EP1810303B1 - Wärmetauscher für einen transformator - Google Patents

Wärmetauscher für einen transformator Download PDF

Info

Publication number
EP1810303B1
EP1810303B1 EP05813600.3A EP05813600A EP1810303B1 EP 1810303 B1 EP1810303 B1 EP 1810303B1 EP 05813600 A EP05813600 A EP 05813600A EP 1810303 B1 EP1810303 B1 EP 1810303B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
opening
heat
transformer
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05813600.3A
Other languages
English (en)
French (fr)
Other versions
EP1810303A2 (de
Inventor
Emil Bercea
Bo ASTRÖM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Publication of EP1810303A2 publication Critical patent/EP1810303A2/de
Application granted granted Critical
Publication of EP1810303B1 publication Critical patent/EP1810303B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0031Radiators for recooling a coolant of cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/18Safety or protection arrangements; Arrangements for preventing malfunction for removing contaminants, e.g. for degassing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling

Definitions

  • the invention relates to a heat exchanger, in particular for a transformer, with a heat exchange medium, which is hineinleitbar via a feed element in a heat exchange element and via a drain element from the heat exchange element, with a first temperature measurement of an inlet flow of the heat exchange medium and a second temperature measurement of a flow stream of the heat exchange medium ,
  • transformers can be used for a variety of applications.
  • power transformers with a power to be transmitted of at least 5 MVA give it in operation from a considerable amount of heat, which is usually discharged through heat exchangers to the environment.
  • a cooling circuit is provided as a rule, so that the heat exchanger used can optionally be arranged remotely from the transformer.
  • a typical embodiment of such a heat exchange circuit provides that one or more, often identically designed heat exchanger are each supplied via an inlet connection with heat exchange medium.
  • a specially designed surface of the heat exchanger then ensures the best possible heat transfer to a second heat transfer medium, which is also involved as a recooling medium in the heat exchange process. This can be, for example, the surrounding air or a liquid, depending on how the heat exchanger is constructed.
  • the inlet temperature of the heat exchange medium and the outlet temperature from the heat exchanger of the heat exchange medium is measured.
  • special pipe sections are flanged directly to the inlet connection or the outlet connection of the heat exchanger, wherein in these pieces of pipe a dip tube is welded or screwed, which receives a thermometer.
  • the measured temperature in the flow or in the course of the heat exchanger is measured only with a certain time delay, since a change in temperature is first passed to the material of the thermowell and then to the thermometer.
  • the temperature measuring pipe pieces must be considered in the planning of the design of the transformer.
  • the dimensions of the transformer with the heat exchanger will be correspondingly large.
  • the patent document US 4 512 387 A discloses a heat exchanger according to the preamble of claim 1, in particular a system for recovering power loss of power transformers.
  • the cooling is carried out by heat exchanger comprehensive cooling circuits.
  • heat probes are provided in the cooling circuit.
  • the patent document US 2004/158428 A1 discloses a portable cooling system for power transformers, which has a controller, with the various operating modes of the cooling system can be realized. For this purpose, a plurality of sensors are provided, including temperature probes in the cooling circuit.
  • the heat exchanger according to the invention is characterized in that a first opening is arranged in the inlet element, which can be positioned in the inlet flow during operation of the heat exchanger, a first temperature probe to a predetermined location, and that a second opening is arranged in the discharge element, in the operation of the Heat exchanger, a second temperature probe is positioned at a predetermined location in the flow stream.
  • the temperature measurement is now carried out on the heat exchanger itself.
  • the construction is simplified and the possibilities in the arrangement of a heat exchanger with a transformer rise.
  • the position of the temperature measurement is now directly at the inlet or at the outlet of the heat exchange medium at the heat exchanger, so that on closed system prevented.
