EP1813365B1 - Procédé de fabrication de pièce de turbomachine comportant des orifices d'évacuation d'air de refroidissement - Google Patents

Procédé de fabrication de pièce de turbomachine comportant des orifices d'évacuation d'air de refroidissement Download PDF

Info

Publication number
EP1813365B1
EP1813365B1 EP07101169A EP07101169A EP1813365B1 EP 1813365 B1 EP1813365 B1 EP 1813365B1 EP 07101169 A EP07101169 A EP 07101169A EP 07101169 A EP07101169 A EP 07101169A EP 1813365 B1 EP1813365 B1 EP 1813365B1
Authority
EP
European Patent Office
Prior art keywords
orifices
wall
portions
orifice
wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07101169A
Other languages
German (de)
English (en)
Other versions
EP1813365A1 (fr
Inventor
Thierry Alaux
Patrick Huchin
Patrice Rosset
Boris Soulalioux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1813365A1 publication Critical patent/EP1813365A1/fr
Application granted granted Critical
Publication of EP1813365B1 publication Critical patent/EP1813365B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/324Arrangement of components according to their shape divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53613Spring applier or remover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53613Spring applier or remover
    • Y10T29/53617Transmission spring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53613Spring applier or remover
    • Y10T29/53635Leaf spring

Definitions

  • the present invention relates to the cooling of turbine engine parts by air film.
  • the engine parts swept by these gases are then subjected to high thermomechanical stresses. They are protected by circulating cooling air taken from the compressor in channels arranged under the wall and by evacuating it into the gas stream through small diameter orifices arranged so as to form a film of protective gas between the wall and the flow of hot gas.
  • the parts concerned by this treatment are essentially the distributor sectors, consisting of one or more radial blades between two platforms in ring sectors delimiting the gas stream, as well as the blades of the first turbine stages. The mechanical strength and the life of the parts are increased by this means.
  • the orifices are generally cylindrical holes, made in appropriate areas of the wall to be protected. In order to improve the formation of the air film along the wall, these holes are given a flared shape at its surface. These holes therefore consist of two distinct parts: a cylindrical portion calibrating the air flow and a portion shaped so as to diffuse and orient the flow of air to promote the flow in the formation zone of the cooling film . Examples of such orifices are illustrated in the patents US6183199 , EP 228338 and US 4197443 .
  • a known method of manufacture consists in making these holes in two stages; the flaring portion of the orifice is first machined by electroerosion, a technique also referred to as EDM for electrodischarge machining, then the bottom is pierced by means of a laser beam, for example, to produce a cylindrical channel.
  • EDM electrodischarge machining
  • an electrode is placed at a distance from the surface to be eroded and electrical discharges are produced between it and the part. These discharges cause particles of matter and gradually erode the surface of the piece.
  • the shape of the cavity obtained depends on the geometry of the electrode, which may be frustoconical, for example of rectangular section, or more complex with portions rounded as seen in the documents US 6,183,199 or EP228.338 .
  • the second part, calibrated, is carried out either with the same electrode or by means of a laser beam.
  • the electrode whatever its shape, even if it makes it possible to produce rounded wall portions inside the cavity, can not prevent sharp edges remaining. These edges are the seat of stress concentrations and present risks of crack initiation.
  • the orifices are made in series by means of electrodes cut in a plate and which are therefore arranged in a row. Such a practice does not allow an individual optimization of the geometry of the orifices according to the local profile surrounding them.
  • the patent EP 1616642 discloses a method for making cooling orifices in the wall of a blade. In the wax model are inserted points whose shape corresponds to that of the desired orifices. This process involves interventions on the delicate mold to achieve.
  • This method is characterized in that it consists in forming in the wax model cavities corresponding to the first portions of said orifices of the part, by means of protuberances in the wax mold having a shape with radiated connection areas having a curved profile, complementary to that of said first portions, so that that the model has said cavities and that the output part of the foundry comprises said first portions of the preformed orifices, then machining in the casting part a second orifice portion, placing in communication the bottom of the first portion of orifice with the inner surface of the wall.
  • this orifice portion on the wax model of the part, so that it is formed by casting, one can optimize its shape easily for each emission on the profile of the vein.
  • the heavy and expensive implementation of the electroerosion technique can be avoided and such a method is compatible with the manufacture of multi-blade foundry distributor sectors.
  • said first portion is of flared shape but the method of the invention allows any type of shape.
  • connection areas between two non-coplanar surface portions of the protuberances at least in part have a curved profile so as to avoid the formation of sharp edges. They say they are radiated.
  • the radius of curvature of the radiated surfaces is at least 0.1 mm, preferably 0.2 mm. The curvature of these surfaces is possibly progressive.
  • a second portion of orifice is machined in the casting piece bringing the bottom of the first portion into communication with the inner surface of the wall.
