EP1797395A1 - Oscillating mass resonator - Google Patents

Oscillating mass resonator

Info

Publication number
EP1797395A1
EP1797395A1 EP05810750A EP05810750A EP1797395A1 EP 1797395 A1 EP1797395 A1 EP 1797395A1 EP 05810750 A EP05810750 A EP 05810750A EP 05810750 A EP05810750 A EP 05810750A EP 1797395 A1 EP1797395 A1 EP 1797395A1
Authority
EP
European Patent Office
Prior art keywords
masses
beams
oscillation
substrate
resonator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05810750A
Other languages
German (de)
French (fr)
Inventor
Elisabeth Delevoye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1797395A1 publication Critical patent/EP1797395A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02259Driving or detection means
    • H03H9/02275Comb electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02338Suspension means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2431Ring resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02338Suspension means
    • H03H2009/02346Anchors for ring resonators
    • H03H2009/02354Anchors for ring resonators applied along the periphery, e.g. at nodal points of the ring
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02496Horizontal, i.e. parallel to the substrate plane
    • H03H2009/02503Breath-like, e.g. Lam? mode, wine-glass mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H2009/2442Square resonators

Definitions

  • the subject of the invention is a resonator with oscillating masses.
  • This type of machine is commonly manufactured by micromechanical techniques and is used in accelerometers and more specifically gyrometers. It essentially comprises two oscillating masses bonded to a substrate by an elastic structure as well as means for oscillating the masses and means for measuring the oscillations. If the masses oscillate in one direction and the object on which the resonator is placed rotates about a second direction, the Coriolis forces produce a displacement of the masses in the third principal direction, perpendicular to the previous ones. It is this displacement that is measured. Its amplitude makes it possible to deduce the speed of rotation to which the resonator is subjected.
  • Displacements in the third direction are generally measured through the change of capacitance between electrodes placed under the oscillating masses and on the substrate.
  • the displacements in the measuring direction and the capacitance variations are opposite so that a measure differential allows to accumulate the two capacitance variations associated with each of the masses while freeing themselves from certain measurement errors, resulting for example from an overall displacement of the masses relative to the substrate.
  • the oscillating displacement of the masses is made possible by fine structures, called beams, by which the masses are suspended from the substrate and which have the capacity to flex easily in the direction of the oscillations.
  • Some advanced resonators also include other beams of a similar nature, which are coupling beams and connect the masses to each other, and sometimes to the substrate. These coupling beams are arranged to deform easily when the masses oscillate in the desired phase relationship, but to oppose a high stiffness to oscillations in other phase relationships, to promote oscillations in the desired phase relationship and thus to reduce the consequences of a failure to synchronize the oscillations on the measurements.
  • US 5,635,638 A discloses such a resonator.
  • the oscillation means are electric exciters placed behind the oscillating masses.
  • the suspension beams are also arranged at the rear of the oscillating masses and extend perpendicular to the main direction of oscillation so as to flex the most easily in this direction.
  • the coupling beams comprise arcuate beams joining the front faces of the two masses and connected by their means to other beams joined at their ends to the substrate and which extend in the direction of oscillation.
  • the phase opposition of the mass movement produces a simple bending of the arched beams and the beams connected to the substrate, whereas a phase movement of the masses produces a traction and a compression almost without displacement of the beams connected to the substrate and inflections in complex modes.
  • the system of coupling beams is therefore much more rigid for oscillations in phase and does not let them easily appear.
  • the object of the invention is to provide a resonator to the structure of beams simpler, less cumbersome and where the coupling between the oscillations of the masses is well made for a unique and determined phase relationship.
  • the suspension beams are all connected to the masses through the beams coupling.
  • the beam network thus obtained generally has two axes of symmetry, in the main direction of the oscillations and in a direction perpendicular to the previous, but also parallel to the substrate.
  • the network of suspension beams and coupling beams is unique and continuous and comprises beams for attaching to the substrate, beams for attachment to the masses, and, more particularly, a junction beam extending over a closed line to which all the attachment beams connect.
  • the elastic deformations produced at the oscillations concentrate essentially on the junction beam; it is favorably curved so as not to produce a concentration of constraints.
  • it is arranged around the two masses; if they have a half-moon shape, with opposite straight sides and curved sides opposite to the connecting beam, a resonator of great compactness is obtained.
  • the substrate attachment beams may include anchor beams, extending generally in the direction of alignment of the masses between two substrate attachment regions, and connecting beams perpendicular to the anchor and joining beams. anchoring beams at mid-distance from attachment regions. This arrangement tends to reduce the oscillations produced in the direction perpendicular to the main direction.
  • the oscillation elements can be placed between the junction beam surrounding the masses and the masses themselves, which contributes to the desired compactness.
  • the substrate may include a decoupling frame surrounding the masses, the oscillation means, and the beams, which is attached to an underlying portion of the substrate by two frame anchor regions aligned in a principal direction of oscillation of the masses. If the mass attachment beams are then in alignment with the anchoring regions of the frame, the frame and the connecting beam can be designed to form stops in front of the frame anchoring regions; and if the oscillating masses have opposite sides designed to form a mutual abutment, the oscillation movements of the masses can be limited in this way.
  • the masses extend between the oscillating elements and have mutually opposed sides which are provided with interlocking electric combs. It will be seen that this arrangement enhances the stability of the oscillating movement.
  • the masses may each be composed of two sub-masses placed symmetrically to a principal direction of oscillation of the masses
  • the coupling beams comprise for each of the masses a subset of beams extending between the sub-masses and comprising two beams connected respectively to the sub-masses and to an interconnection beam, the beams connected to the sub-masses extending in a main direction of oscillation of the masses.
  • the sub-masses can then oscillate mutually in a direction to move perpendicular to the main direction of oscillation and provide an accelerometer with two axes of measurement.
  • the coupling beams may advantageously extend along rigid beams (at least in the range of frequencies considered) each extending around a mass and carrying elements of oscillation means masses.
  • the rigid beams may advantageously extend on closed lines and have opposite portions between them provided with interleaved electrostatic combs, common to the two masses instead of being placed around the masses themselves as in other less compact embodiments .
  • Measurement of the oscillations in the second direction can be performed with capacitance measuring electrodes with the masses, the electrodes being fixed to the substrate and arranged in housings of the masses and having an asymmetrical shape in a direction of oscillation of the masses.
  • the asymmetrical shape reinforces the variation of capacity consecutive to the oscillations.
  • FIG. 1 is a view of an embodiment of the invention
  • FIG. 2 illustrates the deformations of this embodiment when the masses oscillate
  • FIGS. 3, 4, 5, 6 and 7 illustrate other embodiments of the invention
  • FIG. 8 is an enlargement of a part of FIG. 7; and FIG. 9 illustrates another way of designing measuring electrodes.
  • FIG. 1 thus represents a particularly simple embodiment, where two masses 1 and 2 arranged side by side are connected to anchoring points 3 to an underlying substrate 9, not shown in detail and which extends under all the device.
  • the anchoring points 3 are arranged in quadrilateral at the outer corners of the masses 1 and 2 by a single network of beams comprising anchor beams 4, two in number and each connected to two respective anchoring points 3 ' extending in parallel the alignment of the masses 1 and 2, two short fastening beams 5 perpendicular to the preceding and connected to their respective media, a junction beam 6 in the form of a rectangle extending around the masses 1 and 2 and the points of anchor 3 and 4, and two beams for attachment to the masses 7 extending between the junction beam 6 and the masses 1 and 2, short, whose direction coincides with the alignment of the masses 1 and 2 and which extend to the posterior faces of the masses 1 and 2.
