding it to the radiation receiving portion of the receiver component in a uniformly distributed manner.
  • the concentrator may be in the form of a converging, e.g., a frusto-conical, pipe with reflective internal surface, or a prism, within which radiation travels by means of total internal reflection.
  • the solar radiation concentrating optics has an optical axis and comprises a primary concave reflector and a secondary convex reflector whose centers and focal points are located along the optical axis.
  • the secondary reflector is in the form of a spectral beam-splitter having two focal points, and it is designed to admit radiation concentrated by the primary reflector, to reflect towards its first focal point radiation in the first part of the solar spectrum, and to transmit towards the second focal point radiation in the second part of the solar spectrum, the first and second receiver components being respectively associated with the first and second focal points of the secondary reflector.
  • the primary reflector is formed with an opening in its center and the first focal point of the secondary reflector is normally disposed in or adjacent to the opening.
  • the first receiver component is fixedly secured to the primary reflector's outer surface, so that either its radiation receiving portion or the concentrator associated therewith is disposed in or adjacent to the first focal point of the secondary reflector.
  • the secondary reflector has a convex surface facing the primary reflector, and its second focal point, which is located behind, has a convex surface, the second receiver component being fixedly secured behind the convex surface so that either its radiation receiving portion or the concentrator associated therewith is disposed in or adjacent to the second focal point of the secondary reflector.
  • any of the first and second receiver components include the concentrator
  • the latter may be formed integrally with its corresponding receiver component and/or with the reflector, primary or secondary, with which the receiver component is associated.
  • the second receiver component may further comprise a housing unit carrying the radiation receiving portion of the second receiver component, and the concentrator, if any, associated therewith.
  • first and second receiver components may further include a heat removal means to withdraw heat from the radiation receiving portion of the component.
  • the heat removal means may be passive and be based on convection, which may be used in both receiver components; or they may be active and use cooling fluid, which may be particularly useful for the first receiver component.
  • the first and second receiver components may each be provided with a separate electric set up to operate at its optimal generated current
  • the characteristics of the receiver components may be chosen and optimized, independently from each other, to enable better efficiency and lower production costs of the components;
  • each receiver component may perform at a different concentration level, which can be controlled by the design of the concentrator included in the component, whereby optimal concentration of radiation may be achieved for each receiver component and consequently maximum efficiency thereof; • heat removal from the radiation receiving portions of the receiver component is better manageable, since each receiving portion is only getting the part of the radiation spectrum applicable to it.
  • the solar energy utilization unit of the present invention may further comprise a rigid cover firmly and sealingly attached to the primary reflector, along the circumference of the latter, thereby forming a closed volume between the cover's inner surface and the inner, reflecting surface of the primary reflector with the solar radiation receiver component secured thereto.
  • the unit may comprise means to control environment of the closed volume for minimizing deterioration of the quality of the reflectors.
  • the cover is made of a transparent material and it has a relatively small inoperative area whose inner surface is associated with the secondary reflector, either integrally formed therewith or fixedly attached thereto, and a relatively large operative area surrounding the reflector, via which area incident solar radiation passes towards the reflecting surface of the primary reflector.
  • the unit is preferably associated with a tracking mechanism that tracks the sun and it may comprise a self-aligning mechanism for additional precise alignment of the unit towards the sun.
  • the present invention further refers to a solar energy utilization system having a base plate and a plurality of solar unit seats adapted for detachably attaching a plurality of solar energy utilization units of the type described hereinabove, wherein in each unit the first and second receiver components are provided with their individual electric cables for withdrawing electricity therefrom, and wherein each unit is modular and is manufactured in mass production.
  • a solar energy utilization unit comprising a solar radiation concentrating optics and a solar radiation receiver.
  • the receiver is designed to convert radiation into another form of energy.
  • the solar radiation concentrating optics comprises a concave primary reflector and a convex secondary reflector.
  • the primary reflector is adapted to reflect incident solar radiation towards the secondary reflector, and the secondary reflector is adapted to direct concentrated radiation toward the receiver.
  • the primary reflector is formed with a centrally disposed opening, via which said receiver is adapted to receive the radiation reflected by said secondary reflector.
  • the primary reflector is made of a central component surrounding the receiver, and a peripheral component surrounding the central component.
  • the central component is made of a material which withstands heat better than the material from which the peripheral component is made.
  • the peripheral component is a base and the central component is a metal disk.
  • Surfaces of the base and metal disk are adapted to form a continuous surface to reflect the incident solar radiation.
  • the base may be made of plastic and be plated with a reflective material, at least on the surface which is adapted, in use, to reflect the incident solar radiation.
  • an integral reflector assembly comprising a plurality of first reflectors and a single cover holding a plurality of corresponding secondary reflectors, to form a plurality of solar energy utilization units as described above.
  • a reflector element comprising a first surface and a second surface adapted to carry a solar radiation receiver.
  • the first surface is adapted to reflect radiation in a first part of the solar spectrum and to transmit radiation in a second part of the solar spectrum toward the receiver.
  • the second surface comprises a groove adapted to receive a lead wire connectable to the solar radiation receiver.
  • the second surface may comprise at least two portions being non-coplanar.
  • the solar radiation receiver and the groove may be on portions of the second surface which are non-coplanar.
  • the solar radiation receiver may be a photovoltaic cell.
  • the element may be adapted for use with a solar energy utilization unit.
  • Fig. 1 is a schematic sectional view of a solar energy utilization unit according to one embodiment of the present invention
  • Fig. 2 A is a schematic isometric view of the solar energy utilization unit shown in Fig. 1;
  • Fig.2B is a schematic isometric view of a solar energy utilization unit according to an alternative embodiment of the present invention.
  • Fig. 3 is a schematic isometric view of a solar energy utilization system according to the present invention.
  • Fig. 4 is a top perspective view of a receiver structure for use with the solar energy utilization unit shown in Fig. 1, according to the present invention
  • Fig. 5 A is a partial top view of one embodiment of a rigid cover for use with the receiver structure shown in Fig. 4, according to the present invention
  • Fig. 5B is a partial top view of another embodiment of a rigid cover for use with the receiver structure shown in Fig. 4, according to the present invention.
  • Fig. 6 is a top perspective view of the receiver structure shown in Fig. 4, with lead wires fitted therein;
