EP1797330B1 - Anordnung zur förderung von fluiden - Google Patents

Anordnung zur förderung von fluiden Download PDF

Info

Publication number
EP1797330B1
EP1797330B1 EP05786321A EP05786321A EP1797330B1 EP 1797330 B1 EP1797330 B1 EP 1797330B1 EP 05786321 A EP05786321 A EP 05786321A EP 05786321 A EP05786321 A EP 05786321A EP 1797330 B1 EP1797330 B1 EP 1797330B1
Authority
EP
European Patent Office
Prior art keywords
arrangement according
permanent magnet
rotor
split pot
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05786321A
Other languages
English (en)
French (fr)
Other versions
EP1797330A1 (de
Inventor
Alexander Jordan
Michael Burgert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst St Georgen GmbH and Co KG
Original Assignee
Ebm Papst St Georgen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst St Georgen GmbH and Co KG filed Critical Ebm Papst St Georgen GmbH and Co KG
Publication of EP1797330A1 publication Critical patent/EP1797330A1/de
Application granted granted Critical
Publication of EP1797330B1 publication Critical patent/EP1797330B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/062Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/064Details of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/0646Details of the stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows

Definitions

  • the invention relates to an arrangement for conveying fluids. As fluids liquid and / or gaseous media can be promoted.
  • the cooling liquid flows through not only the heat absorber, but also a liquid pump, which causes the forced circulation and an adequate pressure build-up and an adequate volume flow through the heat exchanger and an associated heat exchanger causes, so that the heat transfer coefficients associated with these heat transfer large and the heat transfer necessary temperature gradient become small.
  • a liquid pump which causes the forced circulation and an adequate pressure build-up and an adequate volume flow through the heat exchanger and an associated heat exchanger causes, so that the heat transfer coefficients associated with these heat transfer large and the heat transfer necessary temperature gradient become small.
  • a fan In the heat exchanger usually a fan is arranged, which causes a forced convection of the cooling air and good transfer coefficients on the air side of the heat exchanger.
  • Fig. 1 shows an enlarged view of an arrangement with an electronically commutated external rotor motor 20.
  • This has an inner stator 22 of Conventional construction, as exemplified in Fig. 2 is shown in section, for example, a stator with salient poles or a claw-pole stator, and this is separated by a substantially cylindrical air gap 24 from a permanent-magnetic outer rotor 26, its structure also made Fig. 2 is particularly clear.
  • the outer rotor 26 rotates about the inner stator 22, which is why such motors 20 are referred to as external rotor motors.
  • the inner stator 22 is mounted on a bearing tube 30 made of a suitable plastic, usually by pressing.
  • the shape of the bearing tube 30 is made Fig. 2 and 3 especially clear.
  • Right of the indoor stator 22 is located in Fig. 1 a printed circuit board 32.
  • a rotor position sensor 34 which is controlled by a permanent magnet ring 36 of the outer rotor 26.
  • the magnet ring 36 is radially magnetized and preferably has four rotor poles. Its magnetization, that is, the distribution of its magnetic flux density may be, for example, rectangular or trapezoidal.
  • the sensor 34 is controlled by a stray field of the magnetic ring 36, which allows a non-contact detection of the position of the rotor 26.
  • the outer rotor 26 has a construction with a so-called rotor bell 40, which is designed here as a deep-drawn, cup-shaped sheet metal part made of soft ferromagnetic material.
  • the magnetic ring 36 is fixed in this sheet metal part 40, so that it forms a magnetic yoke for the rotor magnet 36.
  • the sheet metal part 40 is fixed to a hub 44 in which a shaft 46 is fixed in the manner shown.
  • the shaft 46 is mounted in two ball bearings 48, 50, the outer rings are held by a spacer 52 at a distance from each other, see. the schematic representations in the Fig. 18 and 19 ,
  • These ball bearings 48, 50 are, together with the shaft 46, in the assembly in Fig. 1 Pressed from the left into the bearing tube 30 and held there by a locking member 54, see. Fig. 18 and 19 ,
  • a locking member 54 For pressing the locking member 54 is an axial projection 56 of the flange 44.
  • a compression spring 58 Between the latter and the inner ring of the rolling bearing 48 is a compression spring 58, which, based on Fig.
  • the outside of the sheet metal part 40 is surrounded by a plastic part 63, in which fan blades 64 are formed in the manner shown by plastic injection molding. These rotate during operation in a recess 66 of a fan housing 68, see. Fig. 3 ,
  • the fan housing 68 preferably has the usual square basic shape of a device fan and has in its corners in each case a mounting hole 70.
  • the plastic part 63 has in Fig. 1 right a continuation part 65 in which a permanent magnet 67 is attached, which is part of a magnetic coupling.
  • the bearing tube 30 goes into Fig. 1 to the right about in a flange-like portion 80 which is perpendicular to the axis of rotation 81 of the rotor 26 and merges at its periphery in a cylindrical portion 82, which here has the function of a so-called split tube and therefore hereinafter referred to as a gap tube 82.
  • This is via a shoulder 84 in a cylindrical portion 86, the free end, as shown, for fixing a lid 88 is used, for example by laser welding.
  • an inlet nozzle 96 is provided for cooling liquid.
  • a delivery wheel 90 is rotatably arranged.
  • the bearing tube 83 is as shown preferably integrally with the parts 82, 84, 86 made of a magnetically transparent plastic.
  • the feed wheel 90 is preferably formed integrally with a permanent magnetic rotor 92 which forms a magnetic coupling 94 with the permanent magnet 67, ie when the permanent magnet 67 rotates, the permanent magnet 92 also rotates, thereby driving the delivery wheel 90, whereby this liquid sucks through the inlet 96 and pumped through an outlet 98 to the outside, as indicated by arrows.
  • a permanent magnetic rotor 92 which forms a magnetic coupling 94 with the permanent magnet 67, ie when the permanent magnet 67 rotates, the permanent magnet 92 also rotates, thereby driving the delivery wheel 90, whereby this liquid sucks through the inlet 96 and pumped through an outlet 98 to the outside, as indicated by arrows.
  • any other turbomachine may be provided instead of a spiral pump, for example a compressor for a refrigerant.
  • Fig. 4 shows an instantaneous rotational position of the magnet 67, which is shown in four poles, as well as the magnet 92. The latter is shown in simplified form.