  • the sole FIGURE shows a radiator 10 which serves as a recooler for a cooling circuit of a power transformer, wherein neither the power transformer, nor other details of the cooling circuit are shown in this figure.
  • the regenerated with the radiator 10 power transformer has a power to be transmitted of about 15 MVA, in the example shown, the only radiator 10 is sufficiently dimensioned for the re-cooling of the heat generated by the power transformer.
  • radiator 10 in case of need, a plurality of such radiator 10 are connected in parallel in the cooling circuit or a cooling requirements corresponding heat exchanger surface is mounted on the radiator 10, so that the cooling capacity of this unit is increased appropriately.
  • the example shown shows the radiator 10 as a stationary heat exchanger, so that in the figure below with the geodetic "bottom” is meant.
  • an inlet connection 12 is shown in the figure at the top of the radiator 10, the flow direction of the inflowing coolant being indicated by a first arrow 14.
  • the inlet nozzle 12 is formed as a pipe piece, which is on the one hand connected to a radiator element 16 and on the other hand, a first flange 18, in particular for direct Connection to the power transformer or a connecting pipe of the coolant circuit is provided.
  • the incoming coolant in this example, a heat exchanger oil, which is often used in transformer cooling circuits, flows through the inlet port 12 to the radiator element 16, wherein the coolant flow is divided into a plurality of ribs 20, so that a plurality of coolant sub-streams are formed, the top down the cooling element 16 go through.
  • the coolant partial flows in turn collect to a common outflow stream. This common outflow flow passes through an outlet connection 22 back to the power transformer or into the coolant circuit.
  • the ribs 20 may be blown by the forced air flow, for example, by a forced flow of convention.
  • the generated air flow is so strong that sets a desired temperature of the coolant in the drain stream.
  • a first opening 24 in the inlet nozzle 12 is arranged.
  • the first sealing element 26 is still shown, which is arranged in the first opening 24.
  • a combined device of venting element and thermocouple medium-tight in the first opening 24 can be inserted. This combined device is not shown in the single FIGURE, but known in the art.
  • the venting device is necessary in particular when filling the coolant circuit or the radiator 10 in order to vent the air collecting at the highest points of the relevant circuit or the radiator 10, which air is gradually displaced by the cooling medium filled in the coolant circuit.
  • the assumption of a further technical function that can be realized according to the invention at the same location of the first opening 24 is the temperature measurement with a first thermocouple.
  • the first thermocouple can now be moved to a position in the pipe section of the inlet nozzle 12, which according to experience best corresponds to the actual inlet temperature of the cooler 10.
  • the first sealing element 26 seals the first thermocouple in the region of the first opening 24 against a possible coolant outlet from the cooling system.
  • the otherwise necessary immersion sleeve for sealing an opening in a pipeline is avoided.
  • the measured value is measured directly by the thermocouple in the coolant and not indirectly via the material of the immersion sleeve and thus damped and delayed. In this way, the measurement has become more accurate and faster.
  • a second opening 30 is disposed at a lower location of the pipe section of the downcomer 22 and provided with a second sealing element 32.
  • the second sealing element 32 is designed with a resilient plastic compound and completely closes the second opening 30, so that no coolant can escape in the inner region of the cooling element 16 or the drain neck 22 even if no thermocouple is inserted.
  • the plastic mass is designed so yielding and provided with a further opening through which the rod-like part of a second thermocouple through the plastic material and the second opening 30 can be inserted and fixed in a desired position.
  • thermocouple 34 is shown only symbolically.
  • a third aperture 36 is also located at a lower location of the radiator element 16, but spaced from the second aperture 30 so far that the devices inserted into the apertures 30, 36 do not interfere with each other.
  • a connecting element 38 Connected to the third opening 36 is a connecting element 38 which is suitable for receiving a discharge device, in this case a shut-off valve 40.
  • the shut-off valve 40 is shown only as a symbol and is designed for example as a shut-off ball valve or gate valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Transformer Cooling (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