  • Figs. 7A and 7B are front and top views, respectively, of the receiver structure illustrated in Fig. 6 attached to the rigid cover;
  • Fig. 8 is a bottom perspective view of an infrared circuit according to the present invention
  • Fig. 9 is a bottom perspective view of the infrared circuit illustrated in Fig. 8 bonded to the bottom of an aluminum lid;
  • Figs. 1OA and 1OB are front and side views, respectively, of the aluminum lid illustrated in Fig. 9 bonded to the top of the receiver structure;
  • Fig HA is a side view of the receiver structure, with the addition of a canister;
  • Fig. HB is a cross-sectional view, taken along line II-II, of the receiver structure shown in Fig. HA;
  • Fig. HC is an enlarged view of the area indicated at 'A' in Fig. 1 IB;
  • Fig. 12 is another embodiment of the receiver structure as illustrated in Fig. 6;
  • Fig. 13 is a perspective view of a reflector assembly according to one embodiment of the present invention.
  • Fig. 14A is a perspective view of the reflector assembly illustrated in Fig. 13, with a modification according to the present invention
  • Fig. 14B is a cross-sectional view taken along line IV-IV in Fig. 14A;
  • Fig. 14C is an enlarged view of the area indicated at 'B' in Fig. 14B.
  • Fig. 1 shows a solar energy utilization unit 5 in accordance with one embodiment of the present invention.
  • the unit 5 comprises a solar radiation concentrating optics 6 including a concave primary reflector 7 and a convex secondary reflector 9, and a solar receiver designed to convert the radiation concentrated by the optics 6 into electric energy, the solar receiver comprising a first and second photovoltaic receiver components 1OA and 1OB, each associated with either primary reflector 7 or secondary reflector 9.
  • Each receiver component 1OA, 1OB comprises a photovoltaic structure HA, HB, which may be a singular plate cell or an array of cells.
  • the photovoltaic structures HA and HB have different sensitivity wavebands, e.g., one of them is sensitive to radiation in the IR part of the solar spectrum and the other - in the visible part, and are designed to convert radiation within their corresponding wavebands into electric energy.
  • the structures HA and HB are provided with electric cables 13 A, 13B, respectively, attached thereto, for piping the electric energy to necessary location for utilization.
  • the photovoltaic structures HA and HB will be further referred to as 'photovoltaic cells'.
  • the primary and secondary reflectors are arranged in a cassegrainian design, wherein the primary reflector 7 has a parabolic reflecting surface with a point of focus F.
  • the secondary reflector 9 has a surface 9', facing the primary reflector, which is of a hyperbolic shape, and it has two points of focus Fl and F2 at different sides of the hyperbolic surface.
  • the points of focus of both reflectors are located on a common optical axis X.
  • the point of focus F of the primary reflector 7 coincides with the point of focus F2 of the secondary reflector 9.
  • the secondary reflector 9 is in the form of a beam splitter, which reflects towards its first focus Fl radiation in the sensitivity waveband of the photovoltaic cell HA, and which transmits towards the second focus F2 radiation in the sensitivity waveband of the photovoltaic cell HB.
  • Each receiver component 1OA, 1OB comprises a non-imaging concentrator whose entrance is located in or adjacent to the respective focus Fl, F2 of the secondary reflector, designed for admitting radiation reflected or transmitted by the secondary reflector 9 and forwarding it to the respective photovoltaic cell HA, HB in a uniformly distributed manner.
  • the concentrator may be in the form of a converging, e.g., such as a frusto- conical pipe 3OA with reflective internal surface, or in the form of a prism, e.g., such as prism 3OB, within which radiation travels by means of total internal reflection.
  • a converging e.g., such as a frusto- conical pipe 3OA with reflective internal surface
  • prism e.g., such as prism 3OB
  • the reflectors 7 and 9 have a circular symmetry around the axis X, the circumference of the primary reflector 7 having a diameter D and defining the circumference of the entire unit 5.
  • the circumference of the secondary reflector has a diameter d, essentially smaller than the diameter D.
  • the unit 5 further comprises a rigid cover 15 made of a transparent material and having a rim 17 firmly and sealingly attached to the primary reflector 7 at the circumference of the latter, to form a closed volume between the cover 15 and the reflector 7.
  • the closed volume may be filled with inert gas such as Nitrogen.
  • the cover 15 has an inner surface 14 facing the primary reflector 7 and the first receiver component 1OA, an outer surface 16 generally facing the sun, an inoperative area 18 holding the secondary reflector 9 and the second receiver component 10B a and an operative area 19 surrounding them.
  • the inoperative area 18 of the cover 15 is in the form of an aperture (not illustrated), and the secondary reflector 9 and the second receiver component 1OB are formed as one unit mounted in the aperture.
  • the second receiver component further comprises a housing 24B which serves as an insulating substrate and a protecting cover for the photovoltaic cell HB, which is designed to enable passive cooling thereof.
  • the primary reflector 7 is formed with an opening 20 for mounting therein the solar radiation receiver component 1OA.
  • the solar radiation receiver component 1OA is made of a heat-conducting material and includes a centrally located cell-holding portion 22, a heat removal portion 26, at least a part of which surrounds the cell holding portion, and a peripherally disposed mounting arrangement 24 A.
  • the cell holding portion 22 comprises a cell seat 28 protruding outwardly from the opening 20.
  • the heat removal portion 26 protrudes inwardly from the opening 20 of the primary reflector 7, defining the frusto-conical pipe 3OA, and it is formed with a cooling fluid cavity 32 surrounding the pipe 3OA and adapted to provide contact of cooling fluid disposed therein with the cell seat 28 to withdraw heat therefrom.
  • the heat removal portion 26 is designed to be located in the shade, cast by the secondary reflector 9.
  • the heat removal portion 26 has an inlet 34 and an outlet 36 connected with the cooling fluid cavity 32.
  • the unit mounting arrangement 24A includes a support surface 35 fixedly attached to the outer surface of the primary reflector 7 at areas thereof adjacent the aperture 20; means 40 preferably located at three peripheral areas of the solar radiation receiver component (of which only two are seen in Fig. 1), for mounting the unit 5 on the plate 8 with a possibility to independently adjust the distance therebetween; and a self-aligning mechanism 42 with any suitable adjustment means 44 adapted to perform the adjustment (e.g., step motors, electromagnets, etc.), to align the position of the unit 5 with respect to the sun.
  • any suitable adjustment means 44 adapted to perform the adjustment (e.g., step motors, electromagnets, etc.), to align the position of the unit 5 with respect to the sun.
  • the self-aligning mechanism 42 may comprise a sensor (not shown) located on the outer surface of the inoperative area 18 of the cover 15, and connected with the adjustment means 44 and a controller (not shown) to control the adjustment means, based on data received from the sensor.
  • a sensing device can be designed as part of the receiver component 10, which will eliminate the need for the sensor 46.
  • the unit 5 mounted on the plate 8 tracks the sun and solar radiation passes through the operative area 19 of the transparent cover 15 to impinge upon the primary reflector 7 in a direction parallel to the axis X and is reflected thereby in the direction of its focus point F coinciding with the focal point F2 of the secondary reflector 9.
  • One part of the radiation which is within the sensitivity waveband of the first photovoltaic cell HA, is then reflected by the secondary reflector 9 towards its focal point Fl, where the pipe 3OA further concentrates it and directs it to the photovoltaic cell HA in a uniformly distributed manner.