  • the flux guide bodies 150 face south poles S, to the right of the boundary 156, on the other hand, they face north poles N.
  • the flux guide 150 extend here in each case in radial planes and at a distance from each other, whereby they are magnetically isolated from each other. They are preferably distributed uniformly around the circumference in order to avoid the development of reluctance moments and magnetic preferred positions.
  • south poles S which attract the north pole N of the permanent magnet 92, are also formed on the radially inner end of the flux guide body 150 to the left of the pole boundary 156.
  • the flux guide bodies 150 face north poles N, and accordingly north pole N, which attract a south pole of the permanent magnet 92, are located at the radially inner end of the flux guide body 150 there.
  • the outer magnet 67 rotates clockwise, as in Fig. 5 As shown, the poles also migrate at the inner ends of the flux guide 150 and thus cause rotation of the inner permanent magnet 92 at the same speed.
  • the arrangement according to Fig. 4 works according to the principle of a synchronous motor. (Alternatively, in special cases, operation with slippage is not excluded, which presupposes the use of special materials in the magnetic coupling 94, as known to the person skilled in the art.)
  • the permanent magnet 92 of the fluid pump is rotatably supported by means of a sliding bearing 100 on a stationary shaft 106, which is fixed in a liquid-tight manner in a protruding projection 107 of the portion 80 in the manner shown.
  • a snap ring (not shown) may be provided at the right end of the shaft 106.
  • the cylindrical portion 86 is connected via radially extending webs 114 with the fan housing 68, so that this forms a one-piece plastic part with the split tube 82, the portion 80 and the bearing tube 30, which simplifies the assembly of the assembly, the number of parts keeps small, and the units used safely separated from each other, so that liquid from the turbomachine 90 can not get to the electric motor 20 and damage it.
  • the stationary shaft 106 also forms part of this injection-molded part, because it is anchored in this in the manufacture, and therefore also contributes to the compact design.
  • the external rotor motor 20 drives the outer rotor 26, so that the fan blades 64 rotate in the housing 68 and thereby generate an air flow therein.
  • the fan can also be designed as a diagonal or radial fan. Shown is an axial fan.
  • the magnet ring 67 drives the rotor magnet 92 via the flux guide bodies 150 and through the gap tube 82 and thus rotates the impeller 90, so that this liquid sucks through the inlet 96 and pumps out through the outlet 98.
  • a pump may e.g. used to aspirate and pump water in a fountain, or to pump blood in a cardiopulmonary bypass, or to transport cooling fluid in a closed cooling circuit, the impeller 90 then having the function of a circulation pump.
  • the lid 88 is liquid-tightly connected to the cylindrical part 86, for example by laser welding, no liquid can escape from the housing 88 to the outside. This contributes to the fact that the section 80 and its projection 107 are free of openings of any kind. This is possible because the rotor 26, eg in the following at Fig. 18 and 19 described manner, can be mounted very easily and it is not necessary during assembly to in Fig. 1 right end of the shaft 46 to have access. Likewise, that can Impeller 90 of the centrifugal pump with its sliding bearing 100 in Fig. 1 be mounted from the right on the stationary shaft 106 before the lid 88 is attached.
  • Flussleit Economics 150 ensures that the rotor 26 can be easily pushed over this Flussleit Sciences 150 including its axial extension 65 and the permanent magnet 67 during assembly without this complicated assembly work is necessary. Before assembly of the rotor 26, the entire remaining part of the arrangement can be completely assembled, because it is possible because of the FlußleitMech 150 to make the outer diameter in the region of these bodies 150 larger than the outer diameter of the inner stator 22 and the circuit board 32nd
  • Fig. 1 can be provided for the storage of the impeller 90, a rotating shaft which is stored as well as the shaft 46 of the motor 20 in a (not shown) bearing tube, which is then - as the bearing tube 30 - is integrally formed with the section 80 and this protrudes to the right, so mirror image of the bearing tube 30th
  • Fig. 18 that differ slightly from the representation in the Fig. 1 to 5 differs 20 different components are pre-assembled on the shaft 46 prior to assembly of the motor.
  • the rolling bearing 48 follows with its outer ring 48e and its inner ring 48i. The latter is displaceable on the shaft 46 in the axial direction. The lower end of the spring 58 abuts against the upper end of the inner ring 48i.
  • the roller bearing 48 is followed by the spacer 52, which is displaceably guided on the shaft 46 by means of a radially inwardly projecting projection 53 and whose upper end abuts, as illustrated, against the lower end of the outer ring 48e.
  • the lower roller bearing 50 follows with its outer ring 50 e, which rests with its upper end against the spacer 52 and with its inner ring 50 i, which is axially displaceable on the shaft 46 and with its lower end against the snap ring 59th is applied when the motor 20 is fully assembled.
  • Fig. 19 shows a snapshot in the process of "marriage", in which the shaft 46 of the rotor 26 is inserted with the rolling bearings 48, 50 thereon in the inner recess 77 of the bearing tube 30.
  • the 6 to 12 show a first variant for the attachment of Flußleitmaschinen 150 'on a plastic ring 160.
  • the latter has a cylindrical recess 162, with which he according to 10 to 12 is pushed onto the split tube 82. On its outside, it has projections 164 in which the flux guide bodies 150 'are anchored in the manner shown.
  • the ring 160 is on his in the Fig. 6, 7 and 10 to 12 bottom side provided with projections 168 which have approximately the shape of a wedge.
  • the split tube 82 may have a smaller wall thickness in this case.
  • FIGS. 13 and 14 show a similar embodiment, but with a wedge-like blade 174 is provided which extends continuously. The attachment is the same as in the 10 to 12 shown.
  • the Flußleit analyses 150 also act as flux concentrators, because they have at their radially outer portion about the same length as the magnet 67, while at their radially inner portion about the - shorter - length of the magnet 92 have, so that the flow of the magnet 67 is concentrated. This also takes into account the fact that the magnets 67 and 92 are unequal in length and improves the torque that can be transmitted from the magnetic coupling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