  • Die Erfindung betrifft einen Wärmetauscher, insbesondere für einen Transformator, mit einem Wärmetauschmedium, welches über ein Zulaufelement in ein Wärmetauschelement hineinleitbar und über ein Ablaufelement aus dem Wärmetauschelement herausleitbar ist, mit einer ersten Temperaturmessung eines Zulaufstroms des Wärmetauschermediums und mit einer zweiten Temperaturmessung eines Ablaufstroms des Wärmetauschmediums.
  • Es ist allgemein bekannt, das Transformatoren für eine Vielzahl von Anwendungen einsetzbar sind. Insbesondere Leistungstransformätoren mit einer zu übertragenden Leistung von wenigstens 5 MVA geben dabei im Betrieb eine beachtliche Wärmemenge ab, die üblicherweise über Wärmetauscher an die Umgebung abgegeben wird. Dazu ist in der Regel ein Kühlkreislauf vorgesehen, so dass der verwendete Wärmetauscher gegebenenfalls auch entfernt vom Transformator anordenbar ist.
  • Eine übliche Ausgestaltung eines derartigen Wärmetauschkreislaufes sieht vor, dass ein oder mehrere, häufig gleichartig gestalteter Wärmetauscher jeweils über einen Zulaufstutzen mit Wärmetauschmedium versorgt werden. Eine speziell gestaltete Oberfläche des Wärmetauschers sorgt dann für einen möglichst optimalen Wärmeübergang an ein zweites Wärmeträgermadium, das als Rückkühlmedium auch an dem Wärmetauschprozess beteiligt ist. Dies kann zum Beispiel die umgebenden Luft sein oder auch eine Flüssigkeit, je nachdem wie der Wärmetauscher aufgebaut ist.
  • Zur Überprüfung der Wärmebilanz solcher Wärmetauscher ist es nach allgemeinen Regeln der Technik und der Normung vorgeschrieben, dass die Zulauftemperatur des Wärmetauschmediums sowie die Ablauftemperatur aus dem Wärmetauscher des Wärmetauschmediums gemessen wird. Dazu werden spezielle Rohrstücke unmittelbar an den Zulaufstutzen beziehungsweise den Ablaufstutzen des Wärmetauschers angegeflanscht, wobei in diese Rohrstücke eine Tauchhülse eingeschweißt oder eingedreht ist, die einen Thermometer aufnimmt. Bei einer derartigen Anordnung wird die gemessene Temperatur im Vorlauf beziehungsweise im Ablauf des Wärmetauschers erst mit einer bestimmten zeitlichen Verzögerung gemessen, da eine Temperaturänderung erst an das Material der Tauchhülse und danach an den Thermometer weitergegeben wird.
  • Zudem müssen die Temperaturmessrohrstücke bei der Planung um Konzeption des Transformators berücksichtigt werden. Die Abmessungen des Transformators mit dem Wärmetauscher werden entsprechend groß ausfallen.
  • Das Patentdokument US 4 512 387 A offenbart einen Wärmetauscher gemäß dem Oberbegriff des Anspruchs 1, insbesondere ein System zur Wiedergewinnung von Verlustleistung von Leistungstransformatoren. Im Betrieb eines solchen Transformators erfolgt die Kühlung durch Wärmetauscher umfassende Kühlkreisläufe. Unter anderem zur Überwachung der Funktionalität eines Kühlkreislaufes sind im Kühlkreislauf Wärmesonden vorgesehen.
  • Das Patentdokument US 2004/158428 A1 offenbart ein tragbares Kühlsystem für Leistungstransformatoren, welches über einen Controller verfügt, mit dem verschiedene Betriebsarten des Kühlsystems realisierbar sind. Hierzu sind eine Vielzahl von Sensoren vorgesehen, umfassend auch Temperatursonden im Kühlkreislauf.
  • Ausgehend vom vorgenannten Stand der Technik ist es Aufgabe der Erfindung, einen Wärmetauscher für einen Transformator anzugeben, bei dem die Messung verbessert ist.
  • Diese Aufgabe wird gelöst durch den erfindungsgemäßen Wärmetauscher für einen Transformator mit den im Patentanspruch 1 genannten Merkmalen.
  • Demgemäß kennzeichnet sich der erfindungsgemäße Wärmetauscher dadurch, dass eine erste Öffnung im Zulaufelement angeordnet ist, die der im Betrieb des Wärmetauschers eine erste Temperatursonde an eine vorbestimmte Stelle im Zulaufstrom positionierbar ist, und dass eine zweite Öffnung im Ablaufelement angeordnet ist, in der im Betrieb des Wärmetauschers eine zweite Temperatursonde an eine vorbestimmte Stelle im Ablaufstrom positioniert ist.
  • Demnach ist es erfindungsgemäß vorgesehen, dass die Temperaturmessung nunmehr am Wärmetauscher selbst vorgenommen wird. Somit entfallen die seither bekannten Rohrstücke mit jeweils einem Temperaturmessinstrument, das gemäß dem seither bekannten Stand der Technik an den Wärmetauscher angeflanscht wurde. Auf diese Weise ist die Konstruktion vereinfacht und die Möglichkeiten bei der Anordnung von einem Wärmetauscher mit einem Transformator steigen.