  • Radiation within the sensitivity waveband of the second photovoltaic cell HB is not reflected by the secondary reflector 9 but is rather transmitted thereby towards the focal point F2, where the prism 3OB further concentrates it and directs it to the photovoltaic cell HB in a uniformly distributed manner.
  • the heat removing part 26 functions as a heat- exchanger unit by removing the heat from the cell seat 28 with the cooling fluid flowing from the inlet 34 to the outlet 36 through the cooling fluid cavity 32.
  • the photovoltaic cell HB is cooled by means provided in the housing 24B of the second receiver component 1OB.
  • the unit 5 can be in a variety of dimensions but, for domestic use, it is preferably compact and easily handled.
  • Such unit may have a diameter of approximately twenty two centimeters and a thickness of approximately seven centimeters, with the diameter d of the secondary reflector 9 being approximately 4.4 centimeters and the corresponding shaded area on the primary reflector 7 being only four percent of the area of the reflector 9.
  • the unit 5 may be unitarily manufactured in mass production and according to industrial standards of high precision. In particular, assembly of all its components into a precise, solid and durable construction may be performed at a relatively low cost.
  • the use of the transparent rigid cover 15 is advantageous in both that it enables constructing the unit 5 as one unitary rigid member of precise dimensions and at the same time protects the reflectors, thereby enabling its extended service period.
  • Figs. 2A and 2B show two respective exemplary designs 5A and 5B of the solar energy utilization unit 5, which are identical except for the shape of their circumference.
  • this shape is circular and in the unit 5B it is square, the latter enabling a more efficient arrangement of a plurality of units in an array.
  • the legs 62 may house the unit mounting arrangement, the cell- holding portion and at least a part of the heat removal portion illustrated in Fig. 1.
  • FIG. 3 shows an example of a solar energy utilization system 60 comprising the plate 8 and an array of units 5B attached thereto.
  • the plate 8 is provided with any known tracking mechanism (not shown) to follow the sun.
  • the plate 8 is further provided with means 66 and 68 connected with inlets and outlets of the heat removal portion of all the units to enable the circulation of cooling fluid through the units 5B, as previously shown.
  • the cooling fluid when withdrawn from the units, may be further used for any suitable purpose.
  • the units designed according to the present invention may easily be individually replaced, when needed, thereby facilitating the maintenance of the system.
  • the receiver structure 1OB comprises a secondary reflector 9 and a prism 3OB.
  • the receiver structure is received within a rigid cover 15.
  • the backside of the secondary reflector 9 is provided with a groove 100.
  • the groove 100 is located so that it is adjacent and parallel to one of the bottom edges of the prism 3OB. It is sized so as to receive a wire lead 102 (seen in Fig. 6).
  • two openings 104 are provided in the rigid cover 15 adjacent an aperture provided for passage therethrough of the prism 3OB.
  • the openings are located is a position corresponding to center of the groove 100 and are each sized so as to allow for passage therethrough of the leads 102.
  • the aperture 105 may be round, leaving enough space adjacent the prism 3OB for passage of the leads 102 obviating the need for the openings 104.
  • each wire leads 102 are fitted within the groove 100.
  • Each lead 102 bends near the middle of the groove 100 at location corresponding to one of the openings 104.
  • the reflector 9 and prism 3OB which are bonded together, are attached to the rigid cover 15, with the prism passing through the aperture 105 provided therefor.
  • the leads 102 are passed through the openings 104, as seen in Figs. 7A and 7B.
  • an infrared (IR) circuit 106 in the form of a photovoltaic cell, comprises several GaSb cells 108 mounted on an alumina substrate and connected in series. Two copper ribbons 110 protrude perpendicular therefrom and act as positive and negative leads.
  • the IR circuit 106 is mounted to the bottom of a finned aluminum lid 112, as illustrated in Fig. 9, which acts as a heat sink. The side edge 114 of the heat sink is beveled.
  • the IR circuit is bonded to the top side 116 of the prism 3OB.
  • An appropriate bonding agent such as silicone adhesive, is used. It is disposed so that the ribbons extend downwardly on the side of the prism 3OB which is adjacent the groove 100, with the ribbons contacting the ends of the leads 102.
  • an additional cylindrical heat sink is provided in the form of a canister 118, in order to increase heat dissipation.
  • the canister 118 is, at one end, beveled correspondingly to the side edge 114 of the aluminum lid 112. Thermally conductive epoxy is placed on one or both of the beveled edges, and the canister 118 is placed on the aluminum lid 112.
  • a glue bead 120 may be applied between the bottom of the canister 118 and the top of the rigid cover 15, as illustrated in Fig. HB.
  • the groove has been illustrated as being linear, other arrangements are possible.
  • the groove may bend 90° around the corner of the prism 3OB, as seen in Fig. 12.
  • the developments according to the present invention allow for routing the lead wires on the interior portion of the rigid cover, through a portion associated with, and preferably formed within, the receiver structure, and along the side of the prism, where it meets with a portion of the IR circuit.
  • Fig. 13 illustrates an embodiment of the present invention wherein a number of primary reflectors 7 are molded as a single reflector assembly 130.
  • the reflector assembly 130 comprises the primary reflectors 7 arranged in a tessellated pattern, such as a grid.
  • the reflector assembly 130 comprises one receiver component 1OA associated with each primary reflector, as described above.
  • the reflector assembly 130 is fitted within an enclosure 132, and a single cover 15 is used to enclose the volume above the reflector assembly.
  • the cover 15 comprises a number, equal to the number of primary reflectors 7, of secondary reflectors (not seen) and receiver components 1OB, arranged such that the point of focus of each primary reflector 7 coincides with the point of focus F2 of a corresponding secondary reflector.
  • the interfaces between the reflector assembly 130 and the enclosure 132 and between the cover 15 and the enclosure are sealed, allowing, if desired, the volume defmed between the reflector assembly and the cover to be filled with an inert gas as described above.
  • the costs of manufacture and assembly are reduced.
  • the lowering of these costs are also lowered by forming the cover for all of the primary reflectors from a single piece.
  • the unit 5 is designed such that the primary reflector can withstand heat which may result from some of the concentrated light from the secondary reflector being reflected onto the surface of the primary reflector.
  • each primary reflector 7 comprising a plastic base 134 with a hole (not seen) in the center.
  • the hole is bigger than would be necessary to receive the receiver component 1OA.
  • a shelf 135 (only seen in Fig. 14C), concentric with the hole, is located immediately adjacent it.
  • the plastic is selected such that silver plating, or any other reflective material, may be applied to it by any conventional means, such as vapor deposition within a vacuum chamber.
  • a curved metal disc 136 is provided to complete the surface of the primary reflector 7.
  • the disc 136 is sized so that its outer perimeter 138 matches the outer perimeter 140 of the shelf 135 (best seen in Fig. 14C).
  • the base 134 and disc 136 are formed so that their respective upper surfaces 142a, 142b cooperate to form a continuous surface constituting the primary reflector, as described above.
  • the primary reflector 7 By manufacturing the primary reflector 7 in this manner, plastic may be utilized for a majority of the reflector, which may be manufactured by a simpler and cheaper process. It also results in an overall lighter unit.
  • the metal disc 136 is provided to withstand the heat which would be generated in this eventuality, without disrupting the normal operation of the unit 5.