  • Die Erfindung betrifft eine Anordnung zur Förderung von Fluiden. Als Fluide können flüssige und/oder gasförmige Medien gefördert werden.
  • Bei Computern werden heute Bauteile mit hohen Wärmestromdichten verwendet, z.B. 60 W/cm2. Von diesen Bauteilen muss die Wärme zunächst in einen Flüssigkeitskreislauf überführt werden, und von diesem Kreislauf muss die Wärme über einen Flüssigkeits-Luft-Wärmetauscher an die Umgebungsluft abgegeben werden.
  • Die Ableitung der Wärme von Bauteilen mit hoher Wärmestromdichte erfolgt mittels sogenannter Wärmeaufnehmer oder Cold Plates. In diesen wird die Wärme zu einer Kühlflüssigkeit übertragen, und diese wird gewöhnlich in einem Kreislauf in Zwangsumlauf versetzt.
  • Dabei durchströmt die Kühlflüssigkeit nicht nur den Wärmeaufnehmer, sondern auch eine Flüssigkeitspumpe, welche den Zwangsumlauf bewirkt und einen adäquaten Druckaufbau und einen adäquaten Volumenstrom durch den Wärmeaufnehmer und einen zugeordneten Wärmetauscher bewirkt, so dass die zu diesen Wärmeübertragern gehörenden Wärmeübertragungs-Koeffizienten groß und die zur Wärmeübertragung notwendigen Temperaturgradienten klein werden. Solche Anordnungen sind z.B. aus WO 2004/031588 , JP 06 241185 , US 6600649 , JP 09 163 675 oder aus DE 4301675 bekamt.
  • Beim Wärmetauscher wird gewöhnlich ein Lüfter angeordnet, welcher auf der Luftseite des Wärmetauschers eine erzwungene Konvektion der Kühlluft und gute Übertragungskoeffizienten bewirkt.
  • Bei derartigen Kühlanordnungen werden Lüfter und Flüssigkeitspumpe separat angetrieben, und diese Bauteile sind häufig auch räumlich voneinander getrennt. Deshalb benötigt man zwei Antriebe, welche meist rotatorisch arbeiten. Diese Antriebe benötigen Energie und auch ziemlich viel Bauraum, was beides unerwünscht ist.
  • Es ist deshalb eine Aufgabe der Erfindung, eine neue Anordnung zur Förderung von Fluiden bereit zu stellen.
  • Nach der Erfindung wird diese Aufgabe gelöst durch den Gegenstand des Anspruchs 1. Man erhält so eine sehr kompakte Anordnung mit gutem Wirkungsgrad, wobei die weichferromagnetischen Magnetfluss-Leiter den Raum zwischen dem Spalttopf und dem zweiten Dauermagneten überbrücken und dadurch einen größeren Abstand zwischen dem ersten Dauermagneten und dem zweiten Dauermagneten der Magnetkupplung ermöglichen.
  • Weitere Einzelheiten und vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den im folgenden beschriebenen und in der Zeichnung dargestellten, in keiner Weise als Einschränkung der Erfindung zu verstehenden Ausführungsbeispielen, sowie aus den Unteransprüchen. Es zeigt:
  • Fig. 1
    einen Längsschnitt durch eine bevorzugte Ausführungsform der Erfindung, gesehen längs der Linie I-I der Fig. 5,
    Fig. 2 und 3
    eine Explosionsdarstellung der Anordnung nach Fig. 1,
    Fig. 4
    eine schematische Darstellung zur Erläuterung der Erfindung,
    Fig. 5
    einen Schnitt, gesehen längs der Linie V-V der Fig. 1,
    Fig. 6
    eine raumbildliche Darstellung einer Anordnung mit Flussleitblechen, nach einer Variante der Erfindung,
    Fig. 7
    eine vergrößerte Ausschnittsdarstellung aus Fig. 6, welche Vorsprünge zeigt, die beim Ultraschallschweißen verformt werden und dabei eine örtliche Schweißverbindung herstellen,
    Fig. 8
    eine Draufsicht von unten auf die Anordnung der Fig. 6, gesehen in Richtung des Pfeiles VIII der Fig. 6,
    Fig. 9
    eine Draufsicht von oben auf die Anordnung der Fig. 6, gesehen in Richtung des Pfeiles IX der Fig. 6,
    Fig. 10
    eine schematische Darstellung der Befestigung der Anordnung gemäß Fig. 6 mittels Aufpressen und Ultraschallschweißen,
    Fig. 11
    eine Ausschnittsvergrößerung,
    Fig. 12
    die Anordnung gemäß Fig. 10 nach ihrer Montage,
    Fig. 13
    eine raumbildliche Darstellung einer Anordnung mit Flussleitblechen, gemäß einer weiteren Variante der Erfindung,
    Fig. 14
    eine vergrößerte Ausschnittsdarstellung aus Fig. 13,
    Fig. 15
    einen horizontalen Schnitt durch die Anordnung gemäß Fig. 13,
    Fig. 16
    einen Ausschnitt aus Fig. 15,
    Fig. 17
    einen Schnitt durch ein Flussleitblech der Fig. 13, und
    Fig. 18
    und 19 zwei schematische Darstellungen zur Erläuterung der Montage des Rotors und seiner Lager bei der Anordnung nach Fig. 1 bis 3.
  • In der nachfolgenden Beschreibung beziehen sich die Begriffe links, rechts, oben, unten auf die jeweilige Zeichnungsfigur. Gleiche oder gleich wirkende Teile werden in den verschiedenen Figuren mit denselben Bezugszeichen bezeichnet, ggf. mit nachgestellten Apostrophen, z.B. 150 und 150'.
  • Fig. 1 zeigt in vergrößerter Darstellung eine Anordnung mit einem elektronisch kommutierten Außenläufermotor 20. Dieser hat einen Innenstator 22 von konventioneller Bauweise, wie er beispielhaft in Fig. 2 im Schnitt dargestellt ist, z.B. einen Stator mit ausgeprägten Polen oder einen Klauenpolstator, und dieser ist durch einen im wesentlichen zylindrischen Luftspalt 24 von einem permanentmagnetischen Außenrotor 26 getrennt, dessen Aufbau ebenfalls aus Fig. 2 besonders gut ersichtlich ist. Im Betrieb dreht sich der Außenrotor 26 um den Innenstator 22, weshalb man solche Motoren 20 als Außenläufermotoren bezeichnet.
  • Der Innenstator 22 ist auf einem Lagerrohr 30 aus einem geeigneten Kunststoff befestigt, gewöhnlich durch Aufpressen. Die Form des Lagerrohrs 30 ist aus Fig. 2 und 3 besonders klar ersichtlich. Rechts vom Innenstator 22 befindet sich in Fig. 1 eine Leiterplatte 32. Auf dieser befinden sich z.B. (hier nicht dargestellte) elektronische Bauteile, die zur elektronischen Kommutierung des Motors 20 benötigt werden, außerdem ein Rotorstellungssensor 34, der von einem Permanentmagnetring 36 des Außenrotors 26 gesteuert wird. Der Magnetring 36 ist radial magnetisiert und hat bevorzugt vier Rotorpole. Seine Magnetisierung, also die Verteilung seiner magnetischen Flussdichte kann z.B. rechteckförmig oder trapezförmig sein. Der Sensor 34 wird von einem Streufeld des Magnetrings 36 gesteuert, was eine berührungslose Erfassung der Stellung des Rotors 26 ermöglicht.