  • This network of beams ensures both the suspension of the masses 1 and 2 to the substrate by anchoring points 3, and the coupling of the masses 1 and 2 between them: when the masses 1 and 2 oscillate in the main direction of oscillation (corresponding to the direction of the alignment of the masses) and in opposition of phase, when approaching or moving away from each other, the network of beams is deforms as shown in Figure 2: the rectangle of the junction beam is deformed, d their sides becoming convex and the other two concaves, and the anchor beams 4 deform substantially like the sides of the junction beam 6 which are parallel and adjacent thereto.
  • the fastening beams 5 and 7 undergo almost no deformation.
  • This system is flexible for the deformations represented in phase opposition, but much more rigid for movements of the masses in phase, in the same direction, because the overall movements of the junction beam 6 which would be proposed in the direction of oscillation are made almost impossible at the junctions to the fastening beams 5.
  • the network of beams thus ensures the coupling of the masses 1 and 2 which promotes the desired oscillation phase relationship.
  • the rectangular shape of the junction beam 6 has angles in which complex stress concentrations or deformations can occur. It is possible to prefer a curved junction beam, like that of Figure 3, which is arranged around two masses 11 and 12 in half-moon and which has an oval shape, at will elliptical or circular at will.
  • the anchoring points 13, the anchor beams 14, the substrate attachment beams 15 and the beams for attachment to the masses 17 are not modified with respect to the previous embodiment. However, the anchor beams 14 extend here outside the junction beam 16, which is therefore close to the masses 11 and 12, which is shaped in the form of a half moon to improve the compactness of the together.
  • FIG. 4 illustrates an embodiment similar to FIG. 3, except that, strictly speaking, anchoring points 13 are not found but a decoupling frame 18 which is connected to an underlying substrate 19 by means of opposed anchoring points 20 and located in the alignment of the masses 11 and 12, at a short distance from the junction beam 16 and the beams
  • the masses 11 and 12 and the beams are housed in a hollow of the decoupling frame 18. This structure has the advantage of greater decoupling between the substrate 19 and the oscillating system.
  • FIG. 5 A different embodiment variant is shown in FIG. 5.
  • the junction beam 16 is replaced by a junction beam 26 disposed between the masses 21 and 22, which can without a problem take on the shape of a parallelepiped like the masses 1 and 2 encountered at beginning.
  • the junction beam 26 is rounded, oval, circular, elliptical, etc. Like the junction beam 16.
  • FIG. 6 A more complete description of a simple embodiment of the invention is made by means of FIG. 6. The characteristics of the embodiment of FIG.
  • the oscillation means which are conventionally formed of combs with nested teeth or extensions 28 and 29, or "interdigitated" according to FIG. a term common in art, and which are the seat of electric forces of attraction.
  • Some of the teeth 28 are placed on the posterior face of the half-moon masses 11 and 12 and the complementary teeth 29 are placed on stationary elements 30 in the form of an arc, extending between the masses 11 and 12 and the connecting beam 16 to the beams of attachment to the masses 17 and retained on the substrate 19 by anchoring points 31.
  • the masses 11 and 12 are provided with other extensions in the form of comb teeth imbricated in each other at their anterior faces. They have the reference 32. The nesting of these combs produce stabilizing electrostatic forces which counteract the unwanted movements of the masses 11 and 12 perpendicular to the main direction of oscillation x, in the vertical axis y of the figure.
  • the masses 11 and 12 are strictly balanced so that their main axis of inertia is on the center line of alignment.
  • the extensions 28 and 32 are in particular placed symmetrically on each side of this line.
  • the extensions 32 of the anterior sides be in the extension of the extensions 28 of the posterior sides; the sum of the mass of the elements 28 and 17 in extension on the posterior side of the masses 11 and 12 oscillating gives the same mass as the set of extensions 32 located on the front side.
  • the fastening beams 15 and 17 are here split into two parallel beam members in order to provide better resistance to torsion. It has already been noted that the fastening beams are not very deformable because of their short length, and it is also desirable to avoid their deformations, in particular those expressed outside the plane of the figure, in the third direction Z which could produce only oscillatory movements additional, harmful measures.
  • Limiters for limiting the movement of the masses 11 and 12 are provided by the contact of the teeth 32 with the opposite mass and, in the other direction, by the contact of the connecting beam 16 which deforms against the decoupling frame 18 to the anchoring points 20. These abutments always involve parts with the same electrical potential and therefore do not disturb the operation of the machine.
  • the monolithic masses 11 and 12 are here replaced by complex masses 41 and 42 in the general form of a half-moon.
  • these oscillating elements are here composed of sub-masses 43 in quarter-moon, two in number for each of the masses 41 and 42.
  • the masses 41 and 42 complexes are surrounded by support elements 44 extending on a line closed composed of a diameter and a half-perimeter of a circle. These beams have teeth 28 and 32 nested similar to those of the previous realization.
  • the fastening beams 17 extend by connecting to the support members 44 and are attached only indirectly to the weights 41 and 42.
  • the support members 44 resemble closed-contour beams and may be considered as beams. coupling, but are substantially thicker than other beams, to the point that they are almost not deformed.
  • the support beams 44 thus belong to the network of beams connecting the masses 41 and 42 oscillating to the substrate.
  • the network also comprises beams extending between the sub-masses 43 in quarter-moon, and more precisely: two bending beams 45 whose ends of each are connected to a respective sub-mass 43 and which extend in the direction main oscillating mass 41 and 42, a connecting beam 46 joining two opposite points of the support member 44 and extending in the extension of the attachment beams 17, in the main direction of oscillation between a pair bending beams 45, and a short interconnection beam 47, oriented perpendicular to the main direction of oscillation and connecting the pair of bending beams 45 to the connecting beam 46.
  • the measuring device is composed of fixed electrodes 48 arranged in housings of the sub-masses 43.
  • the fixed electrodes 48 make it possible to measure the electrical capacitances between them and the sub-masses 43.
  • the fixed electrodes 48 approach some portions of their housing and move away from others, the total capacity is changed according to the movements of sub-masses 43.
  • a sensible measurement can be obtained if the fixed electrodes 48 are asymmetrical, for example example crenellated on one side and smooth on the other.
  • the castellated side is oriented in the direction perpendicular to the main direction of oscillation to measure the movements of the quarter-moon in this perpendicular direction.
  • the fixed electrodes 48 are arranged symmetrically at the center of inertia of the quarter-moons with respect to the two directions of oscillation.
  • the slots can be of varied shape and opening.
  • Another embodiment of the fixed electrodes would be to have two flat electrodes 49 and 50 paired according to Figure 9, and whose capacity relative to the housing 51 would be measured independently.
  • the movement of the sub-mass 43 would cause a decrease in one of the capacities and a correlative increase in the other.
  • a subtraction measurement of the abilities would give a sensible evaluation of the movement.
  • the total capacitance variations recorded at the fixed electrodes 48 of each total sub-mass 43 are measured, and subtracted from one another to obtain a larger result and a finer measurement, because of the substantially equal (antisymmetric) movements of the sub-masses 43 combined with the symmetrical arrangement of the fixed electrodes 49 between the sub-masses 43 of each mass 41 or 42.
  • the subtraction measurement also eliminates the effect of a harmful oscillation of the sub-masses 43 in the Y direction relative to each other.
  • the measurements on each of the masses 41 and 42 must also give opposite results. It can be correlated by another subtractive measure to eliminate the effect of parasitic accelerations in the Y direction.
  • Combs encountered in this invention have teeth overlap lengths substantially larger than those ordinarily employed. Additional electrostatic forces between the combs keep them in a centering position against disturbances to the oscillating system. For an oscillation amplitude of 5 ⁇ m, for example, teeth of 7 ⁇ m in length are usual. Total lengths of about 97 ⁇ m, either
  • resonators can be constructed by conventional deposition and etching techniques, etc. usual in micromechanics, so we will not give a description here.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