  • the section of this second orifice portion is advantageously calibrated so as to dose the air flow.
  • This portion is of tubular shape with circular section or other, in particular oblong, slot-shaped for example.
  • the machining is performed by means of a laser beam but other means can be implemented.
  • the invention also covers the turbomachine part obtained according to the method and having cooling air outlet orifices whose connection areas of the first portions with the outer wall of the part are radiated.
  • a blade 1 comprises a movable foot 3, a platform 5 and a blade 7.
  • the blade is mounted by the foot in a suitable housing on the rim of a turbine disk.
  • the blade is hollow and includes cavities arranged for the circulation of cooling air. A fraction of this air is directed through the wall of the blade through calibrated orifices. Some of these orifices are simple, tubular. Other orifices 10 comprise a flared portion so as to direct the air along the wall and make it possible to form a film or film for protecting the latter.
  • orifices 10 with a flared portion downstream are for example arranged along the leading edge of the blade on the extrados face 10a or along a generally radial line on the underside of the blade 10b.
  • Another example of a row of flared apertures is along the trailing edge on the intrados face at 10c.
  • FIG. 2 a sectional view along the plane II-II of the wall 71 of the blade through an orifice 10.
  • a first flared portion 10E opening on the outer surface of the wall 71 and a tubular portion 10T.
  • the section of this portion 10T determines the rate of cooling air through the orifice.
  • the air jet is spread laterally in the flared portion 10E, and forms a film together with the other adjacent jets along the wall of the blade.
  • a model made of wax or other equivalent material which comprises a foundry core which forms the internal cavities of the blading.
  • This nucleus is itself manufactured separately and generally has a complex shape in several elementary nuclei.
  • This core is placed in a wax mold and the wax is injected into the space between the core and the inner wall of the mold.
  • the wax model incorporates a core comprising a plurality of core elements 21a to 21d of ceramic material.
  • the wax mold 30 here consists of two parts 30a and 30b each with a molding wall 30a 'and 30b' corresponding to the envelope of the piece.
  • the mold of the example shown is simple in form but depending on the complexity of the room, it can include multiple elements.
  • the wax model 20 is extracted from the mold 30 and is soaked in slips consisting of suspensions of ceramic particles to coat it with successive layers and to make a shell mold. After hardening the mold by cooking, the wax is removed.
  • the piece is obtained by casting a molten metal which occupies the voids between the inner wall of the shell mold and the core. Thanks to a germ or a suitable selector and a controlled cooling, the metal solidifies according to a determined structure. Depending on the nature of the alloy and the expected properties of the part resulting from the casting, it may be directed solidification with a columnar structure, directed solidification with monocrystalline structure or equiaxial solidification respectively.
  • the first two families of parts concern superalloys for parts subjected to high thermal and mechanical stresses in the turbojet engine, such as HP turbine blades.
  • flared holes are formed by machining the casting piece.
  • the hole that we see on the figure 2 is obtained by EDM machining.
  • the connection area between the surface 71 ext and the flared hole 10E has an edge 10E1 that can not be avoided.
  • a machining of this part would lead at best to the realization of a chamfer but not a rounded due in particular to the small size of this type of orifice.
  • the machining tolerances would not allow a sufficiently precise positioning of the tool relative to the area to be machined.
  • the wax mold in which the wax is injected has the impression of the first portions of the orifices.
  • FIG 4 there is shown a sectional view at the inner surface 130a 'of the mold 130a and the model through a protrusion 132 of molding a first portion according to the invention.
  • the elements of the invention corresponding to those of the prior art have the same reference increased by a hundred.
  • the protrusion 132 has the shape of the first portion that is desired to print in the wall 120 'of the model 120 in wax.
  • the faces of the protuberance do not include a part forming an angle less than a demolding limit angle with respect to the demoulding direction in this zone, represented by the arrow D.
  • the angle is defined relative to the withdrawal direction of this insert.
  • the use of an insert has the additional advantage of facilitating the modification of the profile of the protuberances, for example in the phase of part development. Just change the insert alone to make a room with the new flared opening profile.
  • the piece 101 foundry has in its wall 171 a cavity 110E corresponding to the shape of the protrusion 132 which has been applied in the wall 120 'of the wax model 120.
  • This cavity 110E constitutes the first portion of the orifice that it is desired to dig into the wall 120 '.
  • the formation of the cooling air discharge orifices is completed by piercing the bottom of the cavity 110E, for example by a laser beam. This piercing forms a tubular channel 110T.
  • the section of this channel 110T is determined by the desired air flow and its shape can be advantageously circular or oblong.
  • the cavity 110E has a bottom A, whose shape seen from above, is substantially trapezoidal.
  • the cavity is turned downstream with respect to the flow direction of the gases. This bottom is inclined between the tubular portion 110T and the edge A1 of connection to the outer surface 171 ext. of the wall 171.