  • Der Außenrotor 26 hat eine Bauweise mit einer sogenannten Rotorglocke 40, die hier als tiefgezogenes, becherförmiges Blechteil aus weichferromagnetischem Werkstoff ausgebildet ist. Der Magnetring 36 ist in diesem Blechteil 40 befestigt, so dass es einen magnetischen Rückschluss für den Rotormagneten 36 bildet.
  • Das Blechteil 40 ist an einer Nabe 44 befestigt, in der eine Welle 46 in der dargestellten Weise befestigt ist. Die Welle 46 ist in zwei Kugellagern 48, 50 gelagert, deren Außenringe durch ein Distanzstück 52 im Abstand voneinander gehalten werden, vgl. die schematischen Darstellungen in den Fig. 18 und 19. Diese Kugellager 48, 50 werden, zusammen mit der Welle 46, bei der Montage in Fig. 1 von links in das Lagerrohr 30 eingepresst und durch ein Rastglied 54 dort festgehalten, vgl. Fig. 18 und 19. Zum Einpressen des Rastglieds 54 dient ein axialer Vorsprung 56 des Flanschteils 44. Zwischen letzterem und dem Innenring des Wälzlagers 48 befindet sich eine Druckfeder 58, welche, bezogen auf Fig. 1, nach der Montage den Rotor 26 so weit nach links presst, bis ein am rechten Ende der Welle 46 befestigter Sprengring 59 gegen den Innenring des Wälzlagers 50 anliegt. Die Welle 46 ist also bei dieser Art der Montage in den Innenringen der beiden Wälzlager 48, 50 verschiebbar. Naturgemäß stellt diese Art der Montage nur eine bevorzugte Ausführungsform dar. Viele andere Arten sind möglich.
  • Diese Art der Montage ermöglicht es bei Fig. 1, den Rotor 26 samt seinen fertig vormontierten Lagern 48, 50 von links her im Lagerrohr 30 zu montieren, so dass das in Fig. 1 rechte Ende 60 der Innenausnehmung des Lagerrohrs 30 wie dargestellt flüssigkeitsdicht verschlossen sein kann. Anhand der nachfolgenden Fig. 18 und 19 wird diese Art der Montage noch näher erläutert.
  • Die Außenseite des Blechteils 40 ist von einem Kunststoffteil 63 umgeben, in welchem durch Kunststoff-Spritzguss Lüfterflügel 64 in der dargestellten Weise ausgebildet sind. Diese drehen sich im Betrieb in einer Ausnehmung 66 eines Lüftergehäuses 68, vgl. Fig. 3. Das Lüftergehäuse 68 hat bevorzugt die übliche quadratische Grundform eines Gerätelüfters und hat in seinen Ecken jeweils eine Befestigungsbohrung 70. Das Kunststoffteil 63 hat in Fig. 1 rechts ein Fortsetzungsteil 65, in welchem ein Dauermagnet 67 befestigt ist, der Teil einer Magnetkupplung ist.
  • Das Lagerrohr 30 geht in Fig. 1 nach rechts über in einen flanschartigen Abschnitt 80, der senkrecht zur Drehachse 81 des Rotors 26 verläuft und an seiner Peripherie übergeht in einen zylindrischen Abschnitt 82, der hier die Funktion eines sogenannten Spaltrohres hat und deshalb im folgenden als Spaltrohr 82 bezeichnet wird. Dieses geht über eine Schulter 84 über in einen zylindrischen Abschnitt 86, dessen freies Ende, wie dargestellt, zur Befestigung eines Deckels 88 dient, z.B. durch Laserschweißen. Am Deckel 88 ist ein Zulaufstutzen 96 für Kühlflüssigkeit vorgesehen. In dem vom Deckel 88 verschlossenen Gehäuseteil ist ein Förderrad 90 drehbar angeordnet. Das Lagerrohr 83 ist wie dargestellt bevorzugt einstückig mit den Teilen 82, 84, 86 aus einem magnetisch transparenten Kunststoff hergestellt.
  • Das Förderrad 90 ist bevorzugt einstückig mit einem permanentmagnetischen Rotor 92 ausgebildet, der mit dem Dauermagneten 67 eine Magnetkupplung 94 bildet, d.h. wenn sich der Dauermagnet 67 dreht, dreht sich auch der Dauermagnet 92 und treibt dadurch das Förderrad 90 an, wodurch dieses Flüssigkeit über den Einlass 96 ansaugt und über einen Auslass 98 nach außen pumpt, wie durch Pfeile angedeutet. Selbstverständlich kann anstelle einer Spiralpumpe jede beliebige andere Strömungsmaschine vorgesehen werden, z.B. ein Kompressor für ein Kältemittel.
  • Wie man den Zeichnungen entnimmt, ist der Abstand vom Dauermagneten 67 zum Dauermagneten 92 groß, so dass eine direkte Übertragung des Drehmoments zwischen diesen beiden Magneten nicht möglich wäre. Aus diesem Grund ist zwischen den Magneten 67, 92 eine Mehrzahl von Magnetfluss-Leitern in Form von Flussleitkörpern 150 angeordnet, welche das Magnetfeld des rotierenden Dauermagneten 67 auf das Spaltrohr 82 abbilden und dadurch eine Drehung des Dauermagneten 92 bewirken.
  • Fig. 2 zeigt etwa die Hälfte der Flussleitkörper 150 in perspektivischer Darstellung, und Fig. 4 erläutert ihre Wirkungsweise. Die Flussleitkörper 150 haben bei Fig. 1 und 2 die Form von fünfeckigen Platten aus Dynamoblech, also aus weichferromagnetischem Material. Sie sind bei dem Ausführungsbeispiel nach Fig. 1 bis 5 mit ihren radial inneren Enden in das Spaltrohr 82 eingebettet, vgl. Fig. 5, und verbreitern sich, von diesem ausgehend, in Richtung radial nach außen. Dabei sind sie sternförmig angeordnet, z:B. in der Form gemäß Fig. 5. Ihre äußeren Enden 152 sind durch einen magnetischen Luftspalt 154 vom Dauermagneten 67 getrennt. ("Magnetischer Luftspalt" ist ein Begriff des Elektromaschinenbaus. Auch ein Kunststoff, der magnetisch transparent ist, kann einen solchen "Luftspalt" bilden, d.h. magnetisch wirkt er wie Luft.)