The suspension and coupling beams (14, 15, 16, 17) of the oscillating masses (11, 12) in a device used for example as rate gyro and comprising oscillating masses (11, 12) form a single and continuous system allowing compact construction of the device. Preferably, a junction beam (16) surrounds the two oscillating masses.

Description

RESONATEUR A MASSES OSCILLANTES RESONATOR WITH OSCILLATING MASSES
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
Le sujet de l'invention est un résonateur à masses oscillantes.The subject of the invention is a resonator with oscillating masses.
Ce genre d'engin est couramment fabriqué par des techniques de micromécanique et s'emploie dans les accéléromètres et plus précisément les gyromètres . Il comprend essentiellement deux masses oscillantes liées à un substrat par une structure élastique ainsi que des moyens pour mettre en oscillation les masses et des moyens de mesure des oscillations. Si les masses oscillent dans une direction et que l'objet sur lequel le résonateur est placé tourne autour d'une deuxième direction, les forces de Coriolis produisent un déplacement des masses dans la troisième direction principale, perpendiculairement aux précédentes. C'est ce déplacement qui est mesuré. Son amplitude permet de déduire la vitesse de rotation à laquelle le résonateur est soumis.This type of machine is commonly manufactured by micromechanical techniques and is used in accelerometers and more specifically gyrometers. It essentially comprises two oscillating masses bonded to a substrate by an elastic structure as well as means for oscillating the masses and means for measuring the oscillations. If the masses oscillate in one direction and the object on which the resonator is placed rotates about a second direction, the Coriolis forces produce a displacement of the masses in the third principal direction, perpendicular to the previous ones. It is this displacement that is measured. Its amplitude makes it possible to deduce the speed of rotation to which the resonator is subjected.
Les déplacements dans la troisième direction sont généralement mesurés par l'intermédiaire du changement de capacité entre des électrodes placées sous les masses oscillantes et sur le substrat. Dans le cas apprécié en pratique d'une paire de masses dont on commande les oscillations en opposition de phase, c'est-à-dire dans des sens opposés, les déplacements dans la direction de mesure et les variations de capacité sont opposés de sorte qu'une mesure différentielle permet de cumuler les deux variations de capacité associées à chacune des masses tout en s 'affranchissant de certaines erreurs de mesure, provenant par exemple d'un déplacement d'ensemble des masses par rapport au substrat.Displacements in the third direction are generally measured through the change of capacitance between electrodes placed under the oscillating masses and on the substrate. In the preferred case in practice of a pair of masses whose oscillations in opposition of phase are controlled, that is to say in opposite directions, the displacements in the measuring direction and the capacitance variations are opposite so that a measure differential allows to accumulate the two capacitance variations associated with each of the masses while freeing themselves from certain measurement errors, resulting for example from an overall displacement of the masses relative to the substrate.
Le déplacement oscillant des masses est rendu possible par de fines structures, appelées poutres, par lesquelles les masses sont suspendues au substrat et qui ont la capacité de fléchir facilement de façon élastique dans la direction des oscillations. Certains résonateurs perfectionnés comprennent encore d'autres poutres de nature analogue, qui sont des poutres de couplage et relient les masses entre elles, et parfois encore au substrat. Ces poutres de couplage sont disposées de façon à se déformer facilement quand les masses oscillent dans la relation de phase souhaitée, mais à opposer une grande raideur aux oscillations dans d'autres relations de phase, afin de favoriser les oscillations dans la relation de phase souhaitée et de diminuer ainsi les conséquences d'un défaut de synchronisation des oscillations sur les mesures .The oscillating displacement of the masses is made possible by fine structures, called beams, by which the masses are suspended from the substrate and which have the capacity to flex easily in the direction of the oscillations. Some advanced resonators also include other beams of a similar nature, which are coupling beams and connect the masses to each other, and sometimes to the substrate. These coupling beams are arranged to deform easily when the masses oscillate in the desired phase relationship, but to oppose a high stiffness to oscillations in other phase relationships, to promote oscillations in the desired phase relationship and thus to reduce the consequences of a failure to synchronize the oscillations on the measurements.
Le document US 5,635,638 A décrit un tel résonateur. Les moyens de mise en oscillation sont des excitateurs électriques placés derrière les masses oscillantes. Les poutres de suspension sont aussi disposées à l'arrière des masses oscillantes et s'étendent perpendiculairement à la direction principale d'oscillation de façon à fléchir le plus facilement dans cette direction. Les poutres de couplage comprennent des poutres en arc de cercle joignant les faces antérieures des deux masses et reliées par leurs milieux à d'autres poutres jointes par leurs extrémités au substrat et qui s'étendent dans la direction d'oscillation. L'opposition de phase du mouvement des masses produit une flexion simple des poutres en arc et des poutres reliées au substrat, alors qu'un mouvement en phase des masses produit une traction et une compression presque sans déplacement des poutres reliées au substrat et des flexions en modes complexes. Le système de poutres de couplage est donc beaucoup plus rigide pour des oscillations en phase et ne les laisse pas facilement apparaître.US 5,635,638 A discloses such a resonator. The oscillation means are electric exciters placed behind the oscillating masses. The suspension beams are also arranged at the rear of the oscillating masses and extend perpendicular to the main direction of oscillation so as to flex the most easily in this direction. The coupling beams comprise arcuate beams joining the front faces of the two masses and connected by their means to other beams joined at their ends to the substrate and which extend in the direction of oscillation. The phase opposition of the mass movement produces a simple bending of the arched beams and the beams connected to the substrate, whereas a phase movement of the masses produces a traction and a compression almost without displacement of the beams connected to the substrate and inflections in complex modes. The system of coupling beams is therefore much more rigid for oscillations in phase and does not let them easily appear.
Certains inconvénients des systèmes connus consistent en ce que les poutres forment un dessin complexe et sensible aux incertitudes de fabrication et aux autres déformations, et, malgré ce qu'on recherche, sujettes à un degré assez important à des déformations associées à des relations de phase non désirées. On peut aussi remarquer que des mouvements d'oscillation importants nécessitent des poutres longues qui s'étendent donc loin des masses, notamment dans la direction perpendiculaire à la direction principale d'oscillation, et donnent un encombrement important au résonateur. L'objet de l'invention est d'offrir un résonateur à la structure de poutres plus simple, moins encombrante et où le couplage entre les oscillations des masses est bien réalisé pour une relation de phase unique et déterminée. Les poutres de suspension sont toutes connectées aux masses par l'intermédiaire des poutres de couplage. Cela implique qu'il existe un chemin menant de chaque point d'ancrage des poutres au substrat à chacune des masses, en empruntant le réseau de poutres alors que dans la conception antérieure, les poutres de suspension proprement dites sont toujours séparées des poutres de couplage et mènent directement à une seule masse en général. Le réseau de poutres ainsi obtenu présente généralement deux axes de symétrie, dans la direction principale des oscillations et dans une direction perpendiculaire à la précédente, mais elle aussi parallèle au substrat.Some disadvantages of the known systems are that the beams form a complex pattern sensitive to manufacturing uncertainties and other deformations, and, despite what is sought, subject to a degree quite important deformations associated with phase relationships unwanted. It can also be noted that large oscillation movements require long beams which therefore extend far from the masses, especially in the direction perpendicular to the main direction of oscillation, and give a large bulk to the resonator. The object of the invention is to provide a resonator to the structure of beams simpler, less cumbersome and where the coupling between the oscillations of the masses is well made for a unique and determined phase relationship. The suspension beams are all connected to the masses through the beams coupling. This implies that there is a path leading from each anchor point of the beams to the substrate to each of the masses, by borrowing the network of beams while in the previous design, the suspension beams themselves are always separated from the coupling beams and lead directly to a single mass in general. The beam network thus obtained generally has two axes of symmetry, in the main direction of the oscillations and in a direction perpendicular to the previous, but also parallel to the substrate.
Cela est décrit dans le document US 5 349 855. Dans l'invention cependant, le réseau de poutres de suspension et de poutres de couplage est unique et continu et comprend des poutres d'attache au substrat, des poutres d'attache aux masses, et, de façon plus particulièrement remarquable, une poutre de jonction s 'étendant sur une ligne fermée à laquelle toutes les poutres d'attache se raccordent. Les déformations élastiques produites aux oscillations se concentrent essentiellement sur la poutre de jonction ; elle est favorablement courbe afin de ne pas produire de concentration de contraintes. Dans des réalisations avantageuses, elle est disposée autour des deux masses ; si celles-ci ont une forme de demi-lune, avec des côtés opposés rectilignes et des côtés courbes opposés à la poutre de jonction, un résonateur d'une grande compacité est obtenu. Cette disposition à poutre de jonction continue, s 'étendant sur une ligne fermée, sans passer par aucune masse ou une autre partie rigide ni par aucun point fixe de la structure, assure non seulement un bon couplage des masses dans la relation de phase souhaitée mais une bonne souplesse de suspension donnant des déplacements et une sensibilité de mesure importantes . Les poutres d'attache au substrat peuvent comprendre des poutres d'ancrage, s 'étendant globalement dans la direction d'alignement des masses entre deux régions d'attache au substrat, et des poutres de liaison perpendiculaires aux poutres d'ancrage et se joignant aux poutres d'ancrage à mi-distance des régions d'attache. Cette disposition tend à diminuer les oscillations produites dans la direction perpendiculaire à la direction principale.This is described in US Pat. No. 5,349,855. In the invention, however, the network of suspension beams and coupling beams is unique and continuous and comprises beams for attaching to the substrate, beams for attachment to the masses, and, more particularly, a junction beam extending over a closed line to which all the attachment beams connect. The elastic deformations produced at the oscillations concentrate essentially on the junction beam; it is favorably curved so as not to produce a concentration of constraints. In advantageous embodiments, it is arranged around the two masses; if they have a half-moon shape, with opposite straight sides and curved sides opposite to the connecting beam, a resonator of great compactness is obtained. This continuous junction beam arrangement, extending over a closed line, without passing through any mass or other rigid part or by any fixed point of the structure, assures no only a good coupling of the masses in the desired phase relation but a good flexibility of suspension giving important displacements and sensitivity of measurement. The substrate attachment beams may include anchor beams, extending generally in the direction of alignment of the masses between two substrate attachment regions, and connecting beams perpendicular to the anchor and joining beams. anchoring beams at mid-distance from attachment regions. This arrangement tends to reduce the oscillations produced in the direction perpendicular to the main direction.