  • Zudem ist die Position der Temperaturmessung nunmehr unmittelbar am Eintritt beziehungsweise am Austritt des Wärmetauschmediums am Wärmetauscher, so dass auf
    schlossenen System verhindert. Zudem ist mit einer derartigen Anordnung erreicht, dass die Temperaturmessung direkt im Wärmetauschermedium erfolgt. Eine durch die Tauchhülse verursachte Totzeit in der Temperaturmessung ist vermieden.
  • Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Wärmetauschers sind den weiteren abhängigen Ansprüchen zu entnehmen.
  • Anhand des in der Zeichnung dargestellten Ausführungsbeispiels soll die Erfindung, deren vorteilhafte Ausgestaltung und Verbesserungen der Erfindung, sowie besondere Vorteile der Erfindung näher erläutert und beschrieben werden.
  • Es zeigt:
  • einzige Fig.
    einen Transformatorkühler.
  • Die einzige Fig. zeigt einen Kühler 10, der als Rückkühler für einen Kühlkreislauf eines Leistungstransformators dient, wobei weder der Leistungstransformator, noch andere Details des Kühlkreislaufs in dieser Figur dargestellt sind. Der mit dem Kühler 10 rückgekühlte Leistungstransformator hat eine zu übertragende Leistung von etwa 15 MVA, wobei im gezeigten Beispiel der einzige Kühler 10 für die Rückkühlung der anfallenden Wärme des Leistungstransformätors ausreichend dimensioniert ist.
  • Es ist aber ohne weiteres denkbar, dass im Bedarfsfalle mehrere solcher Kühler 10 im Kühlkreislauf parallel geschaltet sind oder eine den Kühlungsanforderungen entsprechende Wärmetauscherfläche am Kühler 10 angebracht wird, so dass die Kühlleistung dieser Einheit zweckentsprechend erhöht ist.
  • Das gezeigte Beispiel zeigt den Kühler 10 als stehenden Wärmetauscher, so dass in der Figur mit unten das geodätisch "unten" gemeint ist. Entsprechend ist in der Figur oben am Kühler 10 ein Zulaufstutzen 12 gezeigt, wobei die Flussrichtung des einströmenden Kühlmittels durch einen ersten Pfeil 14 angedeutet ist. Der Zulaufstutzen 12 ist als Rohrstück ausgebildet, welches einerseits mit einem Kühlerelement 16 verbunden ist und andererseits einen ersten Flansch 18 aufweist, der insbesondere zum direkten Anschluss an den Leistungstransformator oder eine Verbindungsrohrleitung des Kühlmittelkreislaufs vorgesehen ist.
  • Das zuströmende Kühlmittel, in diesem Beispiel ein Wärmetauscheröl, das häufig Anwendung bei Transformatorkühlkreisläufen findet, strömt durch den Zulaufstutzen 12 dem Kühlerelement 16 zu, wobei der Kühlmittelstrom auf mehrere Rippen 20 aufgeteilt wird, so dass mehrere Kühlmittelteilströme entstehen, die von oben nach unten das Kühlelement 16 durchlaufen. Im unteren Bereich des Kühlelements 16 sammeln sich die Kühlmittelteilströme wiederum zu einem gemeinsamen Ablaufstrom. Dieser gemeinsame Ablaufstrom gelangt durch einen Ablaufstutzen 22 zurück zum Leistungstransformator beziehungsweise in den Kühlmittelkreislauf.
  • Zur Verstärkung des Kühleffekts können die Rippen 20 beispielsweise durch eine Zwangskonventionsströmung von der sie umgebenden Luft beblasen werden. Üblicherweise werden hierfür in dieser Figur nicht dargestellte Ventilatoren verwendet, deren erzeugter Luftstrom so stark ist, dass sich im Ablaufstrom eine gewünschte Temperatur des Kühlmittels einstellt.
  • An der höchsten Stelle des Rohres im Zulaufstutzen 12 und zwar in etwa an der Übergangsstelle zwischen dem Rohrstück und dem Kühlerelement 16 ist eine erste Öffnung 24 im Zulaufstutzen 12 angeordnet. In der gewählten Darstellung ist noch das erste Dichtungselement 26 gezeigt, welches in der ersten Öffnung 24 angeordnet ist. Mit diesem ersten Dichtungselement 26 ist eine kombinierte Vorrichtung aus Entlüftungselement und Thermoelement mediumsdicht in die erste Öffnung 24 einsteckbar. Diese kombinierte Vorrichtung ist in der einzigen Fig. nicht gezeigt, dem Fachmann jedoch bekannt.
  • Die Entlüftungsvorrichtung ist insbesondere beim Befüllen des Kühlmittelkreislaufs oder des Kühlers 10 notwendig, um die sich an den höchsten Stellen des betreffenden Kreislaufes oder des Kühlers 10 sammelnde Luft zu entlüften, die nach und nach durch das in den Kühlmittelkreislauf gefüllte Kühlmedium verdrängt wird. Die Übernahme einer weiteren technischen Funktion, die an derselben Stelle der ersten Öffnung 24 erfindungsgemäß realisierbar ist, ist die Temperaturmessung mit einem ersten Thermoelement. Erfindungsgemäß kann das erste Thermoelement nunmehr an eine Position im Rohrstück des Zulaufstutzens 12 verbracht werden, das der tatsächlichen Zulauftemperatur des Kühlers 10 erfahrungsgemäß am besten entspricht. Zudem dichtet das erste Dichtungselement 26 das erste Thermoelement im Bereich der ersten Öffnung 24 gegen einen möglichen Kühlmittelaustritt aus dem Kühlsystem ab. In diesem Beispiel ist die sonst notwendige Tauchhülse zur Abdichtung einer Öffnung in einer Rohrleitung vermieden. Auf diese Weise erfolgt die Messwertaufnahme unmittelbar durch das Thermoelement im Kühlmittel und nicht indirekt über das Material der Tauchhülse und somit gedämpft und verzögert. Derart ist die Messung genauer und schneller geworden.