  • Fig. 4 zeigt eine augenblickliche Drehstellung des Magneten 67, der vierpolig dargestellt ist, ebenso wie der Magnet 92. Letzterer ist vereinfacht dargestellt. In dieser Stellung befindet sich eine Polgrenze 156 zwischen zwei benachbarten Polen des Magneten 67 etwa in der Stellung 12.30 Uhr, bezogen auf das Zifferblatt einer Uhr. Links von der Grenze 156 liegen die Flussleitkörper 150 Südpolen S gegenüber, rechts von der Grenze 156 dagegen liegen sie Nordpolen N gegenüber. Die Flussleitkörper 150 verlaufen hier jeweils in radialen Ebenen und im Abstand voneinander, wodurch sie magnetisch voneinander isoliert sind. Sie sind bevorzugt gleichmäßig am Umfang verteilt, um die Entstehung von Reluktanzmomenten und magnetischen Vorzugsstellungen zu vermeiden.
  • Dementsprechend bilden sich auch am radial gesehen inneren Ende der Flussleitkörper 150 links von der Polgrenze 156 Südpole S aus, welche den Nordpol N des Dauermagneten 92 anziehen.
  • Rechts von der Polgrenze 156 liegen die Flussleitkörper 150 Nordpolen N gegenüber, und dementsprechend befinden sich am radial inneren Ende der dortigen Flussleitkörper 150 Nordpole N, welche einen Südpol des Dauermagneten 92 anziehen.
  • Dreht sich der äußere Magnet 67 im Uhrzeigersinn, wie das in Fig. 5 dargestellt ist, so wandern auch die Pole an den inneren Enden der Flussleitkörper 150 mit und bewirken folglich eine Drehung des inneren Dauermagneten 92 mit der gleichen Geschwindigkeit. Die Anordnung gemäß Fig. 4 arbeitet also nach dem Prinzip eines Synchronmotors. (Alternativ ist in Sonderfällen auch ein Betrieb mit Schlupf nicht ausgeschlossen, was die Verwendung besonderer Werkstoffe in der Magnetkupplung 94 voraus setzt, wie dem Fachmann bekannt.)
  • Durch die Flussleitkörper 150 wird also der Abstand zwischen den Magneten 67 und 92 überbrückt, so dass der Magnet 92 einen kleinen Durchmesser haben kann. Dies ist deshalb wichtig, weil sich der Magnet 92 im Kühlfluid dreht und folglich bei einem kleinen Durchmesser des Magneten 92 niedrige Reibungsverluste in diesem Kühlfluid entstehen. Das trägt zu einem guten Wirkungsgrad der Anordnung bei.
  • Der Dauermagnet 92 der Fluidpumpe ist mittels eines Gleitlagers 100 auf einer stationären Welle 106 drehbar gelagert, welche in einem nach rechts ragenden Vorsprung 107 des Abschnitts 80 in der dargestellten Weise flüssigkeitsdicht befestigt ist. Am rechten Ende der Welle 106 kann ein (nicht dargestellter) Sprengring vorgesehen werden. Durch die benachbarten Flussleitkörper 150 wird der Magnet 92 angezogen und in der dargestellten axialen Lage festgehalten.
  • Für die dargestellte Art der Befestigung der Lager 48, 50 benötigt man in Fig. 1 einen freien Raum 109 zwischen dem rechten Ende der Welle 46 und dem Boden der Ausnehmung 60. Die Ausgestaltung mit dem Vorsprung 107 ermöglicht trotz dieses freien Raumes 109 eine axial kompakte Bauweise.
  • Der zylindrische Abschnitt 86 ist über radial verlaufende Stege 114 mit dem Lüftergehäuse 68 verbunden, so dass dieses mit dem Spaltrohr 82, dem Abschnitt 80 und dem Lagerrohr 30 ein einstückiges Kunststoffteil bildet, was die Montage der Anordnung vereinfacht, die Zahl der Teile klein hält, und die verwendeten Aggregate sicher voneinander trennt, so dass Flüssigkeit von der Strömungsmaschine 90 nicht zum Elektromotor 20 gelangen und diesen schädigen kann. Die stationäre Welle 106 bildet ebenfalls einen Bestandteil dieses Spritzgussteils, weil sie in diesem bei der Herstellung verankert wird, und trägt deshalb ebenfalls zur kompakten Bauweise bei.
  • Arbeitsweise
  • Im Betrieb treibt der Außenläufermotor 20 den Außenrotor 26 an, so dass sich die Lüfterflügel 64 im Gehäuse 68 drehen und dadurch in diesem einen Luftstrom erzeugen. Alternativ kann der Lüfter auch als Diagonal- oder Radiallüfter ausgebildet werden. Dargestellt ist ein Axiallüfter.
  • Gleichzeitig treibt der Magnetring 67 über die Flussleitkörper 150 und durch das Spaltrohr 82 hindurch den Rotormagneten 92 an und dreht so das Pumpenrad 90, so dass dieses Flüssigkeit durch den Einlass 96 ansaugt und durch den Auslass 98 nach außen pumpt. Eine solche Pumpe kann z.B. verwendet werden, um in einem Springbrunnen Wasser anzusaugen und nach außen zu pumpen, oder um in einer Herz-Lungen-Maschine Blut zu pumpen, oder um Kühlflüssigkeit in einem geschlossenen Kühlkreislauf zu transportieren, wobei das Pumpenrad 90 dann die Funktion einer Umwälzpumpe hat.
  • Da der Deckel 88 flüssigkeitsdicht mit dem zylindrischen Teil 86 verbunden ist, z.B. durch Laserschweißen, kann aus dem Gehäuse 88 keine Flüssigkeit nach außen entweichen. Dazu trägt bei, dass der Abschnitt 80 und sein Vorsprung 107 frei von Durchbrechungen jeder Art sind. Dies ist deshalb möglich, weil der Rotor 26, z.B. in der nachfolgend bei Fig. 18 und 19 beschriebenen Weise, sehr einfach montiert werden kann und es nicht notwendig ist, während der Montage zum in Fig. 1 rechten Ende der Welle 46 Zugriff zu haben. Ebenso kann das Pumpenrad 90 der Zentrifugalpumpe mit seinem Gleitlager 100 in Fig. 1 von rechts auf der stationären Welle 106 montiert werden, bevor der Deckel 88 befestigt wird. Durch die Flussleitkörper 150 wird erreicht, dass der Rotor 26 einschließlich seines axialen Fortsatzes 65 und des Dauermagneten 67 bei der Montage sehr einfach über diese Flussleitkörper 150 geschoben werden kann, ohne dass dazu komplizierte Montagearbeiten notwendig werden. Vor der Montage des Rotors 26 kann der gesamte übrige Teil der Anordnung fertig montiert werden, weil es wegen der Flussleitkörper 150 möglich ist, den Außendurchmesser im Bereich dieser Körper 150 größer zu machen als den Außendurchmesser des Innenstators 22 und der Leiterplatte 32.
  • Alternativ zu Fig. 1 kann man für die Lagerung des Pumpenrads 90 eine rotierende Welle vorsehen, die genauso wie die Welle 46 des Motors 20 in einem (nicht dargestellten) Lagerrohr gelagert wird, das dann - ebenso wie das Lagerrohr 30 - einstückig mit dem Abschnitt 80 ausgebildet wird und von diesem nach rechts ragt, also spiegelbildlich zum Lagerrohr 30.