Les éléments de mise en oscillation peuvent être placés entre la poutre de jonction entourant les masses et les masses elles-mêmes, ce qui concourt à la compacité recherchée.The oscillation elements can be placed between the junction beam surrounding the masses and the masses themselves, which contributes to the desired compactness.
Le substrat peut comporter un cadre de découplage entourant les masses, les moyens de mise en oscillation et les poutres, qui est fixé à une portion sous-jacente du substrat par deux régions d'ancrage de cadre alignées dans une direction principale d'oscillation des masses. Si les poutres d'attache aux masses sont alors situées en alignement avec les régions d'ancrage du cadre, le cadre et la poutre de jonction peuvent être conçus pour former des butées devant les régions d'ancrage de cadre ; et si les masses oscillantes possèdent des côtés opposés conçus pour former une butée mutuelle, les mouvements d'oscillation des masses peuvent être limités de cette façon. Selon d'autres variantes avantageuses de réalisation, les masses s'étendent entre les éléments de mise en oscillation et possèdent des côtés opposés entre eux qui sont munis de peignes électriques imbriqués. On verra que cette disposition renforce la stabilité du mouvement oscillant.The substrate may include a decoupling frame surrounding the masses, the oscillation means, and the beams, which is attached to an underlying portion of the substrate by two frame anchor regions aligned in a principal direction of oscillation of the masses. If the mass attachment beams are then in alignment with the anchoring regions of the frame, the frame and the connecting beam can be designed to form stops in front of the frame anchoring regions; and if the oscillating masses have opposite sides designed to form a mutual abutment, the oscillation movements of the masses can be limited in this way. According to other advantageous embodiments, the masses extend between the oscillating elements and have mutually opposed sides which are provided with interlocking electric combs. It will be seen that this arrangement enhances the stability of the oscillating movement.
Selon d'autres considérations, les masses peuvent être chacune composées de deux sous-masses placées symétriquement à une direction principale d'oscillation des masses, et les poutres de couplage comprennent pour chacune des masses un sous-ensemble de poutres s 'étendant entre les sous-masses et comprenant deux poutres reliées respectivement aux sous-masses et à une poutre d'interconnexion, les poutres reliées aux sous-masses s 'étendant dans une direction d'oscillation principale des masses. Les sous-masses peuvent alors osciller mutuellement dans une direction se mouvoir perpendiculaire à la direction principale d'oscillation et fournir un accéléromètre à deux axes de mesure. Les poutres de couplage peuvent avantageusement s'étendre le long de poutres rigides (au moins dans la gamme de fréquences considérées) s 'étendant chacune autour d'une masse et portant des éléments de moyens de mise en oscillation des masses. Les poutres rigides peuvent avantageusement s'étendre sur des lignes fermées et posséder des portions opposées entre elles munies de peignes électrostatiques imbriqués, communs aux deux masses au lieu que ces derniers soient placés autour des masses elles-mêmes comme dans d'autres réalisations moins compactes. La mesure des oscillations dans la deuxième direction peut être effectuée avec des électrodes de mesure de capacité avec les masses, les électrodes étant fixées au substrat et disposées dans des logements des masses et ayant une forme dissymétrique dans une direction d'oscillation des masses. La forme dissymétrique renforce la variation de capacité consécutive aux oscillations.According to other considerations, the masses may each be composed of two sub-masses placed symmetrically to a principal direction of oscillation of the masses, and the coupling beams comprise for each of the masses a subset of beams extending between the sub-masses and comprising two beams connected respectively to the sub-masses and to an interconnection beam, the beams connected to the sub-masses extending in a main direction of oscillation of the masses. The sub-masses can then oscillate mutually in a direction to move perpendicular to the main direction of oscillation and provide an accelerometer with two axes of measurement. The coupling beams may advantageously extend along rigid beams (at least in the range of frequencies considered) each extending around a mass and carrying elements of oscillation means masses. The rigid beams may advantageously extend on closed lines and have opposite portions between them provided with interleaved electrostatic combs, common to the two masses instead of being placed around the masses themselves as in other less compact embodiments . Measurement of the oscillations in the second direction can be performed with capacitance measuring electrodes with the masses, the electrodes being fixed to the substrate and arranged in housings of the masses and having an asymmetrical shape in a direction of oscillation of the masses. The asymmetrical shape reinforces the variation of capacity consecutive to the oscillations.
L'invention sera maintenant décrite en rapport aux figures suivantes qui illustrent certains modes de réalisation particuliers et préférés :The invention will now be described with reference to the following figures which illustrate certain particular and preferred embodiments:
- la figure 1 est une vue d'une réalisation de l'invention,FIG. 1 is a view of an embodiment of the invention,
- la figure 2 illustre les déformations de cette réalisation quand les masses oscillent,FIG. 2 illustrates the deformations of this embodiment when the masses oscillate,
- les figures 3, 4, 5, 6 et 7 illustrent d'autres réalisations de l'invention,FIGS. 3, 4, 5, 6 and 7 illustrate other embodiments of the invention,
- la figure 8 est un agrandissement d'une partie de la figure 7, - et la figure 9 illustre une autre façon de conception électrodes de mesure.FIG. 8 is an enlargement of a part of FIG. 7; and FIG. 9 illustrates another way of designing measuring electrodes.
La figure 1 représente ainsi un mode de réalisation particulièrement simple, où deux masses 1 et 2 disposées côte à côte sont reliées à des points d'ancrage 3 à un substrat 9 sous-jacent, non représenté en détail et qui s'étend sous tout le dispositif. Les points d'ancrage 3 sont disposés en quadrilatère aux coins extérieurs des masses 1 et 2 par un réseau unique de poutres comprenant des poutres d'ancrage 4, au nombre de deux et reliées chacune à deux points d'ancrage 3 respectifs en s 'étendant parallèlement à l'alignement des masses 1 et 2, deux poutres d'attache 5 courtes, perpendiculaires aux précédentes et reliées à leurs milieux respectifs, une poutre de jonction 6 en forme de rectangle s 'étendant autour des masses 1 et 2 et des points d'ancrage 3 et 4, et deux poutres d'attache aux masses 7 s 'étendant entre la poutre de jonction 6 et les masses 1 et 2, courtes, dont la direction coïncide avec l'alignement des masses 1 et 2 et qui s'étendent jusqu'aux faces postérieures des masses 1 et 2. Ce réseau de poutres assure à la fois la suspension des masses 1 et 2 au substrat par des points d'ancrage 3, et le couplage des masses 1 et 2 entre elles : quand les masses 1 et 2 oscillent dans la direction principale d'oscillation (correspondant à la direction de l'alignement des masses) et en opposition de phase, en s 'approchant ou s 'éloignant l'une de l'autre, le réseau de poutres se déforme comme représenté à la figure 2 : le rectangle de la poutre de jonction se déforme, deux côtés devenant convexes et les deux autres concaves, et les poutres d'ancrage 4 se déforment sensiblement comme les côtés de la poutre de jonction 6 qui leur sont parallèles et adjacents. Les poutres d'attache 5 et 7 ne subissent presque pas de déformation. Ce système est souple pour les déformations représentées en opposition de phase, mais beaucoup plus rigide pour des mouvements des masses en phase, dans le même sens, car les mouvements d'ensemble de la poutre de jonction 6 qui seraient proposés dans la direction d'oscillation sont rendus presque impossibles aux jonctions aux poutres d'attache 5. Le réseau de poutres assure ainsi le couplage des masses 1 et 2 qui favorise la relation de phases d'oscillation qu'on souhaite.FIG. 1 thus represents a particularly simple embodiment, where two masses 1 and 2 arranged side by side are connected to anchoring points 3 to an underlying substrate 9, not shown in detail and which extends under all the device. The anchoring points 3 are arranged in quadrilateral at the outer corners of the masses 1 and 2 by a single network of beams comprising anchor beams 4, two in number and each connected to two respective anchoring points 3 ' extending in parallel the alignment of the masses 1 and 2, two short fastening beams 5 perpendicular to the preceding and connected to their respective media, a junction beam 6 in the form of a rectangle extending around the masses 1 and 2 and the points of anchor 3 and 4, and two beams for attachment to the masses 7 extending between the junction beam 6 and the masses 1 and 2, short, whose direction coincides with the alignment of the masses 1 and 2 and which extend to the posterior faces of the masses 1 and 2. This network of beams ensures both the suspension of the masses 1 and 2 to the substrate by anchoring points 3, and the coupling of the masses 1 and 2 between them: when the masses 1 and 2 oscillate in the main direction of oscillation (corresponding to the direction of the alignment of the masses) and in opposition of phase, when approaching or moving away from each other, the network of beams is deforms as shown in Figure 2: the rectangle of the junction beam is deformed, d their sides becoming convex and the other two concaves, and the anchor beams 4 deform substantially like the sides of the junction beam 6 which are parallel and adjacent thereto. The fastening beams 5 and 7 undergo almost no deformation. This system is flexible for the deformations represented in phase opposition, but much more rigid for movements of the masses in phase, in the same direction, because the overall movements of the junction beam 6 which would be proposed in the direction of oscillation are made almost impossible at the junctions to the fastening beams 5. The network of beams thus ensures the coupling of the masses 1 and 2 which promotes the desired oscillation phase relationship.