  • the flanks L1 and L2 of the cavity are curved in the form of cylindrical sectors L1A and L2A concave, here in evolutionary profile, along their connection zone with the bottom A. The surfaces are said to be radiated.
  • the radius of curvature of these surfaces is preferably at least 0.1 mm. and varies along the profile.
  • the flanks L1 and L2 also comprise curved surface portions L1S and L2S, with an evolutive profile, in the direction of the surface of the wall 171ext.
  • the flank of the cavity located transversely between the two lateral flanks L1 and L2 also comprises a convex radiated portion BS of connection with the outer surface 171ext. of the wall 171, and concave radiated portions with the flanks L1 and L2.
  • These radiated surface portions L1S, L2S and BS are complementary to the connecting surfaces of the protuberances 132 with the surface 130a 'of the wax mold 130a in which the model is molded. It is enough to conform correctly the protuberances to obtain a piece without sharp edge in these places.
  • radiating connection portions having a radius of curvature, for example of 0.2 mm, with a minimum of 0.1 mm. They limit the thermal and mechanical stresses in these areas and reduce the occurrences of crack initiation. This improves the overall mechanical strength of the part and its life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • La présente invention concerne le refroidissement de pièces de turbomachines par film d'air.
  • Pour accroître les performances d'un moteur à turbine à gaz, on est amené à augmenter la température des gaz en sortie de la chambre de combustion. Les pièces du moteur balayées par ces gaz sont alors soumises à des contraintes thermomécaniques élevées. On les protège en faisant circuler de l'air de refroidissement prélevé au compresseur dans des canaux disposés sous la paroi et en évacuant celui-ci dans la veine gazeuse par des orifices de faible diamètre ménagés de manière à former une pellicule de gaz protectrice entre la paroi et le flux de gaz chaud. Les pièces concernées par ce traitement sont essentiellement les secteurs de distributeur, constitués d'une ou plusieurs pales radiales entre deux plates-formes en secteurs d'anneau délimitant la veine gazeuse, ainsi que les aubes mobiles des premiers étages de turbine. La tenue mécanique et la durée de vie des pièces s'en trouvent augmentées par ce moyen.
  • Les orifices sont généralement des perçages de forme cylindrique, pratiqués dans des zones appropriées de la paroi à protéger. Afin d'améliorer la formation de la pellicule d'air le long de la paroi, on donne à ces perçages une forme évasée au niveau de sa surface. Ces trous sont donc constitués de deux parties distinctes : une partie cylindrique calibrant le flux d'air et une partie conformée de manière à diffuser et orienter le flux d'air afin de favoriser l'écoulement dans la zone de formation de la pellicule de refroidissement. Des exemples de tels orifices sont illustrés dans les brevets US6183199 , EP 228338 et US 4197443 .
  • Une méthode de fabrication connue consiste à réaliser ces perçages en deux temps ; on commence par usiner la partie évasée de l'orifice par électroérosion, technique désignée aussi par le sigle EDM pour electrodischarge machining, puis on en perce le fond au moyen d'un faisceau laser, par exemple, pour réaliser un canal cylindrique.
  • Selon la technique EDM, une électrode est placée à distance de la surface à éroder et des décharges électriques sont produites entre celle-ci et la pièce. Ces décharges entraînent des particules de matière et érodent progressivement la surface de la pièce. La forme de la cavité obtenue dépend de la géométrie de l'électrode qui peut être tronconique, par exemple à section rectangulaire, ou plus complexe avec des portions arrondies comme on le voit dans les documents US 6.183.199 ou EP228.338 . La deuxième partie, calibrée, est réalisée soit avec la même électrode soit au moyen d'un faisceau laser.
  • On rencontre avec cette technique les problèmes suivants.
  • L'électrode, quelle que soit sa forme, même si elle permet de réaliser à l'intérieur de la cavité des portions de paroi arrondies, ne peut empêcher que des arêtes vives subsistent. Ces arêtes sont le siège de concentrations de contraintes et présentent des risques d'amorces de criques.
  • Pour des raisons principalement économiques, on réalise les orifices en série au moyen d'électrodes découpées dans une plaque et qui sont donc disposées en rangée. Une telle pratique ne permet pas une optimisation individuelle de la géométrie des orifices en fonction du profil local les environnant.
  • Il n'est pas possible de réaliser ce type d'orifice dans les zones d'accès réduit. C'est le cas notamment lorsqu'il s'agit de réaliser des perçages le long des pales d'un secteur de distributeur bipale dans le canal inter aubes. Comme dans cette zone la forme évasée des orifices est indispensable, il n'est alors pas possible de réaliser des secteurs de distributeur bipales par fonderie en une seule pièce. On fabrique chaque aubage séparément et on les soude ensemble pour former le secteur de distributeur. Le coût de fabrication est alors plus élevé.
  • Le brevet EP 1616642 décrit un procédé pour réaliser des orifices de refroidissement dans la paroi d'une aube. On insère dans le modèle en cire des points dont la forme correspondant à celle des orifices souhaités. Ce procédé implique des interventions sur le moule délicates à réaliser.
  • On résout ces problèmes conformément à l'invention, avec un procédé de réalisation d'orifices d'évacuation de fluide de refroidissement dans la paroi d'une pièce fabriquée selon la technique de la fonderie à la cire perdue avec formation d'un modèle dans un moule à cire, la paroi comportant une surface interne et une surface externe, les orifices comportant une première portion débouchant à la surface externe de la paroi. Ce procédé est caractérisé par le fait qu'il consiste à ménager dans le modèle en cire des cavités correspondant aux premières portions desdits orifices de la pièce, par le moyen de protubérances dans le moule à cire ayant une forme avec des zones de raccordement rayonnées ayant un profil courbe, complémentaire à celle des dites premières portions, de telle sorte que le modèle présente lesdites cavités et que la pièce en sortie de fonderie comporte les dites premières portions des orifices préformées, puis à usiner dans la pièce venue de fonderie une seconde portion d'orifice, mettant en communication le fond de la première portion d'orifice avec la surface interne de la paroi.