Abstract

A solar energy utilization unit comprises a solar radiation concentrating optics and a solar radiation receiver including a first receiver component designed to convert into electric energy radiation in a first part of the solar spectrum, and a second receiver components designed to convert into electric energy radiation in a second part of the solar spectrum which is different from said first part. The solar radiation concentrating optics comprises a concave primary reflector adapted to reflect incident solar radiation towards the secondary reflector, and a convex secondary reflector adapted to reflect radiation in the first part of the solar spectrum into the first receiver component and also to transmit radiation in the second part of the solar spectrum into the second receiver component. The primary reflector is formed with a centrally disposed opening, via which the first receiver component is adapted to receive the radiation reflected by the secondary receiver. The primary receiver may have central and peripheral components, wherein the central component is made of a material which withstands heat better than the material from which the peripheral component is made.

Description

SOLAR ENERGY UTILIZATION UNIT AND SOLAR ENERGY UTILIZATION
SYSTEM
FIELD OF THE INVENTION
This invention relates to the field of solar energy utilization systems and particularly, to such systems using solar radiation concentration optics of the cassegrainian type.
BACKGROUND OF THE INVENTION
A standard cassegrainian concentration optics comprises two reflectors, a primary reflector and a secondary reflector, which are coaxially aligned. The primary reflector captures and reflects incoming radiation to the generally smaller secondary reflector. The secondary reflector in turn reflects the radiation toward the focus of the concentration optics associated with a solar receiver. The primary and secondary reflectors may have different shapes, e.g., the primary reflector may be parabolic and the secondary reflector may be hyperbolic. The solar receiver may be based on direct absorption of the heat of solar radiation by a working medium, e.g., water, or on a conversion of the solar radiation into another form of energy, e.g., as in photovoltaic cells, in which case the receiver is located with its entrance adjacent to or at the focus of the concentration optics. Alternatively, the receiver may be composed of a means for transmitting the concentrated radiation to a location spaced from the focal point, e.g., for use of solar energy in illumination systems.
In "Path to Affordable Solar Electric Power", JX Crystals Inc., 2004, Lewis M. Fraas describes the use of two different receivers with cassegrainian concentration optics, in which the secondary reflector is in the form of a beam splitter, which reflects concentrated solar radiation in the visible part of the solar spectrum towards fiber optic light guide for piping the radiation to an indoor illumination system, and transmits concentrated solar radiation in the IR part of the solar spectrum towards an array of photovoltaic cells located behind the secondary reflector, for converting the radiation to electricity.
The efficiency of a cassegrainian solar concentrator is highly dependent on the quality of the reflectors' reflecting surfaces. Reflectors exposed to the environment for extended periods, tend to lose their reflection abilities due to, for example, dust or sand erosion, oxidation or corrosion. US 4,166,917 and US 4,491,683 describe sealed solar collectors.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention there is provided a solar energy utilization unit with a solar radiation concentrating optics of a cassegrainian type, the unit being of a design allowing it to be manipulated by hand and modularly assembled in a solar energy utilization system, e.g., for domestic applications.
The solar energy utilization unit comprises a solar radiation concentrating optics, designed to concentrate incident solar radiation and split it into at least two parts having wavelengths in different parts of the solar spectrum, and a solar radiation receiver including first and second solar radiation receiver components, the first component being adapted to convert to electricity incident radiation within a first, and the second component being adapted to convert to electricity incident radiation within a second, of said two parts of the solar spectrum. The first and second receiver components each have a solar radiation receiving portion, preferably in the form of a photovoltaic structure, e.g., one or more photovoltaic cells, with sensitivity in the corresponding part of the solar spectrum. The two parts of the solar spectrum may, for example, be its visible and IR parts.
Each receiver component may comprise a concentrator, e.g., a non-imaging concentrator known per se, designed for admitting radiation from the solar radiation concentrating optics and forwarding it to the radiation receiving portion of the receiver component in a uniformly distributed manner. The concentrator may be in the form of a converging, e.g., a frusto-conical, pipe with reflective internal surface, or a prism, within which radiation travels by means of total internal reflection. The solar radiation concentrating optics has an optical axis and comprises a primary concave reflector and a secondary convex reflector whose centers and focal points are located along the optical axis. The secondary reflector is in the form of a spectral beam-splitter having two focal points, and it is designed to admit radiation concentrated by the primary reflector, to reflect towards its first focal point radiation in the first part of the solar spectrum, and to transmit towards the second focal point radiation in the second part of the solar spectrum, the first and second receiver components being respectively associated with the first and second focal points of the secondary reflector.
The primary reflector is formed with an opening in its center and the first focal point of the secondary reflector is normally disposed in or adjacent to the opening. The first receiver component is fixedly secured to the primary reflector's outer surface, so that either its radiation receiving portion or the concentrator associated therewith is disposed in or adjacent to the first focal point of the secondary reflector.
The secondary reflector has a convex surface facing the primary reflector, and its second focal point, which is located behind, has a convex surface, the second receiver component being fixedly secured behind the convex surface so that either its radiation receiving portion or the concentrator associated therewith is disposed in or adjacent to the second focal point of the secondary reflector.
In the case that any of the first and second receiver components include the concentrator, the latter may be formed integrally with its corresponding receiver component and/or with the reflector, primary or secondary, with which the receiver component is associated.
The second receiver component may further comprise a housing unit carrying the radiation receiving portion of the second receiver component, and the concentrator, if any, associated therewith.
Any or both of the first and second receiver components may further include a heat removal means to withdraw heat from the radiation receiving portion of the component. The heat removal means may be passive and be based on convection, which may be used in both receiver components; or they may be active and use cooling fluid, which may be particularly useful for the first receiver component.
By virtue of splitting the concentrated radiation into at least two parts and using corresponding receiver components, which are sensitive to these parts of radiation, to convert them into electric energy, and which are associated with different components
(first and secondary reflectors) of the concentrating optics, in accordance with the present invention, a number of advantages may be achieved including: - A -
• the first and second receiver components may each be provided with a separate electric set up to operate at its optimal generated current;
• the characteristics of the receiver components may be chosen and optimized, independently from each other, to enable better efficiency and lower production costs of the components;
• each receiver component may perform at a different concentration level, which can be controlled by the design of the concentrator included in the component, whereby optimal concentration of radiation may be achieved for each receiver component and consequently maximum efficiency thereof; • heat removal from the radiation receiving portions of the receiver component is better manageable, since each receiving portion is only getting the part of the radiation spectrum applicable to it.
The solar energy utilization unit of the present invention may further comprise a rigid cover firmly and sealingly attached to the primary reflector, along the circumference of the latter, thereby forming a closed volume between the cover's inner surface and the inner, reflecting surface of the primary reflector with the solar radiation receiver component secured thereto. The unit may comprise means to control environment of the closed volume for minimizing deterioration of the quality of the reflectors. The cover is made of a transparent material and it has a relatively small inoperative area whose inner surface is associated with the secondary reflector, either integrally formed therewith or fixedly attached thereto, and a relatively large operative area surrounding the reflector, via which area incident solar radiation passes towards the reflecting surface of the primary reflector. The unit is preferably associated with a tracking mechanism that tracks the sun and it may comprise a self-aligning mechanism for additional precise alignment of the unit towards the sun.
The present invention further refers to a solar energy utilization system having a base plate and a plurality of solar unit seats adapted for detachably attaching a plurality of solar energy utilization units of the type described hereinabove, wherein in each unit the first and second receiver components are provided with their individual electric cables for withdrawing electricity therefrom, and wherein each unit is modular and is manufactured in mass production. According to another aspect of the present invention, there is provided a solar energy utilization unit comprising a solar radiation concentrating optics and a solar radiation receiver. The receiver is designed to convert radiation into another form of energy. The solar radiation concentrating optics comprises a concave primary reflector and a convex secondary reflector. The primary reflector is adapted to reflect incident solar radiation towards the secondary reflector, and the secondary reflector is adapted to direct concentrated radiation toward the receiver. The primary reflector is formed with a centrally disposed opening, via which said receiver is adapted to receive the radiation reflected by said secondary reflector. The primary reflector is made of a central component surrounding the receiver, and a peripheral component surrounding the central component. The central component is made of a material which withstands heat better than the material from which the peripheral component is made.