  • Im gezeigten Beispiel ist noch ein weiterer Vorteil erkennbar. Im oberen Bereich des Kühlelements 16 ist noch eine Öse 28 gezeigt, an die, beispielsweise beim Montagearbeiten, der komplette Kühler 10 an ein Hebezeug anhängbar ist. Aufgrund der platzsparenden Doppelfunktion von Temperaturmessung und Entlüftung in der ersten Öffnung 24 wird darüber hinaus im oberen Bereich des Kühlelements 16 aus konstruktiver Sicht kein weiterer Platz benötigt. Somit besteht auch ein größerer Konstruktionsgestaltungsfreiraum, nämlich bei einer Konstruktion des Kühlelements 16, zum Beispiel in dessen oberen Bereich mit einer Schräge, wie dargestellt. Diese Gestaltung berücksichtigt in dem gewählten Beispiel ein spezielles räumliches Montageerfordernis an der Aufstellungsstelle des Kühlers 10.
  • Im unteren Bereich sind die beiden Funktionen der Temperaturmessung und des Kühlmittelablasses an verschiedenen Positionen realisiert. So ist eine zweite Öffnung 30 an einer unten gelegenen Stelle des Rohrstücks des Ablaufstutzens 22 angeordnet und mit einem zweiten Dichtungselement 32 versehen. Das zweite Dichtungselement 32 ist mit einer nachgiebigen Kunststoffmasse ausgestaltet und verschließt die zweite Öffnung 30 vollständig, so dass kein Kühlmittel im inneren Bereich des Kühlelements 16 oder des Ablaufstutzens 22 austreten kann auch wenn kein Thermoelement eingesteckt ist. Die Kunststoffmasse ist jedoch so nachgiebig gestaltet und mit einer weiteren Öffnung versehen, durch die der stabartige Teil eines zweiten Thermoelements durch die Kunststoffmasse und die zweite Öffnung 30 einsteckbar und in einer gewünschten Position fixierbar ist.
  • Für die Fixierung bieten sich verschiedene Möglichkeiten an, zum Beispiel dass der stabartige Teil des Thermoelements mit einem entsprechenden Anschlag versehen ist oder mit einer entsprechenden Verschraubung. Dem Fachmann sind hierfür weitere Möglichkeiten bekannt. In der Figur ist das Thermoelement 34 nur symbolisch dargestellt. Eine dritte Öffnung 36 ist ebenfalls an einer unteren Stelle des Kühlerelements 16 geordnet, jedoch von der zweiten Öffnung 30 so weit beabstandet, dass die in die Öffnungen 30, 36 eingeführten Vorrichtungen sich nicht beeinflussen oder stören. Mit der dritten Öffnung 36 ist ein Anschlusselement 38 verbunden, das zur Aufnahme einer Ablassvorrichtung, hier ein Absperrventil 40, geeignet ist. Das Absperrventil 40 ist lediglich als Symbol dargestellt und ist beispielsweise als Absperrkugelhahn oder Absperrschieber ausgeführt.
  • Mit der vorstehend beschriebenen erfindungsgemäßen Anordnung ist es auf besonders einfache Weise möglich, sehr genaue Temperaturmessungen unmittelbar im Zulauf- und im Ablaufstrom des Kühlers 10 durchzuführen. Üblicherweise werden solche Messungen an Kühlern durch Normen vorgeschrieben, um die Funktionsweise eines Wärmetauschers zu kontrollieren. Eine Möglichkeit die Messdaten zu bearbeiten besteht darin, diese an eine Prozesssteuerung des Transformators, des Kühlungsmittelkreislaufs oder einer Gesamtanlage weiterzugeben, welche die Auswertung der Messung gegebenenfalls auch die Aufbereitung der Messdaten vornimmt. Zudem besteht die Möglichkeit die Messdaten weiterzuverarbeiten, beispielsweise durch Bildung von Temperaturdifferenzen oder statistischen Auswertungen. Diese Funktionen sind auch durch entsprechende Messgeräte vor Ort realisierbar. Diese sind in der Figur jedoch nicht dargestellt. Jedenfalls ist die Messwertaufnahme in der angegebenen Weise verbessert -gegenüber der seither bekannten.
  • Bezugszeichenliste
  • 10
    Kühler
    12
    Zulaufstutzen
    14
    erster Pfeil
    16
    Kühlelement
    18
    Flansch
    20
    Rippen
    22
    Ablaufstutzen
    24
    erste Öffnung
    26
    erstes Dichtungselement
    28
    Öse
    30
    zweite Öffnung
    32
    zweites Dichtungselement
    34
    Thermoelement
    36
    dritte Öffnung
    38
    Anschlusselement
    40
    Absperrventil