  • En réalisant cette portion d'orifice sur le modèle en cire de la pièce, de telle sorte qu'elle soit formée par fonderie, on peut optimiser sa forme aisément pour chaque émission sur le profil de la veine. On peut éviter la mise en oeuvre lourde et coûteuse de la technique d'électroérosion et une telle méthode est compatible avec la fabrication de secteurs de distributeurs multi-pales de fonderie.
  • Le plus fréquemment, ladite première portion est de forme évasée mais le procédé de l'invention permet tout type de forme.
  • Les zones de raccordement entre deux portions de surface non coplanaires des protubérances au moins en partie ont un profil courbe de manière à éviter la formation d'arêtes vives. On dit qu'elles sont rayonnées. Le ou Les rayons de courbure des surfaces rayonnées est ou sont d'au moins 0,1 mm, de préférence 0,2 mm. La courbure de ces surfaces est éventuellement évolutive.
  • Conformément à une autre caractéristique, on usine dans la pièce venue de fonderie une seconde portion d'orifice mettant en communication le fond de la première portion avec la surface interne de la paroi. La section de cette seconde portion d'orifice est avantageusement calibrée de manière à doser le débit d'air. Cette portion est de forme tubulaire à section circulaire ou autre, notamment oblongue, en forme de fente par exemple.
  • Selon une méthode préférée, l'usinage est effectué au moyen d'un faisceau laser mais d'autres moyens peuvent être mis en oeuvre.
  • L'invention couvre également la pièce de turbomachine obtenue selon le procédé et comportant des orifices d'évacuation d'air de refroidissement dont les zones de raccordement des premières portions avec la paroi externe de la pièce sont rayonnées.
  • On décrit maintenant l'invention plus en détail en relation avec un mode de réalisation non limitatif illustré sur les dessins annexés et sur lesquels
    • La figure 1 montre une aube mobile de turbine refroidie;
    • La figure 2 montre une vue en coupe de la paroi au niveau d'un orifice d'évacuation d'air de refroidissement selon l'art antérieur ;
    • La figure 3 montre en coupe un modèle de pièce dans son moule à cire ;
    • Les figures 4 à 6 montrent les étapes de réalisation de trous évasés selon l'invention ;
    • Les figures 7 et 8 montrent des vues en perspective d'un orifice évasé selon l'invention.
  • Comme on le voit sur la figure 1, une aube mobile 1 comprend un pied 3, une plate-forme 5 et une pale 7. L'aube est montée par le pied dans un logement approprié sur la jante d'un disque de turbine. Lorsqu'elle est de type refroidi, l'aube est creuse et comprend des cavités agencées pour la circulation d'air de refroidissement. Une fraction de cet air est dirigée à travers la paroi de la pale par des orifices calibrés. Une partie de ces orifices sont de forme simple, tubulaire. D'autres orifices 10 comportent une portion évasée de manière à diriger l'air le long de la paroi et permettre de former un film ou une pellicule de protection de cette dernière. Ces orifices 10 à portion évasée vers l'aval sont par exemple disposés le long du bord d'attaque de la pale sur la face extrados en 10a ou bien le long d'une ligne globalement radiale sur la face intrados de la pale en lOb. Un autre exemple de rangée d'orifices à portion évasée se trouve le long du bord de fuite sur la face intrados en 10c.
  • On a représenté sur la figure 2 une vue en coupe selon le plan II - II de la paroi 71 de la pale à travers un orifice 10. On distingue une première portion évasée 10E débouchant sur la surface externe de la paroi 71 et une portion tubulaire 10T. La section de cette portion 10T détermine le débit de l'air de refroidissement à travers l'orifice. Le jet d'air est étalé latéralement dans la partie évasée 10E, et forme une pellicule ensemble avec les autres jets adjacents le long de la paroi de la pale.
  • En raison de la complexité de sa géométrie et des contraintes thermomécaniques auxquelles elle doit résister, ce type de pièce est fabriqué par fonderie à la cire perdue. On rappelle ci-après cette technique connue.
  • On réalise tout d'abord un modèle en cire ou autre matériau équivalent qui comprend un noyau de fonderie figurant les cavités internes de l'aubage. Ce noyau est lui-même fabriqué séparément et a généralement une forme complexe en plusieurs noyaux élémentaires. On place ce noyau dans un moule à cire et on injecte la cire dans l'espace ménagé entre le noyau et la paroi interne du moule. On obtient le modèle incorporant le noyau ; il est la réplique de la pièce à fondre.
  • Un exemple de pièce, ici une aube de turbine, est représenté sur la figure 3. Le modèle 20 en cire incorpore un noyau comprenant plusieurs éléments de noyau 21 a à 21d en matériau céramique. Le moule à cire 30 est ici constitué de deux parties 30a et 30b avec chacune une paroi de moulage 30a' et 30b' correspondant à l'enveloppe de la pièce. Le moule de l'exemple représenté est de forme simple mais selon la complexité de la pièce, il peut comprendre de multiples éléments.
  • Ensuite, on extrait du moule 30 le modèle en cire 20 et on le trempe dans des barbotines constituées de suspensions de particules céramiques pour l'enrober de couches successives et confectionner un moule carapace. Après avoir durci le moule par une cuisson, on élimine la cire. On obtient la pièce en coulant un métal en fusion qui vient occuper les vides entre la paroi intérieure du moule carapace et le noyau. Grâce à un germe ou un sélecteur approprié et un refroidissement contrôlé, le métal se solidifie selon une structure déterminée. Selon la nature de l'alliage et les propriétés attendues de la pièce résultant de la coulée, il peut s'agir de solidification dirigée à structure colonnaire, de solidification dirigée à structure monocristalline ou de solidification équiaxe respectivement. Les deux premières familles de pièces concernent des superalliages pour pièces soumises à de fortes contraintes tant thermiques que mécaniques dans le turboréacteur, comme les aubes de turbine HP.