According to one embodiment, the peripheral component is a base and the central component is a metal disk. Surfaces of the base and metal disk are adapted to form a continuous surface to reflect the incident solar radiation. The base may be made of plastic and be plated with a reflective material, at least on the surface which is adapted, in use, to reflect the incident solar radiation.
According to another aspect of the present invention, there is provided an integral reflector assembly comprising a plurality of first reflectors and a single cover holding a plurality of corresponding secondary reflectors, to form a plurality of solar energy utilization units as described above.
According to a further aspect of the present invention, there is provided a reflector element comprising a first surface and a second surface adapted to carry a solar radiation receiver. The first surface is adapted to reflect radiation in a first part of the solar spectrum and to transmit radiation in a second part of the solar spectrum toward the receiver. The second surface comprises a groove adapted to receive a lead wire connectable to the solar radiation receiver. The second surface may comprise at least two portions being non-coplanar. The solar radiation receiver and the groove may be on portions of the second surface which are non-coplanar. The solar radiation receiver may be a photovoltaic cell. The element may be adapted for use with a solar energy utilization unit. BRIEF DESCRIPTION OF THE DRAWINGS
In order to understand the invention and to see how it may be carried out in practice, an embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which: Fig. 1 is a schematic sectional view of a solar energy utilization unit according to one embodiment of the present invention;
Fig. 2 A is a schematic isometric view of the solar energy utilization unit shown in Fig. 1;
Fig.2B is a schematic isometric view of a solar energy utilization unit according to an alternative embodiment of the present invention; and
Fig. 3 is a schematic isometric view of a solar energy utilization system according to the present invention.
Fig. 4 is a top perspective view of a receiver structure for use with the solar energy utilization unit shown in Fig. 1, according to the present invention; Fig. 5 A is a partial top view of one embodiment of a rigid cover for use with the receiver structure shown in Fig. 4, according to the present invention;
Fig. 5B is a partial top view of another embodiment of a rigid cover for use with the receiver structure shown in Fig. 4, according to the present invention;
Fig. 6 is a top perspective view of the receiver structure shown in Fig. 4, with lead wires fitted therein;
Figs. 7A and 7B are front and top views, respectively, of the receiver structure illustrated in Fig. 6 attached to the rigid cover;
Fig. 8 is a bottom perspective view of an infrared circuit according to the present invention; Fig. 9 is a bottom perspective view of the infrared circuit illustrated in Fig. 8 bonded to the bottom of an aluminum lid;
Figs. 1OA and 1OB are front and side views, respectively, of the aluminum lid illustrated in Fig. 9 bonded to the top of the receiver structure;
Fig HA is a side view of the receiver structure, with the addition of a canister; Fig. HB is a cross-sectional view, taken along line II-II, of the receiver structure shown in Fig. HA;
Fig. HC is an enlarged view of the area indicated at 'A' in Fig. 1 IB; and
Fig. 12 is another embodiment of the receiver structure as illustrated in Fig. 6; Fig. 13 is a perspective view of a reflector assembly according to one embodiment of the present invention;
Fig. 14A is a perspective view of the reflector assembly illustrated in Fig. 13, with a modification according to the present invention; Fig. 14B is a cross-sectional view taken along line IV-IV in Fig. 14A; and
Fig. 14C is an enlarged view of the area indicated at 'B' in Fig. 14B.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
Fig. 1 shows a solar energy utilization unit 5 in accordance with one embodiment of the present invention. The unit 5 comprises a solar radiation concentrating optics 6 including a concave primary reflector 7 and a convex secondary reflector 9, and a solar receiver designed to convert the radiation concentrated by the optics 6 into electric energy, the solar receiver comprising a first and second photovoltaic receiver components 1OA and 1OB, each associated with either primary reflector 7 or secondary reflector 9.
Each receiver component 1OA, 1OB comprises a photovoltaic structure HA, HB, which may be a singular plate cell or an array of cells. The photovoltaic structures HA and HB have different sensitivity wavebands, e.g., one of them is sensitive to radiation in the IR part of the solar spectrum and the other - in the visible part, and are designed to convert radiation within their corresponding wavebands into electric energy. The structures HA and HB are provided with electric cables 13 A, 13B, respectively, attached thereto, for piping the electric energy to necessary location for utilization. The photovoltaic structures HA and HB will be further referred to as 'photovoltaic cells'.
The primary and secondary reflectors are arranged in a cassegrainian design, wherein the primary reflector 7 has a parabolic reflecting surface with a point of focus F. The secondary reflector 9 has a surface 9', facing the primary reflector, which is of a hyperbolic shape, and it has two points of focus Fl and F2 at different sides of the hyperbolic surface. The points of focus of both reflectors are located on a common optical axis X. The point of focus F of the primary reflector 7 coincides with the point of focus F2 of the secondary reflector 9.
The secondary reflector 9 is in the form of a beam splitter, which reflects towards its first focus Fl radiation in the sensitivity waveband of the photovoltaic cell HA, and which transmits towards the second focus F2 radiation in the sensitivity waveband of the photovoltaic cell HB. Each receiver component 1OA, 1OB comprises a non-imaging concentrator whose entrance is located in or adjacent to the respective focus Fl, F2 of the secondary reflector, designed for admitting radiation reflected or transmitted by the secondary reflector 9 and forwarding it to the respective photovoltaic cell HA, HB in a uniformly distributed manner. The concentrator may be in the form of a converging, e.g., such as a frusto- conical pipe 3OA with reflective internal surface, or in the form of a prism, e.g., such as prism 3OB, within which radiation travels by means of total internal reflection.
The reflectors 7 and 9 have a circular symmetry around the axis X, the circumference of the primary reflector 7 having a diameter D and defining the circumference of the entire unit 5. The circumference of the secondary reflector has a diameter d, essentially smaller than the diameter D.
The unit 5 further comprises a rigid cover 15 made of a transparent material and having a rim 17 firmly and sealingly attached to the primary reflector 7 at the circumference of the latter, to form a closed volume between the cover 15 and the reflector 7. The closed volume may be filled with inert gas such as Nitrogen.
The cover 15 has an inner surface 14 facing the primary reflector 7 and the first receiver component 1OA, an outer surface 16 generally facing the sun, an inoperative area 18 holding the secondary reflector 9 and the second receiver component 10Ba and an operative area 19 surrounding them. As seen in Fig. 1, the inoperative area 18 of the cover 15 is in the form of an aperture (not illustrated), and the secondary reflector 9 and the second receiver component 1OB are formed as one unit mounted in the aperture. The second receiver component further comprises a housing 24B which serves as an insulating substrate and a protecting cover for the photovoltaic cell HB, which is designed to enable passive cooling thereof. The primary reflector 7 is formed with an opening 20 for mounting therein the solar radiation receiver component 1OA.
The solar radiation receiver component 1OA is made of a heat-conducting material and includes a centrally located cell-holding portion 22, a heat removal portion 26, at least a part of which surrounds the cell holding portion, and a peripherally disposed mounting arrangement 24 A.
The cell holding portion 22 comprises a cell seat 28 protruding outwardly from the opening 20. The heat removal portion 26 protrudes inwardly from the opening 20 of the primary reflector 7, defining the frusto-conical pipe 3OA, and it is formed with a cooling fluid cavity 32 surrounding the pipe 3OA and adapted to provide contact of cooling fluid disposed therein with the cell seat 28 to withdraw heat therefrom.
The heat removal portion 26 is designed to be located in the shade, cast by the secondary reflector 9. The heat removal portion 26 has an inlet 34 and an outlet 36 connected with the cooling fluid cavity 32.
The unit mounting arrangement 24A includes a support surface 35 fixedly attached to the outer surface of the primary reflector 7 at areas thereof adjacent the aperture 20; means 40 preferably located at three peripheral areas of the solar radiation receiver component (of which only two are seen in Fig. 1), for mounting the unit 5 on the plate 8 with a possibility to independently adjust the distance therebetween; and a self-aligning mechanism 42 with any suitable adjustment means 44 adapted to perform the adjustment (e.g., step motors, electromagnets, etc.), to align the position of the unit 5 with respect to the sun.
For this purpose, the self-aligning mechanism 42 may comprise a sensor (not shown) located on the outer surface of the inoperative area 18 of the cover 15, and connected with the adjustment means 44 and a controller (not shown) to control the adjustment means, based on data received from the sensor. Alternatively, a sensing device can be designed as part of the receiver component 10, which will eliminate the need for the sensor 46. In operation, the unit 5 mounted on the plate 8 tracks the sun and solar radiation passes through the operative area 19 of the transparent cover 15 to impinge upon the primary reflector 7 in a direction parallel to the axis X and is reflected thereby in the direction of its focus point F coinciding with the focal point F2 of the secondary reflector 9. One part of the radiation, which is within the sensitivity waveband of the first photovoltaic cell HA, is then reflected by the secondary reflector 9 towards its focal point Fl, where the pipe 3OA further concentrates it and directs it to the photovoltaic cell HA in a uniformly distributed manner. Radiation within the sensitivity waveband of the second photovoltaic cell HB is not reflected by the secondary reflector 9 but is rather transmitted thereby towards the focal point F2, where the prism 3OB further concentrates it and directs it to the photovoltaic cell HB in a uniformly distributed manner.