La forme rectangulaire de la poutre de jonction 6 présente des angles dans lesquels des concentrations de contraintes ou des déformations complexes peuvent se produire. Il est possible de lui préférer une poutre de jonction courbe, comme celle de la figure 3, qui est disposée autour de deux masses 11 et 12 en demi-lune et qui présente une forme ovale, à volonté elliptique ou circulaire à volonté. Les points d'ancrage 13, les poutres d'ancrage 14, les poutres d'attache au substrat 15 et les poutres d'attache aux masses 17 ne sont pas modifiées par rapport à la réalisation précédente. Toutefois, les poutres d'ancrage 14 s'étendent ici à l'extérieur de la poutre de jonction 16, qui est donc proche des masses 11 et 12, qu'on façonne en forme de demi-lune pour améliorer la compacité de l'ensemble. Les côtés antérieurs des demi-lunes, opposés l'un à l'autre, sont plats, et leurs côtés postérieurs, opposés à la poutre de jonction 16 et reliés aux poutres d'attache 17 respectives, sont courbes et suivent le profil de la poutre de jonction 16 à peu de distance d'elle. La figure 4 illustre une réalisation semblable à la figure 3, si ce n'est qu'on ne trouve pas à proprement parler de points d'ancrage 13 mais un cadre de découplage 18 qui est relié à un substrat sous-jacent 19 par des points d'ancrage 20 opposés et situés dans l'alignement des masses 11 et 12, à peu de distance de la poutre de jonction 16 et des poutres d'attache aux masses 17. Les masses 11 et 12 et les poutres sont logées dans un creux du cadre de découplage 18. Cette structure présente l'avantage d'un découplage plus grand entre le substrat 19 et le système oscillant.The rectangular shape of the junction beam 6 has angles in which complex stress concentrations or deformations can occur. It is possible to prefer a curved junction beam, like that of Figure 3, which is arranged around two masses 11 and 12 in half-moon and which has an oval shape, at will elliptical or circular at will. The anchoring points 13, the anchor beams 14, the substrate attachment beams 15 and the beams for attachment to the masses 17 are not modified with respect to the previous embodiment. However, the anchor beams 14 extend here outside the junction beam 16, which is therefore close to the masses 11 and 12, which is shaped in the form of a half moon to improve the compactness of the together. The anterior sides of the half-moons, opposite each other, are flat, and their posterior sides, opposite to the junction beam 16 and connected to the respective fastening beams 17, are curved and follow the profile of the junction beam 16 at a short distance from her. FIG. 4 illustrates an embodiment similar to FIG. 3, except that, strictly speaking, anchoring points 13 are not found but a decoupling frame 18 which is connected to an underlying substrate 19 by means of opposed anchoring points 20 and located in the alignment of the masses 11 and 12, at a short distance from the junction beam 16 and the beams The masses 11 and 12 and the beams are housed in a hollow of the decoupling frame 18. This structure has the advantage of greater decoupling between the substrate 19 and the oscillating system.
Une variante de réalisation différente est représentée à la figure 5. La poutre de jonction 16 est remplacée par une poutre 26 de jonction disposée entre les masses 21 et 22, qui peuvent sans inconvénient reprendre une forme de parallélépipède comme les masses 1 et 2 rencontrées au début. On retrouve le même réseau de poutres d'ancrage et de poutres d'attache que précédemment, si ce n'est que les poutres d'attache aux masses, ici 27, se raccordent aux côtés antérieurs des masses 21 et 22. Ce système convient bien pour les fréquences élevées et les amplitudes de déplacement faibles. La poutre de jonction 26 est arrondie, ovale, circulaire, elliptique, etc. comme la poutre de jonction 16. Une description plus complète d'une réalisation simple de l'invention est faite au moyen de la figure 6. On reconnaît les caractéristiques de la réalisation de la figure 4, avec notamment le cadre de découplage 18, la poutre de jonction courbe 16 et les masses en demi-lune 11 et 12. On a représenté les moyens de mise en oscillation, qui sont formés de façon classique de peignes aux dents ou extensions 28 et 29 imbriquées, ou "interdigitées" d'après un terme courant dans l'art, et qui sont le siège de forces électriques d'attraction. Certaines des dents 28 sont placées sur la face postérieure des masses en demi-lune 11 et 12 et les dents 29 complémentaires sont placées sur des éléments fixes 30 en forme d'arc, s 'étendant entre les masses 11 et 12 et la poutre de jonction 16 jusqu'aux poutres d'attache aux masses 17 et retenues sur le substrat 19 par des points d'ancrage 31. Cette disposition particulière permet de n'utiliser que peu de volume supplémentaire pour les éléments de mise en oscillation et ne nuit donc pas à la compacité de l'engin. Les masses 11 et 12 sont munies d'autres extensions en forme de dents de peigne imbriquées les unes dans les autres à leurs faces antérieures . Elles portent la référence 32. Les imbrications de ces peignes produisent des forces électrostatiques de stabilisation qui contrarient les mouvements non voulus des masses 11 et 12 perpendiculairement à la direction principale d'oscillation x, dans l'axe vertical y de la figure. Les masses 11 et 12 sont strictement équilibrées de façon que leur axe principal d'inertie soit sur la ligne centrale d'alignement. Les extensions 28 et 32 sont notamment placées symétriquement de chaque côté de cette ligne. On préconise aussi que, pour chaque masse 11 ou 12, les extensions 32 des côtés antérieurs soient dans le prolongement des extensions 28 des côtés postérieurs ; la somme des masse des éléments 28 et 17 en extension sur le côté postérieur des masses 11 et 12 oscillantes donne la même masse que l'ensemble des extensions 32 situées sur le côté antérieur.A different embodiment variant is shown in FIG. 5. The junction beam 16 is replaced by a junction beam 26 disposed between the masses 21 and 22, which can without a problem take on the shape of a parallelepiped like the masses 1 and 2 encountered at beginning. We find the same network of anchor beams and fastening beams as previously, except that the beams attaching the masses, here 27, are connected to the front sides of the masses 21 and 22. This system is suitable good for high frequencies and low range magnitudes. The junction beam 26 is rounded, oval, circular, elliptical, etc. Like the junction beam 16. A more complete description of a simple embodiment of the invention is made by means of FIG. 6. The characteristics of the embodiment of FIG. 4 are recognized, in particular with the decoupling frame 18, the curved junction beam 16 and half-moon masses 11 and 12. The oscillation means, which are conventionally formed of combs with nested teeth or extensions 28 and 29, or "interdigitated" according to FIG. a term common in art, and which are the seat of electric forces of attraction. Some of the teeth 28 are placed on the posterior face of the half-moon masses 11 and 12 and the complementary teeth 29 are placed on stationary elements 30 in the form of an arc, extending between the masses 11 and 12 and the connecting beam 16 to the beams of attachment to the masses 17 and retained on the substrate 19 by anchoring points 31. This particular arrangement makes it possible to use only a little extra volume for the oscillation elements and thus does not affect the compactness of the machine. The masses 11 and 12 are provided with other extensions in the form of comb teeth imbricated in each other at their anterior faces. They have the reference 32. The nesting of these combs produce stabilizing electrostatic forces which counteract the unwanted movements of the masses 11 and 12 perpendicular to the main direction of oscillation x, in the vertical axis y of the figure. The masses 11 and 12 are strictly balanced so that their main axis of inertia is on the center line of alignment. The extensions 28 and 32 are in particular placed symmetrically on each side of this line. It is also recommended that, for each mass 11 or 12, the extensions 32 of the anterior sides be in the extension of the extensions 28 of the posterior sides; the sum of the mass of the elements 28 and 17 in extension on the posterior side of the masses 11 and 12 oscillating gives the same mass as the set of extensions 32 located on the front side.
Si ces conditions sont appliquées, on observe que les masses oscillantes sont beaucoup moins sujettes à se déplacer perpendiculairement à la direction d'oscillation par suite d'imperfections de fabrication et de contraintes externes ou internes .If these conditions are applied, it is observed that the oscillating masses are much less likely to move perpendicular to the direction of oscillation due to manufacturing imperfections and external or internal stresses.
Les poutres d'attache 15 et 17 sont ici dédoublées en deux éléments de poutres parallèles afin d'offrir une résistance meilleure à la torsion. On a déjà remarqué que les poutres d'attache ne sont pas beaucoup déformables en raison de leur faible longueur, et on souhaite d'ailleurs d'éviter leurs déformations, en particulier celles s 'exprimant en dehors du plan de la figure, dans la troisième direction Z qui ne pourrait produire que des mouvements oscillatoires supplémentaires, nuisibles aux mesures.The fastening beams 15 and 17 are here split into two parallel beam members in order to provide better resistance to torsion. It has already been noted that the fastening beams are not very deformable because of their short length, and it is also desirable to avoid their deformations, in particular those expressed outside the plane of the figure, in the third direction Z which could produce only oscillatory movements additional, harmful measures.
Des butées de limitation du mouvement des masses 11 et 12 sont offertes par le contact des dents 32 avec la masse opposée, et, dans l'autre sens, par le contact de la poutre de jonction 16 se déformant contre le cadre de découplage 18 aux points d'ancrage 20. Ces mises en butée impliquent toujours des pièces au même potentiel électrique et ne perturbent donc pas le fonctionnement de l'engin.Limiters for limiting the movement of the masses 11 and 12 are provided by the contact of the teeth 32 with the opposite mass and, in the other direction, by the contact of the connecting beam 16 which deforms against the decoupling frame 18 to the anchoring points 20. These abutments always involve parts with the same electrical potential and therefore do not disturb the operation of the machine.