  • Selon la technique de l'art antérieur, on forme les trous évasés par usinage de la pièce venue de fonderie. L'orifice que l'on voit sur la figure 2 est obtenu par usinage EDM. On voit en particulier que la zone de raccordement entre la surface 71 ext et le trou évasé 10E présente une arête 10E1 qu'il n'est pas possible d'éviter. Un usinage de cette partie conduirait au mieux à la réalisation d'un chanfrein mais pas à un arrondi en raison en particulier de la faible dimension de ce type d'orifice. Les tolérance d'usinage ne permettraient pas un positionnent suffisamment précis de l'outil par rapport à la zone à usiner.
  • On propose selon l'invention de réaliser la dite première portion, évasée, des orifices directement sur le modèle en cire. De préférence le moule à cire dans lequel la cire est injectée présente l'empreinte des premières portions des orifices.
  • Sur la figure 4, on a représenté une vue en coupe au niveau de la surface interne 130a' du moule 130a et du modèle à travers une protubérance 132 de moulage d'une première portion conformément à l'invention. Les éléments de l'invention correspondant à ceux de l'art antérieur ont la même référence augmentée d'une centaine. La protubérance 132 a la forme de la première portion que l'on souhaite imprimer dans la paroi 120' du modèle 120 en cire. Afin de satisfaire aux contraintes du démoulage, les faces de la protubérance ne comprennent pas de partie formant un angle inférieur à un angle limite de démoulage par rapport à la direction de démoulage en cette zone, représentée par la flèche D. Lorsque le moule est constitué d'une pluralité d'éléments avec un insert spécifique pour la protubérance ou un groupe de protubérances, il suffit que l'angle soit défini par rapport à la direction de retrait de cet insert. L'emploi d'un insert présente l'avantage supplémentaire de faciliter la modification du profil des protubérances, par exemple en phase de développement de pièce. Il suffit de changer l'insert seul pour fabriquer une pièce avec le nouveau profil des ouvertures évasées.
  • La pièce 101 venue de fonderie présente dans sa paroi 171 une cavité 110E correspondant à la forme de la protubérance 132 que l'on a appliquée dans la paroi 120' du modèle en cire 120. Cette cavité 110E constitue la première portion de l'orifice que l'on souhaite creuser dans la paroi 120'. On termine la formation des orifices d'évacuation d'air de refroidissement en perçant le fond de la cavité 110E, par faisceau laser par exemple. Ce perçage forme un canal tubulaire 110T. La section de ce canal 110T est déterminée par le débit d'air souhaité et sa forme peut être avantageusement circulaire ou oblongue. Ces deux étapes sont illustrées par les figures 5 et 6.
  • Sur les figures 7 et 8, on voit une réalisation d'orifice 110 d'évacuation d'air de refroidissement qu'il est possible d'obtenir selon le procédé de l'invention dans une paroi 171 qu'il s'agit de refroidir par film d'air. Les différentes portions de surface sont représentées avec des segments de génératrices directrices pour en montrer le caractère tridimensionnel.
  • On voit la première portion 110E, de forme évasée, débouchant sur la surface externe 171ext. de la paroi 171. Une seconde portion 110T, tubulaire, est usinée dans le fond la première portion et débouche sur la surface interne 171int. de la paroi 171. La cavité 110E a un fond A, dont la forme vue de dessus, est sensiblement trapézoïdale. La cavité est tournée vers l'aval par rapport au sens d'écoulement des gaz. Ce fond est incliné entre la portion tubulaire 110T et le bord A1 de raccordement à la surface extérieure 171 ext. de la paroi 171. Les flancs L1 et L2 de la cavité sont incurvés en forme de secteurs cylindriques L1A et L2A concave, ici à profil évolutif, le long de leur zone de raccordement avec le fond A. Les surfaces sont dites rayonnées. Le rayon de courbure de ces surfaces est avantageusement d'au moins 0,1 mm. et varie le long du profil. Les flancs L1 et L2 comprennent également des portions de surface incurvées L1S et L2S, à profil évolutif, en direction de la surface de la paroi 171ext. Le flanc de la cavité situé transversalement entre les deux flancs latéraux L1 et L2 comprend aussi une partie rayonnée BS convexe de raccordement avec la surface extérieure 171ext. de la paroi 171, et des portions rayonnées concaves avec les flancs L1 et L2.
  • Ces portions de surface rayonnées L1S, L2S et BS sont complémentaires des surfaces de raccordement des protubérances 132 avec la surface 130a' du moule à cire 130a dans lequel le modèle est moulé. Il suffit de conformer correctement les protubérances pour obtenir une pièce sans arête vive en ces endroits.
  • Ces portions de raccordement rayonnées présentant un rayon de courbure, par exemple de 0,2 mm, avec un minimum de 0,1 mm. Elles limitent les contraintes thermiques et mécaniques dans ces zones et réduisent les occurrences d'amorce de crique. On améliore ainsi globalement la tenue mécanique de la pièce et sa durée de vie.
  • Un autre avantage par rapport à l'usinage EDM est l'obtention de surfaces présentant une faible rugosité, favorable aérodynamiquement. Par exemple la rugosité Ra par EDM est typiquement de 4,5 µm. Obtenir une valeur plus faible est très onéreux. Par le procédé de fonderie on obtient aisément un état de surface plus fin ; Ra = 1,2 µm par exemple.
  • On note que la ligne d'intersection de la zone tubulaire 110T avec le fond de la première portion 110 E n'est pas rayonnée dans la mesure où elle est obtenue par usinage.