Claims (6)

  1. Wärmetauscher für einen Transformator mit einem Wärmetauschermedium, umfassend einen Zulaufstutzen, ein Wärmetauscherelement und einen Ablaufstutzen, wobei das Wärmetauschermedium über den Zulaufstutzen (12) in das Wärmetauschelement (16) hineinleitbar und über den Ablaufstutzen (22) aus dem Wärmetauschelement (16) herausleitbar ist,
    dadurch gekennzeichnet,
    dass eine erste Öffnung (24) im Zulaufstutzen (12) angeordnet ist, in der im Betrieb des Wärmetauschers eine erste Temperatursonde an einer vorbestimmten Stelle im Zulaufstrom positioniert ist, und dass eine zweite Öffnung (30) im Ablaufstutzen (22) angeordnet ist, in der im Betrieb des Wärmetauschers eine zweite Temperatursonde (34) an einer vorbestimmten Stelle im Ablaufstrom positioniert ist, so dass eine erste Temperaturmessung im Zulaufstroms des Wärmetauschermediums eine zweite Temperaturmessung im Ablaufstrom des Wärmetauschmediums realisiert ist
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass in der ersten Öffnung (24) zusätzlich eine Entlüftungsvorrichtung angeordnet ist.
  3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in der zweiten Öffnung (30) zusätzlich eine Entleerungsvorrichtung (40) angeordnet ist.
  4. Wärmetauscher nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die erste (24) und/oder die zweite Öffnung (30) ein Dichtungselement (26, 32) aufweist, durch das die entsprechende Temperatursonde (34) wärmetauschmediumsdicht einsetzbar ist.
  5. Wärmetauscher nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Temperatursonde (34) ein Thermoelement ist.
  6. Wärmetauscher nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Temperatursonde (34) durch eine Tauchhülse geschützt ist.
EP05813600.3A 2004-11-10 2005-11-07 Wärmetauscher für einen transformator Expired - Fee Related EP1810303B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004054180A DE102004054180A1 (de) 2004-11-10 2004-11-10 Wärmetauscher für einen Transformator
PCT/EP2005/011876 WO2006050886A2 (de) 2004-11-10 2005-11-07 Wärmetauscher für einen transformator