On passe maintenant à la réalisation plus complexe de la figure 7. Les masses 11 et 12 monolithiques sont remplacées ici par des masses complexes 41 et 42 en forme générale de demi-lune. Toutefois, ces éléments oscillants sont ici composés de sous-masses 43 en quart de lune, au nombre de deux pour chacune des masses 41 et 42. Les masses 41 et 42 complexes sont entourées par des éléments de support 44 s 'étendant sur une ligne fermée composée d'un diamètre et d'un demi-périmètre d'un cercle. Ces poutres comportent des dents 28 et 32 imbriquées semblables à celles de la réalisation précédente. Les poutres d'attache 17 s'étendent en se raccordant aux éléments de support 44 et ne sont plus attachées qu'indirectement aux masses 41 et 42. Les éléments de support 44 ressemblent à des poutres à contour fermé et peuvent être considérés comme des poutres de couplage, mais sont sensiblement plus épaisses que les autres poutres, au point qu'elles ne se déforment presque pas.We now turn to the more complex embodiment of FIG. 7. The monolithic masses 11 and 12 are here replaced by complex masses 41 and 42 in the general form of a half-moon. However, these oscillating elements are here composed of sub-masses 43 in quarter-moon, two in number for each of the masses 41 and 42. The masses 41 and 42 complexes are surrounded by support elements 44 extending on a line closed composed of a diameter and a half-perimeter of a circle. These beams have teeth 28 and 32 nested similar to those of the previous realization. The fastening beams 17 extend by connecting to the support members 44 and are attached only indirectly to the weights 41 and 42. The support members 44 resemble closed-contour beams and may be considered as beams. coupling, but are substantially thicker than other beams, to the point that they are almost not deformed.
Les poutres de support 44 appartiennent donc au réseau de poutres reliant les masses 41 et 42 oscillantes au substrat. Le réseau comprend encore des poutres s 'étendant entre les sous-masses 43 en quart de lune, et plus précisément : deux poutres fléchissantes 45 dont les extrémités de chacune sont reliées à une sous-masse 43 respective et qui s'étendent dans la direction principale d'oscillation des masses 41 et 42, une poutre de liaison 46 joignant deux points opposés de l'élément de support 44 et s 'étendant dans le prolongement des poutres d'attache 17, dans la direction principale d'oscillation entre une paire des poutres fléchissantes 45, et une poutre d'interconnexion 47, courte, orientée perpendiculairement à la direction principale d'oscillation et reliant la paire des poutres fléchissantes 45 à la poutre de connexion 46.The support beams 44 thus belong to the network of beams connecting the masses 41 and 42 oscillating to the substrate. The network also comprises beams extending between the sub-masses 43 in quarter-moon, and more precisely: two bending beams 45 whose ends of each are connected to a respective sub-mass 43 and which extend in the direction main oscillating mass 41 and 42, a connecting beam 46 joining two opposite points of the support member 44 and extending in the extension of the attachment beams 17, in the main direction of oscillation between a pair bending beams 45, and a short interconnection beam 47, oriented perpendicular to the main direction of oscillation and connecting the pair of bending beams 45 to the connecting beam 46.
Un tel système peut être utilisé comme gyromètre à deux axes. Il comprend les possibilités des réalisations antérieures et permet en plus de mesurer les accélérations des forces de Coriolis s 'exerçant dans la direction Y de l'engin et produisant une flexion des poutres fléchissantes 45. Le dispositif de mesure est composé d'électrodes fixes 48 disposées dans des logements des sous-masses 43. Les électrodes fixes 48 permettent de mesurer les capacités électriques entre elles et les sous-masses 43. Quand les sous-masses 43 se déplacent, les électrodes fixes 48 s'approchent de certaines portions de leur logement et s'éloignent d'autres, la capacité totale est modifiée en fonction des mouvements de sous-masses 43. Une mesure sensible peut être obtenue si les électrodes fixes 48 sont dissymétriques, par exemple crénelées d'un côté et lisses de l'autre. Dans le cas présent, le côté crénelé est orienté dans la direction perpendiculaire à la direction principale d'oscillation pour mesurer les mouvements des quarts de lune dans cette direction perpendiculaire.Such a system can be used as a two-axis gyro. It understands the possibilities of the previous achievements and also makes it possible to measure the accelerations of the Coriolis forces exerted in the Y direction of the machine and producing a flexion of the bending beams 45. The measuring device is composed of fixed electrodes 48 arranged in housings of the sub-masses 43. The fixed electrodes 48 make it possible to measure the electrical capacitances between them and the sub-masses 43. When the sub-masses 43 move, the fixed electrodes 48 approach some portions of their housing and move away from others, the total capacity is changed according to the movements of sub-masses 43. A sensible measurement can be obtained if the fixed electrodes 48 are asymmetrical, for example example crenellated on one side and smooth on the other. In this case, the castellated side is oriented in the direction perpendicular to the main direction of oscillation to measure the movements of the quarter-moon in this perpendicular direction.
Les électrodes fixes 48 sont disposées symétriquement au centre d'inertie des quarts de lune par rapport aux deux directions d'oscillation.The fixed electrodes 48 are arranged symmetrically at the center of inertia of the quarter-moons with respect to the two directions of oscillation.
Les créneaux peuvent être de forme et d'ouverture variées. Un autre mode de réalisation des électrodes fixes consisterait à disposer deux électrodes plates 49 et 50 jumelées d'après la figure 9, et dont la capacité par rapport au logement 51 serait mesurée indépendamment. Le mouvement de la sous- masse 43 provoquerait une diminution d'une des capacités et une augmentation corrélative de l'autre. Une mesure des capacités par soustraction donnerait une évaluation sensible du mouvement.The slots can be of varied shape and opening. Another embodiment of the fixed electrodes would be to have two flat electrodes 49 and 50 paired according to Figure 9, and whose capacity relative to the housing 51 would be measured independently. The movement of the sub-mass 43 would cause a decrease in one of the capacities and a correlative increase in the other. A subtraction measurement of the abilities would give a sensible evaluation of the movement.
Voici plus en détail la façon dont on peut se servir de la réalisation complexe des figures 7 et 8. Outre la détection habituelle de l'accélération angulaire dans la direction Y, elle se prête à la direction de l'accélération angulaire dans la troisième direction Z, encore au moyen des oscillations des masses dans la direction X. C'est alors le mouvement des masses 41 et 42 dans la direction Y qui est mesuré, en réponse aux forces de Coriolis engendrées dans cette même direction. Pour chacune des masses 41 et 42, les variations totales de capacité enregistrées aux électrodes fixes 48 de chaque sous-masses totales 43 sont mesurées, et soustraites l'une de l'autre pour obtenir un résultat plus important et une mesure plus fine, en raison des mouvements sensiblement égaux (antisymétriques) des sous-masses 43 combinés à la disposition symétrique des électrodes fixes 49 entre les sous-masses 43 de chaque masse 41 ou 42. La mesure par soustraction élimine aussi l'effet d'une oscillation nuisible des sous-masses 43 dans la direction Y l'une par rapport à l'autre. Les mesures sur chacune des masses 41 et 42 doivent aussi donner des résultats opposés. Il est possible de les corréler par une autre mesure soustractive pour éliminer l'effet des accélérations parasites dans la direction Y.Here is more detail how we can use the complex realization of Figures 7 and 8. In addition to the usual detection of acceleration angular in the Y direction, it lends itself to the direction of the angular acceleration in the third direction Z, again by means of the oscillations of the masses in the X direction. It is then the movement of the masses 41 and 42 in the Y direction which is measured, in response to the Coriolis forces generated in that same direction. For each of the masses 41 and 42, the total capacitance variations recorded at the fixed electrodes 48 of each total sub-mass 43 are measured, and subtracted from one another to obtain a larger result and a finer measurement, because of the substantially equal (antisymmetric) movements of the sub-masses 43 combined with the symmetrical arrangement of the fixed electrodes 49 between the sub-masses 43 of each mass 41 or 42. The subtraction measurement also eliminates the effect of a harmful oscillation of the sub-masses 43 in the Y direction relative to each other. The measurements on each of the masses 41 and 42 must also give opposite results. It can be correlated by another subtractive measure to eliminate the effect of parasitic accelerations in the Y direction.
Les peignes rencontrés dans cette invention ont des longueurs de recouvrement de dents sensiblement plus importantes que celles qu'on emploie d'ordinaire. Les forces électrostatiques supplémentaires entre les peignes les maintiennent une position de centrage contre les perturbations que peut subir le système oscillant. Pour une amplitude d'oscillation de 5 μm par exemple, des dents de 7 μm de longueur sont usuelles. Des longueurs totales de 97μm environ, soitCombs encountered in this invention have teeth overlap lengths substantially larger than those ordinarily employed. Additional electrostatic forces between the combs keep them in a centering position against disturbances to the oscillating system. For an oscillation amplitude of 5 μm, for example, teeth of 7 μm in length are usual. Total lengths of about 97μm, either
90 μm de plus, et donc une longueur de recouvrement90 μm more, and therefore a length of recovery
(92μm) supérieure à l'amplitude d'oscillation sont proposées dans cet exemple conformément à l'invention. L'encombrement plus grand des peignes est compensé par une liberté beaucoup plus grande de conception des poutres, qui n'ont plus à assurer le guidage dans la direction d'oscillation par une raideur d'ensemble plus grande dans la rection perpendiculaire. Leur réseau peut donc être très simplifié.(92μm) greater than the amplitude of oscillation are proposed in this example according to the invention. The larger size of the combs is compensated by a much greater freedom of design of the beams, which no longer have to provide guidance in the direction of oscillation by a greater overall stiffness in the perpendicular rection. Their network can therefore be very simplified.
Ces résonateurs peuvent être construits par des techniques classiques de dépôt et gravure, etc. usuelles en micromécanique, de sorte qu'on n'en donnera pas de description ici. These resonators can be constructed by conventional deposition and etching techniques, etc. usual in micromechanics, so we will not give a description here.