  • Gemäß Fig. 18 , die sich geringfügig von der Darstellung in den Fig. 1 bis 5 unterscheidet, werden auf der Welle 46 vor dem Zusammenbau des Motors 20 verschiedene Bauelemente vormontiert.
  • Beginnend bei dem Vorsprung 56 ist das zunächst die Druckfeder 58, deren Ende größeren Durchmessers in einer Vertiefung 39 liegt. Auf diese Feder folgt das ringförmige Sicherungsglied in Form der Sicherungsscheibe 54. Die Feder 58 liegt nicht gegen das Sicherungsglied 54 an.
  • Auf das Sicherungsglied 54 folgt das Wälzlager 48 mit seinem Außenring 48e und seinem Innenring 48i. Letzterer ist auf der Welle 46 in axialer Richtung verschiebbar. Das untere Ende der Feder 58 liegt gegen das obere Ende des Innenrings 48i an. Auf das Wälzlager 48 folgt das Distanzstück 52, das mittels eines radial nach innen ragenden Vorsprungs 53 auf der Welle 46 verschiebbar geführt ist und dessen oberes Ende, wie dargestellt, gegen das untere Ende des Außenrings 48e anliegt.
  • Auf das Distanzstück 52 folgt das untere Wälzlager 50 mit seinem Außenring 50e, der mit seinem oberen Ende gegen das Distanzstück 52 anliegt und mit seinem Innenring 50i, der auf der Welle 46 axial verschiebbar ist und mit seinem unteren Ende gegen den Sprengring 59 anliegt, wenn der Motor 20 fertig montiert ist.
  • Wie man ohne weiteres erkennt, kann man, wenn man mit einer Kraft F nach oben auf das untere Wälzlager 50 drückt, die Feder 58 zusammenpressen und dabei die beiden Lager 48, 50, das Distanzstück 52 und die Sicherungsscheibe 54 auf der Welle 46 nach oben verschieben, so dass der Innenring 50i nicht mehr gegen den Sprengring 59 anliegt, sondern einen Abstand von ihm bekommt. In diesem Fall kommt der Vorsprung 56 des Rotors 22 zur Anlage gegen die Sicherungsscheibe 54 und ermöglicht es, über diese eine axiale Kraft auf die Sicherungsscheibe 54, den Außenring 48e, das Distanzstück 52 und den Außenring 50e zu übertragen, wenn der Rotor 26 durch eine Kraft K bei der Montage nach unten gepresst wird.
  • Fig. 19 zeigt eine Momentaufnahme bei dem Vorgang der "Verheiratung", bei dem die Welle 46 des Rotors 26 mit den darauf befindlichen Wälzlagern 48, 50 in die Innenausnehmung 77 des Lagerrohres 30 eingeführt wird.
  • Hierbei wird eine Kraft K in axialer Richtung auf den Rotor 26 aufgebracht, und da die Außenringe 48e, 50e der Wälzlager 48, 50 mit Presssitz in das Lagerrohr 30 eingepresst werden, wird die Feder 58 durch die Kraft K zusammengepresst, so dass sich die Welle 46 in den Kugellagern 48, 50 verschiebt und der Vorsprung 56 über die Sicherungsscheibe 54 den Außenring 48e des Kugellagers 48 und über das Distanzglied 52 auch den Außenring 50e des Kugellagers 50 beaufschlagt und so die beiden Kugellager 48, 50 in das Lagerrohr 30 einpresst.
  • Das Einpressen setzt sich so lange fort, bis der Außenring 50e des unteren Kugellagers 50 gegen das obere Ende von Rippen 83 anliegt, die im Lagerrohr 30 an dessen innerem Ende 60 vorgesehen sind.
  • Hierbei verschiebt sich gemäß Fig. 19 das Sicherungsglied 54 im Lagerrohr 30 und gräbt sich dabei in dessen Kunststoff-Material ein, so dass es die gesamte Lageranordnung im Lagerrohr 30 verrastet.
  • Nach dem vollständigen Einpressen wird die Kraft K weggenommen, und es ergibt sich dann das Bild nach Fig. 1, d.h. die Feder 58 drückt nun die Welle 46 wieder so weit, bis der Sprengring 59 gegen den Innenring 50i des Wälzlagers 50 anliegt. Die Feder 58 verspannt jetzt die beiden Innenringe 48i, 50i gegeneinander, was für einen ruhigen Lauf des Motors 20 förderlich ist.
  • Die Fig. 6 bis 12 zeigen eine erste Variante für die Befestigung von Flussleitkörpern 150' an einem Kunststoffring 160. Letzterer hat eine zylindrische Ausnehmung 162, mit der er gemäß Fig. 10 bis 12 auf das Spaltrohr 82 aufgeschoben wird. Auf seiner Außenseite hat er Vorsprünge 164, in denen die Flussleitkörper 150' in der dargestellten Weise verankert sind.
  • Der Ring 160 ist auf seiner in den Fig. 6, 7 und 10 bis 12 unteren Seite mit Vorsprüngen 168 versehen, welche etwa die Form eines Keils haben. Durch Beaufschlagung mit einem Ultraschallgeber in Richtung der Pfeile 170 der Fig. 10 wird erreicht, dass sich diese Vorsprünge 168 in die Schulter 84 eingraben und mit dieser verschweißen.
  • Das Spaltrohr 82 kann in diesem Fall eine geringere Wandstärke haben.
    Die Fig. 13 und 14 zeigen eine ähnliche Ausführungsform, wobei aber eine keilartige Schneide 174 vorgesehen ist, die durchgehend verläuft. Die Befestigung ist gleich wie in den Fig. 10 bis 12 dargestellt.
  • Fig. 15 zeigt einen Schnitt durch einen Ring 160 und die in diesem verankerten Flussleitkörper 150". Fig. 16 zeigt in vergrößerter Darstellung, dass die Flussleitkörper 150" bei dieser Variante am radial inneren Ende keilförmig verdickt sind, um eine sichere Verankerung zu bewirken. Auch hat hier gemäß Fig. 17 der Flussleitkörper 150" am radial inneren Ende eine hakenartige Verbreiterung 180.
  • Wie sich für den Fachmann aus Fig. 1 klar ergibt, wirken die Flussleitkörper 150 auch als Flusskonzentratoren, weil sie an ihrem radial äußeren Bereich etwa die gleiche Länge haben wie der Magnet 67, während sie an ihrem radial inneren Bereich etwa die - kürzere - Länge des Magneten 92 haben, so dass der Fluss des Magneten 67 konzentriert wird. Dies trägt auch dem Umstand Rechnung, dass die Magnete 67 und 92 ungleich lang sind und verbessert das Drehmoment, das von der Magnetkupplung übertragen werden kann.
  • Naturgemäß sind im Rahmen der vorliegenden Erfindung vielfache Abwandlungen und Modifikationen möglich.