A large amount of radiation concentrated in the area of the photovoltaic cell HA, in the first receiver component 1OA, may cause a significant accumulation of heat around there, particularly in the cell seat 28. The heat removing part 26 functions as a heat- exchanger unit by removing the heat from the cell seat 28 with the cooling fluid flowing from the inlet 34 to the outlet 36 through the cooling fluid cavity 32. Similarly, the photovoltaic cell HB is cooled by means provided in the housing 24B of the second receiver component 1OB. The unit 5 can be in a variety of dimensions but, for domestic use, it is preferably compact and easily handled. Such unit may have a diameter of approximately twenty two centimeters and a thickness of approximately seven centimeters, with the diameter d of the secondary reflector 9 being approximately 4.4 centimeters and the corresponding shaded area on the primary reflector 7 being only four percent of the area of the reflector 9. The unit 5 may be unitarily manufactured in mass production and according to industrial standards of high precision. In particular, assembly of all its components into a precise, solid and durable construction may be performed at a relatively low cost.
The firm mounting of the secondary reflector 9 in the aperture of the rigid cover 15 and the firm attachment of the cover 15 to the primary reflector 7, assures that the desired alignment of the primary reflector 7 and the secondary reflector 9 can be easily achieved during the manufacturing process and can be maintained for the duration of the unit service period, hi addition, the cover 15 facilitates keeping the surfaces of the reflectors 7 and 9 environmentally safe.
Thus, the use of the transparent rigid cover 15 is advantageous in both that it enables constructing the unit 5 as one unitary rigid member of precise dimensions and at the same time protects the reflectors, thereby enabling its extended service period.
Figs. 2A and 2B show two respective exemplary designs 5A and 5B of the solar energy utilization unit 5, which are identical except for the shape of their circumference. In the unit 5A this shape is circular and in the unit 5B it is square, the latter enabling a more efficient arrangement of a plurality of units in an array. Due to the concave shape of the primary reflector 7, both units 5A and 5B appear to have a mushroom-like body 64 which may be formed with a leg 62 for facilitating mounting it in a standardized manner, in solar energy utilization systems. The legs 62 may house the unit mounting arrangement, the cell- holding portion and at least a part of the heat removal portion illustrated in Fig. 1. Fig. 3 shows an example of a solar energy utilization system 60 comprising the plate 8 and an array of units 5B attached thereto. The plate 8 is provided with any known tracking mechanism (not shown) to follow the sun. The plate 8 is further provided with means 66 and 68 connected with inlets and outlets of the heat removal portion of all the units to enable the circulation of cooling fluid through the units 5B, as previously shown. The cooling fluid, when withdrawn from the units, may be further used for any suitable purpose. The units designed according to the present invention may easily be individually replaced, when needed, thereby facilitating the maintenance of the system.
One of the challenges of the solar energy utilization unit is routing the power generated by photovoltaic structure HB, which is part of a receiver structure 1OB, as seen in Fig 1. In order to overcome this challenge, additional developments to the system have been introduced.
The receiver structure 1OB comprises a secondary reflector 9 and a prism 3OB. The receiver structure is received within a rigid cover 15.
As seen in Fig. 4, the backside of the secondary reflector 9 is provided with a groove 100. The groove 100 is located so that it is adjacent and parallel to one of the bottom edges of the prism 3OB. It is sized so as to receive a wire lead 102 (seen in Fig. 6).
As seen in Fig. 5A, two openings 104 are provided in the rigid cover 15 adjacent an aperture provided for passage therethrough of the prism 3OB. The openings are located is a position corresponding to center of the groove 100 and are each sized so as to allow for passage therethrough of the leads 102. Alternatively, as seen in Fig. 5B, the aperture 105 may be round, leaving enough space adjacent the prism 3OB for passage of the leads 102 obviating the need for the openings 104.
As seen in Fig. 6, two wire leads 102, each with an end exposed, are fitted within the groove 100. Each lead 102 bends near the middle of the groove 100 at location corresponding to one of the openings 104. The reflector 9 and prism 3OB, which are bonded together, are attached to the rigid cover 15, with the prism passing through the aperture 105 provided therefor. The leads 102 are passed through the openings 104, as seen in Figs. 7A and 7B.
As seen in Fig. 8, an infrared (IR) circuit 106, in the form of a photovoltaic cell, comprises several GaSb cells 108 mounted on an alumina substrate and connected in series. Two copper ribbons 110 protrude perpendicular therefrom and act as positive and negative leads. The IR circuit 106 is mounted to the bottom of a finned aluminum lid 112, as illustrated in Fig. 9, which acts as a heat sink. The side edge 114 of the heat sink is beveled.
As shown in Figs. 1OA and 1OB, the IR circuit is bonded to the top side 116 of the prism 3OB. An appropriate bonding agent, such as silicone adhesive, is used. It is disposed so that the ribbons extend downwardly on the side of the prism 3OB which is adjacent the groove 100, with the ribbons contacting the ends of the leads 102.
As seen in Figs. 1 IA through 11C, an additional cylindrical heat sink is provided in the form of a canister 118, in order to increase heat dissipation. The canister 118 is, at one end, beveled correspondingly to the side edge 114 of the aluminum lid 112. Thermally conductive epoxy is placed on one or both of the beveled edges, and the canister 118 is placed on the aluminum lid 112. A glue bead 120 may be applied between the bottom of the canister 118 and the top of the rigid cover 15, as illustrated in Fig. HB.
It should be noted that while the groove has been illustrated as being linear, other arrangements are possible. For example, the groove may bend 90° around the corner of the prism 3OB, as seen in Fig. 12.
The developments according to the present invention allow for routing the lead wires on the interior portion of the rigid cover, through a portion associated with, and preferably formed within, the receiver structure, and along the side of the prism, where it meets with a portion of the IR circuit.
Fig. 13 illustrates an embodiment of the present invention wherein a number of primary reflectors 7 are molded as a single reflector assembly 130. The reflector assembly 130 comprises the primary reflectors 7 arranged in a tessellated pattern, such as a grid. The reflector assembly 130 comprises one receiver component 1OA associated with each primary reflector, as described above. The reflector assembly 130 is fitted within an enclosure 132, and a single cover 15 is used to enclose the volume above the reflector assembly. The cover 15 comprises a number, equal to the number of primary reflectors 7, of secondary reflectors (not seen) and receiver components 1OB, arranged such that the point of focus of each primary reflector 7 coincides with the point of focus F2 of a corresponding secondary reflector.
The interfaces between the reflector assembly 130 and the enclosure 132 and between the cover 15 and the enclosure are sealed, allowing, if desired, the volume defmed between the reflector assembly and the cover to be filled with an inert gas as described above.
By molding the primary reflectors as a single piece, the costs of manufacture and assembly are reduced. The lowering of these costs are also lowered by forming the cover for all of the primary reflectors from a single piece.
It will be appreciated that other configurations of the tessellated pattern are possible, such as a honeycomb pattern, etc.
According to one modification, the unit 5 is designed such that the primary reflector can withstand heat which may result from some of the concentrated light from the secondary reflector being reflected onto the surface of the primary reflector. As illustrated in Figs. 14A through 14C with respect to the embodiment described with reference to Fig. 13, this may be accomplished by each primary reflector 7 comprising a plastic base 134 with a hole (not seen) in the center. The hole is bigger than would be necessary to receive the receiver component 1OA. A shelf 135 (only seen in Fig. 14C), concentric with the hole, is located immediately adjacent it. The plastic is selected such that silver plating, or any other reflective material, may be applied to it by any conventional means, such as vapor deposition within a vacuum chamber.
A curved metal disc 136 is provided to complete the surface of the primary reflector 7. The disc 136 is sized so that its outer perimeter 138 matches the outer perimeter 140 of the shelf 135 (best seen in Fig. 14C). The base 134 and disc 136 are formed so that their respective upper surfaces 142a, 142b cooperate to form a continuous surface constituting the primary reflector, as described above.
By manufacturing the primary reflector 7 in this manner, plastic may be utilized for a majority of the reflector, which may be manufactured by a simpler and cheaper process. It also results in an overall lighter unit. The area in the vicinity of the receiver component 1OA, which may get very hot due to some of the concentrated solar energy reflected by the secondary reflector 9 not being directed, for whatever reason, exactly toward the non-imaging concentrator of the receiver component 1OA. Thus, the metal disc 136 is provided to withstand the heat which would be generated in this eventuality, without disrupting the normal operation of the unit 5.
While an example of the above embodiment was presented hi use with the embodiment described in reference to Fig. 13, it should be noted that it not thus limited, and may be applied to any solar energy unit designed according to the present invention. It can be appreciated that there are various solar energy utilization units and solar energy utilization systems devisable according to the present invention and that the above descriptions are merely explanatory. Thus, the solar energy utilization unit and solar energy utilization system can be embodied in a variety of aspects, falling within the scope of the present invention mutatis mutandis.