Claims (11)

  1. Procédé de réalisation d'orifices (110) d'évacuation de fluide de refroidissement dans une paroi (171) d'une pièce fabriquée selon la technique de la fonderie à la cire perdue avec formation d'un modèle dans un moule à cire, la paroi (171) comportant une surface interne (171int) et une surface externe (171ext), les orifices comportant une première portion (110E) débouchant à la surface externe (171ext) de la paroi, caractérisé par le fait qu'il consiste à ménager dans le modèle en cire des cavités correspondant aux premières portions (110E) desdits orifices (110) de la pièce, par le moyen de protubérances (132) dans le moule à cire ayant une forme avec des zones de raccordement rayonnées ayant un profil courbe, complémentaire à celle des dites premières portions (110E), de telle sortie que le modèle présente lesdites cavités et que la pièce en sortie de fonderie comporte les dites premières portions des orifices préformées, puis à usiner dans la pièce venue de fonderie une seconde portion (110T) d'orifice, mettant en communication le fond de la première portion (110E) d'orifice avec la surface interne (171int) de la paroi.
  2. Procédé selon la revendication précédente selon lequel les cavités correspondant aux dites premières portions (110E) des orifices sont de forme évasée
  3. Procédé selon l'une des revendications 1 à 2 selon lequel les zones de raccordement, au moins en partie, ménagées sur les cavités correspondant aux dites premières portions (110E) des orifices sont rayonnées, avec un profil courbe.
  4. Procédé selon la revendication 3 selon lequel la zone de raccordement entre les flancs des cavités correspondant aux dites premières portions (110E) des orifices, avec la surface externe du modèle est rayonnée, avec un profil courbe.
  5. Procédé selon la revendication 3 ou 4 selon lequel le(s) rayon(s) de courbure des surfaces rayonnées est (sont) d'au moins 0,1 mm.
  6. Procédé selon la revendication précédente selon lequel le(s) rayon(s) de courbure des surfaces rayonnées est (sont) de 0,2 mm.
  7. Procédé selon l'une des revendications 3 à 6 selon lequel le rayon de courbure le long du profil des surfaces rayonnées est évolutif.
  8. Procédé selon la revendication 1 selon lequel on usine la seconde portion (110T) d'orifice en forme de tube.
  9. Procédé selon la revendication précédente selon lequel l'usinage est effectué au moyen d'un faisceau laser ou par EDM.
  10. Pièce de turbomachine obtenue selon le procédé de l'une des revendications précédentes comportant des orifices d'évacuation d'air de refroidissement avec des éléments de paroi, dont les zones (BS) de raccordement des premières portions d'orifice avec la paroi externe (171ext) de la pièce sont rayonnées, avec un profil courbe.
  11. Pièce selon la revendication précédente dont les rayons de courbure des surfaces rayonnées sont d'au moins 0,1 mm.
EP07101169A 2006-01-27 2007-01-25 Procédé de fabrication de pièce de turbomachine comportant des orifices d'évacuation d'air de refroidissement Active EP1813365B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0650292A FR2896710B1 (fr) 2006-01-27 2006-01-27 Procede de fabrication de piece de turbomachine comportant des orifices d'evacuation d'air de refroidissement