Claims (23)

  1. Anordnung zur Förderung von Fluiden, welche aufweist:
    Eine Fluidpumpe, welche ein Pumpenrad (90) aufweist, das mit einem ersten Dauermagneten (92) verbunden ist, welches Pumpenrad (90) innerhalb eines flüssigkeitsdichten Pumpengehäuses (80, 82, 84, 86, 88) drehbar angeordnet ist, welches Gehäuse (80, 82, 84, 86, 88) im Bereich des ersten Dauermagneten (92) als Spalttopf (80, 82) ausgebildet ist;
    einen elektronisch kommutierten Elektromotor (20) mit einem Stator (22) und einem relativ zu diesem drehbar angeordneten Rotor (26), welcher einen zweiten Dauermagneten (67) aufweist, der mit dem ersten Dauermagneten (92) nach Art einer Magnetkupplung (94) zusammen wirkt dadurch gekennzeichnet, dass die Anordnung eine Mehrzahl von in dem Raum zwischen dem zweiten Dauermagneten (67) und dem Spalttopf (80, 82) angeordneten weichferromagnetischen Magnetfluss-Leitern (150; 150'; 150") aufweist, welche so im Abstand voneinander angeordnet sind, dass sie das an ihrem vom Spalttopf (80, 82) abgewandten Ende wirksame Magnetfeld des zweiten Dauermagneten (67) auf den dem ersten Dauermagneten (92) zugeordneten Bereich des Spalttopfs (80, 82) abbilden.
  2. Anordnung nach Anspruch 1, bei welcher die weichferromagnetischen Magnetfluss-Leiter (150; 150'; 150") als Körper aus weichferromagnetischem Werkstoff ausgebildet sind, welche etwa sternförmig um den Spalttopf (80, 82) herum angeordnet sind.
  3. Anordnung nach Anspruch 2, bei welcher die Körper (150; 150'; 150") aus weichferromagnetischem Werkstoff im wesentlichen plattenförmig ausgebildet sind.
  4. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher die weichferromagnetischen Magnetfluss-Leiter (150; 150'; 150") nach Art von Flusskonzentratoren ausgebildet sind.
  5. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher der elektronisch kommutierte Elektromotor als Außenläufermotor (20) mit einer Rotorglocke (63) ausgebildet ist, innerhalb welcher der Rotormagnet (36) des Motors (20) und der zweite Dauermagnet (67) angeordnet sind.
  6. Anordnung nach einem der vorhergehenden Ansprüche, bei welchem innerhalb des Spalttopfs (80, 82) an diesem ein Lagerelement (106) für das Pumpenrad (90) und außerhalb des Spalttopfs (80, 82) an diesem ein Lagerelement (30) für den Rotor (26) des elektronisch kommutierten Elektromotors (20) angeordnet ist.
  7. Anordnung nach Anspruch 6, bei welcher das Lagerelement für den Rotor (26) des Elektromotors (20) ein Lagerrohr (30) aufweist, das mit dem Spalttopf (80, 82) fest verbunden ist.
  8. Anordnung nach Anspruch 7, bei welcher das Lagerrohr (30) einstückig mit dem Spalttopf (80, 82) ausgebildet ist.
  9. Anordnung nach einem der vorhergehenden Ansprüche, bei welchem mit dem Rotor (26) des Elektromotors (20) Lüfterflügel (64) verbunden sind.
  10. Anordnung nach Anspruch 9, bei welcher der Permanentmagnet des Rotors einen magnetischen Rückschluss aufweist, welcher als becherartiges Teil (40) ausgebildet ist, und die Lüfterflügel (64) auf diesem becherartigen Teil (40) angeordnet sind.
  11. Anordnung nach Anspruch 9 oder 10, bei welcher die Lüfterflügel (64) als Teil eines Axiallüfterrads ausgebildet sind.
  12. Anordnung nach Anspruch 9 oder 10, bei welcher die Lüfterflügel als Teil eines Diagonallüfterrads ausgebildet sind.
  13. Anordnung nach Anspruch 9 oder 10, bei welcher die Lüfterflügel als Teil eines Radiallüfterrads ausgebildet sind.
  14. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher mit dem Spalttopf (80, 82) ein Luftleitgehäuse (68) verbunden ist.
  15. Anordnung nach Anspruch 14, bei welcher das Luftleitgehäuse (68) als mit dem Spalttopf (80, 82) einstückiges Kunststoffteil ausgebildet ist.
  16. Anordnung nach Anspruch 15, bei welcher der Spalttopf (80, 82) über mindestens einen Steg (114) mit dem Luftleitgehäuse (68) verbunden ist.
  17. Anordnung nach Anspruch 7 oder 8, bei welcher der Elektromotor als Außenläufermotor (20) ausgebildet ist, und der Innenstator (92) dieses Motors auf dem Lagerrohr (30) befestigt ist, welches für die Lagerung des Rotors (26) dient.
  18. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher die weichferromagnetischen Magnetfluss-Leiter (150; 150'; 150") an ihrem radial inneren Endbereich mit einem Trägerteil (160) aus nichtferromagnetischem Werkstoff verbunden sind.
  19. Anordnung nach Anspruch 18, bei welcher das Trägerteil (160) auf dem Spalttopf (80, 82) angeordnet ist.
  20. Anordnung nach Anspruch 19, bei welcher der Spalttopf (80, 82) eine etwa kreiszylindrische Peripherie aufweist,
    und das Trägerteil (160) auf dieser Peripherie angeordnet ist.
  21. Anordnung nach einem der Ansprüche 18 bis 20, bei welcher das Trägerteil (160) aus einem Kunststoff ausgebildet und mit axialen Vorsprüngen (168; 174) versehen ist, welche durch einen Schweißvorgang mit einem benachbarten Kunststoffteil der Anordnung verbunden sind.
  22. Anordnung nach Anspruch 21, bei welcher die Schweißverbindung durch Ultraschallschweißen (170) an einem axialen Ende des Trägerteils (160) ausgebildet ist.
  23. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher der Querschnitt von weichferromagnetischen Magnetfluss-Leitern (150") innerhalb des Trägerteils (160) mindestens bereichsweise vergrößert (180) ist, um eine gute Verankerung dieser Leiter (150") im Trägerteil zu bewirken.
EP05786321A 2004-10-06 2005-08-10 Anordnung zur förderung von fluiden Not-in-force EP1797330B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202004015648 2004-10-06
PCT/EP2005/008668 WO2006037396A1 (de) 2004-10-06 2005-08-10 Anordnung zur förderung von fluiden