Claims

CLAIMS:
1. A solar energy utilization unit comprising a solar radiation concentrating optics and a solar radiation receiver including first and second receiver components, the first receiver component being designed to convert into electric energy radiation in a first part of the solar spectrum, and the second receiver component being designed to convert into electric energy radiation in a second part of the solar spectrum different from said first part, said solar radiation concentrating optics comprising a concave primary reflector and a convex secondary reflector, the primary reflector being adapted to reflect incident solar radiation towards the secondary reflector, the secondary reflector being adapted to reflect radiation in said first part of the solar spectrum into said first receiver component and to transmit radiation in the second part of the solar spectrum into the second receiver component, said primary reflector being formed with a centrally disposed opening, via which said first receiver component is adapted to receive the radiation reflected by said secondary reflector.
2. A solar energy utilization unit according to Claim 1, wherein both first and second receiver components comprise respective first and second photovoltaic structures.
3. A solar energy utilization unit according to Claim 2, wherein said first and second parts of the solar spectrum are its visible and IR parts.
4. A solar energy utilization unit according to Claim 3, wherein said first part of the solar spectrum is the visible part, and said second part of the solar spectrum is the ER. part.
5. A solar energy utilization unit according to Claim 2, wherein at least one of the first and second receiver components comprise a non-imaging concentrator for forwarding incident concentrated radiation to the corresponding photovoltaic structure in a uniformly distributed manner.
6. A solar energy utilization unit according to Claim 1, further comprising a cover made of a transparent material, said cover being firmly attached to said primary reflector to cover the entire reflecting surface thereof, and holding the secondary reflector at a predetermined position relative to the primary reflector and the first and second receiver components.
7. A solar energy utilization unit according to Claim 6, wherein a volume, formed between the cover, the primary reflector and the solar radiation receiver component, is sealed.
8. A solar energy utilization unit according to Claim 7, wherein said volume contains an inert gas.
9. A solar energy utilization unit according to Claim 1 , wherein said unit comprises a self-aligning mechanism for directing the unit toward incoming solar radiation.
10. A solar energy utilization unit according to Claim 2, wherein said first receiver component comprises the photovoltaic structure and a heat removal portion adjacent thereto, the heat removal means being either active or passive.
11. A solar energy utilization unit according to Claim 2, wherein said second receiver component comprises the photovoltaic structure and a housing protecting and insulating said structure and providing it passive cooling.
12. A solar energy utilization unit according to Claim 10, wherein said heat removal portion extends inwardly from said primary reflector.
13. A solar energy utilization unit according to Claim 1, wherein the unit is of dimensions allowing it to be held, carried and manipulated by hand.
14. A solar energy utilization system, comprising at least one seat and at least one solar energy utilization unit according to any of Claims 1 to 13, detachably attachable thereto.
15. A solar energy utilization system, comprising an integral reflector assembly comprising a plurality of first reflectors according to Claim 1, and a single cover.
16. A solar energy utilization unit comprising a solar radiation concentrating optics and a solar radiation receiver, said receiver being designed to convert radiation into another form of energy, said solar radiation concentrating optics comprising a concave primary reflector and a convex secondary reflector, the primary reflector being adapted to reflect incident solar radiation towards the secondary reflector, the secondary reflector being adapted to direct concentrated radiation toward the receiver, said primary reflector being formed with a centrally disposed opening, via which said receiver is adapted to receive the radiation reflected by said secondary reflector, wherein the primary reflector is made of a central component surrounding said receiver and a peripheral component surrounding said central component, the central component being made of a material which withstands heat better than the material from which the peripheral component is made.
17. A solar energy utilization unit according to Claim 16, wherein said peripheral component is a base and said central component is a metal disk, surfaces of the base and metal disk being adapted to form a continuous surface to reflect said incident solar radiation.
18. A solar energy utilization unit according to Claim 17, wherein the base is made of plastic and is plated with a reflective material, at least on the surface which is adapted, in use, to reflect said incident solar radiation.
19. An integral reflector assembly comprising a plurality of first reflectors, a single cover holding a plurality of corresponding secondary reflectors, to form a plurality of solar energy utilization units according to Claim 16.
20. A reflector element comprising a first surface and a second surface adapted to carry a solar radiation receiver, the first surface being adapted to reflect radiation in a first part of the solar spectrum and to transmit radiation in a second part of the solar spectrum toward the receiver, wherein the second surface comprises a groove adapted to receive a lead wire connectable to the solar radiation receiver.
21. A reflector element according to Claim 20, wherein the second surface comprises at least two portions being non-coplanar.
22. A reflector element according to Claim 21, wherein the solar radiation receiver and the groove are on portions of the second surface which are non-coplanar.
23. A reflector element according to Claim 20, wherein the solar radiation receiver is a photovoltaic cell.
24. A reflector element according to Claim 20, for use with a solar energy utilization unit.
EP05779729A 2004-09-14 2005-09-14 Solar energy utilization unit and solar energy utilization system. Withdrawn EP1815194A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/939,357 US7435898B2 (en) 2003-09-02 2004-09-14 Solar energy utilization unit and solar energy utilization system
US67549105P 2005-04-28 2005-04-28
PCT/IL2005/000984 WO2006030433A2 (en) 2004-09-14 2005-09-14 Solar energy utilization unit and solar energy utilization system