Publications (2)

Publication Number Publication Date
EP1813365A1 EP1813365A1 (fr) 2007-08-01
EP1813365B1 true EP1813365B1 (fr) 2011-05-18

Family

ID=37027418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07101169A Active EP1813365B1 (fr) 2006-01-27 2007-01-25 Procédé de fabrication de pièce de turbomachine comportant des orifices d'évacuation d'air de refroidissement

Country Status (6)

Country Link
US (1) US7841083B2 (fr)
EP (1) EP1813365B1 (fr)
CN (1) CN101007337B (fr)
CA (1) CA2576709C (fr)
FR (1) FR2896710B1 (fr)
RU (1) RU2421296C2 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8899303B2 (en) 2011-05-10 2014-12-02 Howmet Corporation Ceramic core with composite insert for casting airfoils
US8915289B2 (en) * 2011-05-10 2014-12-23 Howmet Corporation Ceramic core with composite insert for casting airfoils
US9138804B2 (en) 2012-01-11 2015-09-22 United Technologies Corporation Core for a casting process
US8408446B1 (en) 2012-02-13 2013-04-02 Honeywell International Inc. Methods and tooling assemblies for the manufacture of metallurgically-consolidated turbine engine components
US9033670B2 (en) 2012-04-11 2015-05-19 Honeywell International Inc. Axially-split radial turbines and methods for the manufacture thereof
US9115586B2 (en) 2012-04-19 2015-08-25 Honeywell International Inc. Axially-split radial turbine
US9476305B2 (en) 2013-05-13 2016-10-25 Honeywell International Inc. Impingement-cooled turbine rotor
US20150184518A1 (en) * 2013-12-26 2015-07-02 Ching-Pang Lee Turbine airfoil cooling system with nonlinear trailing edge exit slots
EP3002415A1 (fr) * 2014-09-30 2016-04-06 Siemens Aktiengesellschaft Composant de turbomachine, en particulier d'un composant de moteur à turbine à gaz, avec une paroi refroidie et procédé de fabrication
US11280214B2 (en) * 2014-10-20 2022-03-22 Raytheon Technologies Corporation Gas turbine engine component
US10260353B2 (en) 2014-12-04 2019-04-16 Rolls-Royce Corporation Controlling exit side geometry of formed holes
US20160298462A1 (en) 2015-04-09 2016-10-13 United Technologies Corporation Cooling passages for a gas turbine engine component
US10006293B1 (en) 2015-07-22 2018-06-26 Florida Turbine Technologies, Inc. Apparatus and process for refining features in an additive manufactured part
FR3053999B1 (fr) * 2016-07-13 2020-06-26 Safran Aircraft Engines Production amelioree de trous de refroidissement d'une aube
US10927705B2 (en) * 2018-08-17 2021-02-23 Raytheon Technologies Corporation Method for forming cooling holes having separate complex and simple geometry sections
US11000925B2 (en) * 2018-09-21 2021-05-11 Raytheon Technologies Corporation Method of forming cooling holes
FR3101104B1 (fr) * 2019-09-23 2021-09-03 Safran Aircraft Engines Dispositif de refroidissement par jets d’air d’un carter de turbine
FR3124822B1 (fr) 2021-07-02 2023-06-02 Safran Aube de turbomachine equipee d’un circuit de refroidissement et procede de fabrication a cire perdue d’une telle aube