Claims

REVENDICATIONS
1. Résonateur comprenant un substrat (9, 19) , au moins deux masses oscillantes, des moyens de mise en oscillation (1, 2, 11, 12, 41, 42) des masses par des forces électriques, (28, 29) des poutres de suspension (4, 5, 7, 14, 15, 17, 27) des masses au substrat et des poutres de couplage (6, 16, 26) reliant les masses entre elles, les poutres de suspension étant toutes connectées aux masses par l'intermédiaire des poutres de couplage, caractérisé en ce que les poutres de suspension et les poutres de couplage forment un ensemble unique de poutres en continuité comprenant des poutres d'attache au substrat, des poutres (6, 16, 26) d'attache aux masses, et une poutre de jonction s 'étendant sur une ligne fermée à laquelle les poutres d'attache au substrat (4, 5, 14, 15) et les poutres d'attache aux masses (7, 17, 27) sont connectées.1. Resonator comprising a substrate (9, 19), at least two oscillating masses, means for oscillating (1, 2, 11, 12, 41, 42) masses by electric forces, (28, 29) suspension beams (4, 5, 7, 14, 15, 17, 27) of the substrate masses and coupling beams (6, 16, 26) connecting the masses to each other, the suspension beams being all connected to the masses by via the coupling beams, characterized in that the suspension beams and the coupling beams form a single set of continuous beams comprising substrate attachment beams, fastening beams (6, 16, 26) to the masses, and a junction beam extending over a closed line to which the substrate attachment beams (4, 5, 14, 15) and the ground attachment beams (7, 17, 27) are connected. .
2. Résonateur selon la revendication 1, caractérisé en ce que la poutre de jonction s'étend sur une ligne courbe.2. Resonator according to claim 1, characterized in that the connecting beam extends over a curved line.
3. Résonateur selon la revendication 1, caractérisé en ce que la poutre de jonction entoure les masses, qui sont en forme de demi-lunes (11, 12, 41, 42) présentent des côtés rectilignes opposés entre eux et des côtés courbes opposés à la poutre de jonction.3. Resonator according to claim 1, characterized in that the connecting beam surrounds the masses, which are in the form of half-moons (11, 12, 41, 42) have rectilinear sides opposite to each other and curved sides opposite to the junction beam.
4. Résonateur selon la revendication 1, caractérisé en ce que les poutres d'attache au substrat comprennent des poutres d'ancrage (4, 14), s 'étendant globalement dans une direction d'alignement des masses entre deux régions d'attache au substrat, et des poutres de liaison (5, 15) perpendiculaires aux poutres d'ancrage et se joignant aux poutres d'ancrage à mi- distance des régions d'attache.4. Resonator according to claim 1, characterized in that the beams for attachment to the substrate comprise anchor beams (4, 14), extending generally in a direction of alignment of masses between two substrate attachment regions, and connecting beams (5, 15) perpendicular to the anchor beams and joining the anchor beams halfway away from the attachment regions.
5. Résonateur selon la revendication 3, caractérisé en ce que la poutre de jonction entoure les masses, et les moyens de mise en oscillation comprennent des éléments de mise en oscillation placés entre la poutre de jonction et les masses.5. Resonator according to claim 3, characterized in that the junction beam surrounds the masses, and the oscillation means comprise oscillation elements placed between the junction beam and the masses.
6. Résonateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le substrat comporte un cadre de découplage (18) entourant les masses, les moyens de mise en oscillation et les poutres, et fixé à une portion sous-jacente du substrat par deux régions d'ancrage de cadre (20) alignées dans une direction principale d'oscillation des masses.6. Resonator according to any one of the preceding claims, characterized in that the substrate comprises a decoupling frame (18) surrounding the masses, the oscillation means and the beams, and attached to an underlying portion of the substrate. by two frame anchoring regions (20) aligned in a main direction of oscillation of the masses.
7. Résonateur selon la revendication 6, caractérisé en ce que les poutres d'attache aux masses (17) sont alignées avec les régions d'ancrage de cadre.7. Resonator according to claim 6, characterized in that the beams for attachment to the masses (17) are aligned with the frame anchoring regions.
8. Résonateur selon la revendication 7, caractérisé en ce que le cadre et la poutre de jonction (16) sont conçus pour former des butées devant les régions d'ancrage de cadre, et les masses oscillantes possèdent des côtés opposés conçus pour former une butée mutuelle. 8. Resonator according to claim 7, characterized in that the frame and the connecting beam (16) are designed to form stops in front of the frame anchoring regions, and the oscillating masses have opposite sides designed to form an abutment. mutual.
9. Résonateur selon la revendication 5, caractérisé en ce que les masses s'étendent entre les éléments de mise en oscillation et possèdent des côtés opposés entre eux munis de peignes électriques imbriqués (32) .9. Resonator according to claim 5, characterized in that the masses extend between the oscillating elements and have sides opposite to each other provided with nested electric combs (32).
10. Résonateur selon l'une quelconque des revendications précédentes, caractérisé en ce que les masses (41, 42) sont chacune composées de deux sous-masses (43) placées symétriquement à une direction principale d'oscillation de masses, et les poutres de couplage comprennent, pour chacune des masses, un sous-ensemble de poutres s 'étendant entre les sous-masses et comprenant deux poutres (45) reliées respectivement aux sous-masses et à une poutre d'interconnexion (47), les poutres reliées aux sous-masses s 'étendant dans une direction d'oscillation principale des masses.10. Resonator according to any one of the preceding claims, characterized in that the masses (41, 42) are each composed of two sub-masses (43) placed symmetrically to a main direction of oscillation of masses, and the beams of coupling comprise, for each of the masses, a subset of beams extending between the sub-masses and comprising two beams (45) connected respectively to the sub-masses and to an interconnection beam (47), the beams connected to the sub-masses sub-masses extending in a main oscillation direction of the masses.
11. Résonateur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des électrodes (48) de mesure de capacité avec les masses, les électrodes étant fixées au substrat et disposées dans des logements (51) des masses, et étant dissymétriques dans une direction d'oscillation des masses .11. Resonator according to any one of the preceding claims, characterized in that it comprises electrodes (48) for measuring capacitance with the masses, the electrodes being fixed to the substrate and arranged in housings (51) masses, and being asymmetrical in a direction of oscillation of the masses.
12. Résonateur selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de mise en oscillation comprennent des peignes aux dents imbriquées (28, 29) présentant une longueur de recouvrement supérieur à une amplitude d'oscillation des masses oscillantes.12. Resonator according to any one of the preceding claims, characterized in that the oscillation means comprise combs. the interlocking teeth (28, 29) having an overlap length greater than an oscillation amplitude of the oscillating masses.
13. Résonateur selon la revendication 9, caractérisé en ce que les peignes électriques imbriqués ont des dents (32) de masse totale égale à une masse totale d'extensions (17, 28) présentes sur une face opposée auxdites dents (32) de chaque masse oscillante. 13. Resonator according to claim 9, characterized in that the nested electric combs have teeth (32) of total mass equal to a total mass of extensions (17, 28) present on a face opposite to said teeth (32) of each oscillating weight.
EP05810750A 2004-10-06 2005-10-05 Oscillating mass resonator Withdrawn EP1797395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452276A FR2876180B1 (en) 2004-10-06 2004-10-06 RESONATOR WITH OSCILLATING MASSES.
PCT/FR2005/050815 WO2006037928A1 (en) 2004-10-06 2005-10-05 Oscillating mass resonator