Publications (1)

Publication Number Publication Date
EP1815194A2 true EP1815194A2 (en) 2007-08-08

Family

ID=36060420

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05779729A Withdrawn EP1815194A2 (en) 2004-09-14 2005-09-14 Solar energy utilization unit and solar energy utilization system.

Country Status (2)

Country Link
EP (1) EP1815194A2 (en)
WO (1) WO2006030433A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063300B2 (en) 2005-05-26 2011-11-22 Solfocus, Inc. Concentrator solar photovoltaic array with compact tailored imaging power units
DE102008010012A1 (en) * 2007-06-01 2008-12-04 Solartec Ag Photovoltaic device with at least one at least one light converter layer having optical element
US20090159126A1 (en) * 2007-12-22 2009-06-25 Solfocus, Inc. Integrated optics for concentrator solar receivers
ITBO20080039A1 (en) * 2008-01-23 2009-07-24 Cpower S R L PHOTOVOLTAIC RECEIVER FOR A PHOTOVOLTAIC GENERATION SYSTEM, AND CORRESPONDING SYSTEM OF PHOTOVOLTAIC GENERATION
US7928316B2 (en) * 2008-06-05 2011-04-19 Solfocus, Inc. Solar concentrator backpan
EP2359072A4 (en) 2008-11-18 2012-05-02 Light Prescriptions Innovators Köhler concentrator
US9039213B2 (en) 2009-07-30 2015-05-26 The Regents Of The University Of California Light concentration apparatus, systems and methods
US8684545B2 (en) 2009-07-30 2014-04-01 The Regents Of The University Of California Light concentration apparatus, systems and methods
WO2017027863A1 (en) * 2015-08-12 2017-02-16 Nanoprecision Products, Inc. Stamped solar collector concentrator system
WO2019012472A1 (en) * 2017-07-12 2019-01-17 LLOYD, Gavin A solar collector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177083A (en) * 1977-09-06 1979-12-04 Acurex Corporation Photovoltaic concentrator
US5089055A (en) * 1989-12-12 1992-02-18 Takashi Nakamura Survivable solar power-generating systems for use with spacecraft
US6620995B2 (en) * 2001-03-30 2003-09-16 Sergiy Victorovich Vasylyev Non-imaging system for radiant energy flux transformation
US6668820B2 (en) * 2001-08-24 2003-12-30 Solargenix Energy Llc Multiple reflector solar concentrators and systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006030433A2 *

Also Published As

Publication number Publication date
WO2006030433A2 (en) 2006-03-23
WO2006030433A3 (en) 2008-01-10

Similar Documents

Publication Publication Date Title
US20080000516A1 (en) Solar Energy Utilization Unit and Solar Energy Utilization System
US7435898B2 (en) Solar energy utilization unit and solar energy utilization system
EP1815194A2 (en) Solar energy utilization unit and solar energy utilization system.
US20080251113A1 (en) Single mirror solar concentrator with efficient electrical and thermal management
US20080135087A1 (en) Thin solar concentrator
US8088994B2 (en) Light concentrating modules, systems and methods
US20110061719A1 (en) Solar electricity generation system
US20090000612A1 (en) Apparatuses and methods for shaping reflective surfaces of optical concentrators
US20090056789A1 (en) Solar concentrator and solar concentrator array
MX2010012356A (en) Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector.
KR20090015019A (en) Concentrating solar panel and related systems and methods
WO2006130520A2 (en) Concentrator solar photovoltaic array with compact tailored imaging power units
EP2489960A1 (en) Solar-energy collector/concentrator, with cassegrain-type optics
WO2008039509A2 (en) Optical concentrators having one or more line foci and related methods
CN100570904C (en) Solar energy utilizes unit and solar energy utilization system
US7868244B2 (en) Solar CPV cell module and method of safely assembling, installing, and/or maintaining the same
WO2017164670A1 (en) Solar photovoltaic power generation module and generation device capable of high efficiency and high concentration
WO2010041249A1 (en) High concentration "reverse bulb" solar photovoltaic module
KR101357200B1 (en) Thin concentrator photovoltaic module
KR20130054507A (en) Hybrid solar power system of multiplex-stage concentrated solar energy
KR100420868B1 (en) Solar concentrator module
AU2020278764B2 (en) Remote power beam-splitting
KR101647627B1 (en) Referect-typed High Concentrative Photovoltaic Solar Power Modules Having Ultra Light Weight -High Effiency
KR20150049844A (en) Thin concentrating photovoltaic module for easily arraying primary opical element
KR200277016Y1 (en) Solar concentrator module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070412

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20080110

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 31/052 20060101AFI20080208BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110401