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1305064A (fr) * 1961-11-07 1962-09-28 Howe Sound Co Procédé et dispositif pour la production de modèles à noyaux
FR90962E (fr) * 1961-11-07 1968-03-22 Howe Sound Co Procédé et dispositif pour la production de modèles à noyaux
US3596703A (en) * 1968-10-01 1971-08-03 Trw Inc Method of preventing core shift in casting articles
US3957104A (en) * 1974-02-27 1976-05-18 The United States Of America As Represented By The Administrator Of The United States National Aeronautics And Space Administration Method of making an apertured casting
FR2569225A1 (fr) * 1977-06-11 1986-02-21 Rolls Royce Aube creuse refroidie, pour moteur a turbine a gaz
US4197443A (en) * 1977-09-19 1980-04-08 General Electric Company Method and apparatus for forming diffused cooling holes in an airfoil
US4684323A (en) * 1985-12-23 1987-08-04 United Technologies Corporation Film cooling passages with curved corners
US5243759A (en) * 1991-10-07 1993-09-14 United Technologies Corporation Method of casting to control the cooling air flow rate of the airfoil trailing edge
US5382133A (en) * 1993-10-15 1995-01-17 United Technologies Corporation High coverage shaped diffuser film hole for thin walls
DE59808269D1 (de) * 1998-03-23 2003-06-12 Alstom Switzerland Ltd Filmkühlungsbohrung
US7036556B2 (en) * 2004-02-27 2006-05-02 Oroflex Pin Development Llc Investment casting pins
US7172012B1 (en) * 2004-07-14 2007-02-06 United Technologies Corporation Investment casting
US7144220B2 (en) * 2004-07-30 2006-12-05 United Technologies Corporation Investment casting

Also Published As

Publication number Publication date
CN101007337A (zh) 2007-08-01
CN101007337B (zh) 2013-01-09
FR2896710A1 (fr) 2007-08-03
FR2896710B1 (fr) 2009-10-30
US7841083B2 (en) 2010-11-30
RU2421296C2 (ru) 2011-06-20
CA2576709A1 (fr) 2007-07-27
EP1813365A1 (fr) 2007-08-01
CA2576709C (fr) 2014-01-14
RU2007103246A (ru) 2008-08-10
US20070175009A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
EP1813365B1 (fr) Procédé de fabrication de pièce de turbomachine comportant des orifices d'évacuation d'air de refroidissement
EP2307157B1 (fr) Procede de fabrication d'une piece d'aubage
EP3313597B1 (fr) Procede de fabrication d'une aube comportant une baignoire integrant un muret
EP3325777B1 (fr) Aubage de distributeur haute pression avec un insert à géométrie variable
WO2016151234A1 (fr) Noyau ceramique pour aube de turbine multi-cavites
FR2898384A1 (fr) Aube mobile de turbomachine a cavite commune d'alimentation en air de refroidissement
EP1496205B1 (fr) Aubes refroidies de moteur à turbine à gaz
CA2887335C (fr) Procede de fabrication d'au moins une piece metallique de turbomachine
EP3164237A1 (fr) Procédé de fabrication d'une aube bi-composant pour moteur a turbine a gaz et aube obtenue par un tel procédé
EP3942156B1 (fr) Insert tubulaire de refroidissement par impact pour un distributeur de turbomachine
EP4363697A1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement et procede de fabrication a cire perdue d'une telle aube
EP4118304A1 (fr) Aube creuse de turbomachine
EP3942157B1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement et procede de fabrication a cire perdue d'une telle aube
FR2874187A1 (fr) Procede de fabrication d'une aube de turbomachine par moulage a cire perdue
FR3037972A1 (fr) Procede simplifiant le noyau utilise pour la fabrication d'une aube de turbomachine
WO2024056977A1 (fr) Grappe de modeles realises en cire et moule pour la fabrication par moulage a cire perdue d'une pluralite d'elements de turbomachine
FR2949366A1 (fr) Realisation par procede mim d'un morceau de piece pour la reparation d'une aube de distributeur de turbine
FR3085288A1 (fr) Procede de fabrication par fonderie a la cire perdue d'un assemblage metallique pour turbomachine
FR3026973A1 (fr) Modele en forme de grappe et carapace ameliores pour la fabrication par moulage a cire perdue d'elements aubages de turbomachine d'aeronef
WO2023057705A1 (fr) Procede ameliore de fabrication d'un moule carapace pour la fabrication de pieces metalliques aeronautiques par fonderie a cire perdue
FR3094035A1 (fr) Aube de turbomachine equipee d’un circuit de refroidissement avec zone de raccordement optimisee
FR3076750A1 (fr) Procede de fabrication d'une roue pour une turbomachine
FR3108539A1 (fr) Procede de solidification dirigee pour alliages metalliques et modele en materiau eliminable pour le procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROSSET, PATRICE

Inventor name: HUCHIN, PATRICK

Inventor name: SOULALIOUX, BORIS

Inventor name: ALAUX, THIERRY

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20090304

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007014596

Country of ref document: DE

Effective date: 20110630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007014596

Country of ref document: DE

Effective date: 20120221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 18