Publications (1)

Publication Number Publication Date
EP1797395A1 true EP1797395A1 (en) 2007-06-20

Family

ID=34954605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05810750A Withdrawn EP1797395A1 (en) 2004-10-06 2005-10-05 Oscillating mass resonator

Country Status (5)

Country Link
US (1) US7637155B2 (en)
EP (1) EP1797395A1 (en)
JP (1) JP2008516217A (en)
FR (1) FR2876180B1 (en)
WO (1) WO2006037928A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905457B1 (en) * 2006-09-01 2008-10-17 Commissariat Energie Atomique MICROSYSTEM, ESPECIALLY MICROGYROMETER, WITH DETECTION ELEMENT WITH CAPACITIVE ELECTRODES.
FR2910742B1 (en) 2006-12-22 2009-05-01 Commissariat Energie Atomique MECHANICAL OSCILLATOR FORMED OF A NETWORK OF ELEMENTARY OSCILLATORS
US8462109B2 (en) 2007-01-05 2013-06-11 Invensense, Inc. Controlling and accessing content using motion processing on mobile devices
US8141424B2 (en) * 2008-09-12 2012-03-27 Invensense, Inc. Low inertia frame for detecting coriolis acceleration
US8952832B2 (en) 2008-01-18 2015-02-10 Invensense, Inc. Interfacing application programs and motion sensors of a device
US7934423B2 (en) 2007-12-10 2011-05-03 Invensense, Inc. Vertically integrated 3-axis MEMS angular accelerometer with integrated electronics
US8250921B2 (en) 2007-07-06 2012-08-28 Invensense, Inc. Integrated motion processing unit (MPU) with MEMS inertial sensing and embedded digital electronics
US8508039B1 (en) 2008-05-08 2013-08-13 Invensense, Inc. Wafer scale chip scale packaging of vertically integrated MEMS sensors with electronics
DE102007051591B4 (en) * 2007-10-12 2019-04-25 Robert Bosch Gmbh Micromechanical device with drive frame
US7777596B2 (en) 2007-12-18 2010-08-17 Robert Bosch Gmbh MEMS resonator structure and method
JP5228675B2 (en) * 2008-07-29 2013-07-03 富士通株式会社 Angular velocity sensor and electronic device
FI20095201A0 (en) 2009-03-02 2009-03-02 Vti Technologies Oy Oscillating micromechanical angular velocity sensor
JP5206709B2 (en) * 2009-03-18 2013-06-12 株式会社豊田中央研究所 Device having a movable body
FR2945621B1 (en) * 2009-05-15 2011-08-26 Commissariat Energie Atomique COUPLING STRUCTURE FOR RESIN GYROMETER
FR2946479A1 (en) * 2009-06-09 2010-12-10 Commissariat Energie Atomique ELECTROMECHANICAL RESONATOR WITH RESONANT ANCHORING.
EP2392897B1 (en) * 2010-01-12 2014-06-11 Sony Corporation Angular velocity sensor, electronic device, and method for detecting angular velocity
JP4905574B2 (en) * 2010-03-25 2012-03-28 株式会社豊田中央研究所 Laminated structure with moving parts
WO2012051256A1 (en) * 2010-10-12 2012-04-19 Colorado Seminary Micromechanical resonators
JP5789485B2 (en) * 2011-11-08 2015-10-07 日本電波工業株式会社 Crystal oscillator
EP2544370B1 (en) * 2011-07-06 2020-01-01 Nxp B.V. MEMS resonator
US10203272B2 (en) 2011-10-12 2019-02-12 Colorado Seminary, University of Denver MEMS aerosol impactor
FR3008190B1 (en) 2013-07-08 2015-08-07 Commissariat Energie Atomique METHOD AND DEVICE FOR MEASURING A MAGNETIC FIELD USING SYNCHRONIZED EXCITATIONS
US9476712B2 (en) 2013-07-31 2016-10-25 Honeywell International Inc. MEMS device mechanism enhancement for robust operation through severe shock and acceleration
RU2629168C1 (en) * 2013-12-23 2017-08-24 Эта Са Мануфактюр Орложэр Сюис Clock synchronization mechanism

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349855A (en) * 1992-04-07 1994-09-27 The Charles Stark Draper Laboratory, Inc. Comb drive micromechanical tuning fork gyro
DE4414237A1 (en) * 1994-04-23 1995-10-26 Bosch Gmbh Robert Micromechanical vibrator of an oscillation gyrometer
DE19500800A1 (en) * 1994-06-16 1995-12-21 Bosch Gmbh Robert Acceleration sensor
DE4442033C2 (en) * 1994-11-25 1997-12-18 Bosch Gmbh Robert Yaw rate sensor
US5635638A (en) * 1995-06-06 1997-06-03 Analog Devices, Inc. Coupling for multiple masses in a micromachined device
JP3882972B2 (en) * 1998-06-18 2007-02-21 アイシン精機株式会社 Angular velocity sensor
DE19844686A1 (en) * 1998-09-29 2000-04-06 Fraunhofer Ges Forschung Micromechanical rotation rate sensor and manufacturing method
JP2000105124A (en) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd Electrostatic drive, electrostatic detecting type angular velocity sensor
FR2846740B1 (en) * 2002-11-05 2005-02-04 Thales Sa MICRO-FACTORY GYROMETRIC SENSOR, DETECTION IN PLATE PLATE
US6843127B1 (en) * 2003-07-30 2005-01-18 Motorola, Inc. Flexible vibratory micro-electromechanical device
US6892575B2 (en) * 2003-10-20 2005-05-17 Invensense Inc. X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2006037928A1 *

Also Published As

Publication number Publication date
US20090249873A1 (en) 2009-10-08
WO2006037928A1 (en) 2006-04-13
JP2008516217A (en) 2008-05-15
FR2876180B1 (en) 2006-12-08
FR2876180A1 (en) 2006-04-07
US7637155B2 (en) 2009-12-29

Similar Documents

Publication Publication Date Title
WO2006037928A1 (en) Oscillating mass resonator
EP2960625B1 (en) Mems angular inertial sensor in tuning fork mode
EP1515119B1 (en) Micro fabricated gyroscope with a double tuning fork
EP2679952B1 (en) Micro-machined gyroscope with in-plane detection
EP1899681B1 (en) Micro-machined gyrometric sensor for differential measurement of the movement of vibrating masses
FR2895501A1 (en) Microgyrometer with at least two or more oscillating masses suspended so that they have an opposing phase movement along a specified excitation direction
EP1558896B1 (en) Micro-machined gyro rate sensor with detection in the machined plate plane
EP3254158A1 (en) Isochronous timepiece resonator
FR2594547A1 (en) VIBRATING BAR STRENGTH TRANSDUCER HAVING A SINGLE INSULATING SPRING
FR2924422A1 (en) SUSPENDED PIEZORESISTIVE STRAIN GAUGE DETECTION DEVICE COMPRISING A STRAIN AMPLIFICATION CELL.
FR2798993A1 (en) GYROMETER OF DIAPASON TYPE
EP3394564B1 (en) System for suspending a mobile mass comprising means for linking the mobile mass with optimised linearity
EP3206091B1 (en) Isochronous clock resonator
EP2414774B1 (en) Element vibrating in two uncoupled modes, and use in vibrating rate gyroscope
EP0773429B1 (en) Mechanical resonator gyro
EP1515118B1 (en) Micro-machined vibrating gyroscope with in-plane detection
EP1285229B1 (en) Vibrating structure comprising two coupled oscillators, in particular for a gyro
WO2019106448A1 (en) Timepiece setting device with harmonic oscillator having rotating weights and a common recoil strength
FR3140621A1 (en) Micro-electromechanical device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180501