Publications (2)

Publication Number Publication Date
EP1810303A2 EP1810303A2 (de) 2007-07-25
EP1810303B1 true EP1810303B1 (de) 2017-07-12

Family

ID=36217269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05813600.3A Expired - Fee Related EP1810303B1 (de) 2004-11-10 2005-11-07 Wärmetauscher für einen transformator

Country Status (6)

Country Link
US (1) US9909825B2 (de)
EP (1) EP1810303B1 (de)
CN (1) CN101084560B (de)
BR (1) BRPI0517304A (de)
DE (1) DE102004054180A1 (de)
WO (1) WO2006050886A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005924A1 (de) 2008-06-16 2009-12-31 Thermo- control Körtvélessy GmbH Kompensiertes Thermoelementensystem
DE102009015377B4 (de) * 2008-06-27 2011-12-15 André Meuleman Kühlradiator für einen Transformator
DE102016207393A1 (de) 2016-04-29 2017-11-02 Siemens Aktiengesellschaft Ersatztransformator mit modularem Aufbau
US10586645B2 (en) 2017-08-14 2020-03-10 Abb Power Grids Switzerland Ag Transformer systems and methods for operating a transformer system
EP3855261B1 (de) * 2020-01-27 2024-05-15 ABB Schweiz AG Bestimmung von steuerungsparametern für eine industrielle automatisierungsvorrichtung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2474155A (en) * 1945-06-15 1949-06-21 Julius F Melzer Heating apparatus
US3544938A (en) * 1969-06-12 1970-12-01 Tyee Construction Co Sealed power transformer
US3746079A (en) * 1972-01-21 1973-07-17 Black Sivalls & Bryson Inc Method of vaporizing a liquid stream
US4196408A (en) * 1974-01-14 1980-04-01 Rte Corporation High temperature transformer assembly
DE2938086C2 (de) * 1979-09-20 1981-08-13 Transformatoren Union Ag, 7000 Stuttgart Temperaturfühler zur Ermittlung der Kühlmitteltemperatur bei flüssigkeitsgekühlten Transformatoren
US4350838A (en) * 1980-06-27 1982-09-21 Electric Power Research Institute, Inc. Ultrasonic fluid-atomizing cooled power transformer
US4512387A (en) * 1982-05-28 1985-04-23 Rodriguez Larry A Power transformer waste heat recovery system
DE8911078U1 (de) * 1989-09-16 1989-11-23 MESSKO Albert Hauser GmbH & Co. KG, 6370 Oberursel Tauchfühler für Temperaturmessungen
US5267606A (en) * 1991-07-05 1993-12-07 Roland Cassia Vehicular flushing and draining apparatus and method
US5613549A (en) * 1994-11-21 1997-03-25 Dolwani; Ramesh J. Method and apparatus for selectively sealing and securing a sensor of a sealing plug to a part
US5730208A (en) * 1995-03-09 1998-03-24 Barban; Reno L. Biothermal and geothermal heat exchange apparatus for a ground source heat pump
US5838881A (en) * 1995-07-14 1998-11-17 Electric Power Research Institute, Inc. System and method for mitigation of streaming electrification in power transformers by intelligent cooling system control
US5730356A (en) * 1995-08-01 1998-03-24 Mongan; Stephen Francis Method and system for improving the efficiency of a boiler power generation system
DE19609203A1 (de) * 1996-03-09 1997-09-11 Urich Manfred Mechanisch-elektrisches Kombinationsthermometer
US6031722A (en) * 1998-07-20 2000-02-29 Centre D'innovation Sur Le Transport D'energie Du Quebec Earth cooled distribution transformer system and method
US20020021742A1 (en) * 1998-11-10 2002-02-21 Maskell Bruce W. Manifold
JP2003524893A (ja) * 2000-02-24 2003-08-19 ユニフィン インターナショナル,インコーポレイティド 変圧器を冷却する装置及び方法
US7549461B2 (en) * 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
DE10153933A1 (de) * 2000-11-11 2002-05-29 Rittal Gmbh & Co Kg Schaltschrank mit einer Klimatisierungseinrichtung
US20020088242A1 (en) * 2001-01-08 2002-07-11 Williams Douglas P. Refrigeration cooled transformer
US6842718B2 (en) 2003-02-06 2005-01-11 General Electric Company Intelligent auxiliary cooling system
US6742342B1 (en) * 2003-05-13 2004-06-01 Praxair Technology, Inc. System for cooling a power transformer