Publications (2)

Publication Number Publication Date
EP1797330A1 EP1797330A1 (de) 2007-06-20
EP1797330B1 true EP1797330B1 (de) 2009-01-07

Family

ID=35285409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05786321A Not-in-force EP1797330B1 (de) 2004-10-06 2005-08-10 Anordnung zur förderung von fluiden

Country Status (5)

Country Link
US (1) US20090022607A1 (de)
EP (1) EP1797330B1 (de)
AT (1) ATE420292T1 (de)
DE (1) DE502005006436D1 (de)
WO (1) WO2006037396A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4999157B2 (ja) * 2006-12-28 2012-08-15 アネスト岩田株式会社 磁気カップリングを介して駆動源に結合した流体機械
US10722627B1 (en) 2018-05-24 2020-07-28 RBTS Inc. Blood pump bearing with integrated fluid diffuser/inducer system
DE102018129612A1 (de) * 2018-11-23 2020-05-28 Ebm-Papst St. Georgen Gmbh & Co. Kg Rotorbaugruppe
US11739756B2 (en) * 2020-11-30 2023-08-29 Deere & Company Multi-pump apparatus of cooling system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2006A (en) * 1841-03-16 Clamp for crimping leather
US2230717A (en) * 1939-10-24 1941-02-04 Gilbert & Barker Mfg Co Pumping means
DE2048286B2 (de) * 1969-02-10 1975-08-28 Standard Magnet Ag, Huenenberg (Schweiz) Kreiselpumpe mit magnetischem Getriebe
DE4301675A1 (de) * 1993-01-22 1994-07-28 Pierburg Gmbh Elektronisch kommutierter Elektromotor
JP3311065B2 (ja) * 1993-02-17 2002-08-05 大裕工業株式会社 ポンプ
US5895207A (en) * 1993-06-17 1999-04-20 Itt Automotive Europe, Gmbh Electric motor-pump assembly
JPH09163675A (ja) * 1995-12-06 1997-06-20 Jidosha Denki Kogyo Co Ltd マグネットポンプ
US6208512B1 (en) * 1999-05-14 2001-03-27 International Business Machines Corporation Contactless hermetic pump
FR2798169B1 (fr) * 1999-09-06 2001-11-16 Siebec Sa Pompe a entrainement magnetique
US6664704B2 (en) * 2001-11-23 2003-12-16 David Gregory Calley Electrical machine
US6600649B1 (en) * 2002-05-24 2003-07-29 Mei-Nan Tsai Heat dissipating device
AU2003270279A1 (en) * 2002-09-28 2004-04-23 Ebm-Papst St. Georgen Gmbh And Co. Kg Arrangement and method for removing heat from a component which is to be cooled
US7424907B2 (en) * 2002-10-01 2008-09-16 Enertron, Inc. Methods and apparatus for an integrated fan pump cooling module

Also Published As

Publication number Publication date
DE502005006436D1 (de) 2009-02-26
WO2006037396A1 (de) 2006-04-13
EP1797330A1 (de) 2007-06-20
ATE420292T1 (de) 2009-01-15
US20090022607A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
EP1778981B1 (de) Anordnung zur förderung von fluiden
EP1725775B1 (de) Anordnung mit einem elektronisch kommutierten aussenläufermotor
DE202008002617U1 (de) Anordnung zur Förderung von Fluiden
EP1716338B1 (de) Anordnung zur förderung von fluiden
DE102011001041B4 (de) Magnetisch angetriebene Pumpenanordnung mit einer Mikropumpe mit Zwangsspuelung und Arbeitsverfahren
EP1502030B1 (de) Antriebsmotor, insbesondere für eine pumpe
EP2739856B1 (de) Nassläuferpumpe mit leistungselektronik
AT502566B1 (de) Kühlmittelpumpe
EP2191138A1 (de) Pumpenrotor für eine spaltrohrpumpe
EP1256722B1 (de) Kreiselpumpe
WO2013107808A2 (de) Nassläuferpumpe mit gleitlager
EP1794459A1 (de) Anordnung zur förderung von fluiden
EP1797330B1 (de) Anordnung zur förderung von fluiden
EP1812714B1 (de) Anordnung mit einem luefter und einer pumpe
EP1286055B1 (de) Nassläuferpumpe
DE102012200816B4 (de) Nassläuferpumpe mit Permanentmagnet
DE202005013923U1 (de) Anordnung zur Förderung von Fluiden
DE202005014297U1 (de) Anordnung zur Förderung von Fluiden
DE19939522A1 (de) Elektromotorisch angetriebene Kreiselpumpe mit außenliegendem Rotor
DE202005014301U1 (de) Anordnung zur Förderung von Fluiden
DE102007021917A1 (de) Elektrische Maschine mit verbesserter Wärmeabfuhr
DE20012673U1 (de) Motor
DE202005017787U1 (de) Anordnung zur Förderung von Fluiden
DE102012200803B4 (de) Nassläuferpumpe
DE102018129709A1 (de) Spindelmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BURGERT, MICHAEL

Inventor name: JORDAN, ALEXANDER

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006436

Country of ref document: DE

Date of ref document: 20090226

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090418

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

26N No opposition filed

Effective date: 20091008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090407

BERE Be: lapsed

Owner name: EBM-PAPST ST. GEORGEN G.M.B.H. & CO. KG

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100802

Year of fee payment: 6

Ref country code: FR

Payment date: 20100716

Year of fee payment: 6

Ref country code: GB

Payment date: 20100603

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110810

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006436

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301