US7081802B2 (en) * 2004-03-31 2006-07-25 Praxair Technology, Inc. System for cooling a power transformer
WO2012166650A1 (en) * 2011-05-27 2012-12-06 University Of Illinois At Chicago Optimized heating and cooling system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2006050886A2 (de) 2006-05-18
US9909825B2 (en) 2018-03-06
BRPI0517304A (pt) 2008-10-07
CN101084560A (zh) 2007-12-05
DE102004054180A1 (de) 2006-05-11
WO2006050886A3 (de) 2006-09-08
US20090000763A1 (en) 2009-01-01
EP1810303A2 (de) 2007-07-25
CN101084560B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
EP0903543B1 (de) Verteilervorrichtung für einen mit einem flüssigen Medium betriebenen Kreislauf einer Wärme- oder Kälteversorgungsanlage
EP1810303B1 (de) Wärmetauscher für einen transformator
EP2328738B1 (de) Temperierte reckstange
DE102007052706A1 (de) Wärmetauscher
DE102013108926A1 (de) Gasentnahmesonde und Verfahren zum Betreiben einer Gasentnahmesonde
EP1600742B1 (de) Sensoranordnung mit thermischer Entkopplung des Sensors vom sensierten Medium
EP2747534A2 (de) Schaltschrank mit einer Anordnung zur Kühlung von in einem Innenraum des Schaltschranks aufgenommenen, Wärme abgebenden Komponenten
WO2017121552A1 (de) Schaltschrank für abgasmessanlagen
EP2180226B1 (de) Modulares Fluidverteilsystem
EP3061129B1 (de) Kühlvorrichtung für leistungselektronische bauteile
DE102007024511B4 (de) Wärmetauschmodul, Kühlpatrone, Getriebe, Getriebebaureihe und Verfahren zur Überwachung eines Getriebes
DE19805394C2 (de) Kühleinrichtung für Werkzeugmaschinen
DE202008014269U1 (de) Modulares Fluidverteilsystem
DE29905655U1 (de) Meßvorrichtung zur Messung von Durchflußmenge und Temperatur eines fließfähigen Mediums
EP3953652B1 (de) Wärmeübertrageranordnung mit wenigstens einem mehrpass-wärmeübertrager und verfahren zum betrieb einer wärmeübertrageranordnung
DE102012019433A1 (de) Vorrichtung zur Bestimmung einer Kenngröße eines Mediums
DE102004055101B4 (de) Baueinheit aus einem Strömungssensor, einem Durchlaßkanal und einem innerhalb des Durchlaßkanals angeordneten Meßkanal
EP2810292B1 (de) Strömungsschalter
EP2255145A1 (de) EINRICHTUNG ZUM ANSCHLIEßEN VON ROHRLEITUNGEN AN EINEN FLÜSSIGKEITS -LUFTKÜHLER
DE4232801A1 (de) Ventil für Heizungs- oder Klimaanlagen
DE102008002871B4 (de) Messanordnung
DE102013209856A1 (de) Schaltelement für einen Getriebekühlkreislauf
DE102009032591A1 (de) Verschlusseinrichtung für den Kühler einer Brennkraftmaschine mit integriertem Temperatursensor
EP2570881B2 (de) Temperaturregelvorrichtung, insbesondere Thermostatvorrichtung
DE102016010906B3 (de) Kühlmittelkühler für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070125

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20070924

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB SCHWEIZ AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 19/00 20060101ALI20170207BHEP

Ipc: F28F 27/00 20060101ALI20170207BHEP

Ipc: F28D 21/00 20060101ALI20170207BHEP

Ipc: H01F 27/08 20060101AFI20170207BHEP

Ipc: H01F 27/10 20060101ALI20170207BHEP

INTG Intention to grant announced

Effective date: 20170228

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015652

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015652

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015652

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201119

Year of fee payment: 16

Ref country code: FR

Payment date: 20201120

Year of fee payment: 16

Ref country code: GB

Payment date: 20201120

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015652

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20211104 AND 20211110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015652

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211107

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130